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One important global topological property of a spacetime manifold is orientability. It is widely believed
that spatial orientability can only be tested by global journeys around the Universe to check for orientation-
reversing closed paths. Since such global journeys are not feasible, theoretical arguments that combine
universality of physical experiments with local arrow of time, CP violation and CPT invariance are usually
offered to support the choosing of time- and space-orientable spacetime manifolds. The nonexistence of
globally defined spinor fields on a nonorientable spacetime is another theoretical argument for orientability.
However, it is conceivable that orientability can be put to test by local physical effects. In this paper, we show
that it is possible to locally access spatial orientability of a spatially flat Friedmann-Robertson-Walker
spacetime through quantum vacuum electromagnestic fluctuations. We argue that a putative nonorientability
of the spatial sections of spatially flat Friedmann-Robertson-Walker spacetime can be ascertained by the
study of the stochastic motions of a charged particle or a point electric dipole under quantum vacuum
electromagnetic fluctuations. In particular, the stochastic motions of a dipole permit the recognition of a
presumed nonorientability of three space in itself.
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I. INTRODUCTION

The standard approach to model the Universe starts with
two basic assumptions. First, Weyl’s principle [1,2] is
postulated, which entails1 the existence of a cosmic time t.
Second, it is assumed that our three-dimensional space is
homogeneous and isotropic (cosmological principle). The
most general spacetime geometry that embodies these
assumptions is the Friedmann-Robertson-Walker (FRW)
metric

ds2 ¼ c2dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð1Þ

where c is the speed of light, aðtÞ is the scale factor, and the
spatial curvature is specified by the constant k, which takes

the values k ¼ 0;�1 for Euclidean, spherical and hyper-
bolic geometries, respectively.
The metric (1) expresses locally the two above basic

assumptions. It does not specify the topology of the
spacetime manifold M4 or of the corresponding spatial
(t ¼ const) section M3. However, the FRW metric (1) is
consistent with the global decomposition M4 ¼ R ×M3,
which we assume in this work.
Regarding the spatial geometry, recent high precision

cosmic microwave background radiation [CMB(R)] data
from the Planck satellite [6,7] have provided strong evi-
dence that the Universe is very nearly flat with curvature
parameter jΩkj < 0.003, which is compatible with the
standard inflationary predictions that the spatial curvature
should be very small today. These indications support the
assumption we make in this work that the spatial sectionM3

is flat (k ¼ 0).
As to the topology of the spatial sections, we first note

that the FRW geometry (1) constrains but does not specify
the topology of M3. In this way, no classical geometric
theory as, for example, general relativity can be used to
derive the M3 topology. However, for k ¼ 0, it is a
mathematical fact that, in addition to the simply connected
Euclidean space E3, there are 17 topologically inequivalent
quotient flat manifolds with nontrivial topology [8,9].
Given this set of topological possibilities for M3 and
despite our present-day inability to infer the topology from
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1We adopt here a formulation of Weyl’s principle in which it is

assumed that world lines of fundamental particles (galaxies,
galaxy clusters) form, on average, a congruence of nonintersecting
diverging geodesics emerging from the distant past and orthogo-
nal to space-like hypersurfaces M3. In this form the principle
permits a comoving frame relative to which the constituents of the
Universe are at rest on average [3–5].
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a fundamental theory, as for example quantum gravity
[10], to disclose the spatial topology of FRW spacetime we
must rely ultimately on cosmological observations (see the
review articles [11–16]) or on local physical experiments.2

Topological properties precede the geometrical features
of a manifold. Thus, it is important to find out whether,
how, and to what extent physical results depend on a
nontrivial topology.
Nonstandard choices of the background spatial topology

affect the mean squared velocity of charged test particles
under quantum vacuum fluctuations of the electromagnetic
field. In fact, on the assumption that the net role played by
the spatial topology is more clearly ascertained in the static
FRW flat spacetime, the question of how a nontrivial
topology of the spatial section of Minkowski spacetime
modifies the stochastic motions of a test charged particle
and a point electric dipole under quantum vacuum fluctua-
tions of the electromagnetic field was studied in recent
papers [24,25]. By the way, we mention that the case of a
point particle coupled to a massless field living in a
topologically nontrivial space was considered in Ref. [26].
Orientability is an important topological property of

spacetime manifolds. It is generally assumed that, being a
global property, the orientability of three space cannot be
tested locally. So, a test for spatial orientability would
require a global trip along some specific closed paths around
the whole three space to check whether one returns with left-
and right-hand sides exchanged. Since such a global
expedition does not seem to be feasible at the cosmological
scale, theoretical arguments that combine universality of
physical experiments with local arrow of time, CP violation
and CPT invariance are usually invoked [27–30] to support
the choosing of time- and space-orientable manifolds,
although there are dissenting stances [31,32]. The impos-
sibility of having globally defined spinor fields on non-
orientable spacetime manifolds [33,34] is another theoretical
argument to support the choice of space-and-time orientable
manifolds.3

Since 8 out of the 17 possible flat three-manifolds, M3,
with nontrivial topology are nonorientable [8], the question
as to whether velocity fluctuations could be also employed
to locally reveal specific topological properties such as
orientability was examined in Ref. [25]. It was shown that it
is possible to locally access the spatial orientability of
Minkowski spacetime through the study of the stochastic
motions of a charged particle and a point electric dipole

subject to these fluctuations in Minkowski spacetime with
orientable and nonorientable spatial topologies. It was found
that a characteristic inversion pattern exhibited by certain
statistical orientability indicator curves, constructed from
the mean square velocity of an electric dipole, can be used as
a local physical signature of nonorientability of the spatial
section M3 of Minkowski spacetime.
Thus, a question that naturally arises is how these results

are modified in an expanding FRW universe whose curva-
ture parameter is within the bounds determined by Planck
data [6,17], which indicate that a flat geometry is a good
approximation to model the spatial section of the Universe
in the framework of general relativity. To tackle this
question, in this paper we study the stochastic motions of
a charged particle and a point electric dipole under quantum
vacuum electromagnetic fluctuations in a spatially flat FRW
geometry with spatial sections endowed with an orientable
and its counterpart nonorientable spatial topologies. In so
doing we extend the results of [24,25] from the static
Minkowski spacetime to a dynamical FRW spacetime. Our
result for the orientability indicator is very general, in the
sense that it does not depend on the underlying gravitational
theory, because it is obtained from first topological-
geometrical principles alone.
The structure of the paper is as follows. In Secs. II and III

we describe the topological and dynamical settings, respec-
tively. In Secs. IV and V we derive statistical orientability
indicators both for the charged particle and the point electric
dipole that are independent of any specific metrical theory
of gravity. To concretely study the time evolution of the
orientability indicators, in Sec. VI we choose general
relativity and a barotropic perfect fluid as the matter content.
In the case of a charged particle, we show that it is possible
to distinguish the orientable from the nonorientable top-
ology by comparing the time evolution of an orientability
indicator, defined from the stochastic motion of the particle,
in the orientable and nonorientable topologies.
We then turn to the more substantial problem of finding a

way to decide about the orientability of a given spatial
manifold in itself, without having to compare the results for
a nonorientable space with those for its orientable counter-
part. Motivated by a dipole’s directional properties, we
inquire whether the stochastic motions of a point electric
dipole would be more effective to unveil the presumed
nonorientability of a three space in itself. From the orient-
ability indicators computed for the dipole we identify a
characteristic inversion pattern displayed by the orientability
indicator curves for the nonorientable topology, implying
that the putative nonorientability can be detected per se.
In Sec. VII we present our final remarks and summarize

our findings, which indicate that it may be possible to
locally disclose a conceivable spatial nonorientability of
FRW spacetime through the stochastic motions of pointlike
“charged” objects under quantum vacuum fluctuations of
the electromagnetic field.

2For recent constraints on cosmic topology from CMBR data
we refer the readers to Refs. [6,17–22]. For some limits on the
circles-in-the-sky method designed for the searches of spatial
topology through CMBR, see Ref. [23].

3One can certainly take advantage of theoretical arguments of
this sort to support such underlying assumptions, but not as a
replacement to experimental and observational evidence in
physics.
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II. TOPOLOGICAL FUNDAMENTALS

To make this work to a certain extent self-contained, in
this section we define the notation, give some basic
definitions and present a few results concerning the top-
ology of flat three-dimensional manifolds that are used in
this paper.
We begin by recalling that in the standard cosmological

model the spacetime is a manifold M4 locally endowed
with a FRW metric (1) and globally decomposable as
M4 ¼ R ×M3. Although the spatial section M3, whose
geometry we assume to be Euclidean, is usually taken to be
the simply connected Euclidean space E3, it can likewise be
one of the possible 17 topologically inequivalent multiply
connected quotient manifolds E3=Γ where Γ is a discrete
group of isometries or holonomies acting freely on the
covering manifold E3 [8,9]. The quotient manifolds are
compact in at least one direction. The action of Γ tiles the
noncompact covering space E3 into infinitely many iden-
tical copies of the fundamental domain (FD) or cell (FC).
Thus, the multiple connectedness of the quotient manifold
gives rise to periodic boundary conditions (repeated
domains or cells) on the covering manifold E3 that are
determined by the action of the group Γ on E3.
An example of flat quotient manifold is the so-called slab

space, denoted in the literature by E16, which is open
(noncompact) in two independent directions and decom-
posed into E16 ¼ R2 × S1 ¼ E3=Γ, where R2 and S1 stand
for the real plane and the circle, respectively. A fundamental
domain is a slab with a pair of opposite faces (two infinite
parallel planes) identified through translations. The simply
connected covering space E3 is tiled with these equidistant
parallel planes, which together with two noncompact
independent spatial directions form the FD of E16. The
periodicity in the compact direction is given by the circle S1,
whereas the noncompact independent directions form R2.
In forming the quotient manifolds M3 an essential point

is that they are obtained from the covering manifold E3

through identification of points that are equivalent under
the action of the group Γ. In this way, each point in the
quotient manifold M3 represents all the equivalent points
in the covering space. Thus, for example, for E16 quotient
space, taking the x direction as compact, one has that, for
nx ∈ Z and compact length L > 0, points ðx; y; zÞ and
ðxþ nxL; y; zÞ are identified. In terms of the covering
isometry γ ∈ Γ one has

P ¼ ðx; y; zÞ ↦ P0 ¼ γP ¼ ðxþ nxL; y; zÞ: ð2Þ
Another example that we shall be concerned with in this
paper is the slab space with flip E17, which involves an
additional inversion in a direction orthogonal to the
compact direction, that is, one direction in the tiling planes
is flipped as one moves from one plane to the next. Taking
the x direction as compact and letting the flip be in the y
direction, in the covering space E3 one has

P ¼ ðx; y; zÞ ↦ P0 ¼ γP ¼ ðxþ nxL; ð−1Þnxy; zÞ; ð3Þ

and the identification P≡ P0 defines the E17 topology.
It should be noted that for each of the 17 quotient

manifolds, E3=Γ, the associated periodic conditions on the
covering space E3 are determined by the group Γ, and
clearly different discrete isometry groups Γ define different
topologies for M3, which in turn give rise to different
periodicities and associated tiling of the covering space E3.
Unlike the local geometric concept of homogeneity,

which is formulated in terms of the action of the local
group of isometries, in topological spaces we have the
concept of global or topological homogeneity. A way to
describe global topological homogeneity of the quotient
manifolds is through distance functions. In fact, for any
x ∈ M3 the distance function lγðxÞ for a given isometry
γ ∈ Γ is defined by

lγðxÞ ¼ dðx; γxÞ; ð4Þ

where d is the Euclidean metric. The distance function gives
the length of the closed geodesic that passes through x and
is associated with a holonomy γ ∈ Γ. For a globally
homogeneous manifold, endowed with a topology defined
by a group Γ, the distance function for any covering
isometry γ ∈ Γ is constant. In globally inhomogeneous
manifolds, i.e., manifolds with inhomogeneous topologies,
in contrast, the length of the closed geodesic associated with
at least one γ is nontranslational (screw motion or flip, for
example) and the corresponding distance depends on the
point x ∈ M3, and then is not constant. In this way, the slab
space E16 is globally homogeneous since all γs are trans-
lations, whereas the slab space with flip, E17, is globally
inhomogeneous since the covering group Γ contains a flip,
which clearly is a nontranslational holonomy.
Another very important global (topological) property of

manifolds that we shall deal with in this paper is orient-
ability, which measures whether one can consistently
choose a definite orientation for loops in a manifold. An
orientation-reversing path in a manifold M3 is a path that
brings a traveler back to the starting point mirror reversed.
Manifolds that contain an orientation-reversing path are
nonorientable, whereas those that do not have any such
reversing path are called orientable [35]. In two dimensions,
one has planes, cylinders, and two tori as examples of
orientable surfaces, whereas the Möbius strip and Klein
bottle are nonorientable surfaces. For three-dimensional
quotient manifolds, when the covering group Γ contains
at least one holonomy γ that is a reflection (flip), the
associated quotient manifold is nonorientable. In this way,
the slab space, E16, is orientable while the slab space with
flip, E17, is nonorientable. Clearly nonorientable manifolds
are necessarily topologically inhomogeneous as the cover-
ing group Γ contains a reflexion, which is a nontranslational
covering holonomy.
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In Table I we collect the names and symbols used to refer
to the manifolds together with the number of compact
independent dimensions and information concerning their
orientability and global homogeneity. In the next section we
shall study the motions of a charged test particle and a point
electric dipole under quantum vacuum fluctuations of the
electromagnetic field in the expanding FRW spacetime
whose spatial sections are the manifolds given in Table I.
Finally, we briefly mention a few results that are used

throughout this paper (for a detailed discussion we refer the
reader to Ref. [30]). All simply connected spacetime
manifolds are both time and space orientable. The product
of two manifolds is simply connected if and only if the
factors are. If the spacetime is of the form M4 ¼ R ×M3

then space orientability of the spacetime reduces to orient-
ability of the three space M3. This applies to the spacetime
endowed both with the E16 (orientable) and the E17 (non-
orientable) topology that we deal with in this paper.

III. NONORIENTABILITY FROM
ELECTROMAGNETIC FLUCTUATIONS

As shown in [24,25], nontrivial spatial topologies influ-
ence the stochastic motions both of a charged particle and a
point electric dipole in the presence of quantum vacuum
fluctuations of the electromagnetic field in Minkowski
spacetime. Here we investigate how these results are
modified if instead of static Minkowski spacetime an
expanding FRW flat universe is the background geometry
for the motions of the charged particle and the dipole. To
this end we consider a spatially flat FRW spacetime
endowed with two inequivalent spatial topologies given
in Table I, namely the orientable slab space (E16) and the
nonorientable slab space with flip (E17).

A. The point charge case

We first consider a nonrelativistic test particle with charge
q and mass m locally subjected to vacuum fluctuations of
the electric field Eðx; tÞ in the topologically nontrivial
spacetime manifold equipped with the spatially flat FRW
metric

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð5Þ

which is the particular case of Eq. (1) with k ¼ 0 and
Cartesian instead of spherical coordinates. The covariant
equation of motion is [36]

Duμ

dτ
¼def du

μ

dτ
þ Γμ

αβu
αuβ ¼ fμ

m
; ð6Þ

where uμ ¼ dxμ=dτ is the particle’s four-velocity, m is its
mass, τ is its proper time and fμ is the nongravitational four
force acting on it. Since we are interested in the motion of a
charged particle in an electromagnetic field, the four force is
fμ ¼ qFμνuν, where Fμν is the electromagnetic field tensor.
In the nonrelativistic case, in which the particle’s proper

time is indistinguishable from the cosmic time t, the
equation of motion for the point charge becomes [37]

du
dt

þ 2
_a
a
u ¼ q

m
Eðx; tÞ; ð7Þ

which can be written as

1

a2
d
dt

ða2uÞ ¼ q
m
Eðx; tÞ; ð8Þ

where E ¼ ðE1; E2; E3Þ with Ei ¼ Fi0. After integration
this yields

a2ðtÞuðx; tÞ ¼ q
m

Z
t

ti

a2ðt0ÞEðx; t0Þdt0; ð9Þ

where we have assumed that the particle is initially at rest:
uðx; tiÞ ¼ 0. Since proper (physical) distances d at time t
are related to coordinate distances r by d ¼ aðtÞr, the
proper (physical) velocity v is related to the coordinate
velocity u at time t by

vðx; tÞ ¼ aðtÞuðx; tÞ: ð10Þ

Therefore, in terms of the physical velocity, Eq. (9)
becomes

vðx; tÞ ¼ q
m

1

aðtÞ
Z

t

ti

a2ðt0ÞEðx; t0Þdt0; ð11Þ

from which the one can write the dispersion of each
velocity component as4

hΔviðx; tÞ2i ¼ q2

m2a2ðtÞ
Z

t

ti

Z
t

ti

a2ðt0Þa2ðt00Þ

× hEiðx; t0ÞEiðx; t00ÞiFRWdt0dt00; ð12Þ

TABLE I. Names and symbols of two Euclidean orientable and
nonorientable quotient manifolds M3 ¼ E3=Γ together with the
number of compact dimensions (Comp.), orientability and global
(topological) homogeneity.

Name Symbol Compact Dim. Orientable Homogeneous

Slab space E16 1 Yes Yes
Slab space
with flip

E17 1 No No

4By definition, hΔviðx; tÞ2i ¼ hviðx; tÞ2i − hviðx; tÞi2.
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where i ¼ 1, 2, 3 for the corresponding directions x, y, z.5

As in Refs. [25,38], here we assume that x is constant,
meaning that in the timescales of interest the particle’s
position essentially does not change.

B. Velocity dispersion in terms of conformal time

The Friedmann-Robertson-Walker correlation function
that appears in Eq. (12) can be more easily computed in
terms of the Minkowski spacetime correlation function by
making use of how the electromanetic field changes under a
conformal transformation. Indeed, in terms of the con-
formal time η defined by dt ¼ aðtÞdη the FRW metric
becomes

ds2 ¼ a2ðdη2 − dx2 − dy2 − dz2Þ: ð13Þ

In these coordinates the electromagnetic field tensor in
FRW spacetime is related to the one in Minkowski
spacetime M by [37,39]

Fμνðx; ηÞFRW ¼ a−4Fμνðx; ηÞM: ð14Þ

Taking this equation into account, noting further that the
coordinate change t → η implies

Fi0ðx; ηÞFRW ¼ a−1Fi0ðx; tÞFRW; ð15Þ

and changing the integration variable to η using dt ¼ adη,
Eq. (12) reduces to

hΔviðx;tÞ2i¼ q2

m2a2ðtÞ
Z

η

ηi

Z
η

ηi

hEiðx;η0ÞEiðx;η00ÞiMdη0dη00:

ð16Þ

Therefore, in order to compute the velocity dispersion all
one needs is the correlation function in Minkowski space-
time with the time coordinate replaced by η. The result can
be expressed in terms of the cosmic time t as long as the
scale factor is known as a function of t or η.
Since the correlation function in Eq. (16) is in

Minkowski spacetime M, it depends on the topology of
the spatial section as discussed in [24,25]. Then the above
result for the velocity dispersion (16) in FRW spacetime
depends on the topology of the spatial sections M3 of the
FRW spacetime, whose set of possible nonequivalent
topologies is identical to the corresponding set for the
spatial section M3 of Minkowski spacetime M. In the next
section we shall use this result to derive the velocity
dispersion, and thus explicit expressions for a velocity
dispersion orientability indicator for manifolds endowed

with nonorientable topology E17, and for its orientable
counterpart E16.

IV. ORIENTABILITY INDICATORS FOR
E17 AND E16 SPATIAL TOPOLOGIES

In this section, we compute the orientability indicators
for a FRW spacetime with flat spatial sections equipped
with the nonorientable E17 topology. The corresponding
results for spatial sections endowed with E16 topology
follow from those for E17 with no need of additional
calculations.
Following Yu and Ford [38], we assume that the electric

field E is a sum of classical Ec and quantum Eq parts.
Since there are no quantum fluctuations of Ec and
hEqi ¼ 0, the two-point function hEiðx; η0ÞEiðx; η00ÞiM in
Eq. (16) involves only the quantum part of the electric
field [38].
It can be shown [40] that locally

hEiðx; ηÞEiðx0; η0Þi ¼ ∂

∂xi

∂

∂x0i
Dðx; η;x0; η0Þ

−
∂

∂η

∂

∂η0
Dðx; η;x0; η0Þ: ð17Þ

The topology of the spatial section M3 is (globally) taken
into account as follows. When M3 is simply connected the
Hadamard function Dðx; η;x0; η0Þ is given by

D0ðx; η;x0; η0Þ ¼ 1

4π2ðΔη2 − jΔxj2Þ : ð18Þ

The subscript 0 indicates standard Minkowski spacetime
M, Δη ¼ η − η0 and jΔxj≡ r is the spatial separation for
topologically trivial Minkowski spacetime:

r2 ¼ ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2: ð19Þ

However, when Minkowski spacetime in endowed with a
topologically nontrivial spatial section, the spatial separa-
tion r2 takes a different form that captures the periodic
boundary conditions imposed on the covering space E3 by
the covering group Γ, which characterize the spatial top-
ology. In Table II we collect the spatial separations for the
topologically nonhomeomorphic Euclidean spaces we shall
address in this paper.6

To obtain the correlation function for the electric field
that is required to compute the velocity dispersion (16) for
slab space with flip E17, we replace in Eq. (17) the
Hadamard function Dðx; η;x0; η0Þ by its renormalized
version given by [24]

5For any three-vector b we write either b ¼ ðb1; b2; b3Þ or
b ¼ ðbx; by; bzÞ according to convenience.

6The reader is referred to Refs. [12,41,42] for pictures of the
fundamental cells and further properties of all possible three-
dimensional Euclidean topologies.
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Drenðx; η;x0; η0Þ ¼ Dðx; η;x0; η0Þ −D0ðx; η;x0; η0Þ

¼
X∞0

nx¼−∞

1

4π2ðΔη2 − r2Þ ; ð20Þ

where here and in what follows
P0

indicates that the
Minkowski contribution term nx ¼ 0 is excluded from the
summation, Δη ¼ η − η0, and the spatial separation r for
E17 is given in Table II. The term with nx ¼ 0 that would be
present in the sum (20) is the Hadamard function
D0ðx; η;x0; η0Þ for Minkowski spacetime with simply con-
nected spatial section E3. This term has been subtracted out
from the sum because it gives rise to an infinite contribution
to the velocity dispersion [24,25].
Thus, from Eq. (17) the renormalized correlation functions

hEiðx; ηÞEiðx0; η0Þiren ¼
∂

∂xi

∂

∂x0i
Drenðx; η;x0; η0Þ

−
∂

∂η

∂

∂η0
Drenðx; η;x0; η0Þ; ð21Þ

where Drenðx; η;x0; η0Þ depends on the spatial topology
through r according to (20) and Table II.
From Eqs. (21) and (20) with r given in Table II the

electric field correlation functions for E17 topology are
found to be given by

hExðx; ηÞExðx0; η0ÞiE17
ren ¼

X∞0

nx¼−∞

Δη2 þ r2 − 2r2x
π2½Δη2 − r2�3 ; ð22Þ

hEyðx; ηÞEyðx0; η0ÞiE17
ren ¼

X∞0

nx¼−∞

�ð3− ð−1ÞnxÞΔη2
2π2½Δη2 − r2�3

þ ð1þ ð−1ÞnxÞr2 − 4ð−1Þnxr2y
2π2½Δη2 − r2�3

�
;

ð23Þ

hEzðx; ηÞEzðx0; η0ÞiE17
ren ¼

X∞0

nx¼−∞

Δη2 þ r2 − 2r2z
π2½Δη2 − r2�3 ; ð24Þ

where Δη ¼ η − η0 and

rx ¼ x− x0 − nxL; ry ¼ y− ð−1Þnxy0; rz ¼ z− z0;

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y þ r2z

q
: ð25Þ

The orientability indicator IE17

v2i
that we will consider here

is defined by replacing the electric field correlation func-
tions in Eq. (16) by their renormalized counterparts (21) in
which r is given in Table II, namely

IE17

v2i
ðx; tÞ ¼ q2

m2a2ðtÞ
Z

η

0

Z
η

0

hEiðx; η0ÞEiðx; η00ÞiE17
ren dη0dη00:

ð26Þ

Equation (20) makes it is clear that the orientability
indicator IE17

v2i
is the difference between the velocity

dispersion in E17 and the one in Minkowski with trivial
(simply connected) topology.

A. Orientability indicator: General definition

For later use and for the sake of generality, some words
of clarification are in order at this point before proceeding
to the calculation of the components of the statistical
indicator. From Eqs. (16) and (20) a definition of the
orientability indicator for a general multiply connected flat
topology can be written in the form [25]

IMC
v2i

¼ hΔv2i iMC − hΔv2i iSC; ð27Þ

where hΔv2i i is the mean square velocity dispersion, and
the superscripts MC and SC stand for multiply and simply
connected topologies, respectively. The right-hand side of
(27) is defined in the following way: one first takes the
difference of the two terms with x0 ≠ x and then sets
x0 ¼ x. Since IMC

v2i
is not simply the velocity dispersion

hΔv2i iMC but the difference (27), the possibility that it takes
negative values should not be a matter of worry, a point
that does not seem to have been appreciated in some
previous works in which this indicator was implicity used
[24,38,43–49] together with the particular assumption that
the second term vanishes.7

At first sight, the indicator (27) does not seem meas-
urable because it involves the difference of quantities
associated with two different spacetimes, but spacetime is
unique. However, IMC

v2i
is accessible by measurements

performed only in our spacetime, which is to be tested

TABLE II. Spatial separation in Hadamard function for the
multiply connected flat orientable (E16) and its nonorientable
counterpart (E17) quotient Euclidean manifolds. The topological
compact length is denoted by L. The numbers nx are integers and
run from −∞ to ∞. For each multiply connected topology, when
nx ¼ 0 we recover the spatial separation for the simply connected
Euclidean three space.

Spatial topology Spatial separation r2 for Hadamard function

E16: Slab space ðx − x0 − nxLÞ2 þ ðy − y0Þ2 þ ðz − z0Þ2
E17: Slab space
with flip ðx − x0 − nxLÞ2 þ ðy − ð−1Þnxy0Þ2 þ ðz − z0Þ2

7It is experimentally and theoretically unsettled whether the
simply connected term on the right-hand side of (27) vanishes or
not. We adopt the general view that it is nonzero [25]. It is only
under the very special assumption that it vanishes that one
stumbles upon the counterintuitive negative values for mean
square velocities often found in the literature [24,38,43,44,46–49].
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for multiple connectedness, by the following procedure.
First one would measure the velocity correlation function
hΔviðx; tÞΔviðx0; tÞiexp for x ≠ x0, then one would subtract
out the correlation function hΔviðx; tÞΔviðx0; tÞiSC that
can be theoretically computed for x ≠ x0 for the corre-
sponding topologically trivial (simply connected) FRW
spacetime, just as was done in the Appendix of Ref. [25] in
the case of the Minkowski spacetime.8 Finally, the corre-
sponding curve for the difference (27) as a function of time
would be plotted in the coincidence limit x ¼ x0 (see, for
example, the figures in Sec. VI). This approach is similar
to one used in cosmic crystallography, which is intended to
detect cosmic topology from the distribution of discrete
cosmic sources [50]. A topological signature of any
multiply connected three manifold of constant curvature
is given by a constant times the difference ΦMC

exp ðsiÞ −
ΦSC

expðsiÞ of the expected pair separation histogram corre-
sponding to the multiply connected manifold and the
expected pair separation histogram for the underlying
simply connected covering manifold [51,52], whose
expression can be derived in analytical form [51,53].

It should be noticed that, although with the present
techniques the second term on the right-hand side of (27)
cannot be directly computed at x ¼ x0, we can nonetheless
presume that a rigorous theoretical treatment may allow a
consistent determination of this term. From our current
knowledge of the theory, one can also reasonably expect
that a correct renormalization procedure will not signifi-
cantly change the qualitative features of the two terms, at
least not to the extent that it would affect comparison with
observational data.

B. Orientability indicators for charged point particle

Let us return to the calculation of the components of the
orientability indicator for E17 topology. Since the correla-
tion functions (22) to (24) depend on η and η0 only through
their difference, the changes of integration variables η1 ¼
η0 − ηi and η2 ¼ η00 − ηi in Eq. (16) allow the components
of the velocity dispersion to be computed with the help of
the integrals [24]

I ¼
Z

Δη

0

Z
Δη

0

dη1dη2
1

½ðη2 − η1Þ2 − r2�3 ;

¼ Δη
16r5ðΔη2 − r2Þ

�
4rΔη − 3ðr2 − Δη2Þ ln ðr − ΔηÞ2

ðrþ ΔηÞ2
�
; ð28Þ

and

J ¼
Z

Δη

0

Z
Δη

0

dη1dη2
ðη2 − η1Þ2

½ðη2 − η1Þ2 − r2�3

¼ Δη
16r3ðΔη2 − r2Þ

�
4rΔηþ ðr2 − Δη2Þ ln ðr − ΔηÞ2

ðrþ ΔηÞ2
�
; ð29Þ

in which Δη ¼ η − ηi.
Inserting Eqs. (22)–(29) into Eq. (16) and taking the coincidence limit x0 → x we find

IE17

v2x
ðx; tÞFRW ¼

X∞0

nx¼−∞

q2Δη
16π2m2r5ðΔη2 − r2Þa2ðtÞ

�
4rΔηðr̄2x þ r2Þ

þ ðΔη2 − r2Þð3r̄2x − r2Þ ln ðr − ΔηÞ2
ðrþ ΔηÞ2

�
; ð30Þ

IE17

v2y
ðx; tÞFRW ¼

X∞0

nx¼−∞

q2Δη
32π2m2r5ðΔη2 − r2Þa2ðtÞ

�
4rΔηðr̄2y þ ð3 − ð−1ÞnxÞr2Þ

þ ðΔη2 − r2Þ½3r̄2y − ð3 − ð−1ÞnxÞr2� ln ðr − ΔηÞ2
ðrþ ΔηÞ2

�
; ð31Þ

8We do not present here the results for the topologically trivial FRW spacetime for the sake of brevity.
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IE17

v2z
ðx; tÞFRW ¼

X∞0

nx¼−∞

q2Δη
16π2m2r5ðΔη2 − r2Þa2ðtÞ

�
4rΔηðr̄2z þ r2Þ

þ ðΔη2 − r2Þð3r̄2z − r2Þ ln ðr − ΔηÞ2
ðrþ ΔηÞ2

�
; ð32Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2xL2 þ 2ð1 − ð−1ÞnxÞy2

q
; ð33Þ

r̄2x ¼ r2 − 2r2x ¼ −n2xL2 þ 2ð1 − ð−1ÞnxÞy2; ð34Þ

r̄2y ¼ ð1þ ð−1ÞnxÞr2 − 8ð−1Þnxð1 − ð−1ÞnxÞy2;
¼ ð1þ ð−1ÞnxÞn2xL2 þ 8ð1 − ð−1ÞnxÞy2; ð35Þ

r̄2z ¼ r2 − 2r2z ¼ r2; ð36Þ

with the use of Eq. (25) in the coincidence limit.
Note that the velocity dispersion depends not only on

the time interval Δt ¼ t − ti (or Δη ¼ η − ηi) but also on t
(or η) itself. This was to be expected because in a dynamical
universe invariance under time translations is lost.
The orientability indicator for E16 follows easily from

the results for E17. The factors of ð−1Þnx that appear in
Eqs. (30)–(32) arise from derivatives with respect to y0 in
the separation r given in Table II. Hence, the results for E16

are immediately obtained from those for E17 by simply
replacing ð−1Þnx by 1 everywhere in Eqs. (30)–(32). This
leads to

IE16

v2x
ðx; tÞFRW ¼ −

q2Δη
4π2m2a2ðtÞ

X∞0

nx¼−∞

1

n3L3
ln
ðnxL − ΔηÞ2
ðnxLþ ΔηÞ2 ;

ð37Þ

IE16

v2y
ðx; tÞFRW ¼ IE16

v2z
ðx; tÞFRW

¼ q2Δη
8π2m2a2ðtÞ

X∞0

nx¼−∞

�
4Δη

n2xL2ðΔη2 − n2xL2Þ

þ 1

n3xL3
ln
ðnxL − ΔηÞ2
ðnxLþ ΔηÞ2

�
: ð38Þ

V. NONORIENTABILITY WITH POINT
ELECTRIC DIPOLE

A noteworthy outcome of the previous section is that the
time evolution of the orientability indicator for a charged
particle can be used to locally differentiate an orientable
(E16) from a nonorientable (E17) spatial section of
Minkowski spacetime. However, it cannot be used to decide
whether a given three-space manifold per se is or not
orientable. As shown in [25], the spatial orientability of
Minkowski spacetime in itself can be ascertained in
principle by the motions of a point electric dipole.
Therefore, it is reasonable to expect that the orientability
indicator for a dipole can potentially bring about unequivo-
cal information regarding nonorientability of the spatial
sections of the spatially flat FRW spacetime. To examine
this issue we now turn our attention to topologically induced
motions of an electric dipole under quantum vacuum
electromagnetic fluctuations.
The spatial components of the four force on a point

electric dipole are fi ¼ pj
∂jEi where p ¼ ðp1; p2; p3Þ is

the electric dipole moment vector. Since the dipole is taken
to be a bound system, it is not affected by the expansion of
the Universe, which means that the dipole moment p is a
constant vector. Under the same assumptions as made for
the point particle, replacing qEi by pj

∂jEi and following
the same steps that led from (7) to (12), the mean squared
velocity in each of the three independent directions i ¼ x,
y, z is given by

hΔviðx; tÞ2i ¼ pjpk

m2a2ðtÞ
Z

t

ti

Z
t

ti

a2ðt0Þa2ðt00Þhð∂jEiðx; t0ÞÞð∂kEiðx; t00ÞÞiFRWdt0dt00; ð39Þ

which can be conveniently rewritten as

hΔviðx; tÞ2i ¼ lim
x0→x

pjpk

m2a2ðtÞ
Z

t

ti

Z
t

ti

a2ðt0Þa2ðt00Þ∂j∂0khEiðx; t0ÞEiðx0; t00ÞiFRWdt0dt00; ð40Þ
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where ∂
0
l ¼ ∂=∂x0l and the summation convention applies only to repeated upper and lower indices.

Now we proceed to the computation of the orientability indicator for a point dipole in spaces E17 and E16. The space E17

has two topologically special directions: the compact x direction and the flip y direction associated with the nonorientability
of E17. To probe the nonorientability of E17 by means of stochastic motions it seems most promising to choose a dipole
oriented in the y direction, since the orientation of the dipole would also be flipped upon every displacement by the
topological length L along the compact direction [25].
For a dipole oriented along the y axis we have p ¼ ð0; p; 0Þ and

hΔvxðx; tÞ2iðyÞ ¼ lim
x0→x

p2

m2a2ðtÞ
Z

t

ti

Z
t

ti

a2ðt0Þa2ðt00Þ∂y∂y0 hExðx; t0ÞExðx0; t00ÞiFRWdt0dt00; ð41Þ

where the superscript within parentheses indicates the dipole’s orientation. We now proceed as in the case of the charged
particle and rewrite the above integral in terms of the conformal time and the correlation function in Minkowski spacetime.
It follows that the above equation takes the form

hΔvxðx; tÞ2iðyÞ ¼ lim
x0→x

p2

m2a2ðtÞ ×
Z

η

ηi

Z
η

ηi

∂y∂y0 hExðx; η0ÞExðx0; η00ÞiMdη0dη00: ð42Þ

Upon replacing the electric-field correlation function by its renormalized version given by Eq. (22), the above equation
yields the orientability indicator in the x direction for E17:

IE17

v2x
ðx; tÞðyÞFRW ¼ lim

x0→x

p2

π2m2a2ðtÞ
X∞0

nx¼−∞

Z
η

ηi

Z
η

ηi

∂y∂y0
Δη2 þ r2 − 2r2x
ðΔη2 − r2Þ3 ; ð43Þ

where Δη ¼ η0 − η00, while rx and r are defined by Eq. (25). Making use of

∂y∂y0
Δη2 þ r2 − 2r2x
ðΔη2 − r2Þ3 ¼ −4ð−1Þnx

�
2

ðΔη2 − r2Þ3 þ 3
r2 − r2x þ 6r2y
ðΔη2 − r2Þ4 þ 24

ðr2 − r2xÞr2y
ðΔη2 − r2Þ5

�
; ð44Þ

we find

IE17

v2x
ðx; tÞðyÞFRW ¼ −

4p2

π2m2a2ðtÞ
X∞0

nx¼−∞
ð−1Þnxf2I1 þ 3ðr2 − r2x þ 6r2yÞI2 þ 24ðr2 − r2xÞr2yI3g; ð45Þ

where [25]

I1 ¼ I ¼
Z

Δη

0

Z
Δη

0

dη1dη2
½ðη2 − η1Þ2 − r2�3 ¼

Δη
16

�
4Δη

r4ðΔη2 − r2Þ þ
3

r5
ln
ðr − ΔηÞ2
ðrþ ΔηÞ2

�
; ð46Þ

I2 ¼
Z

Δη

0

Z
Δη

0

dη1dη2
½ðη2 − η1Þ2 − r2�4 ¼

Δη
96

�
4Δηð9r2 − 7Δη2Þ
r6ðΔη2 − r2Þ2 −

15

r7
ln
ðr − ΔηÞ2
ðrþ ΔηÞ2

�
; ð47Þ

I3 ¼
Z

Δη

0

Z
Δη

0

dη1dη2
½ðη2 − η1Þ2 − r2�5

¼ Δη
768

�
105

r9
ln
ðr − ΔηÞ2
ðrþ ΔηÞ2 þ

4Δηð57Δη4 − 136r2Δη2 þ 87r4Þ
r8ðΔη2 − r2Þ3

�
; ð48Þ

in which Δη ¼ η − ηi.
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Similar calculations lead to

IE17

v2y
ðx; tÞðyÞFRW ¼ −

2p2

π2m2a2ðtÞ
X∞0

nx¼−∞
ð−1Þnxfð5 − 3ð−1ÞnxÞI1

þ 6½r2 þ ð7 − 6ð−1ÞnxÞr2y�I2
þ 48½r2 − ð−1Þnxr2y�r2yI3g ð49Þ

and

IE17

v2z
ðx; tÞðyÞFRW ¼ −

4p2

π2m2a2ðtÞ
X∞0

nx¼−∞
ð−1Þnxf2I1

þ 3ðr2 þ 6r2yÞI2 þ 24r2r2yI3g: ð50Þ

Since the coincidence limit x0 → x has been taken, it
follows from Eq. (25) that in Eqs. (45)–(50) one must put

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2xL2 þ 2ð1 − ð−1ÞnxÞy2

q
; r2x ¼ n2xL2;

r2y ¼ 2ð1 − ð−1ÞnxÞy2: ð51Þ

For the slab space E16 the components of the dipole
velocity dispersion are obtained from those for E17 by
setting r2x ¼ r2; ry ¼ 0, and replacing ð−1Þnx by 1 every-
where. Therefore, we have

IE16

v2x
ðx; tÞðyÞFRW ¼ −

8p2

π2m2a2ðtÞ
X∞0

nx¼−∞
I1; ð52Þ

IE16

v2y
ðx; tÞðyÞFRW ¼ −

4p2

π2m2a2ðtÞ
X∞0

nx¼−∞
ðI1 þ 3r2I2Þ; ð53Þ

IE16

v2z
ðx; tÞðyÞFRW ¼ −

4p2

π2m2a2ðtÞ
X∞0

nx¼−∞
ð2I1 þ 3r2I2Þ; ð54Þ

in which r ¼ jnxjL.
It is worth pointing out that the general results obtained

for the orientability indicators are independent of a specific
gravitation theory, they depend only on the assumption that
spacetime is endowed with the spatially flat metric (5). We
have also found that the amplitude of the indicator
components, both for the charged particle and the electric
dipole, is inversely proportional to a2ðtÞ. This was not
expected from the outset, and had to be derived.
However, the indicators depend on the scale factor, which

is determined by the gravitational theory. Therefore, in order
to get definite expressions for the indicators we shall
consider a specific model within the framework of general
relativity.

VI. A CASE STUDY

The purpose of this section is to study the time evolution
of the orientability indicators for spatially flat expanding
universes with spatial sections endowed with either of the
nontrivial topologies E16 or E17. A difficulty arises, how-
ever, because the orientability indicators found in the two
previous sections, both for the charged particle and the point
dipole, are expressed in terms of a mixture of the cosmic
time t and the conformal time η, which makes it difficult to
bring out their behavior. In order to express the orientability
indicators exclusively in terms of t or η one has to know the
scale factor as a function of t or η.
As we have mentioned in the Introduction, the metric (5)

expresses the principle of spatial homogeneity and isotropy
along with the existence of a cosmic time t, with the
additional observational input from the Planck collabora-
tion [6,7] that provided strong support for a flat three space
(jΩkj < 0.003). To study the dynamics of the Universe
another assumption is necessary, namely that the large scale
structure of the Universe is essentially determined by
gravitational interactions, and therefore can be described
by a metrical theory of gravity, which we assume to be
general relativity.
These very general assumptions constrain the matter

content of the Universe to be described by a perfect fluid
with energy-momentum tensor

Tμν ¼ ðρþ pÞuμuν − pgμν; ð55Þ

where uμ is the fluid four-velocity, ρ is the total energy
density, and p is the pressure. In the case of arbitrary space
curvature, the Einstein field equations imply the Friedmann
equation

_a2

a2
¼ 8πG

3
ρ −

k
a2

; ð56Þ

where G is the gravitational constant. The conservation law
∇μTμν ¼ 0 leads to the fluid equation

_ρþ 3
_a
a
ðρþ pÞ ¼ 0: ð57Þ

Our main interest is to show how valuable the orient-
ability indicators are. Thus, for illustrative purposes we
shall consider a model universe that is spatially flat and
whose matter content consists of a single-component
barotropic perfect fluid with equation of state p ¼ wρ,
where the pure number w satisfies jwj < 1. In this case the
expanding solution to the Friedmann equation (56) with
k ¼ 0 and the fluid equation (57) is [54]

a ¼
�
t
t0

�
2=ð3þ3wÞ

: ð58Þ
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The age of this Universe is

t0 ¼
2

3ð1þ wÞH
−1
0 ; ð59Þ

where H0 is the Hubble constant, the present value of
H ¼ _a=a. According to the latest observational data from
the Planck team [7], H0 ≃ 67.37 km=ðsMpcÞ or H−1

0 ≃
14.5 Gyr and the age of the Universe is t0 ≃ 13.8 Gyr. In
order for Eq. (59) to match these results we choose the
equation of state parameter as w ¼ −0.299. Thus, from
Eq. (58) we find

Δη¼
Z

t

ti

dt0

aðt0Þ ¼
3ð1þwÞ
1þ 3w

t0

��
t
t0

� 1þ3w
3ð1þwÞ

−
�
ti
t0

� 1þ3w
3ð1þwÞ

�
: ð60Þ

By means of this result the orientability indicators found in
Secs. IV and V are expressed in terms of the proper time
t alone.
It is extremely hard analytically to figure out how the

orientability indicators behave as functions of cosmic time
because their expressions are given by quite involved
infinite sums. The visualization of their behavior can be
much more easily accomplished by numerical plots, which
is what we shall concentrate on in the following. For all
plots we set ti ¼ t0 ¼ 1, which means that the fluctuations
begin to be measured by the orientability indicators at the
same reference instant at which the scale factor is unity, that
is, today. The compactification length discussed in (2), (3),

and Table II is also set equal to unity: L ¼ 1. Following
[25], the choice y ¼ 0, which freezes out the global
inhomogeneity degree of freedom, is made in all plots
but Fig. 1(a), in which we take y ¼ 1=2 to illustrate the
global inhomogeneity effect. The orientability indicators
are computed from Eqs. (30)–(38) for the charged particle,
and Eqs. (45)–(54) for the point dipole, as well as (60) with
w ¼ −0.299. The infinite sums are rapidly convergent, and
the summations are numerically performed taking nx ≠ 0
ranging from −50 to 50.

A. Nonorientability: Point charge case

Figure 1 shows orientability indicators as functions of
cosmic time for the point charge. In Fig. 1(a) the time
evolution of IE16

v2x
given by (37) is shown as a dashed line and

that of IE17

v2x
, given by (30), is displayed as the dotted line for

y ¼ 0. These indicators coincide. In Fig. 1(a) we also show
as the solid line the indicator IE17

v2x
for y ¼ 1=2, exhibiting the

global inhomogeneity effect for the E17 manifold. In Fig. 1
(b), the component of orientability indicator IE16

v2y
given by

(38) is represented by a dashed line, whereas the component
IE17

v2y
, defined by Eq. (31), is depicted as a dotted line. Now

these indicator curves are distinct. Thus, it is possible to tell
the two topologies apart by means of this component of the
indicator. Nevertheless, as will be seen below, the dipole is
much more sensitive to nonorientability. The behaviors of
the components IE17

v2z
and IE16

v2z
are not shown because the

(a) (b)

FIG. 1. Time evolution of orientability indicators for the point charge. In (a) the curve for indicator IE17

v2x
for y ¼ 0, shown as a dotted

line, coincides with the curve for IE16

v2x
, depicted as a dashed line. For y ¼ 1=2, the solid curve for IE17

v2x
is now different from the one for

IE16

v2x
. In (b) the orientability indicators IE17

v2y
and IE16

v2y
are different even for y ¼ 0.
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corresponding curves coincide when y ¼ 0, as can be
directly checked from Eqs. (32) and (38), although they
are distinct if y ≠ 0.

B. Nonorientability: Point dipole case

Figure 2 shows the time evolution of orientability
indicators for the point dipole. Figure 2(a) displays the
dipole indicator IE17

v2x
, given by Eq. (45), and Fig. 2(b) shows

IE16

v2x
, obtained from Eq. (52). We have intentionally exhib-

ited in separate plots the indicators for the manifolds E17

and E16 in order to highlight the repetitious pattern roughly
resembling ∪ followed by ∩ in the nonorientable case.
Similar repetitious inversion patterns are also present in
Minkowski spacetime with E17 topology [25]. Here the
shape of the curves is modified by the dynamical scale
factor aðtÞ, though. Just as in the Minkowski case, the
orientability indicator is already sensitive to nonorientabil-
ity even for y ¼ 0. The inversion pattern exhibited by E17 is
qualitatively different from the pattern for E16, which is not
characterized by successive inversions, making it possible
to identify the nonorientable case in itself.
Figure 3 exhibits the two remaining components of

the dipole indicators. Figure 3(a) displays as a dashed
line the dipole indicator IE17

v2y
given by (49), together with

IE16

v2y
, defined by (53), which is depicted as a solid line.

Figure 3(b) shows as a dashed line the orientability indicator
IE17

v2z
given by (50), as well as IE16

v2z
, defined by (54), as a

dotted line. Both panels reveal the same inversion pattern
roughly resembling successive upward and downward
“horns.” Similar alternating hornlike inversion patterns
emerge in static Minkowski spacetime with E17 topology
[25]. Now, however, the shape of the curves is modified by
the dynamical scale factor aðtÞ. This distinctive pattern
allows one to recognize the nonorientability of three-
space per se.

C. Nonorientabily: Summary of findings

Stochastic motions of a point electric charge under
quantum electromagnetic fluctuations give rise to the orient-
ability indicators defined by Eqs. (30)–(38). Figure 1(b)
shows that the y component of the orientability indicator for
E17 is different from the one for E16. Therefore, one can
distinguish one topology from the other. But the curve
patterns for both topologies are qualitatively the same. This
means that the identification of a putative nonorientable
topology requires a quantitative comparison of its evolution
curves with those for the counterpart orientable topology. In
short, we are unable to spot a nonorientable topology per se
by means of the stochastic motions of a point charged
particle.
Things become more appealing when one considers the

stochastic motions of a point electric dipole, whose
corresponding nonorientability indicators are given by
Eqs. (45)–(54). A comparison of the x component of
the orientability indicators, exhibited in Fig. 2, already

(a) (b)

FIG. 2. Under the same conditions as in Fig. 1(b), but now for a point dipole, panel (a) shows the indicator IE17

v2x
, whereas panel

(b) displays IE16

v2x
. We have intentionally made separate plots for the E16 and E17 topologies to emphasize the repetitious inversion pattern

roughly resembling ∪ followed by ∩ in the case of the nonorientable spatial topology. The indicator IE16

v2x
exhibited in panel (b) displays

no inversion pattern.
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shows a repetitious inversion pattern of roughly resem-
bling ∪ followed by ∩ for E17 that distinguishes it from
E16. This distinction is much more pronounced when the
remaining components of the indicators for E17 and E16 are
compared, as in Fig. 3. The conspicuous pattern roughly
resembling alternating upward and downward “horns” for
E17, which is absent from the curves for E16, enables us to
identify the nonorientability of E17 by itself, without the
need to compare its indicator curves with those for its
orientable counterpart. This is the greatest advantage of the
dipole over the point charge in the search for detecting
nonorientability through stochastic motions of pointlike
objects under quantum vacuum fluctuations of the electro-
magnetic field.
Contrarily to the dipole case, the point-charge case does

not exhibit such prominent qualitative features and hence
appears to be of hardly any practical use.

VII. CLOSING REMARKS AND CONCLUSIONS

In the framework of general relativity the Universe is
modelled as a four-dimensional differentiable manifold
M4 endowed with the FRW metric (1) that expresses
geometrically two basic assumptions of the cosmological
modeling, namely the existence of a cosmic time t, which
emerges from Weyl’s principle, and the cosmological
principle, which in turn ensures that the three-dimensional
space M3 is geometrically homogeneous and isotropic.
The FRW metric does not specify the topology of the

underlying spacetime manifold M4 or of the correspond-
ing spatial (t ¼ const) sections M3, which can in principle
be found through observations. So far, however, direct
searches for a nontrivial topology of M3 using CMB data
from WMAP and Planck have found no convincing
evidence of multiple connectedness below the radius of
the last scattering surface [6,17–22].9 In this work, rather
than focusing on determining the topology of the spatial
sections M3 of FRW spacetime, we have investigated its
global property of orientability.
In the physics at daily and even astrophysical length and

time scales we do not find any sign or hint of nonorient-
ability of three space. At the cosmological scale, in order to
disclose spatial nonorientability, global trips around the
whole three space would be needed to check for orientation-
reversing closed paths. Since such global journeys across
the Universe are not feasible one might think that spatial
orientability cannot be probed. We note, however, that the
determination of the spatial topology through, for example,
the so-called circles-in-the-sky model, would bring out as a
bonus an answer as to three-space orientability at the
cosmological scale.
On the other hand, at a theoretical level of reasoning, it

is often assumed that the spacetime manifold is separately
time and space orientable. As we have mentioned, the
arguments supporting orientability combine the space-

(a) (b)

FIG. 3. Under the same conditions as in Fig. 2, and also for a point dipole, panel (a) shows IE17

v2y
as a dashed line and IE16

v2y
as a solid line.

Panel (b) displays IE17

v2z
as a dashed line and IE16

v2z
as a solid line. For FRW spacetime with the nonorientable spatial topology, E17, there is

an inversion pattern resembling successive upward and downward “horns.” Similar alternating hornlike inversion patterns also arise in
static Minkowski spacetime with E17 topology [25], but here their shape is modified by the dynamical scale factor.

9This does not exclude the possibility of a FRWuniverse with a
detectable nontrivial cosmic topology [23,55,56].
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and-time universality of the local physical laws10 with a
well-defined local arrow of time along with some local
results from discrete symmetries in particle physics
[28,30]. Of course one is free to resort to such reasonings,
but it is reasonable to expect that the ultimate answer to
questions regarding the orientability of spacetime should
rely on cosmological observations or local experiments, or
might come from a fundamental theory of physics.
In this paper we have investigated whether electromag-

netic quantum vacuum fluctuations can be used to access
the spatial orientability of a FRW expanding spacetime,
extending therefore the results of the recent paper [25],
where the question of spatial orientability of Minkowski
(static) spacetime was examined. To this end, we have
studied the stochastic motions of pointlike objects under
quantum electromagnetic fluctuations in FRW flat space-
time with the orientable E16 (slab) and nonorientable E17

(slab with flip) space topologies (cf. Tables I and II).
The statistical indicator IMC

v2i
[Eq. (27)], which measures

the departure of the mean square velocity dispersion for
pointlike objects in the multiply connected topology from
its value for the simply-connected covering space, has been
shown to be suitable to reveal spatial orientability of flat
FRW spacetime. In the case of a charged particle, we have
derived expressions (30)–(38) for the orientability indicator
IMC
v2i

for the E17 and E16 space topologies. Similarly, we

have derived expressions (45)–(51) for the indicator (27)
corresponding to a point electric dipole oriented in the flip
direction of E17 topology, and also expressions (52)–(54)
for the dipole in three space with the orientable E16

topology.
The expressions for the orientability indicators for the

particle and the dipole in E17 and E16 spatial topologies
hold for an arbitrary scale factor aðtÞ, which is determined
by the gravitational theory. In this way, to concretely study
the time evolution of the orientability indicator IMC

v2i
we

have assumed in Sec. VI the general relativity theory and
also that the matter content consists of a single-component
barotropic perfect fluid with equation of state p ¼ wρ, with
the equation of state parameter w such that jwj < 1. Under
these assumptions we have made Figs. 1–3.
Figure 1(a) illustrates the topological inhomogeneity

effect of E17 topology and makes it clear that y ¼ 0 is the
appropriate particle’s position in E17 for comparison of the
evolution of the orientability indicator in E16 and E17

topologies. Figure 1(b) shows that it is possible to
distinguish the orientable from the nonorientable topology
by comparing the time evolution of the respective y

components of the orientability indicator: they give rise
to different evolution curves for distinct topologies.
A more ambitious goal is that of finding a way to decide

about the orientability of a given spatial manifold in itself,
without having to make a comparison of the results for a
nonorientable space with those for its orientable counter-
part. We have addressed this matter and have shown that
the stochastic motions of a point electric dipole can be used
to disclose the putative nonorientability of a generic three
space per se. To this end, under the premises put forward in
Sec. VI (flat spacetime in general relativity with perfect
fluid source) we have used expressions (43)–(51) and
(52)–(54) for the stochastic motions of the dipole in FRW
spacetime with, respectively, the nonorientable E17 and
orientable E16 spatial topologies to plot Figs. 2 and 3.
These figures show that an inversion pattern for the
orientability indicator curves comes about in the case of
the nonorientable E17 topology, implying that the non-
orientability of E17 can be detected per se.11

Our results for the nonorientability indicator hold for any
scale factor aðtÞ. For the case studied—flat FRW geometry
in the context of general relativity: matter content described
by a perfect fluid with equation of state p ¼ wρ with w ¼
−0.299 fixed from the Planck satellite observational data—a
nonorientability signature in the form of an inversion pattern
was found. All we can be sure of is that there is an inversion
pattern in this particular case. In the framework of some
other metric gravitational theory or for other scale factors
one has to reexamine the question in order to find out
whether the scalar factor would preserve, modify, or even
destroy the inversion pattern.
An expected result from the beginning of this work was

that the role played by the topology on the stochastic
motions of particles would depend crucially on the topo-
logical compact length L, which in turn gives rise to a lower
bound for the timescale required to test orientability.
However, the timescale involved in Figs. 1–3 makes it
clear that to access the inversion patterns of the orientability
indicators one needs a relatively long period of time,
typically the time needed to travel across quite a few Ls.
A small topological length scale is expected, for example,
in the primordial universe. An open question is whether
those velocity fluctuations would leave traces that could be
extracted from today’s observational data, as for example
from CMB maps, making it potentially possible to unveil
information on three-space orientability. This is a nontrivial
and important issue beyond the scope of the present paper,
though.

10We note that space universality can be looked upon as a
topological assumption of global homogeneity of M3. So, all
elements of the covering group Γ are translations, and therefore
spatial universality by itself rules out nonorientable three spaces.

11The curves for E16 display a repetition pattern, which,
however is not an inversion pattern.
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