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We investigate the viability of a recently proposed generalization of the Ashtekar-Olmedo-Singh
spacetime for the effective description of the interior region of a Schwarzschild black hole within the
framework of loop quantum cosmology. The approach is based on a choice of polymerization parameters
that is more general than the ones previously considered in the literature and that results in the natural
appearance of two times to describe the solutions. If one is interested in examining the physics derived from
this model, it is fundamental to ensure that one can attain a well-defined effective geometry in the whole
region under consideration, in particular as regards the redundancy of the two times, which one needs to
express in terms of a single time coordinate. In order to determine whether this requirement is met, we
analyze the definition of these times and their relation. We show that one can reach an acceptable interior
spacetime geometry by exploiting the freedom to define the origins of the two times independently.
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I. INTRODUCTION

General relativity is one of the cornerstones of modern
theoretical physics and has reshaped our comprehension of
the world [1,2]. It provides a framework to describe the
physics of gravitational systems in planetary and cosmo-
logical scales, agreeing with experiments and observations
to high levels of precision. Nevertheless, it is believed to be
incomplete for a number of reasons. On the one hand, it
leads to the prediction of singularities [2], where the theory
ceases to be applicable. These singularities arise in a wide
variety of scenarios, many of which are of physical
significance. On the other hand, it is not compatible with
the principles of quantum mechanics [3,4], which lie at the
very heart of the modern descriptions of elementary
interactions and matter. This is in direct tension with the
basic observation that matter gravitates, which may suggest
that the quantum cannot be ignored if one wishes to achieve
a complete description of gravitational physics. The wide-
spread belief is that the incorporation of the ideas of
quantum mechanics into our understanding of gravity
would not only resolve this apparent tension, but also cure
the singularities that plague general relativity. For this
reason, there has been a collective effort to bring together
the principles of general relativity and quantum mechanics,
effort which already existed in embryo in the early days of
general relativity and is still ongoing today. Naturally, a
number of different approaches have been adopted, leading
to diverse proposals to formulate a candidate theory of
quantum gravity (see, e.g., Refs. [5–9]).

Loop quantum gravity (LQG) stands as one of the most
promising of such proposals [5,6]. It is a background
independent, nonperturbative quantization of general rela-
tivity in 3þ 1 dimensions. In its canonical form, it is based
on a choice of fundamental variables, given by the
holonomies of the Ashtekar-Barbero connection along
loops and the fluxes of densitized triads through surfaces,
and on the selection of a quantum representation of the
holonomy-flux algebra compatible with background inde-
pendence, which turns out not to be unitarily equivalent to
the Fock representation of standard quantum field theory.
Although the quantization program of LQG remains
unfinished, the study of highly symmetric systems, which
provide a natural arena to explore the effects of quantum
gravity, has undergone a rapid development within this
quantum framework. The research field born from the
application of LQG techniques to systems displaying a
large number of symmetries (such as cosmological and
black hole spacetimes) is commonly referred to as loop
quantum cosmology (LQC) [10,11]. In the cosmological
front, the application of techniques inspired in LQG has
been successful at obtaining a complete description of a
variety of cosmologies, ranging from homogeneous and
isotropic ones [12,13] to models believed to be fit to
describe the early stages of our Universe [14–17]. As far as
black holes are concerned, there is also a rich literature
[18–41] about the application of LQG.1
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1The references in this paragraph do not intend to provide an
exhaustive bibliographic list. To get a more accurate picture of the
extent of the field of LQC, an appropriate starting point may be
Refs. [5,42,43] and the references cited there.

PHYSICAL REVIEW D 106, 023532 (2022)

2470-0010=2022=106(2)=023532(19) 023532-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9042-3055
https://orcid.org/0000-0003-3378-9610
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.023532&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevD.106.023532
https://doi.org/10.1103/PhysRevD.106.023532
https://doi.org/10.1103/PhysRevD.106.023532
https://doi.org/10.1103/PhysRevD.106.023532


Recently, a new proposal for the effective2 description of
Schwarzschild black holes in LQC has been put forward by
Ashtekar, Olmedo, and Singh (AOS) [42–44]. This effec-
tive model is especially designed to cope with the loop
quantum corrections to the geometry of black holes with
masses much larger than the Planck mass. It has attracted a
fair degree of attention owing to the claims that it is free
from some of the pathological properties present in
previous related works (e.g., the dependence on fiducial
structures or the appearance of some quantum geometry
effects in regions of low spacetime curvature). This model
is based on a very particular choice of the two polymeri-
zation parameters that regulate the introduction of quantum
effects in the system: they are selected in such a way that
they are constants of motion but not constant on the whole
phase space. This approach turns out to replace the classical
central singularity with a transition surface serving as the
future boundary of a trapped region and as the past
boundary of an antitrapped one. Furthermore, an additional
boundary is found beyond the transition surface, which is
interpreted to be a white hole horizon. Therefore, the
physical picture derived from this model appears to be
such that the classical Schwarzschild interior is effectively
extended to encompass a region bounded to the past by a
black (hole) horizon and to the future by a white (hole)
horizon,3 where the effective spacetime metric is smooth
and the curvature invariants derived from it are finite (and,
in fact, bounded above by quantities that are independent of
the mass of the black hole under consideration). Moreover,
the effective model has been brought to completion by
extending it to describe the exterior region as well, leading
to a geometry that can be smoothly joined with the interior
solution both to its past and its future, resulting in an
effective extension of the totality of the Kruskal spacetime.
In spite of its attractive features from the point of view of

the singularity resolution, the model seems to be not
without problems. It has been pointed out that the effective
exterior metric proposed in Refs. [42,43] does not display a
standard behavior at spatial infinity. Indeed, the exterior
geometry turns out to be asymptotically flat just in an
elementary sense, since it has been argued that it can be
conformally related to a metric that contains a deficit solid
angle [45] (see Ref. [44] for a complementary viewpoint on
this issue). The appearance of this deficit might be

connected with claims that an effective metric such as
the AOS one cannot be derived from a loop quantization
that preserves strict covariance while respecting spherical
symmetry [46]. Additionally, according to Ref. [47], the
way in which the polymerization parameters were origi-
nally treated seems to ignore the hypothesis that they are
constants of motion. In this respect, in Refs. [42,43],
Ashtekar, Olmedo, and Singh employed an argument based
on an extension of the phase space in order to support their
approach, in which the parameters are handled as constants
in the Hamiltonian derivation of the equations of motion.
Nevertheless, the authors of Ref. [47] have indicated that
this makes the relation between the proposed Hamiltonian
and the dynamical equations unclear, given that an extra
phase space dependent factor would enter the equations of
motion should the nontrivial nature of the polymerization
parameters be taken into account, leading to a more
involved dynamics [47,48]. In spite of its attractive features
from the point of view of the singularity resolution, the
model seems to be not without problems. It has been
pointed out that the effective exterior metric proposed in
Refs. [42,43] does not display a standard behavior at spatial
infinity. Indeed, the exterior geometry turns out to be
asymptotically flat just in an elementary sense, since it has
been argued that it can be conformally related to a metric
that contains a deficit solid angle [45] (see Ref. [44] for a
complementary viewpoint on this issue). The appearance of
this deficit might be connected with claims that an effective
metric such as the AOS one cannot be derived from a loop
quantization that preserves strict covariance while respect-
ing spherical symmetry [46]. Additionally, according to
Ref. [47], the way in which the polymerization parameters
were originally treated seems to ignore the hypothesis
that they are constants of motion. In this respect, in
Refs. [42,43], Ashtekar, Olmedo, and Singh employed
an argument based on an extension of the phase space in
order to support their approach, in which the parameters are
handled as constants in the Hamiltonian derivation of the
equations of motion. Nevertheless, the authors of Ref. [47]
have indicated that this makes the relation between the
proposed Hamiltonian and the dynamical equations
unclear, given that an extra phase space dependent factor
would enter the equations of motion should the nontrivial
nature of the polymerization parameters be taken into
account, leading to a more involved dynamics [47,48].
In view of this situation, and focusing exclusively on the

Hamiltonian derivation of the AOS solution, an alternative
approach has been proposed in Ref. [48] to obtain the
dynamical equations while considering the noncommuta-
tivity of the polymerization parameters with the canonical
variables, bringing together a treatment of these parameters
as true constants of motion and the undoubtedly interesting
physical results of the original AOS model. In that paper,
we introduced an alternative prescription for the selection
of the polymerization parameters that extends the ideas of

2In this paper, we will use the term effective to characterize a
description, model, or mathematical object that is inherently
classical but incorporates corrections of quantum geometrical
origin.

3Our convention to distinguish between future and past is
closely related to the standard notion of light cones pointing
radially inward in the interior of a Schwarzschild black hole, with
the central singularity becoming the future endpoint of all
timelike geodesics. This concept suggests that the future corre-
sponds to decreasing values of the coordinate time introduced in
Sec. II.
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Ref. [47]. Supported on considerations of generality, we
have suggested that one should allow that the parameters
capture phase space contributions coming from two sep-
arate sectors that had been viewed as decoupled in the
literature previous to our proposal. This leads to a richer
variety of dynamical equations, which differ from those
obtained by considering constant parameters in a pair of
multiplicative phase space dependent factors, as it is also
the case of Ref. [47] (although the factors we found are
considerably more complicated owing to the coupling
between sectors). After reabsorbing those factors via time
redefinitions and obtaining the form of the dynamical
solutions, we discussed in Ref. [48] some consequences
of the relation between the newly defined times and their
behavior in the asymptotic limit of infinitely large black
hole masses. The effective spacetime geometry derived
with this procedure is fundamentally different from that in
the original works. This fact has left the door open to a
possible alleviation of the problems of the model. The
objetive of the present work is to develop the preliminary
ideas introduced in Ref. [48] and, in particular, to address
the issue of whether there exists any obstruction to our
proposal such as it was originally formulated, with special
emphasis on a good behavior of all the interior geometry.
This step is vital if we want to examine the physical
properties of the model at a later point, in order to fully
comprehend the effective theory and set it on a firm
foundation on top of which one may complete the quan-
tization program. Therefore, in this article we concentrate
all our attention exclusively on this issue, which we
consider prior to any investigation of an algebraic or
canonical quantization of the model and of the subsequent
quantum properties of the system.
The article is structured as follows. First, we introduce

the basics of the effective model under consideration in
Sec. II. Then, in Sec. III we proceed to the investigation of
possible obstructions to the presented formalism. More
precisely, this contains: (1) the study of the integrability of
Fij and the invertibility of Gi (for a precise definition of
these functions, see Sec. III or Ref. [48]), performed in
Sec. III A; (2) a discussion about the image of Gi, which
can be found in Sec. III B; and (3) an analysis of the
properties of the factors Cij along dynamical trajectories,
contained in Sec. III C. In Sec. IV, we consider the
possibility of independently redefining the origin of one
of the times of the system and evaluate the impact of such a
redefinition on the viability of the model. Finally, we
summarize the main results and discuss their consequences
in Sec. V.
Throughout this article, we will use the following

notation. Letters from the middle of the Latin alphabet
(i; j; k…) are used as phase space labels, taking the value b
or c depending on whether they refer to the radial or the
angular phase space sector, respectively. Unless explicitly
stated otherwise, if two such labels appear in any given

expression, they are assumed to be different from each
other. Letters from the middle of the Greek alphabet
(μ; ν…) denote spacetime indices, with values ranging
from 0 to 3. Finally, we adopt natural units, setting the
speed of light and the reduced Planck constant to one.

II. THE MODEL

We start by briefly introducing the main ideas of our
proposal following Ref. [48], where they were first put
forward. From now on, we will focus our attention on the
study of the interior region of a nonrotating, uncharged
black hole. This region admits a foliation in homogeneous,
spacelike Cauchy hypersurfaces, namely those character-
ized by a constant value of the Schwarzschild coordinate r.
This property, which is not exhibited by the exterior region,
allows for the construction of a Hamiltonian description of
the system in terms of a finite dimensional phase space.
Indeed, after the imposition of the Gauss constraint arising
as a result of employing a triadic formulation, all dynamical
information about the Ashtekar-Barbero variables is
encoded in two canonical pairs, ðb; pbÞ and ðc; pcÞ
[42,43]. The first pair (comprised of the connection variable
b and the triad variable pb) refers to the radial sector of the
spatial hypersurfaces, whereas the other pair (also com-
posed by a connection variable c and a triad variable pc) is
related to the angular degrees of freedom. In view of this
distinction (and using a terminology motivated by our
previous comments), it is useful to differentiate between
what we will call the radial sector and the angular sector of
phase space, to which we will often refer throughout this
article. The nonvanishing Poisson brackets of these funda-
mental variables are

fb; pbg ¼ Gγ; fc; pcg ¼ 2Gγ; ð2:1Þ

where G is the Newton constant and γ is the Immirzi
parameter. In terms of these canonical variables, the
spacetime line element can be written as

ds2¼ gμνdxμdxν¼−N2dt2þ p2
b

L2
ojpcj

dx2þjpcjdΩ2; ð2:2Þ

where gμν is the spacetime metric, N is the lapse function, x
is a radial coordinate in the interior region, Lo is a fiducial
length associated with this coordinate (hence, physical
results must have a well-defined limit when Lo → ∞), and
dΩ2 ¼ dθ2 þ sin2θdϕ2 is the metric of the unit two-sphere
in terms of the polar and azimuthal angles, θ and ϕ.
As a consequence of the symmetries of general relativity,

the above canonical variables must satisfy certain con-
straints. In fact, given that the freedom associated with the
Gauss constraint has already been fixed in the process of
defining the canonical variables and the spatial diffeo-
morphism constraint is trivial in the chosen foliation, the
only remaining nontrivial constraint is the effective
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Hamiltonian Heff itself, which generates time reparamet-
rizations and must vanish on the dynamical solutions. For
the choice of lapse function

N ¼ γδb
ffiffiffiffiffiffiffiffijpcj

p
sin δbb

; ð2:3Þ

associated with a time t that we will call coordinate time,
the product with the effective Hamiltonian constraint turns
out to be [42,43]

NHeff ¼
Lo

G
ðOb −OcÞ; ð2:4Þ

Ob ¼ −
1

2γ

�
sin δbb
δb

þ γ2δb
sin δbb

�
pb

Lo
; ð2:5Þ

Oc ¼
1

γ

sin δcc
δc

pc

Lo
; ð2:6Þ

where δb and δc are the two polymerization parameters that
regulate the introduction of quantum effects in the system.
Indeed, in the limit where both parameters vanish, the
above Hamiltonian reduces to that of general relativity
written in terms of our variables. Notice that, with this
choice of lapse, the Hamiltonian constraint presents a
remarkably simple structure: up to a multiplicative con-
stant, it is given by a difference of two quantities, Ob and
Oc, which only depend on the canonical variables of either
the radial or the angular sector of phase space and their
respective polymerization parameter. Therefore, it is imme-
diate to realize that, unless the polymerization parameters
introduce a cross-dependence between the radial and
angular sectors, the dynamics of the two sectors is
decoupled and, up to constants, Ob and Oc generate their
respective dynamics. For this reason (and although this
interpretation only holds when no cross-dependence is
introduced), we will refer toOb andOc as the radial and the
angular partial Hamiltonians, respectively.
The next step is the selection of the polymerization

parameters, δb and δc. Although several approaches have
been explored in the literature, we will focus our attention
on definitions such that they are constants of motion, i.e.,
constant along dynamical trajectories but not on the whole
of the phase space. However, this restriction leaves an
ample freedom and we need to adopt a concrete prescrip-
tion. The proposal of the authors of the original model is
based on the observation that the partial Hamiltonians are in
fact constants of motion themselves. Not only that, given
the form of the Hamiltonian constraint, it follows that both
partial Hamiltonians have the same on-shell value, which
we call m. This quantity has been found to be related to the
mass of the black hole [42,43]. In light of these consid-
erations, the AOS proposal suggests that the parameters be
taken as functions of the constant of motion m, and thus of

the black hole mass, supporting this choice with an argu-
ment that appeals to an extension of the phase space (for
more details, we encourage the reader to consult
Refs. [42,43]). In a later work [47], it has been argued
that such an approach is not consistent with the premise of
selecting constants of motion as polymerization parame-
ters. Instead, it has been proposed that each parameter be
treated as a function of its associated partial Hamiltonian
and, then, account for the nonvanishing Poisson brackets of
these parameters in the derivation of the equations of
motion, a procedure that leads to dynamical equations that
differ from those considered in the original works. In this
way, one would incorporate the nonconstant nature of the
polymerization parameters while still ensuring that they are
functions of m on the constraint surface.
In an attempt to combine the positive aspects of these

two approaches, we put forward an alternative proposal that
incorporated the ideas of Ref. [47] but tried to reconcile
them with the interesting properties of the original model,
and in particular the displayed singularity resolution [42–
44]. We argued that, since both partial Hamiltonians have
the same on-shell value, one ought not to be able to
distinguish their individual on-shell contributions.
Therefore, the most general choice should be one of the
type

δi ¼ fiðOb;OcÞ; ð2:7Þ

where we have used a compact notation to refer to both
polymerization parameters by means of a subindex i ¼ b, c
(see the last paragraph of Sec. I for a more detailed
comment on this notation). It is important to emphasize
that these definitions introduce a cross-dependence in the
Hamiltonian that in principle breaks the decoupling of the
radial and angular sectors of phase space. In the absence of
this decoupling, which is present in all other related works
on the model, the resulting dynamical equations are [48]

∂ti ¼ Cij

�
si
Lo

G
fi; pig

∂Oi

∂pi

�
; ð2:8Þ

∂tpi ¼ Cij

�
−si

Lo

G
fi; pig

∂Oi

∂i

�
; ð2:9Þ

where i and j are assumed to be different and si is a sign
defined as follows:

si ¼
�þ1 if i ¼ b;
−1 if i ¼ c:

ð2:10Þ

It is straightforward to realize that the objects in square
brackets in Eqs. (2.8) and (2.9) are nothing but the
equations of motion that would be obtained if the polym-
erization parameters were treated as constants. Therefore,
all the information about the nontrivial nature of the
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parameters as functions on phase space is enclosed in the
factors Cij, which are4

Cij ¼
1 − Δjj − Δji

ð1 − ΔiiÞð1 − ΔjjÞ − ΔijΔji
;

Δij ¼
∂Oi

∂δi

∂fi
∂Oj

; ð2:11Þ

where the subindices of Δij are allowed to be equal and
ð1 − ΔiiÞð1 − ΔjjÞ − ΔijΔji is assumed to be different from
zero in the derivation of the equations of motion. According
to our conventions, our choice of parameters is then
reflected in the presence of two phase space dependent
factors, Cbc and Ccb, that appear multiplicatively in the
dynamical equations. The fact that they show up precisely
in this way implies that they can be reabsorbed through
appropriate time redefinitions, one per sector of phase
space. Indeed, if we consider a radial time tb and an
angular time tc given by

dti ¼ Cijdt; ð2:12Þ

the dynamical equations reduce to those resulting from
parameters that are constants on the whole phase space.
Thus, we attain a set of equations of motion that is identical
in form to that of Refs. [42,43] except for the fact that they
are written in terms of two newly defined times instead of a
single one.5 We can proceed to integrate these equations,
getting solutions that are formally identical to those
obtained in Refs. [42,43] but expressed in terms of the
two new times. We find

tan
δccðtcÞ

2
¼ γLoδc

8m
e−2tc ; ð2:13Þ

pcðtcÞ ¼ 4m2

�
e2tc þ γ2L2

oδ
2
c

64m2
e−2tc

�
; ð2:14Þ

cos δbbðtbÞ ¼
1þ bo tanh

botb
2

1þ b−1o tanh botb
2

; ð2:15Þ

pbðtbÞ ¼ −2Lom
sin δbbðtbÞ

γδb

1

1þ sin2δbbðtbÞ
γ2δ2b

; ð2:16Þ

where bo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ2b

q
and, following the conventions of

Refs. [42–44], b > 0, pb ≤ 0, c > 0, and pc ≥ 0.
Additionally, the way in which the integration constants
are fixed in those references implies that the horizon lies at
tb ¼ 0, instant at which both the connection and triad
variables of the radial sector vanish. In principle, we
choose the origin of tc (i.e. tc ¼ 0) on the horizon as well.
This facilitates the comparison of our arguments and
results with previous works. In Sec. IV, we will return
to this issue and comment on the available freedom
of choice, which will play an important role in our
discussion. It is worth pointing out that the effective
solutions display reflection symmetries, one per sector of
phase space. Indeed, it is straightforward to see that the
angular partial Hamiltonian Oc is left invariant by the
transformation tc → lnðγLoδc=8mÞ − tc, which leaves pc
unchanged and takes δcc to π − δcc. There is a completely
analogous situation in the radial sector under the trans-
formation tb → −ð4=boÞarctanhð1=boÞ − tb.
In the classical limit where δi → 0, the above solutions

reduce to the ones found in general relativity. Since the
radial and angular times coincide in such a classical limit
[48] and are equal to the coordinate time [as can be inferred
from their definitions (2.12), together with the fact that
Cij → 1 in the considered classical limit], a straightforward
computation [42,43] shows that the corresponding classical
solutions are given by6

cðtÞ ¼ γLo

4m
e−2t; ð2:17Þ

pcðtÞ ¼ 4m2e2t; ð2:18Þ

bðtÞ ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
je−t − 1j

p
; ð2:19Þ

pbðtÞ ¼ −2Lom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffije−t − 1jp
1þ je−t − 1j : ð2:20Þ

4Should the functions fbðOb;OcÞ and fcðOb;OcÞ be fixed
(ideally from first principles or, alternatively, from empirical
inputs), these phase space dependent factors would be totally
determined. Nonetheless, in this paper we adopt a more modest
approach and simply impose a minimum set of conditions that
these factors must satisfy to allow us develop our analysis,
namely, in principle that they are finite and such that, in the limit
of infinite mass, the polymerization parameters coincide on shell
with those in Refs. [42,43]. See the rest of the main discussion for
further details.

5Although these time redefinitions prove useful in the case
under consideration, we will require that the system be express-
ible in terms of a single time as a necessary condition to obtain a
well defined effective geometry. Note that this does not imply that
a similar situation with multiple times necessarily arises in other
less symmetrical scenarios in LQC. For instance, in the case of
Bianchi I cosmologies, the regularization of the Hamiltonian
involves the introduction of three phase space dependent length
parameters (one per direction of the spatial sections), but there is
no need of introducing three different times in that setting [49].

6We note that the limit of vanishing mass of Eq. (2.17) is not
well defined. This is not surprising since, in that limit, the interior
of the black hole disappears and there exists no classical Kant-
owski-Sachs solution describing it.
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It is immediate to see that the phase space counterpart of the
classical central singularity is found in the limit t → −∞,
where the triad variables vanish and the connection
variables diverge. Therefore, the interior region of the
Schwarzschild black hole corresponds to the coordinate
time interval ð−∞; 0Þ.
In the effective theory where the polymerization param-

eters are different from zero, we can try and identify the
time intervals corresponding to the interior region by
similar means. However, as a result of the inclusion of
quantum effects, there is no singularity in the sense that
neither the momentum variables vanish nor the connection
variables diverge at any interior point along any dynamical
trajectory. In fact, note that the absolute value of the triad
variables is bounded from below. In the case of pc, it is
clear that it reaches a local minimum when tc equals a
critical value

tTc ¼ 1

2
ln
γLoδc
8m

; ð2:21Þ

which is negative for sufficiently massive black holes (or, in
other words, for values of the polymerization parameters
that are sufficiently small), which are precisely the ones
aimed to be described by the model under consideration
[42,43]. This critical value defines a spacelike hypersurface
T that we will refer to as the transition surface, given its
physical interpretation in Refs. [42–44]. From the expres-
sion of tTc , it is straightforward to see that it tends to
negative infinity in the classical limit. In this sense, it is
often said that the transition surface “replaces” the central
singularity in the effective theory. Hence, we can conclude
that the classical interior region still corresponds to neg-
ative values of tc, now within the interval ðtTc ; 0Þ of angular
times.7 This means that a brand new region of a purely
quantum origin appears beyond the transition surface, i.e.,
for values of the angular time tc < tTc . In order to analyze in
a meaningful way how the physical picture is modified as a
result of the inclusion of quantum gravitational effects
through polymerization parameters that have contributions
from both sectors of phase space (2.7), we need to
determine first whether the effective spacetime metric
can be defined satisfactorily in the totality of the interior
region. The study of this issue, which was not addressed in
Ref. [48], is precisely the aim of Sec. III.

III. POSSIBLE OBSTRUCTIONS TO THE MODEL

In order to examine the physical properties of the
solution obtained with our proposal, it is necessary to
discuss whether there exist obstructions to our two-time
formalism in the first place. In other words, we must
analyze whether the effective spacetime metric is in fact
well defined at every point of the interior region, in the
sense that it can always be written in terms of a single time
coordinate (by patches, if needed). Conditions that are
necessary to have such a well-defined effective metric in a
neighborhood of any point in terms of one of our two times
are the following:
(a) One of the times tb or tc can be re-expressed in terms

of the other.
(b) The time component of the effective line element can

be rewritten in terms of either dt2b or dt
2
c, depending on

which time can be expressed as a function of the other.
Naturally, we need these conditions to hold at every
possible point in order to cover the whole interior region.
From the definitions of the radial and angular times [see

Eq. (2.12)], it follows immediately that

dt2 ¼ dt2b
C2
bc

¼ dt2c
C2
cb

: ð3:1Þ

Therefore, the contribution in the line element that is
proportional to dt2 can always be rewritten in terms of
the square of the differential of the appropriate time
variable provided that the inclusion of the corresponding
factor 1=C2

ij does not lead to singularities. This issue will be
studied carefully in Sec. III C.
Let us then focus on the other point, namely, whether it is

possible to rewrite at least one of the times in terms of the
other. This requires an analysis of the implicit relation
between the radial and angular times. This relation can be
obtained from the equality

Ccbdtb ¼ Cbcdtc; ð3:2Þ

which is easily derived from the definitions of tb and tc.
Since the denominator of Cij is symmetric under the
exchange of its indices [see Eq. (2.11)], only the numer-
ators of these factors,

Fij ¼ 1 −
∂Oj

∂δj

�
∂fj
∂Oj

þ ∂fj
∂Oi

�
; ð3:3Þ

are relevant for the implicit relation between the radial and
angular times (assuming that the denominator of Cij is
finite and nonzero, see Sec. III C). In this way, after an
integration, Eq. (3.2) becomes

GbðtbÞ¼
Z

0

tb

Fcbðt0bÞdt0b¼
Z

0

tc

Fbcðt0cÞdt0c¼GcðtcÞ; ð3:4Þ

7From now on, we will interchange the use of the radial and
angular times, depending on which one is more convenient at
each point of the discussion. It should be born in mind that
Eq. (2.12) can be employed to obtain a dictionary between both
times by solving for dt in both expressions, equating the results,
and performing an integration. This provides us with an equality
of two functions of tb and tc, respectively, which ought to define
an implicit relation between these two times. For further details,
see the discussion of Sec. III.
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where the functions Fij must be evaluated on solutions and,
hence, on the Hamiltonian constraint surface. If we rewrite
the polymerization parameters δi ¼ fiðOb;OcÞ as functions
of the linear combinations of the partial Hamiltonians
given by μ1 ¼ ðOb þOcÞ=2 and μ2 ¼ ðOb −OcÞ=2, and
provided that the polymerization parameters are at least C1,
we get

Fijjon−shell ¼ 1 −
∂fjðm; 0Þ

∂m

∂Oj

∂δj
jon−shell; ð3:5Þ

where we have used that μ1jon−shell ¼ m and μ2jon−shell ¼ 0.
Additionally, ∂=∂m denotes the derivative with respect to the
quantity μ1 evaluated on the constraint surface. As a result,
the implicit relation between the two times can be recast as

−GbðtbÞ ¼ tb −
∂fb
∂m

Z
tb

0

∂Ob

∂δb
ðt0bÞdt0b

¼ tc −
∂fc
∂m

Z
tc

0

∂Oc

∂δc
ðt0cÞdt0c ¼ −GcðtcÞ; ð3:6Þ

where we have omitted the on-shell evaluation for the sake
of simplicity. As we anticipated, this expression gives
an implicit relation between both times on shell,
GbðtbÞ ¼ GcðtcÞ. We will carry out a detailed analysis of
this relation in the following.
It is clear that the need to express the effective metric in

terms of a single time in the whole interior region imposes a
series of requirements on the functions Fij and Gi. In
particular, these functions must satisfy the following
conditions:

(i) The primitives Gi must exist. This is equivalent to
requiring that Fji be integrable.

(ii) At least one of the primitivesGi must be invertible at
each point of the spacetime region under consid-
eration.

(iii) The images of the two primitive functions Gi must
coincide in the whole of the interior region.

If there is a subregion in which the functions Fij are not
integrable or none of the primitives is invertible, there will
exist obstructions to define an effective metric in terms of a
single time in that part of the interior region. Moreover, if
the images of the primitives Gi differ, there exists a
subregion where Eq. (3.6) cannot hold, preventing that
the angular and radial times can be related there.
Let us begin by examining in Sec. III A whether the

integrability and local invertibility conditions can be
satisfied. This analysis will also provide us with valuable
tools to address the study of the images of Gb and Gc,
which we will carry out in Sec. III B.

A. Necessary conditions for a well-defined and
invertible time relation

Let us consider first the integrability of Fij. A direct
inspection of Eq. (3.6) confirms that this condition is

equivalent to the integrability of ∂Oj=∂δj. Since any
continuous function on a closed interval is integrable on
that interval, and ∂Oj=∂δj is continuous on its domain
because it is an elementary function,8 both for j ¼ b and for
j ¼ c, it suffices to verify that this domain always contains
the integration interval.
Taking the partial derivatives of Ob and Oc with respect

to their associated polymerization parameter, we obtain

∂Ob

∂δb
¼−

1

2γ

�
1−

γ2δ2b
sin2δbb

�
δbbcosδbb− sinδbb

δ2b

pb

Lo
; ð3:7Þ

∂Oc

∂δc
¼ 1

γ

δcc cos δcc − sin δcc
δ2c

pc

Lo
: ð3:8Þ

For finite values of the polymerization parameters, the
domain of ∂Oc=∂δc as a function of the angular time is the
real line R and, in particular, contains the time interval
corresponding to the interior region. The same statement
holds as well for ∂Ob=∂δb as a function of tb, as can be
easily verified. Thus, both objects are integrable, a fact
which ensures that the primitives GiðtiÞ exist. Obviously,
this result does not guarantee that the functions GiðtiÞ can
be written in terms of elementary functions, as we will see
later on.
We turn to discuss the invertibility of the primitives Gi.

The inverse function theorem states that, if a function is
differentiable at a given point and its derivative is continu-
ous and nonvanishing at that point, then the function is
invertible in a neighborhood of it. Since the functions
−FjiðtiÞ, which are the derivatives of GiðtiÞ, are continu-
ous, the theorem ensures that the primitives are locally
invertible except around the zeroes of the functions FjiðtiÞ.
We note that the discussion of these zeroes will also

provide us with valuable information about the behavior
and form of the primitives Gi. Let us start by studying the
zeroes of FbcðtcÞ. According to Eqs. (3.5) and (3.8), and
taking into consideration that pc sin δcc is proportional to
Oc and, hence, to m on shell, we have

FbcðtcÞ¼1−
1

γLoδ
2
c

∂fc
∂m

½δccðtcÞcosδccðtcÞ−sinδccðtcÞ�pcðtcÞ

¼1þm
δc

∂fc
∂m

−
1

γLoδ
2
c

∂fc
∂m

pcðtcÞδccðtcÞcosδccðtcÞ:

ð3:9Þ

In terms of xcðtcÞ ¼ tan½δccðtcÞ=2� > 0, it is simple to
prove that, for the solutions that we have derived in Sec. II,

8In other words, it can be obtained through a finite number of
compositions and combinations of the four fundamental oper-
ations on basic elementary functions (powers, exponentials,
logarithms, and direct and inverse trigonometric and hyperbolic
functions).
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pcðtcÞ ¼
1

2
γLoδcm

1þ xcðtcÞ2
xcðtcÞ

; ð3:10Þ

δccðtcÞ ¼ 2 arctan xcðtcÞ; ð3:11Þ

and then

cos δccðtcÞ ¼
1 − xcðtcÞ2
1þ xcðtcÞ2

: ð3:12Þ

Therefore, we can recast Fbc as follows:

FbcðtcÞ¼1−
m
δc

∂fc
∂m

�
arctanxcðtcÞ

1−xcðtcÞ2
xcðtcÞ

−1

�
: ð3:13Þ

The zeroes textc of FbcðtcÞ, i.e. the local extrema of GcðtcÞ,
around which this function cannot be inverted univocally,
then verify

arctan x0c
1 − ðx0cÞ2

x0c
¼ 1þ δc

m

�
∂fc
∂m

�
−1
; ð3:14Þ

where x0c ¼ xcðtextc Þ.
Following the minimum area arguments of Refs. [42,43],

we will select the functions that appear in the definitions of
the polymerization parameters in such a way that their on-
shell values satisfy

δb ¼
� ffiffiffiffi

Δ
p
ffiffiffiffiffiffi
2π

p
γ2m

�1=3

þ oðm−1=3Þ;

δc ¼
1

2Lo

�
γΔ2

4π2m

�
1=3

þ oðm−1=3Þ; ð3:15Þ

where Δ ¼ 4
ffiffiffi
3

p
πGγ is the area gap in LQG and oð·Þ

denotes terms that are subdominant with respect to the
function in parentheses in the limit of large masses,
m → ∞. These subdominant terms appear because the
expressions of the parameters derived in Refs. [42,43]
involve a large mass expansion of certain minimum area
conditions and, therefore, they are only valid for very
massive black holes.
Employing the dependence of the on-shell parameters on

m shown above, we obtain that

arctan x0c
1 − ðx0cÞ2

x0c
¼ −2þ oðm0Þ: ð3:16Þ

Ignoring subdominant terms and recalling that x0c is strictly
positive, we see that there is just a single solution to this
equation. In Fig. 1, we represent the functions on the left
and right hand sides of the above expression, the inter-
section of which yields the only zero of Fbc. This zero is
found to be x0c ≈ 2.2017.

In conclusion, GcðtcÞ is invertible at all times tc < 0 in
the interior region except in a neighborhood of

textc ¼ −
1

2
ln
8m½x0c þ oðm0Þ�

γLoδc

¼ tTc −
1

2
ln x0c þ o

�
ln
δc
m

�
: ð3:17Þ

This value of tc is reached beyond the transition surface
(indeed, textc < tTc because x0c > 1). We also note that the
numerical value of textc receives subdominant corrections
coming from higher-order terms in the on-shell expressions
of the polymerization parameters, as shown by the inclu-
sion of the term o½lnðδc=mÞ� in the previous equation. As a
consequence of these invertibility properties, tc can be
written in terms of tb as

tc ¼ G−1
c ½GbðtbÞ�; ð3:18Þ

as long as we are away from textc . Around this value of the
angular time, it might even be the case that the effective
spacetime metric could be acceptably defined, e.g., if Gb
can be inverted there, so that we can express the radial time
in terms of the angular time instead. A single time
description of the spacetime geometry would be attainable
if we could satisfactorily combine local inversions covering
all of the interior region. We note, however, that this
imposes severe restrictions on the images ofGb andGc. For
the moment, we will study the zeroes of Fcb and show that
in fact none of them corresponds to textc with our definitions.
As we have already pointed out, the discussion of these
zeroes will be also extremely helpful to describe the

FIG. 1. Left and right hand sides of Eq. (3.16) as functions of
xc. The continuous blue curve represents the left-hand side,
whereas the discontinuous red line is the dominant term for large
masses on the right hand side. The intersection of both curves
provides the points where the function Fbc vanishes. Since x0c > 0
by definition, only the intersection on the right semiaxis (i.e., the
one marked with the approximate value of the corresponding x0c)
is relevant for our discussion.
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qualitative behavior of the functionGb in the interior region
and, hence, of its image.
According to the definitions (3.5) and (3.7), the function

FcbðtbÞ can be written as

FcbðtbÞ ¼ 1þ 1

2γLoδ
2
b

∂fb
∂m

�
1 −

γ2δ2b
sin2δbbðtbÞ

�

× ½δbbðtbÞ cos δbbðtbÞ − sin δbbðtbÞ�pbðtbÞ:
ð3:19Þ

The expression of the radial partial Hamiltonian (2.5)
implies that

γ2δb
sin δbbðtbÞ

pbðtbÞ ¼ −2γLom −
sin δbbðtbÞ

δb
pbðtbÞ: ð3:20Þ

Therefore,

FcbðtbÞ ¼ 1 −
m
δb

∂fb
∂m

þ 1

2γLoδb

∂fb
∂m

×

��
1 −

γ2δ2b
sin2δbbðtbÞ

�
δbbðtbÞ cos δbbðtbÞ

δb
pbðtbÞ

− 2
sin δbbðtbÞ

δb
pbðtbÞ

�
: ð3:21Þ

Using the dynamical solutions presented in Sec. II,
cos δbbðtbÞ can be recast as

cos δbbðtbÞ ¼
1þ boxbðtbÞ
1þ b−1o xbðtbÞ

; ð3:22Þ

where −1 < xbðtbÞ ¼ tanhðbotb=2Þ ≤ 0. Notice that
Eq. (3.22) reveals that −bo < cos δbbðtbÞ ≤ 1, with a lower
bound smaller than the usual one on the cosine function of a
real variable. This difference points toward the fact that the
radial canonical variables become imaginary at some point
along the evolution. This phenomenon is intimately related
to the existence of a horizon beyond the transition surface
in the original model [42,43]. We will concentrate our
analysis on values of the radial time for which the radial
connection variable b is real and, thus, its trigonometric
functions are bounded in the standard way. These values are
those corresponding to xbðtbÞ ∈ ½−2bo=ð1þ b2oÞ; 0�, to
δbbðtbÞ ∈ ½0; π� or, equivalently, to

tb ∈ ½tWH
b ; 0�; tWH

b ¼ −
4

bo
arctanh

1

bo
; ð3:23Þ

where tWH
b denotes the position of a white hole horizon

according to the interpretation of Refs. [42,43]. From now
on, we will restrict our discussion to the genuine interior
region, comprised between the sections identified as black

and white horizons. Taking into account this restriction and
Eq. (2.16), we have that

δbbðtbÞ ¼ arccos

�
1þ boxbðtbÞ
1þ b−1o xbðtbÞ

�
; ð3:24Þ

sinδbbðtbÞ¼ γδb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xbðtbÞ½2boþð1þb2oÞxbðtbÞ�

p
boþxbðtbÞ

; ð3:25Þ

pbðtbÞ¼−2Lom

×
½boþxbðtbÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xbðtbÞ½2boþð1þb2oÞxbðtbÞ�

p
b2o½1−xbðtbÞ2�

:

ð3:26Þ

Notice that, in fact, both pb and sin δbb vanish at the white
horizon. Introducing these expressions in Eq. (3.21), we get

Fcb ¼ 1 −
2m
δb

∂fb
∂m

�
1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2o − 1

p

×

�
1þ ðbo þ xbÞ2

2boxb þ ð1þ b2oÞx2b

�
arccos

�
1þ boxb
1þ b−1o xb

�

×
1þ boxb
boð1 − x2bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xb½2bo þ ð1þ b2oÞxb�

q

þ 2boxb þ ð1þ b2oÞx2b
b2oð1 − x2bÞ

�
: ð3:27Þ

Then, any zero textb of Fcb must satisfy that, with x0b ¼
xbðtextb Þ (and up to subdominant corrective terms),

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2o − 1

p
�
1þ ðbo þ x0bÞ2

2box0b þ ð1þ b2oÞðx0bÞ2
�

× arccos

�
1þ box0b
1þ b−1o x0b

�
1þ box0b

bo½1 − ðx0bÞ2�
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x0b½2bo þ ð1þ b2oÞx0b�

q

þ 2box0b þ ð1þ b2oÞðx0bÞ2
b2o½1 − ðx0bÞ2�

¼ −2; ð3:28Þ

where we have used the on-shell dependence on m of the
radial polymerization parameter. In Fig. 2, we represent the
left- and right-hand sides of Eq. (3.28). Their intersections
provide the (imageunderxb of the) zeroesof the functionFcb.
By inspecting Fig. 2, we observe the following. As bo

approaches one (i.e., for small values of δb or, equivalently,
large masses m), the left-hand side of Eq. (3.28) displays a
minimum that is more pronounced and more displaced
toward negative values of x0b, and thus of tb. As a result, we
find that Fcb does not have any zero for masses m below a
critical threshold, value at which the minimum of the left-
hand side of the studied equation is pronounced enough to
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barely lead to an intersection. Numerically, we observe that
this threshold value corresponds to bcrito ≈ 1.032 (or, equiv-
alently, to a value ofm is approximately 13 Planck masses).
Since the model is specifically adapted to describe black
holes that are very massive, in these cases there will always
exist two zeroes xð1Þb;0 and xð2Þb;0, such that xð1Þb;0 > xð2Þb;0. Thus,
the primitive Gb is locally invertible around all radial times
tb < 0 except at two instants, tð1Þb;ext and tð2Þb;ext.
Let us verify now whether any of these points corre-

sponds to the value of the angular time around which
Gc cannot be inverted for any value of the mass m. We
recall that the correspondence between the times tb and tc
is dictated by the relation GbðtbÞ ¼ GcðtcÞ. Therefore,
we have to check whether or not Gcðtextc Þ differs from

Gbðtð1Þb;extÞ and Gbðtð2Þb;extÞ, for any (large) value of the mass.

However, since neither the zeroes of FcbðtbÞ nor GbðtbÞ
itself can be written in terms of elementary functions, we
will have to resort to a seminumerical argument.
In the angular sector, it is possible to integrate FbcðtcÞ

explicitly. Indeed, up to subdominant terms,

GcðtcÞ ¼ −tc þ
1

3γLoδcm

Z
0

tc

dt0c½δccðt0cÞ cos δccðt0cÞ

− sin δccðt0cÞ�pcðt0cÞ

¼ −tc −
1

6

Z
xcð0Þ

xcðtcÞ
dxc

��
1

x2c
− 1

�
arctan xc −

1

xc

�
:

ð3:29Þ

Integrating by parts, we obtain the following expression:

GcðtcÞ ¼ −tc −
1

6

��
xcðtcÞ þ

1

xcðtcÞ
�
arctan½xcðtcÞ�

−
�
xcð0Þ þ

1

xcð0Þ
�
arctan½xcð0Þ�

�
: ð3:30Þ

In particular, the value of the primitive GcðtcÞ at its only
extremum is obtained by replacing xcðtcÞ with x0c, and
recalling that xcð0Þ ¼ γLoδc=ð8mÞ. Like xcð0Þ, this value
Gcðtextc Þ depends on the black hole mass m, both directly
and indirectly through its dependence on δc.
It would be desirable to have a similar expression for the

evaluation of the radial primitive Gb at its two extrema.
Nevertheless, as we mentioned before, it does not even seem
possible towriteGb in termsofelementaryfunctions,although
its existence is guaranteed by the integrability argument
discussed at the beginning of this section. For the sake of
completeness, the expression ofGbðtbÞ is explicitly given by

GbðtbÞ ¼ −tb −
1

6γLoδbm

Z
0

tb

dt0b

�
1 −

γ2δ2b
sin2δbbðt0bÞ

�
½δbbðt0bÞ cos δbbðt0bÞ − sin δbbðt0bÞ�pbðt0bÞ

¼ −tb þ
2

3γδb

Z
0

xbðtbÞ
dx0b

�
1þ ðbo þ x0bÞ2

2box0b þ ð1þ b2oÞx0b2
� ðbo þ x0bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2box0b þ ð1þ b2oÞx0b2j

q
b3oð1 − x0b

2Þ2

×

2
64arccos

�
1þ box0b
1þ b−1o x0b

�
1þ box0b
1þ b−1o x0b

− γδb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2box0b þ ð1þ b2oÞx0b2j

q
bo þ x0b

3
75; ð3:31Þ

where subdominant terms have been omitted. If we were to
reintroduce them, these terms [sourced by the neglected
corrections in Eq. (3.15)] would modify the factor that
multiplies the integral in the previous equation, as well as
the parameters bo that appear inside the integral. Let

GbðtðaÞb;extÞ be the evaluation of Eq. (3.31) at the zeroes of

FcbðtbÞ, tðaÞb;ext with a ¼ 1, 2. As in the case of Gcðtextc Þ, the

value GbðtðaÞb;extÞ depends on the mass m, this time through
the mass dependence of δb and of the zeroes of Fcb (recall

that bo enters the equation satisfied by x
ðaÞ
b;0). Thus, for each

value of the mass, we need to numerically solve Eq. (3.28)
and then evaluate Gb at its solutions, evaluation which also
has to be done by numerical methods. This procedure

allows us to represent the two curves GbðtðaÞb;extÞ as functions

FIG. 2. Left and right-hand sides of Eq. (3.28) as functions of
x0b. The various curves correspond to the left hand side of
Eq. (3.28) for different values of bo, while the discontinuous
black line is the value of the right hand side of the equation.
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of m. Their intersections with Gcðtextc Þ indicate potential
obstructions to our formalism. The result of this numerical
computation can be seen in Fig. 3.
The plot in Fig. 3 shows that Gbðtð1Þb;extÞ is larger than

Gcðtextc Þ in the entire interval of studied masses. The only
possible intersection is, then, between Gcðtextc Þ and
Gbðtð2Þb;extÞ, which indeed is found to occur for a value of
the mass m around 20 Planck masses. Beyond this value,
the curves of the primitivesGi evaluated at their extrema do
not intersect one another, at least for the considered masses.
Moreover, the behavior displayed by these curves suggests
that this conclusion can be expected to apply to larger
values of m as well.
Therefore, the results of this section guarantee that, at

every point of the interior region, it is possible to invert
locally at least one of the time functions Gb or Gc (in terms
of their respective arguments) provided that the mass of the
black hole under consideration is larger than some 20
Planck masses, which includes the whole regime of validity
of the original model put forward in Refs. [42–44].
However, as we have already commented, these integra-
bility and local invertibility conditions are necessary but
still not sufficient to guarantee a single time formulation in
the whole of the studied region. At this stage of the
discussion, we can only conclude that a single time
reformulation is possible in the region covered by the time
intervals associated with the intersection of the images of
Gb andGc (as long as we focus on sufficiently large masses
m). Determining whether or not this region coincides with
the whole interior is the aim of Sec. III B.

B. Images of the two time functions Gi

We already know thatGbðtbÞ andGcðtcÞ exist and that, at
every time corresponding to the interior region, at least one
of them is invertible if m is sufficiently large. Nevertheless,

this does not mean yet that the effective metric can be
defined properly in a single time formalism. In particular,
the results about the local invertibility ofGb andGc are still
insufficient to express one of the two times, the radial or the
angular one, in terms of the other if the images of the interior
region under Gb and Gc do not match. The implicit relation
GbðtbÞ ¼ GcðtcÞ can only be satisfied for values of the times
that correspond to the intersection of the images of these two
functions. To complete our discussion about the invertibility
of the relation between the radial and angular times, in this
section we study the images of the functionsGi. For this, the
results about the extrema of Gi obtained in the previous
subsection will be of the greatest help.
Let us start by considering the angular primitive Gc, of

which we have an explicit expression. According to
Eq. (3.30), it is immediate to see that Gcð0Þ ¼ 0 and
limtc→−∞Gc ¼ −∞. Furthermore, for small values of tc
(i.e., close to the black horizon), the function Gc is positive
and behaves in an approximately linear fashion. Nonetheless,
for sufficiently negative values of tc, the behavior becomes
that of a decreasing exponential. This, together with the fact
that Gc is continuous, implies that this function reaches an
odd number of local extrema. In fact, we already know that
this function has just a single extremum: a maximum
Gc;max ¼ Gcðtextc Þ at a time textc for which xcðtextc Þ ≈ 2.2017
[see Eqs. (3.17) and (3.30)]. Subsequently, the image under
the angular primitive of the negative real semiaxis tc ≤ 0,
which contains the interior region, is

RðGcÞ ¼ ð−∞; Gc;max�: ð3:32Þ

Recall that a potential white horizon is found for a finite value
of tb and, given the continuity properties of Gb and Gc, this
boundary will also correspond to a finite value of tc. As a
consequence, the image ofGc restricted to the interior region,
RðGcÞjint, must be a bounded interval and therefore have a
finite lower end.
From expressions (3.30) and (3.17) for Gc and the time

textc , we can understand how the position of the maximum is
affected by a variation of the mass of the black hole under
consideration. Indeed, as revealed by the signs of the
derivatives ofGc and of textc with respect tom, the maximum
gets displaced toward more negative values of tc as the mass
increases, whereas the height of the maximum grows. In
what follows, we will carry out a similar analysis of Gb to
understand its behavior as a function of tb and how it is
modified by a change in the value of m.
With our definition of Gb in Eq. (3.31), this function

vanishes at the black horizon. Additionally, it also turns out
to be positive and essentially linear in a neighborhood of
this boundary, as we commented that it is the case for its
angular counterpart Gc. Its asymptotic form, however,
differs greatly from that of Gc. Instead of decreasing
exponentially, it can be seen that it tends to positive
infinity. As a result, the image of the negative real semiaxis

FIG. 3. Primitives evaluated at the zeroes of their derivatives for
values of the mass m, represented on the horizontal axis, ranging
between 20 and 100 Planck masses. Gcðtextc Þ, Gbðtð1Þb;extÞ, and
Gbðtð2Þb;extÞ are depicted by means of a continuous green curve, a
dash-dotted blue curve, and a dashed orange curve, respectively.
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under Gb will certainly contain the positive, real half-line,
RðGbÞ ⊇ ½0;∞Þ. If we restrict our attention to the interior
region (that is, no farther than the white horizon, located at
a finite value of tb), this conclusion is modified. The correct
statement in that case would be thatRðGbÞjint ⊇ ½0; Gb;sup�,
where Gb;sup denotes the supremum of Gb in the region
under consideration, which could correspond to either its
value at one of its extrema, GbðtðaÞb;extÞ, or its value at the
assumed white horizon, GbðtWH

b Þ. In any of these cases,
Gb;sup turns out to be finite, because Gb is continuous.
Moreover, as we have already seen, Gb exhibits two

extrema9 at the solutions of Eq. (3.28). The only possibility
that is compatible with the continuity of Gb and its
asymptotic behavior is that the extremum that is closer
to the black horizon is a maximum and the one farther away
from it, a minimum. Their behavior as m increases is
displayed in Fig. 4.
By inspecting this graph, we conclude that the difference

in height between the maximum and the minimum
increases as the mass gets larger, and that both extrema
shift toward more negative values of tb as m grows. In
addition, we observe that the value of the minimum, Gb;min,
becomes negative once the mass surpasses a critical value
(numerically found to be around 460 Planck masses).
Hence, for values of the mass beyond this threshold, the
image of the radial primitive would be of the form

RðGbÞjint ¼ ½Gb;min; Gb;sup�: ð3:33Þ

Obviously, the continuity of Gb ensures that Gb;min is
always finite, for any given finite value ofm. In agreement
with our comments above, the relation between the radial
and angular times then implies that GcðtcÞ must also be
bounded from below in the interior region, the bound
being precisely Gb;min in the sector of large masses m of
interest.10 We emphasize that the reason for this lower
bound in the interior is that the characterization of the
white horizon is based on the vanishing of b and pb (just
as the black horizon), so that its location is naturally
determined in terms of the radial time [see Eq. (3.23)].
With this picture in mind and the considered relation
between times, we see that, for sufficiently massive black
holes, (i) tc decreases monotonically until it reaches a
value G−1

c ½Gbðtð2Þb;extÞ�, where Gc attains its minimum11; and
(ii) tc then starts to increase until it reaches the value

G−1
c ½GbðtWH

b Þ�, corresponding to the end of the interior
region. Therefore, we conclude that, for sufficiently large
masses m,

RðGcÞjint ¼ ½Gb;min; Gc;max�;
RðGbÞjint ¼ ½Gb;min; Gb;sup�; ð3:34Þ

where Gb;sup ¼ max½GbðtWH
b Þ; Gb;max�. As an immediate

consequence of the previous expressions, any possible
discrepancies in the images of Gb and Gc must be located
at their upper endpoints.
Once the behavior of Gb andGc has been understood, let

us conclude our discussion about how their images com-
pare with each other. Representing the two primitive
functions at the same time for a value of m much larger
than the Planck mass, namely m ¼ 5000, yields the result
displayed in Fig. 5. As we can see in that figure, both Gb
and Gc are essentially equal until the transition surface,
where quantum effects start to become relevant. So, tb ≈ tc
until that surface. The closer we get to the black horizon,
the better this approximation becomes. In this subregion,
we can achieve a partial reconciliation of our formalism
with the results of the original model given that, in this
regime, our dynamical solutions are identical to the ones in
Refs. [42,43]. Nevertheless, the single time coordinate in
which they are written (i.e., the approximately coincident
value of tb and tc) is not the one considered by the authors
of that reference, as manifest by the presence of the factor
1=C2

ij in the time component of the effective metric, factor
that we will study in the next section.
In contrast with the above comments, Gb and Gc differ

wildly beyond the transition surface. In particular, as we
have shown, the radial primitive displays a second
extremum in that subregion, which leads to a nonmono-
tonic relation between the two times, as we commented
in the paragraph below Eq. (3.33). Moreover, we observe
that Gb;sup > Gc;max. It is worth emphasizing that this

FIG. 4. Gb as a function of the radial time tb for different values
of the mass parameter m. We have taken G ¼ 1, Lo ¼ 1, and the
standard values of γ and Δ.

9Numerical results suggest that the expected white horizon lies
always beyond the minimum, which means that both extrema
belong to the interior region, at least for masses within the studied
range.

10More generally, RðGcÞjint ¼ ½Gb;inf ; Gc;max�, where the in-
fimum of the radial primitive Gb;inf is either zero or Gb;min,
depending on whether m is above a certain mass threshold or not.

11It is straightforward to see that this minimum, where dtc=dtb
vanishes, signals the presence of a local extremum in the area of
the coordinate two-spheres, 4πpcðtbÞ.
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conclusion has been found to hold in the entire interval of
values of the mass under consideration. Indeed, the value of
Gb at its maximum (i.e. at tð1Þb;ext), which corresponds to
Gb;sup for very massive black holes according to our
numerical analysis, turns out to be always larger than
Gc;max for the values of m that we have been considering
(see Fig. 3). Furthermore, given the behavior exhibited by
the primitive functions in the studied interval of values of
m, it can be expected that Gb;sup remains larger than Gc;max
for more massive black holes as well.
It is now straightforward to see that the images of the

interior region under the two functions Gc and Gb, as we
have defined them in Eq. (3.34), do not coincide for any
finite value of m in the studied interval of masses. Indeed,
the fact thatGb;sup is by definition larger than or equal to the
maximum of Gb, and that this latter quantity exceeds
Gc;max, means that there exist values of the radial time with
a positive image that find no match in terms of angular
times. Thus, a satisfactory inversion of the considered time
relation in the whole interior region is not possible.
In conclusion, despite the integrability and good local

invertibility properties of the functions Fij and Gi, respec-
tively, the fact that the intersection of the images of Gi does
not cover the totality of the interior region implies an
obstruction to the formalism derived from our proposal to
define the polymerization parameters (2.7). Indeed, our
formalism cannot be extended to encompass the whole
interior region, at least in its present form, in the sense that
it fails to provide an effective spacetime metric that is well
defined everywhere by virtue of the existence of a sub-
region where a satisfactory relation between the radial and
angular times cannot be established. At this stage, however,

we recall that there exists a freedom in the formalism which
we have not yet exploited, namely, the freedom to select the
origins of the two times independently. We will see in
Sec. IV that we can actually make the images of Gb andGc
match with an appropriate choice of these origins, remov-
ing in this way the obstruction that we have found to define
an effective geometry in the totality of the interior.

C. The time component of the metric

For the sake of completeness in our analysis, we want to
study in this section the behavior of the factor Cij along
dynamical trajectories, with the aim of showing that this
factor does not introduce additional obstructions to our
two-time formalism. We know from the expressions in
Eq. (2.11) that the factors Cij exclusively depend on the
derivatives of the partial Hamiltonians with respect to their
associated polymerization parameter and on the derivatives
of these parameters with respect to the other Hamiltonian.
More concretely, these factors can be written as follows:

Cij¼
Fij

Ξ
; Ξ¼ð1−ΔbbÞð1−ΔccÞ−ΔbcΔcb: ð3:35Þ

Given this structure (and the continuity of all the involved
functions), there seems to be three situations that need to be
examined carefully in order to rule out the possibility that
the resulting effective metric is divergent or degenerate.
First, we have to consider the points where Fij vanishes,
corresponding to (possibly apparent) divergences in the
metric. Second, it is also important to study the zeroes of
the denominator Ξ, associated with points where the
effective metric becomes degenerate (at least in the adopted
coordinates). Finally, we should contemplate the possibility
that Fij and Ξ vanish at the same time, which would lead to
an indeterminate situation.
As we have already seen, the points where the functionFij

vanishes are those in which Gj (i.e., the primitive function
associated with −Fij) cannot be inverted locally. This,
together with the fact that (a power of)Fij enters the effective
metric only when it is written in terms of the time ti, implies
that this situationdoes not constitute a source of problems. For
the sake of clarity, let us focus our discussiononone particular
case to show why. Let us ask whether the effective metric
written in terms of the radial time tb is well defined:

ds2 ¼ −
γ2δ2bpc½tcðtbÞ�
sin2δbbðtbÞ

Ξ½tb; tcðtbÞ�2
Fbc½tcðtbÞ�2

dt2b

þ p2
bðtbÞ

L2
opc½tcðtbÞ�

dx2 þ pc½tcðtbÞ�dΩ2; ð3:36Þ

where tcðtbÞ shouldbeunderstoodas tcðtbÞ ¼ G−1
c ½GbðtbÞ�. It

is crucial to keep in mind that the effective metric can only be
recast in this form away from the zeroes of Fbc, where Gc is
invertible and the angular time can be expressed in terms of tb.
Thus, it isobviousthatFbc nevervanishes in theregionthatcan

FIG. 5. Gb and Gc as functions of their respective times tb and
tc (identified with the variable of the horizontal axis) for
m ¼ 5000. The dotted gray lines denote, from left to right, the
position of the potential white horizon, of the transition surface,
and of the black horizon in the time variable in terms of which
they are naturally defined (i.e., in radial time in the case of the
horizons and in angular time in the case of the transition surface).
We have takenG ¼ 1, Lo ¼ 1, and the standard values of γ andΔ.
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be covered with an effective metric written in terms of the
radial time. The same argument applies to the case where the
effective metric is written in terms of tc. In that case, the
potentially problematic factor that appears in the metric is (a
power of)Fcb, but that function is ensured to be nonvanishing
since it is a necessary condition to express the effectivemetric
in terms of the angular time.
Notice that the fact that the behavior of Fij is harmless

rules out both the first and the third potential sources of
pathologies mentioned in the paragraph below Eq. (3.35).
The numerator of Cij does not vanish in the region where
the time component of the metric can be written in an
appropriate way as to make this function appear in it.
Therefore, the situation where both the numerator and the
denominator vanish at the same time cannot occur either.
Thus, the only potential situation that may prevent a well-
behaved factor 1=C2

ij is the possibility that Ξ becomes zero
at some point. We recall that the value of Ξ has been, in fact,
assumed to be nonzero in the derivation of the equations of
motion. However, once the time redefinitions are intro-
duced and the resulting dynamical equations are solved, the
dynamical solutions are well defined even if Ξ ¼ 0. Hence,
we can employ a continuity argument to extend our
formalism so that it includes the case where this restriction
is absent and then study the resulting behavior of Ξ along
any possible dynamical trajectory.
The points at which the denominator Ξ vanishes are

determined by the equation

�
1 −

∂fb
∂Ob

∂Ob

∂δb

��
1 −

∂fc
∂Oc

∂Oc

∂δc

�

¼ ∂fb
∂Oc

∂Ob

∂δb

∂fc
∂Ob

∂Oc

∂δc
: ð3:37Þ

Recall that, after evaluating the polymerization parameters
on shell and assuming that they are at least of class C1,

∂fi
∂Ob

þ ∂fi
∂Oc

¼ ∂fi
∂m

: ð3:38Þ

Then, we can exploit the off-shell freedom of our formalism
to choose freely one of the derivatives on the left-hand side
of the previous equation. Once that choice has been made,
the other derivative is immediately fixed so that the sum of
both is equal to the derivative of the parameters (3.15) with
respect to the mass. Expressing in this way the nondiagonal
derivatives ∂fi=∂Oj, we can rewrite Eq. (3.37) as

�
Fbc

∂Ob

∂δb

�
∂fb
∂Ob

þ
�
Fcb

∂Oc

∂δc

�
∂fc
∂Oc

þ ðFbc þ Fcb − FbcFcbÞ ¼ 0; ð3:39Þ

where the objects in parentheses can be understood as the
coefficients (in general, dependent on the mass m and on

the phase space point) of an equation linear in ∂fb=∂Ob and
∂fc=∂Oc. On the one hand, it can be immediately seen that
Fbc ¼ Fcb ¼ 0 provides a trivial solution. However, as
discussed in Sec. III C, Fbc and Fcb do not vanish
simultaneously in the regime of interest of the model,
where m is very large compared to the Planck mass. On the
other hand, it is clear that, as long as the first two
coefficients do not vanish at the same time, it is possible
to exploit the freedom of our formalism to select ∂fi=∂Oi in
such a way that the above equation is not satisfied (in other
words, in such a way that Ξ ≠ 0). It is straightforward to
prove that the first two coefficients of Eq. (3.39) cannot be
zero at the same point along any dynamical trajectory
or at least not in a harmful way. In the first place, we know
that the two functions Fij cannot vanish concurrently.
Therefore, only two options are available for these coef-
ficients to be zero: either (A) one of the pairs ðFij; ∂Oj=∂δjÞ
vanishes at the same point or (B) both derivatives ∂Oi=∂δi
do. The first possibility is immediately ruled out because, if
∂Oj=∂δj is zero, then Fij ¼ 1 by definition. While the
second possibility does happen (namely in a neighborhood
of the black horizon, where the primitives Gi exhibit an
approximately linear behavior), in that case both functions
Fij would be equal to one and we can immediately realize
that Eq. (3.39) would not hold. Indeed, in that situation,
the left-hand side of Eq. (3.39) would be given by
Fbc þ Fcb − FbcFcb, which would be equal to one and,
thus, would certainly not vanish. In conclusion, we can
always select the two off-shell derivatives ∂fi=∂Oi in such
a way that the denominator Ξ is different from zero along
any given dynamical trajectory.
The results derived in this section ensure that there is

enough freedom in our formalism to guarantee that, if the
factor 1=C2

ij appears in the purely time component of the
effective metric, this factor is finite and nonvanishing. This
is a fundamental difference with respect to the approach
proposed in Ref. [47], the ideas of which our proposal
generalizes. In the approach of that reference, the absence
of cross-derivatives of the polymerization parameters
makes inevitable that one hits a singularity in the time
evolution. In conclusion, the only identified obstruction to
the present form of our two-time formalism does not affect
the time component of the metric, but is rather due to
problems in obtaining a global inversion of the relation
between the radial and the angular times.

IV. CHANGE OF ORIGIN OF THE
ANGULAR TIME

In the previous section, we argued that it is apparently
impossible to extend our formalism to the whole interior
region in a satisfactory way owing to the difference
between the images of the two time functions Gb and
Gc. One could still wonder whether this problem could be
circumvented by making use of the freedom to fix
independently the origins of the two times. We note that
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the integration constants of the dynamical solutions were
chosen in Refs. [42,43] in such a way that the radial
variables b and pb vanish at tb ¼ 0, allowing an inter-
pretation of that surface as a black horizon. Since we have
followed their prescription for the selection of integration
constants, we have also fixed the horizon at tb ¼ 0.
Nevertheless, it is worth remarking that this argument does
not involve the angular time. So, we do not need to identify
tc ¼ 0 as well with the black horizon, as we have actually
done until now. In general relativity, the linearity of the
relation between the radial and the angular times makes
irrelevant a constant shift of one of the times with respect to
the other and, for simplicity, this shift is set equal to zero.
But the nonlinearity of the time relation in our effective
model changes the situation. In the present section we will
consider the possibility of a different choice of origin for
the angular time and discuss if this can help to solve the
obstruction that we have found for our formalism.
Let us recall that the definitions of the radial and angular

times (2.12) only involve their differentials. A different
choice of origin for the angular time only entails a trivial
displacement at the level of the angular part of the
dynamical solutions, but this turns out to have an interest-
ing effect on the implicit relation between the radial and
angular times, as we have anticipated. Indeed, a change of
origin for the angular time implies a modification of the
integration limit in the definition of the primitive function
Gc. As a result, the implicit relation GbðtbÞ ¼ GcðtcÞ is
modified to

GbðtbÞ ¼ GcðtcÞ þ Gm; ð4:1Þ

where Gm ¼ R t0c
0 dt0cFbcðt0cÞ is the constant contribution of

the interval of angular times between the old and the new
origins.
Let us now show that we can make Gm compensate the

difference between Gc;max and Gb;sup and, in this manner,
ensure that the images of these two functions have the same
upper endpoint and, therefore, coincide. It is worth noting
that, for such a redefinition, Gm needs to be chosen
differently for each value of m. In the sector of very
massive black holes, the supremum of Gb is just its value at
its maximum (see, for instance, Fig. 5). Hence, taking into
account our considerations above, we can adopt a (mass-
dependent) redefinition of the origin of the angular time
such that

Gcðtextc Þ þ Gm ¼ Gbðtð1Þb;extÞ: ð4:2Þ

Indeed, our numerical results support that this can be
achieved for all masses in the sector of interest. On the one
hand, one observes that the difference Gbðtð1Þb;extÞ −Gcðtextc Þ,
which is positive for large masses, does not increase with
the mass m. On the other hand, by extending GcðtcÞ to
positive values of the angular time and using the integral

definition ofGm given below Eq. (4.1), one can see that this
quantity can at least take all positive values up to Gc;max,
which is sufficient to guarantee that the matching imposed
in Eq. (4.2) can be satisfied (see, e.g., Fig. 3).
After this readjustment, we have that the implicit

relation between times now holds in a neighborhood of
the coincident maxima of the functions Gb and Gc, where
Fbc and Fcb vanish at the same time. Moreover, it is not
difficult to see that we can even construct a local
expression of one of the times in terms of the other by
expanding the two functions Gi around their maxima. As
for the function Cij that would appear in the time
component of the metric (to which we cannot apply the
discussion of the previous section because both Fbc and
Fcb now become zero), we get from its definition and that
of Ξ [see Eq. (3.35)] that

1

Cij
¼

�
1 −

∂fi
∂Oi

∂Oi

∂δi

�
þ
�
1 −

∂fj
∂Oj

∂Oj

∂δj

�
Fji

Fij
− Fji: ð4:3Þ

Of the three terms on the right-hand side, the first and the
third ones have a well-defined limit on the surface where
the maxima of Gb and Gc coincide. The second one,
however, requires a more detailed study, since a direct
evaluation leads to an indetermination. Given the form of
this indetermination, the only way in which 1=Cij might
display a good behavior is that the limit Fji=Fij be finite.
In order to compute the limit of 1=Cij, we first expand Fbc
and Fcb around their maxima. In the case of Fbc, the
relevant expressions for this expansion are

pc¼
1

2
γLoδcm

1þðx0cÞ2
x0c

þγLoδcm
1− ðx0cÞ2

x0c
× ðtc− textc ÞþO½ðtc− textc Þ2�; ð4:4Þ

δcc ¼ 2 arctan x0c −
4x0c

1þ ðx0cÞ2
ðtc − textc Þ þO½ðtc − textc Þ2�;

ð4:5Þ

cos δcc ¼ 1 − ðx0cÞ2
1þ ðx0cÞ2

þ 8ðx0cÞ2
½1þ ðx0cÞ2�2

ðtc − textc Þ

þO½ðtc − textc Þ2�; ð4:6Þ

sin δcc ¼ 2x0c
1þ ðx0cÞ2

−
4½1 − ðx0cÞ2�
½1þ ðx0cÞ2�2

ðtc − textc Þ

þO½ðtc − textc Þ2�; ð4:7Þ

and so
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δcc cos δcc − sin δcc

¼ 2x0c
1þ ðx0cÞ2

�
arctan x0c

1 − ðx0cÞ2
x0c

− 1

�

þ 16 arctan x0c
ðx0cÞ2

½1þ ðx0cÞ2�2
ðtc − textc Þ

þO½ðtc − textc Þ2�; ð4:8Þ

where Oð·Þ denotes terms of an order equal to or higher
than that of its argument. Then, recalling that x0c verifies
Eq. (3.16),

FbcðtcÞ ¼
�
8

3
arctan x0c

x0c
1þ ðx0cÞ2

− 2
1 − ðx0cÞ2
1þ ðx0cÞ2

�

× ðtc − textc Þ þO½ðtc − textc Þ2�; ð4:9Þ

where the coefficient of the leading order term has an
approximate numerical value of 2.4651. In order to
determine the limit of the quotient Fji=Fij, we still need
to carry out a similar analysis for Fcb and compare the
orders of the leading terms. However, this cannot be
achieved analytically because we lack a closed expression
for the zeroes of Fcb (i.e., the extrema of Gb). A numerical
computation performed in Mathematica confirms that the
dominant order in an expansion of Fcb around its maxi-
mum is indeed linear in tb − tð1Þb;ext, and reveals that the
coefficient of this linear contribution depends on the value
of the black hole mass m, unlike in the case of Fbc. This
coefficient does not vanish for the studied range of masses
since it is related to the value of the second derivative ofGb
at its maximum (indeed, they only differ in a sign) and we
already know by numerical means that this extremum is a
single zero of the first derivative. As a result, the factor
1=C2

ij can be defined properly (actually, both for i ¼ b and
c) at the point where the coincident maxima of Gb and Gc
are reached.
In the light of the results of this section, we conclude that

a change of the origin of the angular time solves the
problem that appeared to prevent a successful implemen-
tation of our formalism. Indeed, by means of a mass-
dependent redefinition of the origin of the angular time, we
have managed to match the images of the primitivesGb and
Gc corresponding to the interior region, for any sufficiently
large value of the mass. Taking into account this fact, and
the good behavior of Fij, Gi, and Cij, we find no
obstruction to attain a well-defined effective metric in
the interior region between the surfaces interpreted as
black and white horizons. The required global inversion
of times can be constructed, e.g., in terms of three patches,
expressing the angular time in terms of the radial one in
each of these parts. In the first place, we can write a well-
defined effective spacetime metric from the black horizon
up to the transition surface. In the second place, another
patch can cover a neighborhood of the coincident maxima,

overlapping with the previous patch. Finally, a third patch
would be necessary to describe the remaining piece of the
interior region, i.e., from the vicinity of the coincident
maxima to the white horizon.

V. CONCLUSIONS AND DISCUSSION

A few years ago, a new proposal for the effective
description of black holes within the framework of LQC
was put forward by the authors of Refs. [42–44]. Their
approach was based on the use of constants of motion to
play the role of the polymerization parameters that intro-
duce quantum effects in the system. They noticed that the
model supplied naturally two constants of motion, namely
the two partial Hamiltonians that generate the dynamics in
the radial and angular sectors (two sectors of the phase
space that are dynamically decoupled). The form of the
Hamiltonian constraint implies that they are not only
constant along dynamical trajectories, but also equal to
each other. Their coincident value on the constraint surface
is related to the mass of the black hole under consideration.
The approach proposed in Refs. [42–44] employs two
polymerization parameters that are functions of this mass,
corresponding to the on-shell value of the aforementioned
constants of motion. The validity of this approach was
supported with an argument involving an extension of the
phase space (see Refs. [42,43]). The model resulting in this
way displays a number of attractive features that make it
stand out from previous related works. For instance, as far
as the interior region is concerned, the classical central
singularity is replaced with a transition surface that joins a
trapped and an antitrapped region, effectively extending the
interior of a classical Schwarzschild black hole to a larger
region bounded to the past by a black horizon and to the
future by a white horizon. In this region, the effective
spacetime metric is smooth and its curvature invariants are
finite. Furthermore, unlike in the case of previous analyses,
these results are independent of fiducial structures and
(local) quantum effects appear to be confined to regions of
large spacetime curvature.
Despite these interesting properties, it has been pointed

out that the model suffers form certain problems. Of
particular relevance to the present article is an issue about
the choice of polymerization parameters presented in
Ref. [47]. The authors of that work argue that the way
in which these parameters were defined in the original
model is inconsistent with the claim that they are constants
of motion, so that the dynamical equations of the model
have an unclear relation with the proposed effective
Hamiltonian. Instead of taking the parameters as constant
numbers determined by the value of the black hole mass,
they propose to define each parameter as a function of its
respective partial Hamiltonian, a procedure that leads to
new terms in the equations of motion which are sourced by
the resulting nonvanishing Poisson brackets of the polym-
erization parameters. The new equations differ from those

GARCÍA-QUISMONDO and MENA MARUGÁN PHYS. REV. D 106, 023532 (2022)

023532-16



considered previously in the fact that they include two
additional phase space dependent factors that complicate
the dynamics. In this context, in order to try and reconcile
to some extent the results of the original model [42–44]
with a proper Hamiltonian treatment of the polymerization
parameters, we recently put forward an alternative proposal
that generalizes the approach of Ref. [47]. We argued in
Ref. [48] that, if both partial Hamiltonians have identical
on-shell values, we should not be able to tell apart their
contributions on the constraint surface. Thus, the most
general choice of parameters should be such that each of
them captures the contribution of both Hamiltonians,
allowing a breaking of the decoupling of the radial and
angular sectors.
In Ref. [48] we limited our discussion to the introduction

of the basic elements of our two-time formalism and to a
preliminary analysis of the relation between the two times
in the limit of infinitely large black hole masses, for regions
where the limit is applicable. Nonetheless, we ignored the
subtle issue of whether the formalism could be imple-
mented without inconsistencies and lead to an effective
metric that is well defined in the totality of the interior
region in the first place. The aim of the present article is
precisely to fill this gap, which is of crucial importance if
we want to further examine the physical consequences of
the model, setting our two-time formalism on firm grounds.
Without this viability analysis, any future investigation of
the features of the model would be meaningless, in the
sense that one might even fail to have an acceptable
effective geometry.
After a brief review of the main ingredients of our

proposal in Sec. II, we have proceeded to discuss whether
there exist impediments to our description of the interior
geometry in Sec. III. The main aim of this section is the
analysis of the implicit relation between the two times that
arise as a direct result of our choice of polymerization
parameters: the radial time and the angular time. Indeed,
this relation is a fundamental piece to construct a well-
defined spacetime geometry, with an effective metric that
must be expressible in terms of a single time in every part of
the interior region. For this to be possible, we need that
certain functions Fij be integrable all over that region and
that, at least, one of the resulting primitive functions Gi be
invertible around every point in this region. This local
invertibility is a necessary condition, though still not
sufficient, to pass from a two-time formalism to a single
time in every patch used to describe the spacetime
geometry. For a satisfactory single-time reformulation of
the spacetime geometry, the images of the functions Gi
must match so as to allow that the whole interior region is
covered by suitably combining local inversions. The
integrability and local invertibility analysis has been carried
out in Sec. III A. We have shown that, since Fij are
elementary functions defined in the whole interior region,
their primitive functions Gi exist. These primitives Gi are

invertible around every point of their domains except for
their respective extrema: a single maximum in the case of
the angular primitive Gc, and a maximum and a minimum
in the case of the radial one. For sufficiently large black
hole masses and the same choice of time origin for the
radial and angular sectors, we have proven that the values
of Gb and Gc at their extrema do not coincide, so that the
possible lack of a local inversion never affects the two
primitive functions simultaneously. In Sec. III B we have
then analyzed the images of the two functions Gi and
shown that they differ, implying the existence of a sub-
region where the equivalence relation between radial and
angular times simply cannot be satisfied. This subregion
contains the surroundings of the maximum of Gb. In that
part of the interior we cannot express one of our times in
terms of the other, and hence there is no way of obtaining a
well-defined effective metric there. In practice, it seems
possible to extend our formalism up to the transition
surface, but not much farther beyond owing to the appear-
ance of this obstruction. For completeness in our analysis,
in Sec. III C we have studied the factors 1=C2

ij that appear
in the time component of the effective metric. Potentially,
these factors could also lead to singularities and/or degen-
eracies. It turns out that we can immediately rule out the
presence of such singularities. In addition, the off-shell
freedom that is present in our formalism is sufficient to
provide factors 1=C2

ij that remain different from zero in the
evolution, leading to a nondegenerate behavior that could
not be achieved with the more restricted proposal in
Ref. [47]. Finally, in Sec. IV, we have explored the
possibility of shifting the origin of the angular time of
the system, discussing whether and how this change can
help in solving the problems found in the formalism. A
change in that time origin modifies the relation between the
two times by introducing an additive constant in the
equality between the functions Gb and Gc. Then, a suitable
fixation of this constant allows us to match the upper
endpoints of the images of these functions. Therefore, the
obstruction that we had found to apply our formalism to the
whole interior region can be circumvented. As a result, we
see no impediment to obtain a well-defined effective
spacetime metric in the interior region with the alternative
model that follows from our proposal to define the
polymerization parameters.
In conclusion, the proposal for the definition of the

polymerization parameters put forward in Ref. [48] seems
to lead to a viable effective description of the interior region
of nonrotating, uncharged black holes. We have shown that
the considered formalism allows us to cover the whole
interior with (three) separate patches where a well-defined
single-time effective metric can be constructed. The addi-
tional off-shell freedom that results from considering a
more general choice of polymerization parameters makes it
possible to avoid the singularities that inevitably appeared
in other previous two-time models [47]. Once we have
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proven that, in principle, the obstructions to our effective
model of the interior geometry are solvable, we have the
necessary groundwork to explore its physical properties.
For this, the next logical step would be to investigate the
causal structure of the effective geometry and extend our
proposal to the exterior region. We plan to address these
issues in future works.
It is worth recalling that our main motivation to study

these alternatives is to reconcile the results of the original
AOS model with a more standard treatment of the
parameters as constants of motion, with an eye on finding
a self-consistent Hamiltonian formalism which one could
proceed to quantize. In this regard, it seems to us that other
open possibilities exist. For instance, the question stands
of whether we can find another route to a consistent
Hamiltonian formulation that leads exactly to the dynami-
cal equations of the AOS model, for which the interior
spacetime geometry is well defined and displays some
nice properties. Certainly, one may follow the suggestion
of the authors of Refs. [42–44] and handle the polym-
erization parameters as constant numbers in the derivation
of the Hamiltonian equations, evaluating them as con-
stants of motion only after the calculation has been done.

This parachuting provides the desired dynamics, and
hence leads to the AOS solution, but would be debatable
from a quantum perspective, since the result of the
quantization would be different for a Hamiltonian in
which the polymerization parameters are either c-numbers
or Dirac constants. Thus, it may be enlightening to
consider as another option the extended phase formalism
proposed in Ref. [43], exploring whether a suitable
reduction may lead both to the desired dynamics and to
parameters that are indeed manifest constants of motion in
the system. This matter will constitute the subject of future
research.

ACKNOWLEDGMENTS

The authors are grateful to B. Elizaga Navascués for
fruitful discussions, as well as for enlightening comments
on earlier versions of this manuscript. This work has been
supported by Project No. MICINN PID2020–118159GB-
C41. The project that gave rise to these results received the
support of a fellowship from “la Caixa” Foundation (ID
100010434). The fellowship code is LCF/BQ/DR19/
11740028.

[1] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[2] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-time (Cambridge University Press, Cambridge,
England, 1973).

[3] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum
Mechanics (Wiley, New York, 1977), Vol. 1.

[4] A. Galindo and P. Pascual, Quantum Mechanics I (Springer-
Verlag, Berlin, 1990).

[5] A. Ashtekar and J. Lewandowski, Background independent
quantum gravity: A status report, Classical Quantum Grav-
ity 21, R53 (2004).

[6] T. Thiemann, Modern Canonical Quantum General Rela-
tivity (Cambridge University Press, Cambridge, England,
2007).

[7] M. B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory (Cambridge University Press, Cambridge, England,
1987), Vol. 1.

[8] L. Modesto and L. Rachwał, Nonlocal quantum gravity: A
review, Int. J. Mod. Phys. D 26, 1730020 (2017).

[9] R. Loll, Quantum gravity from causal dynamical triangula-
tions:A review,ClassicalQuantumGravity37, 013002(2020).

[10] A. Ashtekar and P. Singh, Loop quantum cosmology: A
status report, Classical Quantum Gravity 28, 213001 (2011).

[11] G. A. Mena Marugán, A brief introduction to loop quantum
cosmology, AIP Conf. Proc. 1130, 89 (2009).

[12] A. Ashtekar, T. Pawłowski, and P. Singh, Quantum nature of
the big bang: Improved dynamics, Phys. Rev. D 74, 084003
(2006).

[13] M. Martín-Benito, G. A. Mena Marugán, and J. Olmedo,
Further improvements in the understanding of isotropic loop
quantum cosmology, Phys. Rev. D 80, 104015 (2009).

[14] I. Agullo, A. Ashtekar, and W. Nelson, A Quantum Gravity
Extension of the Inflationary Scenario, Phys. Rev. Lett. 109,
251301 (2012).

[15] I. Agullo and N. A. Morris, Detailed analysis of the
predictions of loop quantum cosmology for the primordial
power spectra, Phys. Rev. D 92, 124040 (2015).

[16] L. Castelló Gomar, M. Martín-Benito, and G. A. Mena
Marugán, Gauge-invariant perturbations in hybrid quantum
cosmology, J. Cosmol. Astropart. Phys. 06 (2015) 045.

[17] L. Castelló Gomar, G. A. Mena Marugán, D. Martín de
Blas, and J. Olmedo, Hybrid loop quantum cosmology and
predictions for the cosmic microwave background, Phys.
Rev. D 96, 103528 (2017).

[18] A. Ashtekar and M. Bojowald, Black hole evaporation: A
paradigm, Classical Quantum Gravity 22, 3349 (2005).

[19] A. Ashtekar and M. Bojowald, Quantum geometry and the
Schwarzschild singularity, Classical Quantum Gravity 23,
391 (2006).

[20] L. Modesto, Loop quantum black hole, Classical Quantum
Gravity 23, 5587 (2006).

[21] M. Bojowald, D. Cartin, and G. Khanna, Lattice refining
loop quantum cosmology, anisotropic models and stability,
Phys. Rev. D 76, 064018 (2007).

[22] C. G. Boehmer and K. Vandersloot, Loop quantum dynam-
ics of Schwarzschild interior, Phys. Rev. D 76, 104030
(2007).

GARCÍA-QUISMONDO and MENA MARUGÁN PHYS. REV. D 106, 023532 (2022)

023532-18

https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1142/S0218271817300208
https://doi.org/10.1088/1361-6382/ab57c7
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1063/1.3146242
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.80.104015
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevD.92.124040
https://doi.org/10.1088/1475-7516/2015/06/045
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1088/0264-9381/22/16/014
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1088/0264-9381/23/18/006
https://doi.org/10.1088/0264-9381/23/18/006
https://doi.org/10.1103/PhysRevD.76.064018
https://doi.org/10.1103/PhysRevD.76.104030
https://doi.org/10.1103/PhysRevD.76.104030


[23] M. Campiglia, R. Gambini, and J. Pullin, Loop quantization
of a spherically symmetric midisuperspaces: The interior
problem, AIP Conf. Proc. 977, 52 (2008).

[24] D.W. Chiou, Phenomenological loop quantum geometry of
the Schwarzschild black hole, Phys. Rev. D 78, 064040
(2008).

[25] J. Brannlund, S. Kloster, and A. DeBenedictis, The evolu-
tion of black holes in the mini-superspace approximation of
loop quantum gravity, Phys. Rev. D 79, 084023 (2009).

[26] R. Gambini, J. Omedo, and J. Pullin, Quantum black holes
in loop quantum gravity, Classical Quantum Gravity 31,
095009 (2014).

[27] H. M. Haggard and C. Rovelli, Quantum-gravity effects
outside the horizon spark black to white hole tunneling,
Phys. Rev. D 92, 104020 (2015).

[28] A. Corichi and P. Singh, Loop quantization of the Schwarzs-
child interior revisited, Classical Quantum Gravity 33,
055006 (2016).

[29] M. Campiglia, R. Gambini, J. Olmedo, and J. Pullin,
Quantum self-gravitating collapsing matter in a quantum
geometry, Classical Quantum Gravity 33, 18LT01
(2016).

[30] J. Cortez, W. Cuervo, H. A. Morales-Técotl, and J. C.
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