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Numerical relativity simulations are the only way to calculate exact gravitational waveforms from binary
neutron star mergers and to design templates for gravitational-wave astronomy. The accuracy of these
numerical calculations is critical in quantifying tidal effects near merger that are currently one of the main
sources of uncertainty in merger waveforms. In this work, we explore the use of an entropy-based flux-
limiting scheme for high-order, convergent simulations of neutron star spacetimes. The scheme effectively
tracks the stellar surface and physical shocks using the residual of the entropy equation thus allowing the
use of unlimited central flux schemes in regions of smooth flow. We perform the first neutron star merger
simulations with such a method and demonstrate up to fourth-order convergence in the gravitational
waveform phase. The scheme reduces the phase error up to a factor 5 when compared to state-of-the-art
high-order characteristic schemes and can be employed for producing faithful tidal waveforms for
gravitational-wave modeling.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from binary
neutron star (BNS) merger events by the LIGO-Virgo
collaboration opened the way to observationally probe
NS matter with GW signals [1–4]. Key to this endeavor
is the availability of merger waveforms from numerical
relativity (NR) simulations that accurately resolve tidal
effects and allows the design of sophisticated waveform
templates [5–11]. Current tidal waveform templates have
been shown to be inaccurate (unfaithful) for the inference
of tidal parameters at the signal-to-noise ratios that would
otherwise allow a precision measurement [12]. The main
source of inaccuracy is the modeling of tidal interactions
toward merger and it is related to the lack of sufficiently
accurate NR simulations. This is a critical open issue for
science with advanced detectors and an urgent problem to
solve in view of third generation [13].
Current state-of-the-art1 NR waveforms for modeling

tidal interactions span about ten orbits to merger and have
typical accumulated phase errors below one radiant e.g.,
[7,23–26]. Early studies pointed to numerical dissipation in
relativistic hydrodynamics (GRHD), to the numerical
handling of the stellar surfaces and to the slow convergence

of high-resolution shock-capturing (HRSC) as the main
difficulties towards the computation of precise waveforms
[7,27–30]. The primary goal is to assess waveforms’
error budget based on convergent data and rigorous self-
convergence tests, which has been presented by a few
groups [23,28,29]. Traditional finite volume methods
for GRHD using linear reconstructions, the piecewise
parabolic method [31,32] or even third-order convex-
essentially-non-oscillatory (CENO3) algorithm [33,34]
allows robust and successful simulations but do not
produce convergent waveforms at affordable resolutions
[7,28,35,36]. Consequently, high-order (HO) numerical
schemes based on fifth-order characteristic reconstructions
of the GRHD fields [37] have been explored and represent
the best methods available to date [23,25]. HO schemes
allow the computation of convergent waveforms but none
of the schemes tested so far achieves the formal high-order
accuracy expected for smooth flow. Nonetheless, the direct
data comparison between two independent codes indicates
good agreement within the estimated error bars (see
Appendix D of [38]). While a convergent waveform can
be obtained, the computational cost of producing GW with
subradiant accuracy over multiple orbits and to merger
remains rather high [26,39].
In the present work we explore further the potential of a

method that started as an artificial viscosity method [40]
and developed through the years to a flux-limiting method
[41]. The central idea of this method is to use a physical
quantity as an indicator of the location of abnormal non-
smooth regions like shocks, rarefactions etc. Entropy is an

1We focus here on the numerical quality and do not discuss
other important aspects like eccentricity reduced circular initial
data [14,15], the exploration of mass ratio [16,17], spin effects
[18,19] generic orbits [20], or the influence of microphysics
[21,22].
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ideal candidate for this role as shocks are irreversible
processes and thus increase the overall entropy of the
system. Therefore, entropy can be used to flag the presence
of nonsmooth features in the solution space. The idea of
using the entropy to design numerical methods for non-
linear conservation laws is not new though. For example it
is shown in [42,43] that the entropy production can be used
as a posteriori shock indicator and therefore it is extremely
useful in the shock tracking. The authors in [40,44] used the
aforementioned idea to design a novel class of high-order
numerical approximations to nonlinear conservation laws
by adding a degenerate nonlinear dissipation to the numeri-
cally discretized system. The additional nonlinear viscosity
term is based on the local size of the entropy production. By
making the numerical diffusion proportional to the entropy
production in strong shocks, large numerical dissipation is
added in the shock regions and almost no dissipation in the
regions where the solution is smooth. This close interplay
between the notions of entropy and viscosity gave the name
entropy-viscosity (EV) to this method.
In [41] the EV method was incorporated in a HRSC

method and extended to special and general relativistic
hydrodynamics. Accordingly, the definitions of the entropy
and viscosity were generalized and the viscosity was
employed to drive a flux-limiting scheme rather than gen-
erating additional viscous terms in the hydrodynamical
equations. The equations of GRHD are not modified any-
more by the inclusion of additional viscosity related terms.
Instead, a flux-limiting strategy is employed, i.e., the
numerical fluxes are computed using an unlimited high-
order stencil complemented by a first-order, nonoscillatory
local Lax-Friedrichs (LLF) flux in regions of nonsmooth
flow. The high-order and low-order fluxes are linearly
combined using local weights that are determined by
(i) an entropy-based shock detector criterion (based on the
residual of the entropy equation) and (ii) a positivity
preserving limiter [45]. This hybrid scheme was named
entropy-limited hydrodynamics (ELH). It has been shown
effective in capturing shocks and discontinuities in special
relativistic shock tubes as well as in producing stable
evolutions of single neutron star by properly handling stellar
surface effects. Reference [41] also points out shortcomings
of themethod: small spurious oscillations are observed in the
blast wave 2 test, while neutron star evolutions show a
spurious direction-dependent feature that breaks spherical
symmetry.
In the present work, we build upon the existing machi-

nery of the ELH method. While keeping loyal to the basic
features of the method, we extend and generalize some of
its aspects and modify or even drop some others. Most
noticeably we drop the use of the positivity preserving
limiter [45] and define the weights of the fluxes directly
from the entropy produced by the system under inves-
tigation. Another notable amendment is that we allow the
unfiltered high-order flux to be supplemented by general

stable low- or high-order fluxes. In addition, the ELH is
simplified by completely defining the free parameters
inherent in the method. In light of the above quantitative
differences with the ELH method we name the scheme
developed in the present work the entropy based flux
limiter (EFL) method as it describes exactly what we have
developed: a genuine entropy based flux limiter. The new,
EFL scheme remains robust in handling the special
relativistic and the single neutron star tests, notably improv-
ing the shortcoming of the previous implementation.
Moreover, we successfully apply for the first time the scheme
to BNS simulations. We discuss high-order convergence in
the inspiral-merger GWs and the future prospect for pro-
ducing faithful waveforms for GW modeling.
The article is structured as follows. In Sec. II, after

briefly summarizing the equation of GRHD, we discuss
theoretical and numerical aspects of our method. Section III
includes our results for the standard benchmark tests of
special relativity, and in Sec. IV the performance of our
method is tested against three-dimensional general relativ-
istic single NS configurations. Our main results are
presented in Sec. V, where the first BNS evolutions with
a method based on the entropy production can be found.
Finally, we conclude in Sec. VII.
Throughout this work we use geometric units. We set

c ¼ G ¼ 1 and the masses are expressed in terms of solar
masses M⊙.

II. METHOD

A. General relativistic hydrodynamics

The evolution of a relativistic fluid in the presence of a
nontrivial gravitational field gμν is described by the local
conservation laws of the energy-momentum tensor Tμν and
of the rest-mass current Jμ ¼ ρuμ,

∇μTμν ¼ 0 and ∇μJμ ¼ 0; ð1Þ

respectively. Above ∇ denotes the covariant derivative
compatible with gμν, ρ is the rest-mass density and uμ is
the 4-velocity of the fluid. The evolution equations (1) in
the 3þ 1 formalism [46] can be written as a system of
partial differential equations in conservation form [47],

∂tQþ ∂iFi ¼ S; ð2Þ
where the summation is performed over the spatial dimen-
sions i ¼ fx; y; zg and the vector Q of the conserved
variables reads

Q ¼ ffiffiffi
γ

p
2
64
D

Sj
τ

3
75 ≔

ffiffiffi
γ

p
2
64

ρW

ρhW2uj

ρhW2 − p − ρW

3
75; ð3Þ

where Sj ¼ fSx; Sy; Szg, p is the pressure, h is the specific
enthalpy h ¼ 1þ ϵþ p=ρ with ϵ the specific internal
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energy,W ¼ ð1 − uiuiÞ1=2 is the Lorentz factor and γ is the
determinant of the 3-metric γij resulting from the 3þ 1

decomposition of (M; gμν). The vector Fi of the physical
fluxes is

Fi ¼ ffiffiffi
γ

p
2
64

ðαui − βiÞD
ðαui − βiÞSj þ αpδij

ðαui − βiÞτ þ αpui

3
75; ð4Þ

where α is the lapse function, βi the shift vector and δij the
Kronecker delta. Finally, the vector S of the sources has the
form

S ¼ α
ffiffiffi
γ

p
2
64

0

Γμ
νjT

ν
μ

αðT0μ
∂μ ln α − Γ0

μνTμνÞ

3
75; ð5Þ

where Γρ
μν are the Christoffel symbols associated with the

metric gμν. Notice that the system (2) reduces to its special
relativistic counterpart in the limit ðα; βi; γijÞ → ð1; 0; δijÞ,
i.e., when S → 0.
In order to close the underdetermined system (2) one

needs an equation of state (EOS) that specifies the pressure
in terms of the density and the internal energy, i.e.,
p ¼ pðρ; ϵÞ. Specifically, for the special relativistic tests
of Sec. III we use a Γ-law EOS,

p ¼ ðΓ − 1Þρϵ; ð6Þ

with Γ the adiabatic index. The neutron star matter of the
single neutron star evolutions of Sec. IV is also modeled by
a Γ-law EOS (6). Finally, the matter of the neutron stars
comprising the binaries of Sec. V is described by either a
Γ-law EOS (6) or by a more realistic SLy EOS [48].
The latter is implemented by a piecewise polytrope fit [49],
and thermal effects are modeled by an additive pressure
contribution given by the Γ-law EOS with Γ ¼ 1.75
[28,50,51].

B. EFL method

In the present work the entropy-viscosity (EV) method
[40,44] is used as a flux limiting scheme in the spirit of
[41]. In [41] the original EVmethod was reformulated as an
entropy based flux limiter and extended to special and
general relativistic hydrodynamics. The basic idea of the
ELH method consists of expressing the numerical fluxes
resulting from the spatial discretization of (2) as a super-
position of an (unstable) high- and a (stable) low-order flux,
where the weight dictating the transition between the two
fluxes is computed based on the entropy produced in the
system under investigation. The entropy of the system is
used as a “shock detector” that indicates when to switch
from the high-order scheme to the low-order one.

The EFL method follows in broad lines the exposition in
[41], but adds some novelties to the already existing
scheme. One of the main differences is that we do not
use the positivity-preserving limiter [36] in the definition of
the transition weight θ. Another key development is that the
LO flux here is composed of a nonoscillatory high-order
scheme, namely a finite volume method with high-order
reconstruction (CENO3, WENO, etc.). In this way the
chances that the resulting hybrid flux can achieve high-
order convergence rates are maximized. Finally, the han-
dling of the tunable constants is extremely simplified; see
the last paragraph of the current section for further details.
We start by approximating the spatial derivative of the x

component, Fx, of the physical flux (4) appearing in (2)
with the conservative finite-difference formula2

∂xFx
i ¼

f̂iþ1=2 − f̂i−1=2
h

; ð7Þ

where Fx is any one of the components of Fx with
Fx
i ¼ FxðxiÞ, f̂i�1=2 are the numerical fluxes at the cell

interfaces and h is the spatial grid spacing.
Next, we split the numerical fluxes on the rhs of (7) into

two contributions, see also [41]: one from a HO scheme and
one from a low-order (LO) stable scheme, i.e.,

f̂i�1=2 ¼ θi�1=2f̂
HO
i�1=2 þ ð1 − θi�1=2Þf̂LOi�1=2; ð8Þ

where the continuous parameter θ ∈ ½0; 1� plays the role of
a weight that indicates how much from each scheme to use
at every instance. The HO flux f̂HO is built using the
Rusanov Lax-Friedrichs flux-splitting technique and per-
forming the reconstruction on the characteristic fields
[25,52]. A fifth-order central unfiltered stencil (CS5) is
always used for reconstruction. The LO flux f̂LO is
approximated by the LLF central scheme with
reconstruction performed on the primitive variables [28].
Primitive reconstruction is performed with a variety of low-
and high-order reconstruction schemes. (Notice that we
generalize the traditional notion of a flux-limited scheme
where f̂LO is always a LO monotone flux [53,54].) A list of
the ones used in the present work follows: Godunov’s
piecewise constant reconstruction scheme (GODUNOV)
[55]; the second-order linear total variation diminishing
(LINTVD) interpolation based on “minmod” and “mono-
tonized centered” slope limiters [53,56]; the third-order
convex-essentially-non-oscillatory (CENO3) algorithm
[33,34]; and the fifth-order weighted-essentially-non-
oscillatory finite difference schemes WENO5 [57] and
WENOZ [58]. As it was mentioned above, this is a basic

2For clarity and without loss of generality, from now on the
presentation is restricted to one dimension, say x. A multidi-
mensional scheme is obtained by considering fluxes in each
direction separately and adding them to the rhs.
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difference of the EFL method with the one proposed in
[41]; therein a first-order Lax-Friedrichs flux was used
exclusively as the LO flux.
The computation of θ is based on the so-called entropy

production function ν: a quantity that depends on the
amount of entropy produced in the system. Explicitly, the
relation between θ and ν is

θi�1=2 ¼ 1 −
1

2
ðνi þ νi�1Þ: ð9Þ

Below, we summarize how to compute ν.
In order to quantify the relation between ν and the

entropy produced by the system under investigation, we
define the specific entropy (entropy per unit mass) of any
piecewise polytropic EOS3 as

s ¼ ln

�
p
ρΓ

�
; ð10Þ

where the pressure is computed in accordance with the EOS
in use.
Following [41], we employ the second law of thermo-

dynamics to define the entropy residual:

R ¼ ∇μðsρuμÞ ≥ 0; ð11Þ

which provides a quantitative estimation of the rate of the
entropy produced by the system under study. Using the
continuity equation and writing the 4-velocity uμ in terms
of the fluid 3-velocity υi, the above expression can be
written [41] in terms of the time and spatial derivatives of
the specific entropy as

R ¼ ρW
α

ð∂tsþ ðαυi − βiÞ∂isÞ: ð12Þ

In order to simplify the definition of the constant cE, see the
discussion below, we suppress the multiplication factor ρW

α
and replace R by

R ¼ ∂tsþ ðαυi − βiÞ∂is; ð13Þ

which amounts to a rescaling ofR so that the coefficient of
∂ts is equal to one.
Finally, we define the entropy production function in

terms of the rescaled entropy residual R,

νE ¼ cEjRj; ð14Þ

where cE is a tunable constant used to scale the absolute
value of R. In all our simulations we did not have to tune
cE, its value was set to unity, i.e., cE ¼ 1. Keeping in mind

that the parameter θ cannot exceed unity, we have to
impose a maximum value of νmax ¼ 1 for the entropy
production function in order to ensure that the rhs of (9)
does not exceed the range [0, 1]. Accordingly, the entropy
production function entering (9) is given by

ν ¼ min ½νE; 1�: ð15Þ

Comparing directly with [41], note the following
differences. In the present work, we use (9) directly for
the definition of θ, while [41] adds a condition for positivity
preservation. We define R as in (13), while [41] considers
R ¼ ρW

α R. Finally, we define the entropy production
function as νE ¼ cEjRj, while in [41] νE is multiplied with
Δm, where Δm is the mesh spacing.
In other words, based on various numerical experiments

we found it advantageous to remove the factor ρWΔm
α from

the definition of the entropy production function νE
compared to ELH. We study results for cE ¼ 1 in detail,
while cE ¼ ρWΔm

α is considered in [41]. In the EFL method
proposed here, there is no direct resolution dependence,
and the entropy production has been normalized to the scale
of ∂ts.

C. Numerical implementation

The finite differencing code BAM [25,28,59,60] is used to
solve numerically the system of equations discussed in
Sec. II A coupled to the metric equations for general
relativity. The EFL method presented in Sec. II B has been
implemented into BAM and is part of its infrastructure. BAM
uses the method of lines with Runge-Kutta (RK) time
integration and finite differences for the approximation of
spatial derivatives. The value of the Courant-Friedrich-
Lewy (CFL) condition is set to 0.25 for all runs.
The numerical domain contains a mesh made of a

hierarchy of cell-centered nested Cartesian boxes and
consists of L refinement levels l ¼ 0;…; L − 1 ordered
with increasing resolution. Each refinement level is made
out of one or more equally spaced Cartesian grids with grid
spacing hl. There are n points per direction on each grid
plus a certain number of buffer points on each side. (For
simplicity, we always quote grid sizes without buffer
points.) The resolution between two consecutive levels is
doubled such that the grid spacing at level l is hl ¼ h0=2l,
where h0 is the grid spacing of the coarsest level. The inner
levels move in accordance with the moving boxes tech-
nique, while the outer levels remain fixed. The number of
points in one direction of a moving level can be set to a
different value than the number of points of a fixed level.
The coordinate extent of a grid at level l entirely contains
grids at any level greater than l. The moving refinement
levels always stay within the coarsest level. For the time
evolution of the grid the Berger-Oliger algorithm is
employed enforcing mass conservation across refinement

3For a more general EOS the specific entropy s can be taken
from the EOS.
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boundaries [60,61]. Restriction and prolongation is per-
formed for the matter fields with a fourth-order WENO
scheme and for the metric fields with a sixth-order
Lagrangian scheme. Interpolation in Berger-Oliger time
stepping is performed at second order.
For the numerical implementation of the EFL method the

BAM routines computing the numerical fluxes had to be
modified in order to accommodate the hybrid flux (8). In
order to compute the entropy production (13) we have to
approximate the time and spatial derivatives of the specific
entropy. We use finite differences to do so. Specifically, the
spatial derivatives are approximated, as in [41], with a
standard centered finite-difference stencil of order pþ 1 or
higher, where p is the order of the stencil used to
approximate the physical fluxes. (In the present work we
use p ¼ 5.) With this restriction it is ensured that the
entropy production function ν converges to zero faster than
the overall convergence of the scheme. The time derivative
is also approximated with finite differences. We employ a
third-order one-sided stencil by using, at every Runge-
Kutta iteration, the current value of the specific entropy and
the values at the three previous time steps. The fact that we
manage to achieve higher than third-order convergence in
the majority of our simulations can be possibly attributed to
the dominance of the spatial error over the time discretiza-
tion error.
The derivatives of the metric components are approxi-

mated by fourth-order accurate finite-differencing stencils.
In addition, sixth-order artificial dissipation operators are
employed to stabilize noise from mesh refinement boun-
daries. The general relativistic hydrodynamic equations (2)
are solved by means of a high-resolution-shock-capturing
method [28] based on primitive reconstruction and the
aforedescribed high-order entropy limited scheme for the
numerical fluxes. In the present work spacetime is dynami-
cally evolved using either the BSSNOK [62–64] or the Z4c
[65,66] evolution scheme.
Vacuum regions are simulated with the introduction of a

static, low-density, cold atmosphere in the vacuum region
surrounding the star [28]. The atmosphere density is
defined as

ρatm ¼ fatm max ρðt ¼ 0Þ: ð16Þ

All grid points with rest-mass density below a threshold
value ρthr ¼ fthrρatm are set automatically to ρatm.
Transition to low-density regions is one of the main sources
of error in NS simulations. This is a common feature in all
current numerical relativity implementations of NS dynam-
ics. To deal with this challenging feature they also make use
of similar assumptions and algorithms at low densities as
those employed here. We leave it to future work to
investigate whether the advantages of the atmosphere
and vacuum treatment of [67], which improved mass
conservation and accuracy of ejecta in that case study,

can be combined with the new flux-limiting scheme. In the
present work, we use the standard atmosphere treatment
implemented in BAM [28], as our aim is to compare the
performance of the newly developed entropy based flux-
limiting scheme with our current best high-order flux
scheme [25].

III. SPECIAL RELATIVISTIC 1D TESTS

In this section a number of special relativistic one-
dimensional tests are performed.

A. Simple wave

The relativistic simple wave is used as a first check of the
accuracy and of the convergence properties of the EFL
method. Although simple waves start off from smooth
initial data, their nonlinear nature leads to the development
of shocks at some point during their evolution. These tests
have been discussed in [68,69]. Here, we use the simple
wave described in [25], therein the initial velocity profile is
of the form

υ ¼ aΘðjxj − XÞ sin6
�
π

2

�
x
X
− 1

��
; ð17Þ

where ΘðxÞ is the Heaviside function, a ¼ 0.5 and
X ¼ 0.3. During the evolution the smooth initial profiles
of all primitive variables become steeper and steeper and at
around t ≃ 0.63 they form a shock. We use exactly the same
numerical setup with [25], i.e., our one-dimensional com-
putational domain spans the interval x ∈ ½−1.5; 1.5�, RK4
is used as time integrator and a CFL factor of 0.125 has
been chosen. Figure 1 depicts the simple wave at t ¼ 1.2
for a resolution of 800 grid points (h ¼ 0.00375) for a high-
order WENOZ and a lower-order CENO3 reconstruction

FIG. 1. Simple wave. Numerical solution of the rest-mass
density with n ¼ 800 grid points and CFL factor 0.125 for the
reconstruction schemes CENO3 (using purple cross) and WE-
NOZ (using green circle). The initial profile and the exact
solution are also included using dashed blue and solid red lines,
respectively.
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scheme. (The behavior of the other two reconstruction
schemes used in this work is identical to the one depicted
by Fig. 1.) By inspection, all schemes reproduce the correct
physics. Table I contains the results of the convergence
analysis of the EFL schemes of Fig. 1 at t ¼ 0.6 (just before
the shock forms). As a reference the HO-WENOZ scheme
developed in [25] is also included in Table I—this is the
high-order scheme that we use to approximate the HO flux
f̂HO in (8), but with WENOZ (instead of CS5) for the
reconstruction of the characteristic variables. All schemes
converge to the exact solution with the expected conver-
gence rate.

B. Sod shock tube

We move on now to the standard Riemann problems
used as benchmarks in special relativistic hydrodynamics.
Our first test is the relativistic version of Sod’s shock-tube
problem [70]. Assuming a simple ideal fluid EOS of the
form (6) with adiabatic index Γ ¼ 1.4, the discontinuous
initial data for the pressure p, the rest-mass density ρ, the
velocity υ, and the specific energy ϵ read

ðpL; ρL; υL; ϵLÞ ¼ ð1; 1; 0; 2.5Þ;
ðpR; ρR; υR; ϵRÞ ¼ ð0.1; 0.125; 0; 2Þ: ð18Þ

During the evolution the initial discontinuity at x ¼ 0 splits
into a shock wave followed by a contact discontinuity, both
traveling to the right, and a rarefaction wave traveling to
the left.
Figure 2 depicts our results at time t ¼ 0.6 for the best

behaving high-order WENO5 and low-order GODUNOV
reconstruction schemes at resolutionΔx ¼ 1.25 × 10−3. It is
evident from Fig. 2 that the high-order scheme reproduces all
the features of the Sod shock tube quite accurately. A closer
examination of the plots reveals the existence of small
wiggles on the horizontal parts between the tail of the
rarefaction and the shock; see, on the top panel of Fig. 2,
the inset enlarged view of the horizontal portion of the
velocity profile in question. Themaximumamplitude of these
wiggles is of the order of ∼10−3. The use of the low-order
scheme prevents the appearance of these small wiggles but
smears out considerably theprofiles of theprimitivevariables,
especially around the contact discontinuity. However, which-
ever scheme is used (low or high order), the oscillations at the
discontinuities observed in [41] are not present here.

C. Blast waves

1. Blast wave 1

We continue now with more challenging shock-tube
tests. We start with the relativistic blast wave 1 test

TABLE I. Convergence results for the 1D simple wave test at t ¼ 0.6. L1 and L2 are normalized norms and the
convergence rate is calculated as the log2 of the ratio of two successive normalized norms.

Scheme n L1 Convergence L2 Convergence

EFL-WENO5 200 5.8 × 10−4 … 1.9 × 10−4 � � �
400 2.6 × 10−5 4.47 7.6 × 10−6 4.66
800 1.2 × 10−6 4.41 2.6 × 10−7 4.87
1600 6.4 × 10−8 4.26 6.9 × 10−9 5.22
3200 7.7 × 10−9 3.05 3.6 × 10−10 4.28

EFL-WENOZ 200 5.5 × 10−4 … 1.8 × 10−4 …
400 2.6 × 10−5 4.42 7.5 × 10−6 4.57
800 1.2 × 10−6 4.39 2.6 × 10−7 4.87
1600 6.4 × 10−8 4.26 6.9 × 10−9 5.22
3200 7.7 × 10−9 3.05 3.6 × 10−10 4.28

EFL-CENO3 200 6.9 × 10−4 … 2.3 × 10−4 …
400 3.1 × 10−5 4.50 8.5 × 10−6 4.79
800 1.5 × 10−6 4.37 2.6 × 10−7 5.01
1600 9.1 × 10−8 4.01 7.7 × 10−9 5.09
3200 1.1 × 10−8 3.10 4.8 × 10−10 4.01

EFL-LINTVD 200 1.0 × 10−3 … 3.6 × 10−4 …
400 3.4 × 10−5 4.88 1.0 × 10−5 5.14
800 1.4 × 10−6 4.57 2.9 × 10−7 5.14
1600 1.0 × 10−7 3.79 1.0 × 10−8 4.84
3200 1.3 × 10−8 3.00 7.6 × 10−10 3.76

HO-WENOZ 200 4.4 × 10−4 … 1.3 × 10−4 …
400 2.8 × 10−5 3.98 7.2 × 10−6 4.16
800 1.2 × 10−6 4.53 2.6 × 10−7 4.81
1600 4.5 × 10−8 4.73 6.5 × 10−9 5.30
3200 5.7 × 10−9 2.98 2.8 × 10−10 4.57
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described in [71]. For an ideal EOS (6) with adiabatic index
Γ ¼ 5=3 the initial values of the primitive variables read

ðpL; ρL; υL; ϵLÞ ¼ ð13.33; 10; 0; 1.995Þ;
ðpR; ρR; υR; ϵRÞ ¼ ð0; 1; 0; 0Þ: ð19Þ

The above data is evolvedwith the RK3 time integrator and a
CFL factor 0.25 on a numerical grid that spans the domain
½−0.5; 0.5� along the x axis. The numerical domain is covered
with 800 grid points (resolution 1.25 × 10−3). The numerical
solutions at t ¼ 0.4 are depicted in Fig. 3. The best perform-
ing high- and low-order schemes for the present shock-tube
test are the WENO5 and GODUNOV reconstruction
schemes, respectively. Both capture on a quite satisfactory
level the main features of the exact solutions.

2. Blast wave 2

Our final shock-tube test is the blast wave 2 test [71],
where the discontinuity in the initial data of the pressure

and the specific energy is of the order of 105. The initial
values of the primitive variables in this rather extreme
scenario are the following:

ðpL; ρL; υL; ϵLÞ ¼ ð1000; 1; 0; 1500Þ;
ðpR; ρR; υR; ϵRÞ ¼ ð0.01; 1; 0; 0.015Þ: ð20Þ

We assume again an ideal EOS (6) with adiabatic
index Γ ¼ 5=3. The numerical solutions resulting from
the evolution of (20) are computed on the domain
½−0.5; 0.5� (resolution 1.25 × 10−3) with the RK3 integra-
tor and a CFL factor of 0.25. The numerical solutions at
t ¼ 0.4 are presented in Fig. 4. Therein the best behaving
high- and low-order reconstruction schemes are presented
and compared to the exact solution. Notice the small wiggle
appearing on the profiles of the velocity and pressure close
to the shock. It is definitely not an oscillation but some kind
of by-product of the EFL method as its location coincides
with a peak of the entropy production function ν. Apart

FIG. 3. Profiles of the rest-mass density (green filled circle),
velocity (blue filled circle) and pressure (red filled circle) for the
special-relativistic blast wave 1 test [71] at t ¼ 0.4. Top: WENO5
reconstruction. Bottom: GODUNOV reconstruction. The solu-
tion is computed on a grid of 800 points with resolution
Δx ¼ 1.25 × 10−3. Solid black lines are the exact solutions.

FIG. 2. Profiles of the rest-mass density (green filled circle),
velocity (blue filled circle) and pressure (red filled circle) for the
special-relativistic Sod test at t ¼ 0.6. Top: WENO5
reconstruction. Bottom: GODUNOV reconstruction. The solu-
tion is computed on a grid of 1600 points with resolution
Δx ¼ 1.25 × 10−3. Solid black lines are the exact solutions.
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from this feature the EFL simulations reproduce to a fairly
satisfactory degree all the features of the exact solutions.

IV. SINGLE STAR EVOLUTIONS

Next, in order to test the performance of the EFL method
in a three-dimensional general relativistic setting, we study
the evolution of single NS spacetimes. These are very
challenging tests as the stationarity of the stars favors the
accumulation and growth of errors, especially around
the location of the surface where the gradient of the
hydrodynamical variables experience an abrupt change.
Unavoidably, the overall accuracy of the simulations is
affected. At the same time, these tests provide us with the
exact solution that allows us to study the convergence
properties of the numerical solutions in detail. We compare
the performance of the EFL method with different
reconstruction schemes. Finally, our results are compared
with those of [25,41]. For comparison we use the results

obtained with (i) a second-order scheme (LLF-WENOZ)
that uses the LLF scheme for the fluxes and WENOZ for
primitive reconstruction [28] and (ii) a “hybrid” algorithm
(HO-LLF-WENOZ) that employs the high-order HO-
WENOZ scheme above a certain density threshold ρhyb
and switches to the standard second-order LLF-WENOZ
method below ρhyb [25].
In the following, we evolve stable rotating or nonrotating

neutron stars [72] in a dynamically evolved spacetime. The
NS matter is here described by a Γ-law EOS with Γ ¼ 2.
The grid is composed of three fixed refinement levels.
Simulations are performed at resolutions n ¼ ð64; 96; 128Þ
points leading to a grid spacing h that depends on the
specific setting of the NS under investigation. For each NS
configuration the resolution is explicitly given in Table II. It
is ensured that the NS is entirely covered by the finest box
at any given resolution. Radiative (absorbing) boundary
conditions are used for all single star simulations.

A. TOV star

Tolmann-Oppenheimer-Volkoff (TOV) initial data are
constructed using a Γ ¼ 2 polytrope model with gravita-
tional mass M ¼ 1.4, baryonic mass Mb ¼ 1.506 and
central rest-mass density ρc ¼ 1.28 × 10−3. The spacetime
is dynamically evolved and the BSSNOK scheme is used
for the evolution of the metric.
The two-dimensional profiles of the entropy production

function ν (left half plane) and rest-mass density (right half
plane) are depicted on the hybrid plots of Fig. 5. The three
different reconstruction schemes that were used here are
depicted on the top panel of Fig. 5. As expected, a local
annular peak of the entropy production function ν is
observed around the location of the surface of the TOV
star. There the gradient of the hydrodynamical variables
experiences a violent variation which leads to the produc-
tion of large values of ν. The entropy produced during the
evolution automatically captures the location of the star
surface. In the interior of the NS the entropy production
function ν is as expected approximately zero and tends to
zero with increasing resolution. It is evident from Fig. 5 that
all three reconstruction schemes locate quite accurately the

TABLE II. Grid configurations of single star simulations.
Columns (left to right): name of simulation, L: number of fixed
refinement levels, n: number of points per direction, hL−1:
resolution per direction in the finest level l ¼ L − 1, h0: reso-
lution per direction in the coarsest level l ¼ 0.

Name L n hL−1 h0

TOV 3 64 0.281 1.125
3 96 0.188 0.750
3 128 0.141 0.563

RNS 3 64 0.422 1.688
3 96 0.281 1.125
3 128 0.211 0.845

FIG. 4. Profiles of the rest-mass density (green filled circle),
velocity (blue filled circle) and pressure (red filled circle) for the
special-relativistic blast wave 2 test [71] at t ¼ 0.4. Top: WENO5
reconstruction. Bottom: GODUNOV reconstruction. The solu-
tion is computed on a grid of 800 points with resolution
Δx ¼ 1.25 × 10−3. Solid black lines are the exact solutions.
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surface of the star. In turn, the accurate flagging of the
surface triggers the use of the stable numerical flux around
the surface of the star where the hydrodynamical variables
experience a steep decline. The use of the stable scheme in
the problematic regions guarantees the stability of the star
during the evolution. These features of the entropy pro-
duction profile are quite general in all the TOV simulations
we performed.
Another very interesting feature of the EFL method,

which was also stressed in [41], is the behavior of the
entropy production profile with increasing resolution. The
bottom panel of Fig. 5 shows this behavior: with increasing
resolution the entropy production function’s peaks sharpen
and are better localized around the surface of the star. This
shows that the EFL method is able to adjust the entropy
production function ν according to the size of the grid cells.
The finer they become, the more accurate the problematic
regions are flagged by the entropy. Ideally, the entropy
production profile will tend to a delta function located
around the surface of the star at infinite resolution.

Having secured the proper flagging of the problematic
regions and the correct implementation of the EFL method,
we check further its performance during the evolution of
the TOV star by monitoring the dynamical behavior of the
central rest-mass density. The oscillation of the central rest-
mass density ρmax of the EFL method with different
reconstruction schemes is presented, together with the
LLF-WENOZ and HO-LLF-WENOZ methods [25], on
the top panel of Fig. 6. The performance (i.e., the amplitude
of the oscillations) of the EFL method is comparable to the
LLF-WENOZ and HO-LLF-WENOZ schemes and to the
corresponding results of Fig. 12 in [41].
In the bottom panel of Fig. 6 the profile of the rest-mass

density relative to its initial maximum value ρmax along the
x direction is depicted. (The profiles along the y and
z direction are, as expected from the spherical symmetry of
the TOV star, identical.) It is evident that the EFL method
manages to capture the sharp transition between the interior
of the TOV star and the outside vacuum better than the
LLF-WENOZ and HO-LLF-WENOZ schemes. It has been

FIG. 5. Two-dimensional profiles of the rest-mass density ρ (right half of the plots) and entropy production function ν (left half of the
plots) for a static Tolmann-Oppenheimer-Volkoff (TOV) star in a dynamical spacetime with Γ-law EOS at t ¼ 1000. Top (left to right):
CENO3, WENO5 and WENOZ reconstruction schemes with n ¼ 128. Bottom (left to right): The WENO5 scheme with increasing
resolution of 64, 96 and 128 grid points, respectively. The other two schemes show similar behavior. Dashed lines denote the surface of
the NS at t ¼ 0.
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also observed that the EFL profiles converge to the exact
profile with increasing resolution. Comparing now our
results with the corresponding ones of Fig. 11 in [41], one
can readily conclude that the EFL method does not
experience the direction dependent oscillations reported
in [41] in any direction, including the diagonal.
The static character of the TOV star enables us to check

the convergence properties of the EFL method as the exact
solution can be read off from the initial data. Here we
consider the L1 norm of the difference between the three-
dimensional evolution profile of the rest-mass density and
the corresponding exact solution (initial data) and study its
behavior with time. The L1 distance from the exact solution
for the three reconstruction schemes used here is depicted
in Fig. 7. The convergence rate of all the schemes
considered is approximately second order in agreement
with the result of [25] and the fact that the error at the stellar
surface dominates the evolution. Notice though that, for the
same resolution, the absolute errors of the EFL method are
in average 100 times smaller than the ones observed in [25].

B. Rotating neutron star

We proceed now to the study of stationary neutron stars.
The rotating neutron star (RNS) code [73,74] is utilized to
construct initial data for a stable uniformly rotating neutron
star of central rest-mass density ρc ¼ 1.28 × 10−3, axes
ratio 0.65 and gravitational massM ¼ 1.666 M⊙ described
by a polytropic EOS with Γ ¼ 2. This is the BU7 model
described in [75].
The star is evolved with the Γ-law EOS and the metric

components with the Z4c scheme. The spacetime is
dynamically evolved.
We start by checking the behavior of the central rest-

mass density with time. Figure 8 presents the evolution of
the central rest-mass density for the EFL method (with
three different reconstruction schemes) and compares to
the LLF-WENOZ and HO-LLF-WENOZ methods [25].

FIG. 6. The TOV star in a dynamical spacetime with Γ-law
EOS. Top: central rest-mass density evolution for simulations of a
single spherical star with n ¼ 96 for different EFL reconstruction
schemes. Bottom: one-dimensional rest-mass density profiles in
the x direction at time t ¼ 1000with n ¼ 96. The profiles in the y
and z direction are identical.

FIG. 7. Evolution of the L1 distance kρðtÞ − ρð0Þk1 for a static
TOV star in a dynamically evolved spacetime with a Γ-law EOS.
All three EFL reconstruction schemes are presented. Dashed lines
show results scaled to second order.

FIG. 8. Central rest-mass density evolution for simulations of a
stationary RNS in a dynamical spacetime with Γ-law EOS and
n ¼ 96. Different EFL reconstruction schemes are shown.

DOULIS, ATTENEDER, BERNUZZI, and BRÜGMANN PHYS. REV. D 106, 024001 (2022)

024001-10



The resulting oscillating behavior is triggered by atmos-
phere effects and converges to zero with increasing reso-
lution. The results of all three methods are comparable with
the oscillatory behavior of the EFL method to be the
smallest.
For uniformly rotating neutron stars one expects that the

velocity increases linearly with the distance from the centre
of the star, reaches its maximum value at the surface and
drops to zero from there on. The top panel of Fig. 9 shows
the velocity component υy along the x axis after four
rotational periods (4P). The results for the EFL method
(with three different reconstruction schemes) are presented
and compared to the LLF-WENOZ and HO-LLF-WENOZ
methods. It is apparent that the EFL method is superior in
preserving the original velocity profile of the star (with the
CENO3 scheme capturing the initial profile exactly).
Comparing our results with the ones that can be found
in the literature [76–78], we observe that the EFL method
can capture better the rapid transition from the maximum
value of the velocity at the surface of the star to zero just
outside it. At the bottom panel of Fig. 9 the profile of υy
for the WENO5 scheme is presented with increasing
resolution—the other two reconstruction schemes show
similar behavior. The numerical solutions converge to the
initial exact velocity profile with increasing resolution. The
above results clearly demonstrate the ability of the EFL

method to maintain the initial stationary equilibrium
configuration during the evolution.
Finally, we check the convergence properties of the L1

distance of ρðtÞ from the exact solution ρð0Þ. Figure 10
depicts the time evolution of the L1 norm of the difference
between the three-dimensional profile of the rest-mass
density and its initial profile for the three reconstruction
schemes used here. All schemes show approximately
second-order convergence.

V. BINARY NEUTRON STAR EVOLUTIONS

A. Initial data and numerical setup

Having thoroughly tested the EFL method with several
special relativistic and single NS configurations, we move
to discuss the EFL method in general relativistic simu-
lations of neutron star binaries. In the following, we study
the dynamics of two specific BNS configurations: BAM:100

and BAM:97, see [79]. We chose these two BNS simulations
because they enable us to study the performance of the EFL
method in a short (BAM:100) and a long (BAM:97) BNS
dynamical evolution. The neutron stars merge after approx-
imately three revolutions for BAM:100 and after ten for
BAM:97. In addition, both simulations were already exten-
sively studied in the literature, see [25], to which we refer
and with which we compare our results. In Sec. V B yet
another three-orbit simulation, BAM:27, is used in order to
test the EFL method with a different EOS. Although our
results for BAM:27 are consistent with the ones presented
here, in the following, for the sake of presentational clarity,
we do not discuss BAM:27 but focus on the other two
simulations of Table III.
The initial data that we evolved can be found in Table III.

They are conformally flat irrotational BNS configurations
in quasicircular orbits computed with the Lorene library

FIG. 9. Velocity profile of a stationary rotating neutron star in a
dynamical spacetime with Γ-law EOS. Top: one-dimensional
profile of the velocity component υy along the x direction at time
t ¼ 1000 (four periods) with n ¼ 128. Bottom: the υy profile of
the WENO5 scheme with increasing resolution.

FIG. 10. Evolution of the L1 distance kρðtÞ − ρð0Þk1 for a
rotating neutron star in a dynamically evolved spacetime with
Γ-law EOS. Dashed lines show results scaled to second order.
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[80] and characterized by the Arnowitt-Deser-Misner
(ADM) mass energy MADM, the angular momentum J0,
the baryonic mass Mb and the dimensionless GW circular
frequency Mω0.
The initial data for BAM:100 and BAM:97 were evolved

with the EFL method in 16 different resolution and
reconstruction combinations. BAM:100 was evolved with
the CENO3, WENO5 and WENOZ reconstructions. For
each reconstruction four different grid resolutions were
considered. The grid specifications for all the runs are
reported in Table IV. BAM:97 was evolved only with the
WENOZ reconstruction scheme. The reason for this is, as it
will become apparent in the following, that the BAM:100

results strongly indicate that the best performing
reconstruction scheme is WENOZ. The atmosphere setting
for both simulations is fatm ¼ 10−11 and fthr ¼ 102. The
metric is evolved with the Z4c scheme. Standard radiative
boundary conditions are used for all BNS simulations.

B. Qualitative behavior of the entropy production

The most basic and simple check of the EFL method is to
inspect if the produced NS trajectories agree with the ones
in the literature [25]. Figure 11 depicts the behavior with

time of the proper distance between the NSs of the ten-orbit
BAM:97 simulation for the EFL-WENOZ and HO-LLF-
WENOZ schemes at different resolutions. The time of
merger can be determined from the vanishing of the proper
distance. Notice that while for high resolutions the two
methods agree, for low resolutions their behavior differs as
shorter inspirals are expected for lower resolutions because
of numerical dissipation [7,29]. It is evident from Fig. 11
that although the trajectories of the HO-LLF-WENOZ
scheme for low resolutions are less accurate than the ones
of the EFL-WENOZ scheme, they catch up with increasing
resolution. Thus, one would expect that the trajectories of
the HO-LLF-WENOZ scheme converge faster to the actual
trajectory of the inspiraling NSs. Indeed, by conducting
self-convergence tests for the triplets n ¼ ð64; 96; 128Þ and
n ¼ ð96; 128; 160Þ we conclude that the actual conver-
gence rate of the proper distance for the EFL-WENOZ
scheme is approximately third and fourth order, respec-
tively. A similar analysis for the HO-LLF-WENOZ scheme
shows that the convergence rates for the above triplets are
approximately fourth and six order, respectively. The
trajectories of the three-orbit BAM:100 simulation show
similar behavior.
The entropy production function ν plays a central role in

our method. Hence, it is of great interest to study its
behavior during the evolution of BNS merger simulations.
In the following, we discuss the two-dimensional entropy
production profiles of two different three-orbit simulations.
Together with the three-orbit BAM:100 simulation, we
present here another three-orbit simulation with a different
EOS. The reason for this is to exemplify the dependence of
our method on the EOS used, which is best depicted by the
entropy production profile. We use the BAM:27 simulation
[79] with initial data parameters given in Table III.

TABLE IV. Grid configurations of BNS simulations. Columns
(left to right): name of BNS simulation, L: refinement levels, lmv:
minimum moving level index, nfix: number of points per direction
in fixed levels, n: number of points per direction in moving levels,
hL−1: resolution per direction in the finest level l ¼ L − 1, h0:
resolution per direction in the coarsest level l ¼ 0.

Name L lmv nfix n hL−1 h0

BAM:100 7 2 128 64 0.228 14.592
7 2 192 96 0.152 9.728
7 2 256 128 0.114 7.296
7 2 320 160 0.0912 5.8368

BAM:97 7 2 160 64 0.228 14.592
7 2 240 96 0.152 9.728
7 2 320 128 0.114 7.296
7 2 400 160 0.0912 5.8368

BAM:27
a 7 1 96 64 0.312 20.0

aWe use only one resolution for BAM:27 as in the present work
we do not present a convergence analysis for it, but just the two-
dimensional entropy production profiles of Fig. 12.

FIG. 11. Time evolution of the proper distance between the
NSs for the ten-orbit BAM:97 simulation. Different grid resolu-
tions are presented for the EFL-WENOZ method (solid lines) and
HO-LLF-WENOZ method (dashed lines).

TABLE III. BNS quasicircular initial data. Columns: name,
EOS, number of orbits, binary massM, rest-massMb, ADMmass
MADM, angular momentum J0, GW frequency 2MΩ0. All
configurations are equal masses and irrotational.

Name ID EOS Orbits M Mb MADM J0 2MΩ0

BAM:100 Lorene SLy 3 2.700 2.989 2.671 6.872 0.060
BAM:27 Lorene Γ ¼ 2 3 3.030 3.250 2.998 8.835 0.055
BAM:97 Lorene SLy 10 2.700 2.989 2.678 7.658 0.038
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In Figs. 12 and 13 we present two-dimensional hybrid
plots depicting the entropy production function ν and rest-
mass density ρ profiles at different stages of a Γ-law
(BAM:27) and SLy (BAM:100) simulation, respectively. The
different panels show (from left to right) selected snapshots
of the inspiral, merger and postmerger stages, respectively.
We first notice that the SLy simulation displays consid-
erably more features in both ν and ρ profiles compared to
the Γ-law simulation. Taking a closer look at the ν profile,
we see that during the Γ-law simulation the EFL is only
activated at the surface of each NS. The same can be also
observed in the SLy simulation, however, here also regions
in the exterior of the NSs are flagged for limiting. Judging
from the corresponding rest-mass density plots, the flag-
ging in the exterior is due to the SLy simulation carrying a
matter cloud around the stars, a feature that is absent from
the Γ-law simulation.
During the inspiral phase of Fig. 12 we can see that there

are actually two concentric layers where the EFL is
activated around the surface (left panels). When the stars

first touch, their interior and exterior layers start merging
with each other (middle panels). After the first contact the
inner layer also starts moving inwards before it becomes
again concentric with the surface layer (right panels). The
surface layer continues tracking the star’s surface during
merger which is evident by its alignment with the matter-
vacuum interface that can be seen in the rest-mass density
profile. It seems that this double-layer formation is uni-
versal, because we find similar behavior during the RNS
evolutions. Interestingly, the mass density plots do not
show apparent features that would need shock treatment in
the region where the second layer appears. There are two
reasons causing this double layering: (i) Low resolution:
with increasing resolution the entropy production function
ν gets better localized around the surface of the NSs, see the
bottom panel of Fig. 5, and consequently the amplitude of
the inner peak of ν decreases. (ii) The entropy production
function ν is overproduced by setting cE ¼ 1 in (14). Recall
that for the sake for generality and simplicity we set cE ¼ 1
in all our simulations. By choosing a smaller value for the

FIG. 12. Two-dimensional hybrid plots depicting the entropy production and rest-mass density profiles across different stages of the
BAM:27 simulation. Notice that BAM:27 uses a Γ-law EOS. Left to right: inspiral, merger, postmerger.

FIG. 13. Two-dimensional hybrid plots depicting the entropy production and rest-mass density profiles across different stages of the
BAM:100 simulation. Notice that BAM:100 uses a SLy EOS. Left to right: inspiral, merger, postmerger.
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tunable constant cE, the values of ν would scale down
accordingly. The inner layer then would reduce. While it is
possible to experiment with the values of cE to minimize
this effect, we find that the convergence properties of the
solutions are not affected by it.
Lastly, the same double layer formation can also be

observed in Fig. 13, although the amplitude of the inner
layer is smaller and the exterior layer appears to be wider.

C. Conserved quantities

Conserved quantities can be used as quantitative and
qualitative diagnostics of the performance of a numerical
scheme. Therefore, before discussing the waveform accu-
racy of our simulations, we study the convergence proper-
ties of these quantities. During the BNS evolution we
monitor:

(i) The total rest mass of the matter, Mb ¼
R
d3x

ffiffiffi
γ

p
D,

where the integral is performed over the whole
computational domain. The continuity equation (1)
guarantees that the total rest mass should be con-
served in the absence of a net influx or outflow of
matter. We use a conservative numerical scheme (2),
which is expected to preserve the rest mass to its
initial value. This requirement is trivially satisfied on
a single grid, but violations are generically expected
in the presence of the artificial atmosphere and when
adaptive mesh refinement (AMR) is used, see
e.g., [60].

(ii) The dynamical behavior of the central rest-mass
density, ρmaxðtÞ, of the NSs. Unlike the stationary
single star simulations, this quantity is not exactly
conserved in BNS simulations because of the
presence of tidal interactions. However, during the
early orbits of the inspiral, tidal interactions are weak
and contribute only small oscillations around the
initial value. For the considered resolutions, the
latter are actually smaller than the oscillations
induced by truncation errors and should converge
to zero with increasing resolution. Hence, the ratio
of the central rest-mass density to its initial value for
the highest resolution, i.e., the quantity ρmaxðtÞ=
ρnmax
max ð0Þ, should tend to one with increasing
resolution.

(iii) The L2 norm of the Hamiltonian constraint. It is
expected that in the continuum limit it vanishes, thus
the Hamiltonian constraint of any numerical solution
must convergence to zero in order to be consistent
with Einstein’s equations.

Figure 14 depicts the violation of the total rest-mass
conservation during the inspiral and up to merger for the
BNS simulations considered here. On the top panel the
results for the three-orbit BAM:100 simulation are shown.
Each part depicts one of the reconstruction schemes used
here for four different resolutions. The violation of the rest-
mass conservation during the inspiral phase is mainly

caused due to artificial atmosphere treatment and mesh
refinement boundaries. According to Fig. 14, during the
evolution the mass violation shows small oscillations
around its initial value, but is neither increasing nor
decreasing. The mass violation converges to zero in an
approximately third-order convergence pattern with
increasing resolution. (Dotted lines show results scaled
to third order.) After the merger mass loss is caused by
the ejected material which decompresses while it leaves the
central region of the numerical domain (not shown in the
plot). The performance of all three reconstruction schemes
is comparable. In the bottom panel the respective mass
violation for the BAM:97 simulation with the WENOZ
scheme is presented. The behavior of the mass violation
of BAM:97 is quantitatively similar to the BAM:100 simu-
lation, although BAM:97 converges with fourth order and the
absolute mass violation is smaller at the highest resolution.
The evolution of the central rest-mass density together

with its convergence pattern on the l ¼ 1 refinement level
for the ten-orbit BAM:97 simulation are presented in Fig. 15.
The relative error ρmaxðtÞ=ρ160maxð0Þ is used to monitor the

FIG. 14. Conservation and convergence of the total rest mass on
the refinement level l ¼ 2. Top: three-orbit BAM:100 simulation.
All three reconstruction schemes are presented for different grid
resolutions. Dotted lines show results scaled to third order.
Bottom: ten-orbit BAM:97 simulation. The WENOZ recon-
struction scheme is presented for different grid resolutions.
Dotted lines show results scaled to fourth order.

DOULIS, ATTENEDER, BERNUZZI, and BRÜGMANN PHYS. REV. D 106, 024001 (2022)

024001-14



central rest-mass density during the evolution, where
ρ160maxð0Þ is the initial value of the central rest-mass density
for the highest resolution n ¼ 160 used here. It is evident
from Fig. 15 that the residual jρmaxðtÞ=ρ160maxð0Þ − 1j with
increasing resolution tends to zero with an approximate
fifth-order convergence rate. Notice that the observed
oscillatory behavior gradually dies out with increasing
resolution, but because of the logarithmic scale of
Fig. 15 this feature is not easily seen.
The L2 norm of the Hamiltonian constraint on refine-

ment level l ¼ 1 up to merger with increasing resolution for
both BNS simulations is presented in Fig. 16. In the top
panel results for all three reconstruction schemes used in
the BAM:100 simulations are presented for four different
resolutions. In all cases the violation of the constraint is of
the order of ∼10−8 for the lowest resolution of 64 points
and decreases to zero with increasing resolution. The
observed convergence is approximately second order and
agrees with the corresponding results in [25]. (Dotted lines
show results scaled to second-order convergence.) We
attribute this behavior to the constraint propagation and
damping properties of the Z4c evolution system [81].
Notice that in all cases during the evolution the constraint
violation remains below its initial value and only increases,
as expected, close to merger. Moreover, the Hamiltonian
violation and convergence is similar in all the AMR levels
independently on the fact that the matter is well resolved or
not on the grid. This suggests that truncation error from
AMR boundaries, boundary conditions and Berger-Oliger
time interpolation are likely dominant in this quantity for
Z4c. The performance of all reconstruction schemes is
comparable, with the WENOZ scheme showing smaller
constraint violation for the same resolution than the other
two schemes. In the bottom panel results for the ten-orbit
BAM:97 simulation are shown with theWENOZ scheme. The
behavior of the constraint violation is similar to the one
observed for the BAM:100 simulation, with the slight

difference that now the plots are a bit less smooth and that
the constraint violation is smaller for the same resolution.
This second-order convergence of the violation of the

Hamiltonian constraint is in stark contrast with the
observed fourth order or higher convergence of (i) the rest
conserved quantities studied in the present section, (ii) the
proper distance (see Sec. V B) and (iii) the GW phase
differences (see Fig. 19). Second-order convergence in the
violation of the Hamiltonian constraint has been observed
in all the BNS simulations produced with BAM to date, see
[25,28,29,66]. In addition, the results of Fig. 16 are similar
to the corresponding ones in [25]. The lower convergence
rate in the Hamiltonian constraint violation is due to the
details of BAM’s infrastructure, and not to the EFL itself.
The main reasons are (i) the fact that for efficiency the
primitives are not synchronized in BAM and consequently
the Hamiltonian is computed from the rest-mass density ρ
from a half time step before (ii) the propagation properties
of Z4c, which means that an error contribution also comes
from the boundary/AMR interpolation.

FIG. 16. L2 norm of the Hamiltonian constraint on the refine-
ment level l ¼ 1 for the BNS simulations. Top: three-orbit
BAM:100 simulation. All three reconstruction schemes are shown.
Bottom: ten-orbit BAM:97 simulation. Dotted lines show results
scaled to second order.

FIG. 15. Evolution and convergence of the central rest-mass
density on the refinement level l ¼ 1 for the ten-orbit BAM:97
simulation. Dotted lines show results scaled to fifth order.
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D. Gravitational wave analysis

We discuss here the impact of the EFL scheme on the
gravitational waveforms. We follow closely [25] and
examine the phase convergence in the inspiral-merger
GWs and the associated error budget.
GWs are computed from the curvature scalar field Ψ4 on

coordinate spheres that are a distance r from the origin of
the computational domain. GW reconstruction is done by
expanding Ψ4 into spin weighted spherical harmonics to
obtain the modes ψlm and then solving ḧlm ¼ ψlm using
fixed frequency integration (FFI) [82]. We represent this
complex valued field in polar representation as

Rhlm ¼ Alme−iϕlm; ð21Þ
where Alm, ϕlm are the amplitude and phase, respectively.
We plot all results against the retarded time coordinate

u ¼ t − R� ≕ t − RðrÞ − 2M log

�
RðrÞ
2M

− 1

�
; ð22Þ

whereM is the total gravitational mass of the BNS system.
RðrÞ ¼ rð1þM=2rÞ2 is the radius in Schwarzschild coor-
dinates and r corresponds to the radius in isotropic
coordinates which we take to be the extraction radius of
our simulation. The moment of merger umrg is estimated by
looking at the dominant ðl; mÞ ¼ ð2; 2Þ mode and the first
peak of A22 within the time frame where the merger is
expected to occur.
The FFI applies a high-pass filter to remove nonlinear

drifts generated by noise in the time integrations of
ḧlm ¼ ψlm. Such a filter is characterized by a cutoff
frequency ωcutlm for each mode. We follow the suggestion
made in [82] to use ωcutlm ¼ mω0=2, where ω0 ¼ 2Ω0 is
the GW frequency associated to the initial orbital angular
frequency Ω0.
An example of a waveform obtained from the ten-orbit

inspiral BAM:97 simulation using the EFL-WENOZ scheme
is presented in Fig. 17. The wave train shows a first peak
after around 21 cycles until merger near umrg ¼ 2400M
where it is then followed up with a more complex structure
that includes multiple peaks and a slow amplitude decay.

We also plot the instantaneous GW frequency
ω22¼−Ið _h22=h22Þ. It displays a drastic frequency increase
near merger, which is a characteristic of a chirplike signal.
We perform self-convergence studies based on simula-

tions that use ðniÞ ¼ ð64; 96; 128; 160Þ points per direction
on the highest refined AMR level, and name those
resolutions as (LOW, MID, HIG, FIN). We analyze the
phase differences,

Δϕðni;njÞ
lm ¼ ϕðniÞ

lm − ϕ
ðnjÞ
lm ; ð23Þ

between pairs of resolutions. To determine the experimental
convergence rate p we rescale these differences by a factor
s that captures the rate by which we expect the differences
to decrease with increasing resolutions, provided that our
scheme converges. It is computed by [83]

sðp; ni; nj; nk; nlÞ ¼
1 − ðni=njÞp

ðni=nkÞp − ðni=nlÞp
; ð24Þ

where ni < nj ≤ nk < nl.
The error budget computation accounts for (i) finite

radius extraction errors Δϕrad
lm and (ii) finite resolution

errors Δϕres
lm. Since they are of different origin and even

come with a different sign [25] we compute the combined
error using pointwise quadrature,

Δϕerr
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕrad

lmÞ2 þ ðΔϕres
lmÞ2

q
: ð25Þ

The contribution (i) is estimated using the next-to-leading
order behavior ofΨ4 [84]. The contribution (ii) is estimated
as the phase difference between the two highest resolved
runs, which we denote by FIN-HIG. The rationale behind
this is that, for a convergent scheme, any result obtained
with higher precision as those runs will give results below
this difference.

1. Three-orbit BAM:100 simulation

Figure 18 shows a self-convergence study of the wave-
form phase differences for the BAM:100 simulation. The first
three panels correspond to the results obtained with the

FIG. 17. Amplitude (blue) and real part (green) of strain Rh22 as well as instantaneous frequency Mω22 (red) of the GW signal
obtained from the ten-orbit BAM:97 simulation using the EFL-WENOZ scheme. The time of merger is defined as the first peak in the
amplitude A22 and is indicated by a black vertical line at umrg ≈ 2400M.
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EFL and the reconstruction schemes CENO3, WENO5 and
WENOZ, respectively. The fourth panel shows results
obtained with the hybrid algorithm HO-LLF-WENOZ.
This last result serves as a reference for a comparison
with our EFL method.
The first thing to note is that the phase differences

between runs with consecutively increasing resolutions
decrease for all simulations. This indicates that the scheme
is capable of providing consistent results. This is further
supported by the decrease in the difference between merger
times, indicated by the narrowing of the gray shaded
regions, which marks the difference between merger
times of runs with consecutively increasing resolutions.
Furthermore, all runs converge to a merger time near u ¼
500M independent of the method. The figure contains the
combined phase errors (25) as green shaded areas. The
estimated error of the highest resolved runs is ≲0.1 rad
uniformly throughout the inspiral phase and to merger.
Focusing on the EFL results for CENO3 and WENO5,

one can see that, although the phase differences decrease, it

is not possible to assign a clear integer convergence rate p
for which the rescaled differences match with the true
differences (at the simulated resolutions). By contrast, the
plot demonstrates a clear fourth order (p ¼ 4) convergence
with the WENOZ method (bottom left panel). For the
CENO3 series (top left panel) we actually find a scaling
consistent with p ¼ 2 for the differences LOW-MID and
MID-HIG, but a higher scaling p > 2 between the HIG-
FIN difference. In the WENO5 series (top right panel) the
convergence plot is strongly affected by the lowest reso-
lutions, while the scaling seems to be closer to p ¼ 4
between the MID-HIG and HIGH-FIN resolutions. Also,
the differences between resolutions for the WENO5 series
are larger in absolute values than those of other methods.
Overall, the difference between the CENO3, WENO5 and
WENOZ series points to the importance of the choice of
reconstruction in the LO flux in Eq. (8). In particular, the
less dissipative and higher-resolution WENOZ scheme (vs
WENO5) [58] is a confirmed key feature in BNS appli-
cations [7].

FIG. 18. GW phase difference convergence rate study for the three-orbit BAM:100 simulation: Solid lines represent phase differences
between runs with consecutively increasing resolutions; dashed and dotted lines correspond to rescaled differences of HIG-FIN and
MIG-HIG differences, respectively, where the scaling factor is computed from (24) using an integer convergence rate p; the latter was
determined experimentally by looking for the best visual overlap between dashed, dotted and solid lines of the same color (which we
failed to do with the CENO3 and WENO5 reconstructions); the green shaded regions indicate the obtained error budget as discussed in
the text; the gray shaded regions mark the differences in merger times between runs with consecutively increasing resolutions.
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Comparing the EFL to the results obtained with the HO-
LLF-WENOZ hybrid we find that the former shows a faster
convergence rate for the EFL-WENOZ series and generi-
cally smaller absolute differences HIG-FIN at merger
(except EFL-WENO5, see above). The HO-LLF-
WENOZ algorithm (bottom right panel) yields a clean
convergence pattern with p ¼ 2, consistent with previous
results reported in [25], and phase differences FIN-HIG
(error bars) at merger a factor ∼5 larger than EFL-WENOZ.

2. Ten-orbit BAM:97 simulation

Figure 19 shows a convergence study similar to Fig. 18
but based on results of the ten-orbit BAM:97 simulation. The
simulations are performed with EFL-WENOZ and com-
pared to those presented in [25] and obtained with the HO-
LLF-WENOZ method.
For both methods phase differences consistently decrease

by increasing the grid resolution. Both merger times tend to
u ≈ 2400M, thus indicating the results are consistent
(cf. Fig. 11). Convergence can be demonstrated clearly in

both cases. The EFL-WENOZ scheme produces a clear
fourth order (p ¼ 4) convergent waveforms, consistent with
the three-orbits simulations. Instead, the HO-LLF-WENOZ
scheme produces second order convergent (p ¼ 2) results
starting atMID resolutions; the convergence degrades for the
LOW-MID difference towards the merger time [25]. The
phase differences FIN-HIG (error bars) atmerger for theHO-
LLF-WENOZ are a factor ∼3 larger than for the EFL-
WENOZ. Inboth cases they are a factor∼10 larger than in the
three-orbit runs (for comparable resolutions). We also note
that the convergence rate is maintained in the early post-
merger phase, suggesting that the EFL scheme is robust and
can well capture the violent dynamics of the remnant NS.
Given this clear convergence pattern for the (2, 2) modes

of the EFL-WENOZ runs, we also investigate the con-
vergence of higher modes hlm with l > 2. Figure 20 shows
a convergence study of the ðl; mÞ ¼ ð3; 2Þ; ð4; 4Þ modes.
Also in this case, the phase differences show a consistent
decrease with increasing resolution and a clear fourth-order
convergence of the modes’ phase. The phase error is of
order 10−1 rad, with a flat profile and rapidly accumulating

FIG. 19. GW phase difference convergence rate study for ten-orbit BAM:97 simulation. Left panel: EFL-WENOZ method. Right panel:
HO-LLF-WENOZ method.

FIG. 20. GW phase difference convergence rate study for higher modes for ten-orbit BAM:97 simulation using the entropy flux limiter
with WENOZ reconstruction. Left panel: (3, 2) mode. Right panel: (4, 4) mode.
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only very close to the merger time. Furthermore, the
convergence pattern continues to hold through merger.
To our knowledge, this is the first time that a successful
convergence study in higher modes of the GW strain is
presented in the literature.

VI. WAVEFORMS’ FAITHFULNESS

We check if the EFL numerical simulations are suffi-
ciently accurate to produce faithful waveforms for gravi-
tational-wave astronomy. We follow closely the methods
and equations discussed in [12,85], to which we refer for a
complete description. Previous results of this kind were
presented in [12,29].
The accuracy of numerical waveform for application to

GW astronomy is often quantified in terms of the faithful-
ness functional F ∈ ½0; 1� by considering criteria in the
form [12,85]

F > F thr ¼ 1 −
ϵ2

2ρ̃2
; ð26Þ

with ϵ2 ≤ 1 and ρ̃ the signal-to-noise ratio (SNR).
Sometimes it is suggested [86] to relax this criterion by
taking ϵ2 ¼ N, where N is the number of intrinsic param-
eters of the binary. The criterion F > F thr is a necessary
condition that has to be satisfied by faithful waveform
models, i.e., suitable for GW parameter estimation. A
possible violation of this criterion does not imply the
presence of biases though. We compute threshold values
F thr at SNRs ρ̃ ¼ 14, 30 and 80 that correspond to the
SNRs of GW190425, GW170817 and a generic loud
signal, respectively. For each of these SNRs the values
of F thr are evaluated for two different choices of ϵ2,
i.e., ϵ2 ¼ 1 and ϵ2 ¼ N ¼ 6. The faithfulness F is evalu-
ated using the numerical waveforms at two different
resolutions. The faithfulness integral is computed over a
frequency range f ∈ ½flow; fmrg�, where flow corresponds to
the initial circular GW frequency of the simulation4

and fmrg is the merger frequency. We employ the
aLIGODesignSensitivityP1200087 [87] power
spectral density (PSD) from PyCBC [88] to compute the
matches. In order to obtain accurate mismatch results from
numerical data, one has to preprocess the raw ψ4;lm modes
before performing the FFI method to obtain hlm. To this end
we tapered the signals at the beginning and the end and also
zero padded them for finer frequency bin resolution. The
preprocessing should be done such that the instantaneous
GW frequency ω22 computed from h22 matches the GW
frequency provided by the initial data, cf. Table III. We
emphasize that this preprocessing step has no influence on
the phase difference convergence rate.
Table V reports the faithfulness values for the (2, 2)

waveforms of the BAM:97 and BAM:100 simulations. Each
value of F is obtained from the two highest resolution
simulations available, which represent a measure of the
error as discussed above. All the waveforms, except for
EFL-CENO3, produced with the EFL method pass the
three lowest accuracy criterion of (26). The same holds for
the corresponding waveforms computed with the HO-LLF-
WENOZ method of [25]. Out of the six simulations
examined only the EFL-WENOZ for BAM:97 passes a
higher accuracy test than the one with SNR ρ̃ ¼ 30 and
ϵ2 ¼ 6. Actually, this specific simulation at resolution of
n ¼ 160 passes five out of the six accuracy tests making it
an ideal candidate for GW modeling studies. Note also that
the faithfulness of BAM:100 with EFL-WENO5 is very close
to pass the fourth accuracy test F 30;1

thr ¼ 0.9994.
In Fig. 21 we study the dependence of the faithfulness

functional with simulation pairs of increasing resolution.
Specifically, Fig. 21 shows the faithfulness between pairs of
waveforms at different resolutions n ¼ ½160; 128�; ½128; 96�
and [96, 64] as a function of the resolution. The plot focuses
on the longest BAM:97 simulation that is the most relevant for
waveform modeling. It is apparent that for both schemes the
quantity 1 − F converges, as expected, to zero with increas-
ing resolution. Notice though that the EFL-WENOZ scheme
produces more faithful waveforms than the HO-LLF-
WENOZ scheme at the same resolution. With this conver-
gence behavior the EFL-WENOZ (HO-LLF-WENOZ)

TABLE V. Faithfulness functional F for the BNS simulation considered in the present work, see Table III. The values of F are
compared to the threshold values F thr calculated with (26) for different signal-to-noise ratios. The notation F

ρ̃;ϵ
thr ¼ 1 − ϵ2=2ρ̃2 has been

introduced for the various threshold values, which are explicitly presented on the second row inside the brackets. A tick ✓ indicates that
F > F thr and a cross ✗ that F < F thr.

Simulation Scheme n F
F 14;6

thr F 14;1
thr F 30;6

thr F 30;1
thr F 80;6

thr F 80;1
thr

(0.9847) (0.9974) (0.9967) (0.9994) (0.9995) (0.9999)

BAM:97 EFL-WENOZ [160, 128] 0.9998 ✓ ✓ ✓ ✓ ✓ ✗
BAM:97 HO-LLF-WENOZ [160, 128] 0.9992 ✓ ✓ ✓ ✗ ✗ ✗
BAM:100 EFL-CENO3 [160, 128] 0.9952 ✓ ✗ ✗ ✗ ✗ ✗
BAM:100 EFL-WENO5 [160, 128] 0.9991 ✓ ✓ ✓ ✗ ✗ ✗
BAM:100 EFL-WENOZ [160, 128] 0.9987 ✓ ✓ ✓ ✗ ✗ ✗
BAM:100 HO-LLF-WENOZ [160, 128] 0.9987 ✓ ✓ ✓ ✗ ✗ ✗

4Note this corresponds to the first peak of the amplitude of the
Fourier transform of ℜðh22Þ.
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simulation is expected to pass the highest accuracy testF 80;1
thr

at resolutionn ∼ 192 (n ∼ 224). The computational cost for a
simulation at this resolution is approximately ∼1 M CPU-
hours (∼2.5 M CPU-hours).

VII. CONCLUSIONS

This paper investigates, for the first time, the use of the
EFL scheme, an entropy-based flux limiter for the compu-
tation of the hydrodynamics’ numerical fluxes, in BNS
merger simulations. The main question addressed here is
whether the EFL is sufficiently robust for the treatment of
the NS surface and smooth-flow regions to provide us with
accurate and high-order converging gravitational wave-
forms. We answer this in the affirmative.
Our method builds on the proposal of [41], but notably

does not make use of a positivity preserving limiter nor of
free parameters (see Sec. II B). The new EFL scheme
successfully passes a standard set of benchmark problems
in special relativistic hydrodynamics, with results compa-
rable to standard high-order characteristic WENO schemes,
e.g., [25]. Our scheme does not suffer from the oscillatory
behavior at the shock-tube discontinuities observed in the
original implementation of [41].
Next, our method is tested in Sec. IV against three-

dimensional general-relativistic single NS configurations.
The EFL scheme accurately locates the surface of sta-
tionary star solutions, see Fig. 5, and enables the use of the
LO flux in this region while the interior remains mainly
resolved by the HO flux. EFL simulations give results
comparable to those obtained with standard WENO
schemes [23,25] and with the ELH [41]. However, our new
simulations are free of the spurious direction-dependent
effects found in [41], see Fig. 6. In addition, the EFL
scheme performs very well in the simulation of rapidly
rotating stars. As shown by Fig. 9, the velocity profile and
the sharp transition at the surface of the star are almost

unaltered over four rotational periods and correctly con-
verge to the exact (initial) solution. The results from both
high-order WENO scheme or second-order finite-volume
schemes with primitive reconstruction are significantly less
accurate (at the same resolutions).
Finally, in Sec. V, the new entropy method is applied to

BNS merger simulations. The EFL scheme can be used to
successfully evolve binaries and the properties observed in
single star tests carry over to the simulation with nonsta-
tionary spacetimes and neutron stars moving on the
computational grid. As shown in Figs. 12 and 13, the
entropy limiter locates the surface of the inspiraling NSs
quite accurately and it converges to zero in regions of
smooth flows. Further, it captures the collisional shocks at
merger and the outward dynamics of spiral density waves,
thus being robust also for postmerger evolutions.
A convergence study of the gravitational waveforms

obtained from these simulations shows that the EFL with
a low-order flux based on theWENOZ reconstruction (EFL-
WENOZ) can deliver fourth-order convergent waveforms at
current production resolutions (Sec. V D). Such a conver-
gence is measured in the (2, 2) dominant mode of the strain
but also in the next subdominant modes (3, 2) and (4, 4). To
our knowledge, these are the first results in which fourth-
order convergence is demonstrated. The estimated phase
error in the EFL-WENOZ waveform is about a factor ∼5
smaller than the error in the state-of-the-art high-order
WENOZ scheme used in the same BAM code, at the same
resolution.
We conclude that our EFL scheme can be efficiently

used for high-quality waveform production and for
future large-scale investigations of the binary NS param-
eter space. These studies will aim at extending our
previous investigation in both quality and simulation
length [7,15,18,29,60]. The immediate target is to resolve
tidal effects near the merger that are the main source of
systematic error in current waveform approximations of
GW astronomy [12]. We estimate that this will require
EFL-WENOZ multiorbit and multiresolution simulations
resolving the NSs up to n ∼ 192 grid points per direction.
A ten-orbit convergent series is within reach of modern
supercomputers (similar to those used for this work) at the
approximate cost of ∼2 M CPU-hours.
In the postmerger regime, the EFL well tracks the front

of the ejecta. From the right panels of Figs. 12 and 13 it is
apparent that the EFL is triggered by the outward dynamics
of the spiral density waves. The main source of inaccuracy
of the ejecta is the progressively lower resolution of the low
density material as it propagates outwards. There might be
a benefit in using the high-order scheme of the EFL when
ejecta starts to propagate but, most likely, the redefinement
of the grid will become too severe at very large distances
and it is likely the EFL performs similarly to other schemes.
A detailed investigation of the benefits of the EFL for
resolving the ejecta is left to further investigation.

FIG. 21. Faithfulness as a function of the resolution for the
BAM:97 simulation.
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