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We consider diffeomorphism violation, which is parametrized by nondynamical background fields of the
gravitational Standard-Model Extension, and study its effects on the time evolution of the Universe.
Our goal is to identify background field configurations that imply stages of accelerated expansion without
exotic forms of matter and radiation present. Although our approach gives rise to a set of restrictive
conditions, configurations are encountered that exhibit this property or show other interesting behaviors.
The findings of our article, which is among the first to apply the Standard-Model Extension to a
cosmological setting, provide an initial understanding of how to technically incorporate background fields
into the cosmological evolution equations and what their phenomenological impact may be.
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I. INTRODUCTION

Luminosity distances of type Ia supernovae confirm that
the current expansion of the Universe is accelerating [1–4].
Scans of temperature fluctuations in the cosmic microwave
background recorded by WMAP [5,6] and Planck [7], the
detection of baryon acoustic oscillations [8,9] as well as the
Dark Energy Survey [10] further corroborate this finding.
However, the nature of the fundamental physics responsible
for this acceleration remains a complete mystery. Thus,
Turner [11] coined the term Dark Energy to refer to its
exotic and completely unknown character. Studying the
dynamics of mechanisms that imply a stage of accelerated
expansion is a hot topic in cosmology.
The standard picture, called ΛCDM, describes Dark

Energy via a cosmological constant Λ, which Einstein first
of all introduced to keep the Universe static [12]. Although
cosmological data strongly disfavor a steady-state Universe,
a nonzero cosmological constant has found a resurgence.
After all, a positive value of Λ is associated with a constant,
homogeneous energy density permeating space, which
could, indeed, drive a stage of accelerated expansion of
the Universe. Assuming that the ΛCDM model is correct
[13], Dark Energy would contribute around 68% to the
overall energy content of the Universe [7]. Although the
ΛCDM model describes the current observations well,

the smallness of the cosmological constant [14] is still a
conundrum [15]. On the one hand, alternatives have been
proposed to give a satisfactory explanation of the nature of
Dark Energy without introducing a cosmological constant
such as phantom energy [16,17], quintessence [18–22], and
k essence [23–26]. Furthermore, there are approaches, e.g.,
q theory [27–29], whose objective is to provide an explan-
ation for the actual minuscule value of the cosmological
constant.
On the other hand, an accelerated expansion of the

Universe is not only a matter of the current epoch. An early
expansion is believed to have occurred in a process called
inflation, which solves issues of the standard Big Bang
such as the horizon and flatness problems [30–33] (see,
e.g., Refs. [34–36] for recent reviews on these particular
issues, amongst other prominent topics in cosmology). As
in the case of Dark Energy, there is no consensus on the
exact model that explains this phenomenon, but they vary
in the shape of the potential as well as the framework they
are embedded in. However, the common feature is the
presence of a scalar field within a slow-roll regime. The
reader may wish to consult Ref. [37], which provides an
excellent review focusing on the basics of inflation.
Therefore, the exact root cause of stages where the

expansion of the Universe is accelerated remains an open
problem. Specific models are usually constructed by
incorporating exotic sources of matter and radiation in
addition to baryonic matter and electromagnetic radiation.
Our interest in this paper is to generate an accelerated stage
with only standard matter and radiation present. To do so,
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we modify General Relativity (GR) by introducing non-
dynamical background fields that violate diffeomorphism
invariance.
Diffeomorphism invariance is the symmetry behind the

dynamical spacetime structure incorporated in GR, which
describes the gravitational laws of nature predominantly
important at macroscopic length scales. Candidate funda-
mental theories such as string theory [38–42] and loop
quantum gravity [43,44] as well as noncommutative
spacetime geometry [45–47], spacetime foam [48–50],
the implementation of nontrivial spacetime topologies
[51–54], and UV completions of GR, e.g., Hořava-
Lifshitz gravity [55,56] have been demonstrated to imply
a breakdown of Lorentz invariance. A fundamental energy
scale is associated with Lorentz symmetry violation and the
latter usually coincides with the Planck energy. Such effects
would be strongly suppressed at much lower energies, but
they are still likely to leave fingerprints. In the presence of a
gravitational field, the counterpart of (global) Lorentz
violation is a breakdown of the fundamental symmetries
of GR, i.e., local Lorentz symmetry on the one hand and
diffeomorphism invariance on the other hand. Our focus is
on the latter.
Any departure from diffeomorphism symmetry is

expected to have strong consequences on the time evolution
of the Universe. From a formal point of view, the
Hamiltonian formulation [57–62] reveals that diffeomor-
phism violation may alter the constraint structure and
algebra of GR [63]. As a part of searches for Planck scale
effects in gravity, the possibility of background fields
breaking diffeomorphism symmetry has been considered
within an effective field theory framework known as the
gravitational Standard-Model Extension (SME) [64–68].
First bounds on diffeomorphism violation via modified,
nondynamical spin-gravity couplings were determined in
the recent papers [69,70]. The gravitational SME provides
one powerful branch among the numerous possibilities of
modifying GR that are on the market [71–76]. It covers
particular modified-gravity theories such as Brans-Dicke
theory [77] and de Rham, Gabadadze, and Tolley (dRGT)
massive gravity [78] where the connection to the latter was
established in Ref. [56].
The Arnowitt-Deser-Misner (ADM) decomposition of

spacetime [57,62,79] serves as the formal foundation for
establishing the Hamiltonian formulation of a modified-
gravity theory from the gravitational SME [80–82]. Our
recent results presented in Ref. [82] show that the
Hamiltonian formulation of certain sectors of the gravita-
tional SME, whose construction we focused on in Ref. [81],
is consistent with the covariant approach developed earlier
in Refs. [64,65]. This outcome provides a strong base that
the current paper can rest upon, since we will also make use
of the ADM formalism. Note that the ADM-decomposed
action of a modified-gravity theory is a very suitable tool
for deriving modified versions of the Friedmann equations.

Also, it reveals whether or not there are additional con-
straint equations that must be taken into account.
The objective of this new analysis is to investigate the time

evolution of the Universe in the presence of the nondynam-
ical background fields considered in Refs. [81,82]. In
particular, we are interested in constructing scenarios of
accelerated expansion without the need of exotic matter or
radiation. A crucial feature of our approach is that it is
perturbatively connected to the standard scenario, i.e., setting
all background fields to zero reproduces standard cosmology.
To the best of our knowledge, only a handful of papers have
been written on the physics of the gravitational SME at
cosmological scales, such as Refs. [80,83,84]. Thus, the
purpose of the present work is to complement the sparse
exploration of this interesting topic carried out until now.
Our paper is structured as follows. Section II introduces

the model, discusses its essential properties, and sets the
base for studying modified cosmologies in the remainder of
the text. Section III describes how to derive the first and
second modified Friedmann equations from the ADM-
decomposed action of the model as well as the modified
Einstein equations. We are doing so for all background field
configurations simultaneously. To simplify the first part of
the analysis, the background fields are assumed to be time-
independent. In Sec. IV we search for specific background
field configurations that lead to stages of accelerated
expansion. Standard matter and radiation only are taken
into consideration. Here, we analyze each type of back-
ground field separately. Section V is dedicated to the
generic case of time-dependent background fields, which
is an extension of the computations performed in Sec. IV.
Finally, our findings are concluded on in Sec. VI. The
Appendix is devoted to deriving an alternative version of
the second modified Friedmann equation by different
means. Although the latter is not made use of in the main
body of the paper, it is presented and commented on for
completeness. Natural units are employed with ℏ ¼ c ¼
8πGN ¼ 1 unless otherwise stated. Furthermore, the metric
signature is ð−;þ;þ;þÞ. The Mathematica packages
xTensor [85] and OGRe [86] turned out to be highly
beneficial for symbolic and explicit computations involving
tensors and covariant derivatives in curved spacetimes.

II. MODEL AND CHARACTERISTICS

We consider a modification of the Einstein-Hilbert action
with a cosmological constant Λ [64,68]:

S ¼
Z
M

d4xðLð0Þ þ LSMEÞ þ Sm; ð1aÞ

Lð0Þ ¼
ffiffiffiffiffiffi−gp
2

ðð4ÞR − 2ΛÞ; ð1bÞ

LSME ¼
ffiffiffiffiffiffi−gp
2

ð−uð4ÞRþ sμνð4ÞRT
μν þ tμνρσð4ÞCμνρσÞ; ð1cÞ
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with the four-dimensional spacetime metric gμν of the
spacetime manifold M where g ≔ detðgμνÞ. The traceless
Ricci tensor is denoted as ð4ÞRT

μν, the Ricci scalar is defined
by ð4ÞR ≔ ð4ÞRμ

μ, as usual, and ð4ÞCμνρσ constitutes the
Weyl tensor. Furthermore, u is a scalar-valued and sμν, tμνϱσ

are tensor-valued nondynamical background fields depend-
ing on the spacetime coordinates. The part Sm corresponds
to the matter action, which remains unspecified at
this point.
The property of the background fields u, sμν, and tμνϱσ

being both nondynamical and coordinate-dependent implies
a breakdown of diffeomorphism invariance. Inferred back-
ground fields that carry local-coordinate indices can be
defined by transforming u, sμν, and tμνϱσ to local inertial
reference frames via a background vierbein [68]. The latter
give rise to preferred directions in freely falling inertial
frames, which implies local Lorentz violation, too.
Several papers such as Refs. [87,88] clarified that the

physics related to the fourth-rank tensor background tμνϱσ is
involved. In this context the term “t puzzle” was coined to
refer to its peculiar property of not exhibiting any observ-
able effects in the post-Newtonian limit. Although the
situation was clarified to be quite different in spacetimes
that are not asymptotically flat, we will be working in a
setting where tμνϱσ is discarded, such that our final model is
described by the action

S¼
Z
M
d4x

ffiffiffiffiffiffi−gp
2

½ð1−uÞð4ÞRþ sμνð4ÞRμν−2Λ�þSm: ð2Þ

In comparison to Eq. (1), the trace of the Ricci tensor is
kept for simplicity. In the remainder of the paper, the
consequences of diffeomorphism symmetry violation para-
metrized by u, sμν on cosmological evolution ought to be
studied. Performing the ADM decomposition of the space-
time manifold M is valuable in this context. The infini-
tesimal path length interval squared is then cast into the
form

ds2 ¼ −ðN2 − NiNiÞdt2 þ 2Nidxidtþ hijdxidxj; ð3Þ

where N is the lapse function, Na denote the shift vector
components, and hab is the induced metric in a three-
dimensional hypersurface Σt of the foliation. In the
following, we will also employ the projector hμν into Σt

as well as the vector nμ ¼ ð1=N;−Ni=NÞ orthogonal to Σt
and the associated covector nμ ¼ ð−N; 0; 0; 0Þ, which are
frequently in use within the ADM formalism. We can then
decompose the action of Eq. (2) as

S ¼
Z
M

dtd3xLADM þ Sm; ð4aÞ

LADM ¼ Lð0Þ þ LðuÞ þ LðsÞ
1 þ LðsÞ

2 þ L0ðsÞ; ð4bÞ

Lð0Þ ¼ N
ffiffiffi
h

p

2

�
2

N
LmK −

2

N
DiDiN þ R − 2Λ

þ K2 þ KijKij

�
; ð4cÞ

LðuÞ ¼ N
ffiffiffi
h

p

2

�
−uðR − K2 þ KijKijÞ

þ 2

N
ðKLmuþ uDiDiNÞ

�
; ð4dÞ

LðsÞ
1 ¼ N

ffiffiffi
h

p

2

�
−
1

N
ðKijLmsij þ sijDiDjNÞ

þ sijðRij − 2Ki
lKljÞ

�
; ð4eÞ

LðsÞ
2 ¼ N

ffiffiffi
h

p

2

�
snn

�
1

N
DiDiN − KijKij þ K2

�

þ 1

N
KLmsnn

�
; ð4fÞ

L0ðsÞ ¼ N
ffiffiffi
h

p

2
½2sinðDiK −DlKl

iÞ�; ð4gÞ

with h ≔ detðhijÞ, the Ricci tensor Rij defined in Σt, and
the corresponding Ricci scalar R ≔ Ri

i. The extrinsic-
curvature tensor Kij is given by

Kij ¼
1

2N
ð _hij −DiNj −DjNiÞ; ð5Þ

where the dot denotes a time derivative. We also employ its
trace K ≔ Ki

i as well as the Lie derivative [89] of the
extrinsic-curvature tensor with respect to the four-vector
mμ ≔ Nnμ. The latter reads

LmKij ¼ _Kij − LNKij; ð6Þ

with the Lie derivative LN for the shift vector. Furthermore,
sij ≔ hiμh

j
νsμν is the piece of sμν that is completely

projected into Σt. We will be referring to it as the (purely
spacelike) tensorial part. Also, sin ≔ hiμnνsμν is understood
as a vector-valued part and snn ≔ sμνnμnν as the purely
timelike contribution, which lives in the one-dimensional
space orthogonal to Σt. The coefficients sin and snn are
taken as new, independent degrees of freedom. An impor-
tant thing to bear in mind is that the coefficients sin were
demonstrated to be gauge degrees of freedom [81]. One
possibility of doing so is to absorb sin into a redefined shift
vector. However, as we will fix the shift vector later, a more
suitable approach in the current context is to redefine the
canonical momentum density of the ADM-decomposed
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Hamiltonian. Then, the Hamiltonian of the sin sector can be
brought into the form of the GR Hamiltonian. Our
interpretation of this outcome is that sin does not affect
the physics. Therefore, L0ðsÞ of Eq. (4f) will be discarded in
the remainder of the paper.
It is suitable to reformulate the action of Eq. (4) such that

the Lie derivatives act on the background fields instead of
the extrinsic curvature. To do so, the following identities are
valuable:

u

�
2

N
LmK

�
¼ 2∇μðnμKuÞ− 2uK2−

2

N
KLmu; ð7aÞ

sij
�
1

N
LmKij

�
¼ ∇μðnμKijsijÞ − KKijsij

−
1

N
KijLmsij; ð7bÞ

−snn
�
1

N
LmK

�
¼ −∇μðnμKsnnÞ þ K2snn

þ 1

N
KLmsnn: ð7cÞ

In this context, we must refer to another important property
of Eq. (2), which was emphasized in Ref. [81]. By adding
suitable modified Gibbons-Hawking-York boundary terms
[72,90–92] to the ADM-decomposed action, the total
derivatives in Eq. (7) can be discarded.
As a first step of our study, we introduce some

simplifications to the modified-gravity theory defined by
Eq. (2). Let us impose the following conditions on the
background fields:

Lmu ¼ Lmsij ¼ Lmsnn ¼ 0: ð8Þ

As we shall see later, the latter requirements imply that u
and sμν are time-independent in Gaussian normal coordi-
nates [79], which leads to vast computational simplifica-
tions. From a physical perspective, the background fields
are then static and do not evolve in time in the course of
cosmological expansion. We think that this scenario is a
reasonable point to start a first investigation from, but
Eq. (8) will be dropped in a forthcoming chapter of the
paper.
We also redefine the extrinsic curvature via

Kij≕
Eij

N
; K≕

E
N
; ð9Þ

with the quantities Eij and E that are frequently employed
in cosmology. As Kij and K scale with 1=N, the latter Eij

and E do not depend on the lapse function, anymore. Based
on all these ingredients, the action of Eq. (4) can be cast
into the form

S ¼
Z
M

dtd3xðLð0Þ þ LðuÞ þ Lð1Þ þ Lð2ÞÞ þ Sm; ð10aÞ

Lð0Þ ¼
ffiffiffi
h

p

2
N

�
R − 2Λþ 1

N2
ðEijEij − E2Þ

�
; ð10bÞ

LðuÞ ¼
ffiffiffi
h

p

2
N

�
2

N

�
E
N
Lmuþ uDiDiN

�

− u

�
Rþ 1

N2
ðEijEij − E2Þ

��
; ð10cÞ

LðsÞ
1 ¼

ffiffiffi
h

p

2
N

�
−
1

N

�
Eij

N
Lmsij þ sijDiDjN

�

þ sij
�
Rij −

2

N2
Ei

lElj

��
; ð10dÞ

LðsÞ
2 ¼

ffiffiffi
h

p

2
N

�
1

N

�
E
N

Lmsnn þ snnDiDiN

�

þ snn

N2
ðE2 − EijEijÞ

�
: ð10eÞ

Matter ought to be modeled as a perfect fluid described by
an energy-momentum tensor ðTmÞμν that is chosen as [79]

ðTmÞμν ¼ ðρþ PÞUμUν þ Pgμν; ð11Þ

where ρ is the fluid density, P its pressure, and Uμ its four-
velocity. It is common to consider a fluid at rest such that
Uμ ¼ ð1; 0; 0; 0Þ. Hence,

ðTmÞ00 ¼ ρþ ð1þ g00ÞP; ð12aÞ

ðTmÞ0i ¼ g0iP; ð12bÞ

ðTmÞij ¼ gijP: ð12cÞ

In contrast to the gravity sector, the matter sector is
conventional, whereupon we will take this choice, too.
The stress-energy tensor is computed from the matter
action Sm, as usual:

ðTmÞμν ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν
: ð13Þ

In the ADM formalism this relationship is equivalent to

δSm
δgμν

¼ −
ffiffiffi
h

p

2
NðTmÞμν: ð14Þ

By using δg00=δN ¼ 2=N3 and δg0i=δNi ¼ 1=N2, the
variations of the matter action with respect to the lapse
function and the shift vector, respectively, read
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−
N2ffiffiffi
h

p δSm
δN

¼ðN2−NiNiÞ2ρþ
�
ðN2−NiNiÞ2

�
1−

1

N2

�

−2ðN2−NiNiÞNjNj

N2
þNiNj

�
hij−

NiNj

N2

��
P;

ð15aÞ

−
2Nffiffiffi
h

p δSm
δNi ¼ðNkNk−N2ÞNiρþ

�
ðNkNk−N2ÞNi

�
1−

1

N2

�

þðNkNk−N2Þhij
Nj

N2
þNiNj

Nj

N2

þNjhik

�
hjk−

NjNk

N2

��
P: ð15bÞ

As of now, we will take the conditions of Eq. (8) into
account. Then, a variation of Eq. (10) for N gives

0 ¼ ð1 − uÞ
�
R −

1

N2
ðEijEij − E2Þ

�

þ 2DiDiu −DiDjsij þ sijRij

þ 2

N2
sijEi

lElj þDiDisnn

þ 1

N2
snnðEijEij − E2Þ − 2Λþ 2ffiffiffi

h
p δSm

δN
; ð16aÞ

and varying Eq. (10) for Nk implies

0 ¼ 2Di

�
1

N
½ð1 − u − snnÞðEik − hikEÞ

− sijEk
j − sjkEi

j�
�
þ 2ffiffiffi

h
p δSm

δNk : ð16bÞ

The latter constraints will play a significant role in the
forthcoming phenomenological analysis.

III. COSMOLOGY WITH DIFFEOMORPHISM-
VIOLATING BACKGROUND FIELDS

To study the implications of the modified-gravity theory
of Eq. (2) on cosmology, we would have to solve the
associated modified Einstein equations, which is a highly
challenging task. To avoid this arduous pathway, we will be
working with a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric without perturbations:

ds2 ¼ −dt2 þ hijdxidxj; hij ¼ aðtÞ2g̃ij; ð17aÞ

with the cosmic scale factor aðtÞ and the time-independent
spatial part of the spacetime metric given by

ðg̃ijÞ ¼ diag

�
1

1 − kr2
; r2; r2 sin2 θ

�
; ð17bÞ

in three-dimensional spherical coordinates ðr; θ;ϕÞ. Here, k
represents a scalar curvature in appropriate units, which
allows us to distinguish between an open, flat, and closed
Universe. The FLRW metric rests on the assumptions of
homogeneity of spacetime and spatial isotropy. Thus, at
first it seems odd why the FLRW metric should be
compatible with Eq. (2), which violates diffeomorphism
invariance as well as local Lorentz invariance in freely
falling inertial reference frames.
However, one must keep in mind that deviations from

GR have not been found, so far. The background fields u
and sμν are effective descriptions of possible Planck scale
phenomena. So it is a very reasonable assumption that
alterations of the FLRW metric of Eq. (17) are strongly
suppressed. Then the FLRWmetric is a wise choice to base
a first study of the cosmological effects of Eq. (2) on. This
procedure is corroborated by the tight experimental bounds
on SME coefficients compiled in Ref. [93].
By employing the form of Eq. (17), a direct comparison

between Eqs. (3) and (17) reveals that N ¼ 1 and Ni ¼ 0.
These choices correspond to using Gaussian normal coor-
dinates. Then, the functional derivatives of the ADM-
decomposed matter action presented in Eq. (15) collapse
to more convenient results:

δSm
δN

¼ −
ffiffiffi
h

p
ρ; ð18aÞ

δSm
δNi ¼ 0: ð18bÞ

Furthermore, a straightforward computation of the Ricci
tensor and Ricci scalar of the spatial part hij of the FLRW
metric based on Eq. (17b) results in

Rij ¼
2k
a2

hij; ð19aÞ

R ¼ 6
k
a2

: ð19bÞ

A slew of valuable identities follows from Eq. (5) and the
metric of Eq. (17):

Eij ¼ Hhij; ð20aÞ

_Eij ¼ 2a _aHg̃ij þ a2 _Hg̃ij ¼ ð2H2 þ _HÞhij; ð20bÞ

_Eij ¼ d
dt
ðEklhkihljÞ ¼ _Eklhkihlj þ Ei

l
_hlj þ Ek

j _hki;

¼ ð2H2 þ _HÞhij − 4H2hij;

¼ ð−2H2 þ _HÞhij; ð20cÞ
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_E ¼ d
dt
ðEijhijÞ ¼ _Eijhij þ Eij

_hij;

¼ 3ð2H2 þ _HÞ − 6H2 ¼ 3 _H; ð20dÞ

EijEij ¼ hrihsjEijErs;

¼ 1

a4
δriδsja4H2δijδrs ¼ 3H2; ð20eÞ

E ¼ hijEij ¼
1

a2
δija2Hδij ¼ 3H; ð20fÞ

E l
i Elj ¼ hlrEirElj ¼ H2hij; ð20gÞ

where H ≔ _a=a is the Hubble parameter. These relations
allow us to reformulate the constraints of Eqs. (16a), (16b).
Doing so for the first leads to

H2 ¼ 1

3Ξ

�
ρþ Λ − 3ϒ

k
a2

−DiDiu

−
1

2
DiDisnn þ 1

2
DiDjsij

�
; ð21aÞ

with the definitions

ϒ ≔ 1 − uþ s
3
; Ξ ≔ ϒ − snn; ð21bÞ

which are introduced for brevity. Furthermore, we define
the trace of sij via s ≔ sijhij ¼ a2sijg̃ij. The reformulated
second constraint reads

0 ¼ 4DifH½ð1 − u − snnÞhik þ sik�g: ð22Þ

Equation (21) is interpreted as the first modified Friedmann
equation of a cosmological evolution based on Eq. (2).
Notice that the first standard Friedmann equation with
cosmological constant is recovered when we set the back-
ground fields u, sij, and snn to zero. Moreover, Eq. (22) is
automatically satisfied in the standard case, but in the
presence of background fields it poses an additional
constraint that must be taken into account.
We highlight that spacetime homogeneity and spatial

isotropy of GR imply a diagonal energy-momentum tensor.
As a consequence, energy-momentum conservation for
matter, ∇μðTmÞμν ¼ 0, leads to

_ρ ¼ −3Hðρþ PÞ: ð23Þ

With the standard equation of state P ¼ wρ where w is a
characteristic parameter for matter, radiation, etc., Eq. (23)
allows us to deduce a relationship between the matter
density and the scale factor:

ρ ¼ ρ0ða0Þ3ð1þwÞ

a3ð1þwÞ ; ð24Þ

where a0 ¼ aðt0Þ and ρ ¼ ρðt0Þ at an initial time t0. In the
modified setting based on Eq. (2), homogeneity is lost, as
the background fields in a curved spacetime manifold
necessarily depend on the coordinates [64]. This property
implies diffeomorphism violation, after all. As mentioned
before, if a background vierbein is employed to define
background fields from sμν in freely falling inertial frames
[68], even spatial isotropy is lost in most cases. Thus, a
constraint of the form of Eq. (23) does not necessarily apply
to the modified scenario, anymore. So we are free to choose
a different class of energy-momentum tensor. However, we
will continue describing matter as a perfect fluid, as usual,
since matter is assumed to be standard and the gravity-
sector background fields supposedly involve minuscule
component coefficients. Indeed, a description of matter via
a perfect fluid is also convenient from a technical point of
view, which is why Eq. (23) shall be taken over to our
setting.
Now, we turn towards deriving the second modified

Friedmann equation. The second Friedmann equation in
GR is a suitable linear combination of the first Friedmann
equation and the dynamical part of the Einstein equations.
The dynamics of GR is encoded in the purely spacelike part
of the Einstein equations, i.e.,

ð4ÞGij þ Λgij ¼ ðTmÞij; ð4ÞGij ¼ ð4ÞRij −
ð4ÞR
2

gij; ð25Þ

where ð4ÞGij is the spatial part of the Einstein tensor.
Alternatively, to understand the dynamics of Einstein’s
gravity, the Hamilton equation,

_πij ¼ fπij; Hg; ð26Þ

can be consulted, where H is the GR Hamiltonian based on
the ADM decomposition and πij is the canonical momen-
tum density [61]. Here, fA;Bg denote suitably defined
Poisson brackets of the (tensor-valued) objects A and B,
which are functions of hkl; πmn, etc., and whose index
structures are omitted for brevity. Both approaches provide
the same dynamical equations.
An intriguing property of GR is that the second

Friedmann equation can be shown to be a consequence
of the first Friedmann equation when energy-momentum
conservation for matter, i.e., Eq. (23), is employed. In
particular, differentiating the first Friedmann equation for
time, using energy-momentum conservation, and inserting
the first Friedmann equation again subsequently gives rise
to the second Friedmann equation [79]. Therefore, the
second Friedmann equation in GR can be regarded as
superfluous and the focus is usually on the first Friedmann
equation only.
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Diffeomorphism invariance is a crucial characteristic of
GR and the diffeomorphism group provides a considerable
symmetry structure that many of the interesting properties
of GR are based on. What holds in GR is not necessarily
valid when diffeomorphism symmetry breaks down. For
example, the constraint structure and number of physical
degrees of freedom is subject to significant alterations, as
demonstrated, e.g., in fðQÞ gravity [94]. In our context, as it
turns out, the dynamical part of the modified Einstein
equations of Eq. (2) in combination with Eq. (21) provide
a result that differs from the equation that follows from
differentiating Eq. (21) for time and using energy-
momentum conservation. So we interpret the remarkable
property of the second Friedmann equation in GR being an
implication of the first Friedmann equation plus energy-
momentum conservation as a consequence of diffeomor-
phism invariance.
As it is the modified Einstein equations that are funda-

mental, we employ the latter to derive the second modified
Friedmann equations of Eq. (2) without resorting to the
time derivative of Eq. (21). The recent results of Ref. [82]
are highly beneficial to perform these calculations based on
the FLRWmetric. We will also need to evaluate various Lie
derivatives of background field coefficients. Notice that the
Lie derivative of a scalar field amounts to a directional
derivative as follows:

Lmu ¼ mμ
∂μu ¼ Nnμ∂μu;

¼ Nn0 _uþ NniDiu ¼ _u − NiDiu: ð27Þ

Here we have used that Nn0 ¼ 1 and Nni ¼ −Ni.
Furthermore, as N ¼ 1 and Ni ¼ 0 hold in a nonperturbed
FLRWmetric, we deduce Lm ¼ _u directly. Now, turning to
sμν, we consult Ref. [89] for the definition of the Lie
derivative for a rank-2 tensor-valued background field:

Lmsρσ ¼ mμ
∂μsρσ − ð∂λmρÞsλσ − ð∂λmσÞsρλ;

¼ _sρσ − Ni
∂isρσ − ð∂λmρÞsλσ − ð∂λmσÞsρλ: ð28Þ

But ∂λmρ ¼ 0, since the component m0 is constant and the
components mi depend on Ni, which are zero in a non-
perturbed FLRW metric. Thus, the Lie derivative amounts
to a simple time derivative: Lmsρσ ¼ _sρσ.
So in a FLRW spacetime, Eq. (8) translates to

_u ¼ _snn ¼ _sij ¼ 0. Then, each background field is taken
as static. In addition, we deduce the following valuable
relation for the time derivative of the trace of sij:

_s ¼ 2a _asijg̃ij þ a2 _sijg̃ij ¼ 2a2Hsijg̃ij ¼ 2Hs: ð29Þ

As the trace involves the FLRW metric by definition, its
time derivative does not simply vanish, but it is propor-
tional to the trace itself. Another useful relationship is

̈s ¼ 2sð _H þ 2H2Þ, which expresses the second-order time
derivative of the trace s in terms of the trace proper.
The modified Einstein equations for the action of Eq. (2)

with Λ ¼ 0 are stated in Ref. [65]. Their purely spacelike
part follows from the findings of Sec. IV in Ref. [82] with
Eq. (20) and the latter results for the Lie derivatives of the
controlling coefficients taken into account. The first
Friedmann equation in Eq. (21) is then divided by 2 and
subtracted from the dynamical equations leading to a
perturbation of the second Friedmann equation of GR.
For background fields satisfying Eq. (8), we obtain

_H þH2 ¼ −
1

6Ξ

�
ρþ 3P − 2Λþ 2s

�
k
a2

þH2

�

þDiDiu −
1

2
DiDisnn −

1

2
DiDis

�
; ð30Þ

where _H þH2 ¼ ä=a. To the best of our knowledge, the
set of modified Friedmann equations in Eqs. (21), (30)
based on the action of Eq. (2) has been derived here for the
first time. In conjunction with the additional constraint of
Eq. (22) they are necessary to draw conclusions on the time
evolution of a Universe whose gravitational laws are based
on the action of Eq. (2). For vanishing background fields,
the second Friedmann equation with cosmological constant
is reproduced, as expected.
Both equations involve the background fields as well as

second-order spatial derivatives of the latter, but first-order
derivatives do not occur. Also, when multiplying both
Friedmann equations with Ξ, they are linear in the back-
ground fields, which is an implication from the action aswell
as the modified Einstein equations being linear in the
coefficients u; snn; sij. For completeness and reasons
of comparison, the field equations that follow from
differentiating Eq. (21) for time as well as using energy-
momentum conservation for matter will be stated in the
Appendix.

IV. STUDY OF ACCELERATED EXPANSION
OF THE UNIVERSE

In what follows, we will particularly be interested in
understanding whether or not the background fields u and
sμν of Eq. (2) are capable of driving an accelerated
expansion of a Universe that contains ordinary matter
and radiation only. Thus, we will set Λ ¼ 0. The infla-
tionary regime immediately after the Big Bang as well as
observations of the current state of our Universe hint
towards the existence of accelerated stages [1–10].
Mathematically, the condition of an accelerated expansion
can be described in terms of the scale factor as

ä > 0; ð31Þ

which translates into a negative deceleration parameter:
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q ≔ −
äa
_a2

< 0: ð32Þ

In the cosmological standard model, by taking the second
Friedmann equation and the condition of Eq. (31) into
consideration, we get the following inequality between the
pressure P and the energy density ρ of matter:

P < −
ρ

3
: ð33Þ

With this finding at hand, we infer that a stage of
accelerated expansion in standard cosmology is caused
by an entity that breaks the strong energy condition (SEC)
[95], which implies it having a negative pressure. Since
standard matter respects the SEC, the usual way to proceed
in inflation is to add a scalar field whose potential
dominates over the kinetic term in a slow-roll regime
[37,96]. The common way to implement an accelerated
stage into a particular model of our Universe is to resort to
Dark Energy. Incorporating a cosmological constant into
the action, this source can be described by means of an
equation of state P ¼ −ρ satisfying the inequality of
Eq. (33). On the other hand, different sources can be used
to mimic the effects of Dark Energy such as new scalar
fields or fluids with different equations of state (see the
reviews [97,98] for details). However, in any case, a new
kind of matter that violates the SEC is introduced.
In the context of the gravitational SME, we have found

that there are changes in the Friedmann equations [see
Eqs. (21) and (30)] that have the potential to drive a quite
different scenario compared to a setting with only standard
matter and radiation. We will analyze separate cases for the
sake of simplicity. Besides, in accordance with experimen-
tal measurements of the curvature of our Universe [6–8],
k ¼ 0 is to be employed in our forthcoming analyses.

A. Scalar background u

First of all, we consider a scenario where sμν ¼ 0 such
that we are able to focus on the scalar background field u.
The modified Einstein equations for this case are [65]

ð4ÞGαβ ¼ ðTmÞαβ þ ðTRuÞαβ; ð34aÞ

with the four-dimensional Einstein tensor ð4ÞGαβ, the
energy-momentum tensor ðTmÞαβ for matter, and the
characteristic two-tensor

ðTRuÞαβ ¼ −∇α∇βuþ gαβ∇2uþ uð4ÞGαβ; ð34bÞ

that involves the background field. Computing the covar-
iant derivative of the latter leads to

∇αðTRuÞαβ ¼ −∇2∇βuþ ð∇αgαβÞ∇2uþ∇β∇2u

þ ð∇αuÞð4ÞGαβ; ð35Þ

whereby metric compatibility implies

∇αðTRuÞαβ ¼ ð∇αuÞð4ÞGαβ: ð36Þ

At this point we are coming to an essential feature of
gravity theories modified by nondynamical background
fields coupling to spacetime curvature. Recall the second
Bianchi identities of (pseudo-)Riemannian geometry,
which are frequently written as∇μ

ð4ÞGμν ¼ 0 in the context
of GR. It is these identities that severely restrict the freedom
of choosing a background field violating diffeomorphism
invariance explicitly. Applying them to the modified
Einstein equations provides a set of additional restrictions
on the background field that we will be referring to as no-go
results [64,68,99,100]. Because of these limitations as well
as energy-momentum conservation in the matter sector, we
have that

∇αðTRuÞαβ ¼ 0 ⇒ ∇αu ¼ 0; ð37Þ

which provides∇iu ¼ ∂iu ¼ 0 in addition to _u ¼ 0 already
being satisfied due to the conditions of Eq. (8). Then, the
scalar field u also obeys the additional constraint of Eq. (22).
Now, let us draw conclusions on a possible accelerated

stage of the Universe from the modified Friedmann
equations. After using Eq. (30), the condition of Eq. (31)
reads

ä
a
¼ −

1

6ð1 − uÞ ðρþ 3PþDiDiuÞ > 0: ð38Þ

As long as gravitational fields are weak enough, we expect
that juj ≪ 1 such that 1 − u > 0. Hence, due to Eq. (37),

ρþ 3PþDiDiu ¼ ρþ 3P < 0: ð39Þ

Then, the Friedmann equations for k ¼ 0 read

H2 ¼ 1

3ð1 − uÞ ρ; ð40aÞ

ä
a
¼ −

1

6ð1 − uÞ ðρþ 3PÞ: ð40bÞ

In this case, defining an effective density and pressure via
ρeff ≔ ρ=ð1 − uÞ and Peff ≔ P=ð1 − uÞ, respectively, cos-
mological expansion occurs in the same way as in the
standard case without diffeomorphism violation described
by u. The latter background field then simply gives rise to
a constant scaling factor that does not have any impact on
the time evolution of the Universe.

B. Purely timelike background snn

Now, we consider the sector where u ¼ 0 and sij ¼ 0, as
well. Note that snn ¼ s00 in Gaussian normal coordinates,
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but we will keep snn for notational consistency. In general,
the modified Einstein equations for sμν read [65]

ð4ÞGαβ ¼ ðTmÞαβ þ ðTRsÞαβ; ð41aÞ

with

ðTRsÞαβ ¼ 1

2
ðgαβsμνRμν þ∇ν∇αsνβ þ∇ν∇βsνα

−∇2sαβ − gαβ∇μ∇νsμνÞ: ð41bÞ

Such as for the u sector discussed previously, no-go
restrictions also play a role for the sμν sector. By taking
the divergence of Eq. (41b), we deduce

∇αðTRsÞαβ ¼ 1

2
½gαβ∇αðsμνRμνÞ þ∇α∇ν∇αsνβ

þ∇α∇ν∇βsνα −∇α∇2sαβ

− gαβ∇α∇μ∇νsμν�: ð42Þ

Evaluating the components of the latter for the FLRW
spacetime of Eq. (17) explicitly, gives rise to

∇αðTRsÞα0 ¼ 3snn

a2
ð2_a äþa⃛aÞ; ð43aÞ

∇αðTRsÞα1 ¼ −
3ä
2a3

∂rsnn; ð43bÞ

∇αðTRsÞα2 ¼ −
3ä

2a3r2
∂θsnn; ð43cÞ

∇αðTRsÞα3 ¼ −
3ä

2a3r2 sin2 θ
∂ϕsnn: ð43dÞ

The second Bianchi identities and energy-momentum
conservation encoded in Eq. (23) imply

∇αðTRsÞαβ ¼ 0: ð44Þ

Therefore, the only possibility of satisfying Eqs. (22) and
(44) for β ¼ 1, 2, 3 is snn ¼ c1 with a constant c1. In
addition, Eq. (43a) equated to zero implies a further
condition that involves the FLRW scale factor:

2_a äþa
d3a
dt3

¼ 0 ⇔
d
dt

�
äaþ 1

2
_a2
�

¼ 0: ð45Þ

Therefore, we deduce that

äaþ 1

2
_a2 ¼ c2; ð46Þ

with another constant c2. Equation (46) establishes a
requirement on the scale factor if c1 ≠ 0. Standard cosmol-
ogy is provided by c1 ¼ 0, which gets rid of the

background field. As before, it is reasonable to assume
jsnnj ≪ 1 in the presence of weak gravitational fields.
Consequently, it holds that 1 − snn > 0. In this case, both
Friedmann equations for k ¼ 0 are

H2 ¼ 1

3ð1 − snnÞ
�
ρ −

1

2
DiDisnn

�
; ð47aÞ

_H þH2 ¼ −
1

6ð1 − snnÞ
�
ρþ 3P −

1

2
DiDisnn

�
: ð47bÞ

The constraint of Eq. (22) as well as Eqs. (43b)–(43d)
set to zero imply Disnn ¼ ∂isnn ¼ 0. Then, by subtracting
Eq. (47a) from Eq. (47b), we arrive at

_H ¼ −
ρþ P

2ð1 − snnÞ : ð48Þ

Thus, the double covariant derivative of snn is completely
eliminated from the modified Friedmann equations.We then
observe that the term 1 − snn acts like a rescaling of the
conventional time evolution. Therefore, a regime of accel-
erated expansion requires a suitable source, because baryonic
matter and electromagnetic radiation respect the SEC.
Although this case resembles the standard scenario

without any background fields present, snn cannot simply
be absorbed into the matter density and pressure, which
distinguishes snn from the background field u of Sec. IVA.
Note that Eq. (46) corresponds to an extra condition, which
does not occur for u. The latter combined with Eq. (48)
modifies the behavior of the scale factor. To see this, we use
a standard equation of state for matter, P ¼ wρ, and write
Eq. (48) in terms of the scale factor to obtain

ä
a
−

_a2

a2
¼ −

1þ w
2ð1 − snnÞ ρ: ð49Þ

Inserting Eq. (46) results in

1

a2

�
c2 −

3_a2

2

�
¼ −

1þ w
2ð1 − snnÞ ρ: ð50Þ

It is now helpful to employ the previously derived Eq. (24),
which is an implication of energy-momentum conservation,
in Eq. (50):

_a2 ¼ c3a−ð1þ3wÞ þ 2

3
c2; c3 ¼

1þ w
3ð1 − snnÞ ρ0ða0Þ

3ð1þwÞ:

ð51Þ

A solution of this differential equation with negative
deceleration parameter of Eq. (32) was not found. For a
Universe without matter present, meaning ρ ¼ 0, we have
c3 ¼ 0. Then, the first contribution in Eq. (51) is eliminated
and we arrive at
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_a2 ¼ 2

3
c2: ð52Þ

A necessary condition for a physical solution is c2 ≥ 0,
whereupon a ∝ t if c2 ≠ 0. This scale factor describes an
empty Universe—with only the background field snn

present—that expands linearly. A behavior of this kind
resembles that of a Milne universe [101].

C. Tensor-valued purely spacelike background sij

Finally, we consider a scenario with u ¼ snn ¼ 0. Since
sij is described by six independent coefficients, a general
study of its impact is cumbersome. To gain an initial
understanding of its implications, we have to respect the
additional constraint of Eq. (22) that requires

Disij ¼ 0: ð53Þ

Rearranging Eq. (30) with Eq. (53) taken into account as
well as k ¼ 0 inserted leads to

H2 ¼ ρ

3þ s
; ð54aÞ

_H þH2 ¼ −
1

6ð1þ s=3Þ
�
ρþ 3P −

1

2
DiDisþ 2sH2

�
:

ð54bÞ

A stage of accelerated expansion now emerges when either
the first or the second of the following sets of conditions is
satisfied:

ρþ 3P ≶
1

2
DiDis − 2sH2; ð55aÞ

s ≷ −3: ð55bÞ

Inserting the first Friedmann equation and using the
equation of state P ¼ wρ for standard matter and radiation
leads to a chain of inequalities:

1

2
DiDis −

2s
3þ s

ρ < 0 < ð1þ 3wÞρ

<
1

2
DiDis −

2s
3þ s

ρ: ð56Þ

Let us now choose a particular example for a background
field sμν with nonzero purely spacelike entries only:

sμν ¼ −α

0
BBBBB@

0 0 0 0

0 1 0 0

0 0 1=r2 0

0 0 0 1=ðr2 sin2 θÞ

1
CCCCCA
; ð57Þ

where α is a dimensionless real parameter. The spatial part
of Eq. (57) happens to be proportional to the inverse of the
spatial piece of the FLRW metric stated in Eq. (17b). The
latter tensor also satisfies Eq. (53) and s ¼ −3αa2. Using
this value in Eq. (55b), the condition for the scale factor
describing an accelerated expansion of the Universe trans-
lates to

a2 <
1

α
; ð58Þ

such that for α fixed, the scale factor must not exceed a
certain value to enable accelerated expansion. The trace s in
Eq. (55b) taking rather large (negative) values does not
contradict jsijj ≪ 1, as the size of sij is controlled by α. An
explicit computation of ∇αðTRsÞαβ in Eq. (42) shows that it
is identically zero. Thus, this particular case is intriguing, as
the no-go results [64,68] do not lead to further restrictions
of the scale factor. Moreover, the choice of Eq. (57) also
satisfies DiDis ¼ 0. We then deduce from Eq. (56) that

1þ 3w <
2αa2

1 − αa2
⇔

1þ 3w
3ð1þ wÞα < a2: ð59Þ

Hence, by taking Eq. (58) into account, accelerated
expansion for standard matter with w ¼ 0 occurs when
the scale factor squared lies within the range given by

1

3α
< a2 <

1

α
; ð60aÞ

where for standard radiation with w ¼ 1=3 it must hold that

1

2α
< a2 <

1

α
: ð60bÞ

Now let us turn to Eq. (54), which can be reformulated with
the help of our previous findings:

H2 ¼ 1

3ð1 − αa2Þ ρ; ð61aÞ

_H þH2 ¼ −
1

6ð1 − αa2Þ ðρþ 3P − 6αa2H2Þ: ð61bÞ

Note that Eq. (61b) is a consequence of Eq. (61a) and
energy-momentum conservation for matter, i.e., Eq. (24).
So after taking the no-go conditions into account, the
second Friedmann results from the first such as in GR—
recall the statements made under Eq. (25). Hence, it is
sufficient to study Eq. (61a), which then takes the form

_a ¼ ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αa2

p a−
1
2
ð1þ3wÞ; ζ ¼

ffiffiffiffiffi
ρ0
3

r
ða0Þ32ð1þwÞ: ð62Þ

We solve Eq. (62) numerically by considering ζ ¼ 1,
α ¼ 9 × 10−3, and w ¼ 1=3 for a radiation-dominated
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Universe. The numerical solution for the scale factor is
contrasted with the standard behavior of the latter in Fig. 1.
Furthermore, Fig. 2 illustrates the deceleration parameter
qðtÞ of Eq. (32) to show that the numerical solution satisfies
q < 0 in the region of interest.
Our observation is that the time frame where Eq. (58) is

satisfied coincides with ä > 0 being valid, as expected.
Hence, there is a short period where an accelerated
expansion takes place and at the end of this stage the
scale factor becomes imaginary. This result is expected
in Eq. (62), because the square root is real only if
1 − αa2 > 0. However, when t exceeds a certain instant
of time, aðtÞ becomes complex and loses its interpretation
as a scale factor. This behavior is traced back to the
requirement of satisfying Eq. (55b) without any sources
of exotic matter or radiation present to drive the accelerated
expansion. Note also that the type of acceleration found
here is quite different from a de Sitter regime characterized
by an exponential expansion and a negative, constant
deceleration parameter.

1. Angle-independent sij

A second possible choice for a purely spacelike back-
ground tensor is

sμν ¼ −2
L2

r2

0
BBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð63Þ

with a length scale L that must be introduced for dimen-
sional consistency. Note that sμν is a dimensionless
object—at least in Cartesian coordinates. As sμν effectively
incorporates Planck scale effects, the length scale L is
expected to lie in the vicinity of the Planck length. An
explicit evaluation of Eq. (42) gives a single component
that is not automatically equal to zero:

∇αðTRsÞα1 ¼ 2L2

a2r3
ð2_a2 þ aäÞ: ð64Þ

Then, the no-go conditions of Eq. (44) imply a restriction
of the scale factor:

2_a2 þ aä ¼ 0: ð65Þ

The latter equation is associated with a constant value for
the deceleration parameter of Eq. (32). This value amounts
to q ¼ 2, which is positive, whereupon the choice of
Eq. (63) forbids a stage of accelerated expansion of the
Universe.

t

q(t)

t1 t2

FIG. 2. Plot of the deceleration parameter qðtÞ of Eq. (32)
obtained for the numerical solution of Eq. (62) for ζ ¼ 1;
α ¼ 9 × 10−3, and w ¼ 1=3 where the blue, plain (red, dashed)
curve shows the standard (modified) behavior. The highlighted
region indicates the period t ∈ ½t1; t2� characterized by a qðtÞ < 0.
The existence of this region is clearly related to the range of the
scale factor given in Eq. (60b).

t

a(t)

t1 t2

FIG. 1. Behavior of the scale factor as a function of time for
w ¼ 1=3 and with the background of Eq. (57) present. The blue
(plain) line illustrates the standard behavior for α ¼ 0 and the red
(dashed) line shows the modified scale factor, which follows from
solving Eq. (62) numerically for ζ ¼ 1; α ¼ 9 × 10−3, and
w ¼ 1=3. The highlighted region indicates a time window of
accelerated expansion. Furthermore, the black (dotted) vertical
line on the left-hand side illustrates the instant of time t1 starting
from which Eq. (58) is satisfied. The vertical line on the right-
hand side shows the instant of time t2 where the modified solution
becomes complex.
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2. Peculiar choice of sij

Finally, let us consider another choice of a purely
spacelike background field sμν given by

sμν ¼ L̃3

r4

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA; ð66Þ

with another length scale L̃ introduced for dimensional
consistency. The latter choice leads to an interesting con-
clusion. Since s ¼ 0, it satisfies the relation of Eq. (53).With
this choice the Friedmann equations are not modified, at all.
Furthermore, Eq. (44) does not provide another constraint
for the scale factor. Therefore, a new source violating the
SEC is definitely required to drive accelerated expansion.
This finding teaches us that certain background fields such
as Eq. (66) may be present without having any impact on
cosmological time evolution. They are deemed to be
unobservable from a cosmological point of view.

V. GENERAL MODIFIED
FRIEDMANN EQUATIONS

Insights gained in the recent paper [82] suggest that
Eq. (8) is not necessary to establish a consistent dynamics

of the theory based on Eq. (2). Thus, it is worthwhile to
understand the cosmological impact of Eq. (2) without
these conditions taken into account. By doing so, the
background fields proper are no longer static. The ADM
decomposition then tells us that the background fields
evolve as a function of time. So this scenario is more
generic than that studied previously.
However, this does not mean that a background field is

affected by the time evolution of the Universe. After all,
since we work in the setting of explicit diffeomorphism
violation, an SME background field is a predetermined
object that is put into the theory by hand and neither has its
own dynamics nor exhibits fluctuations. The presence of a
tensor field is, in principle, capable of having an impact on
the scale factor of the FLRWmetric, as shown in Sec. IV C.
Based on the ADM decomposition, each sheet of the
foliation then scales differently compared to standard
cosmology. The diffeomorphism-violating tensor field
proper remains unaffected by the scaling, though, as it
lives in the tangent bundle of the spacetime manifold.
Now, the first modified Friedmann equation follows

from computing the functional derivative of Eq. (10) for N
without incorporating Eq. (8). The second is obtained
from the purely spacelike part of the modified Einstein
equations, as described in Sec. III. They are cast into
the form

H2 ¼ 1

3ð1 − u − snn þ s=3Þ
�
ρþ Λ − 3

�
1 − uþ s

3

�
k
a2

−DiDiu −
1

2
DiDisnn þ 1

2
DiDjsij

þ3H

�
_uþ _snn

2
−
1

6
_sijhij

��
; ð67aÞ

_H þH2 ¼ −
1

6ð1 − u − snn þ s=3Þ
�
ρþ 3P − 2Λþ 2s

�
k
a2

þH2

�
þDiDiu −

1

2
DiDisnn −

1

2
DiDis

−3
�
H

�
_uþ 3

2
_snn −

1

2
_sijhij

�
þ üþ ̈snn

2
−
1

6
̈sijhij

��
: ð67bÞ

The modified Friedmann equations for static background
fields stated in Eqs. (21) and (30), respectively, are
recovered for _u ¼ _snn ¼ _sij ¼ 0, as expected. In the
scenario of time-dependent backgrounds, there are addi-
tional contributions that involve products of the Hubble
parameter with time derivatives of background fields. Note
that Eq. (67b) even contains second-order time derivatives
of the backgrounds.
Furthermore, there is an additional constraint, which is

inferred from the functional derivative of Eq. (10) for Nk:

0 ¼ Di

�
Hð4þ 2u − snn − sÞhik þ 2Hsik

− 2hik
�
_uþ _snn

2

�
þ _sik

�
: ð68Þ

The latter is automatically satisfied for vanishing controlling
coefficients as was the case for Eq. (22) derived earlier for
static backgrounds. In what follows, we will again discard
the cosmological constantΛ aswell as the scalar curvature k.

A. Scalar background u

We start by considering the scalar background field u
and set snn ¼ sij ¼ 0. Since Lmu is now taken to be
different from zero, the modified Friedmann equations
deduced from Eqs. (67a), (67b) read

H2 ¼ 1

3ð1 − uÞ ðρ −DiDiuþ 3H _uÞ; ð69aÞ

_HþH2¼−
1

6ð1−uÞ½ρþ3PþDiDiu−3ðH _uþ üÞ�; ð69bÞ
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where both involve spatial as well as time derivatives of u.
We must also bear in mind the additional constraint from
Eq. (68):

0 ¼ Di½Hð4þ 2uÞhik − 2hik _u�: ð70Þ

The latter implies

0 ¼ DiðHu − _uÞ: ð71Þ

Moreover, the background field u must obey the condition
of Eq. (37), i.e.,

∇αu ¼ ∂αu ¼ 0: ð72Þ

This requirement is only satisfied for a constant u. As we
already found in Sec. IVA, a constant u can be eliminated
by rescaling the matter density and pressure. Hence, novel,
interesting cosmological scenarios based on a nonzero
background field u are not gained from discarding
Lmu ¼ 0.

B. Purely timelike background snn

The next step is to study the second scalar background
field snn with u ¼ sij ¼ 0. In this case, Eqs. (67a), (67b)
imply

H2¼ 1

3ð1−snnÞ
�
ρ−

1

2
DiDisnnþ3

2
H_snn

�
; ð73aÞ

_H þH2 ¼ −
1

6ð1 − snnÞ
�
ρþ 3P −

1

2
DiDisnn

−
3

2
ð3H_snn þ ̈snnÞ

�
: ð73bÞ

The constraint of Eq. (68) provides

0 ¼ Di½Hð4 − snnÞhik − hik _snn�: ð74Þ

Besides, the no-go restrictions of Eq. (42) applied to this
particular case require us to compute

∇αðTRsÞα0 ¼ 1

2a2

�
6snn

�
2_a äþa

d3a
dt3

�
þ 9aä_snn

�
; ð75aÞ

∇αðTRsÞα1 ¼ −
3ä
2a3

∂rsnn; ð75bÞ

∇αðTRsÞα2 ¼ −
3ä

2a3r2
∂θsnn; ð75cÞ

∇αðTRsÞα3 ¼ −
3ä

2a3r2 sin2 θ
∂ϕsnn: ð75dÞ

The condition ∇αðTRsÞαβ ¼ 0 for β ¼ 1, 2, 3 implies that
snn can only depend on time. For a constant snn, we recover
the outcome of Sec. IV B, as expected. Equation (75a)
further leads to

1

2a2

�
6snn

�
2_a äþa

d3a
dt3

�
þ 9aä_snn

�
¼ 0; ð76Þ

which can be solved for the time derivative of the back-
ground field:

_snn ¼ −
2

3

�
1

ä
d3a
dt3

þ 2H

�
snn: ð77Þ

Aside from that, the extra constraint of Eq. (74) provides
0 ¼ ∂iðHsnn þ _snnÞ. As a consequence, Hsnn þ _snn ¼ f
with a time-dependent function f ¼ fðtÞ. Then the first-
order time derivative of the background field amounts to

_snn ¼ f −Hsnn: ð78Þ

By comparing Eq. (77) with Eq. (78), we observe that
f ¼ 0 must be set to eliminate snn from both sides of the
equation. So,

H ¼ 2

3

�
1

ä
d3a
dt3

þ 2H

�
; ð79Þ

which leads to the Hubble parameter:

H ¼ −
2

ä
d3a
dt3

: ð80Þ

The latter has a solution of the form aðtÞ ¼ ðt=t0Þ4=3 where
t0 is an initial time. With this result at our disposal, we have

Hsnn þ _snn ¼ 0; ð81Þ

which allows us to determine snn ¼ snnðtÞ ¼ 1=aðtÞ. Note
that the previous information has solely been obtained from
the no-go conditions and the constraint of Eq. (74).
Having computed the solutions for the scale factor aðtÞ

and the background field snn, we can devote ourselves to
the modified Friedmann equations, which have not been
employed so far. Taking into account that snn does not
depend on the spatial coordinates, the modified Friedmann
equations (73) read

H2 ¼ 1

3ð1 − snnÞ
�
ρþ 3

2
H_snn

�
; ð82aÞ

_H þH2 ¼ −
1

6ð1 − snnÞ
�
ρþ 3P −

9

2
H_snn −

3

2
̈snn

�
:

ð82bÞ
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At this point, a comparison of the latter to Eqs. (64), (65) of
Ref. [80] is worthwhile. A reasonable starting point is
established by subtracting 1=2 of their Eq. (64) from
Eq. (65), which provides the combination _H þH2 on
the left-hand side. Then, it is intriguing to observe that
their modified Friedmann equations almost correspond to
ours in the snn sector except for the s00ä=a term in their
Eq. (64), which does not have a counterpart in our
Eq. (82a). However, one must take into account that the
authors of Ref. [80] study a modified-gravity theory where
Rμν is contracted with the lower-index background field
sμν. Furthermore, they employ a different methodology to
derive their modified Friedmann equations.
Now, by using Eq. (81) and its derivative in the

Friedmann equations, a little algebra allows them to be
recast as follows:

H2 ¼ 2

3ð2 − snnÞ ρ; ð83aÞ

_H þH2 ¼ −
2

3ð4 − 3snnÞ
�
ρþ 3Pþ 3

2
H2snn

�
: ð83bÞ

In Eq. (83a) we employ Eq. (24), which expresses the
matter density in terms of the scale factor. Also, snn ¼
snnðtÞ ¼ 1=aðtÞ with aðtÞ ¼ ðt=t0Þ4=3 such that

2

�
t
t0

�
2

−
�
t
t0

�2
3

−
3

8
ρ0a

3ð1þwÞ
0 t20

�
t
t0

�
−4w

¼ 0: ð84Þ

The latter algebraic equation is only satisfied for particular
instants of time. Our conclusion is that the modified
Friedmann equations for snn are incompatible.

C. Tensor-valued purely spacelike background sij

Finally, we study the scenario of a nonzero tensor-valued
background field sij and set u ¼ snn ¼ 0. Here, the
modified Friedmann equations obtained from Eqs. (67a),
(67b) read

H2¼ 1

3ð1þs=3Þ
�
ρþ1

2
DiDjsij−

H
2
_sijhij

�
; ð85aÞ

_HþH2¼−
1

6ð1þs=3Þ
�
ρþ3P−

1

2
DiDisþ2sH2

þ1

2
ð3H_sijhijþ s̈ijhijÞ

�
: ð85bÞ

The constraint following from Eq. (68) amounts to

0 ¼ Di½Hð4 − sÞhik þ 2Hsik þ _sik�: ð86Þ

Solving these equations together with the no-go results of
Eq. (44) has turned out to be highly challenging. Therefore,

we leave it open as an interesting task to be tackled in future
papers to come.

VI. CONCLUSIONS AND OUTLOOK

In this work we analyzed modified cosmologies based on
particular nondynamical scalar- and tensor-valued back-
ground fields of the gravitational SME [64–68]. These
backgrounds give rise to diffeomorphism violation, which
we expected to have far-reaching consequences on the time
evolution of the Universe. Our primary interest was to
answer the question whether or not field configurations
exist that are able to drive an accelerated expansion of the
Universe with only standard matter and radiation present.
The completely obscure nature of Dark Energy, which in
the ΛCDM model is taken as the driving force behind the
current accelerated expansion of the Universe, largely
served as an incentive to do so. In addition, the results
were expected to be equally applicable to inflation.
We focused on two background fields that are known as

u and sμν in the SME literature. The analysis was based on
the modified Einstein equations as well as the ADM-
decomposed action of the gravitational SME, which had
been developed for these backgrounds in earlier works
[81,82]. A decomposition of sμν into a purely timelike
sector governed by a single coefficient snn and a purely
spacelike sector parametrized by six coefficients sij turned
out to be convenient. In the first part of the investigation,
each background field was assumed to be independent of
time. Using this additional restriction simplified the com-
putations and was a first step to understand the implications
of the backgrounds u, snn, and sij on cosmology. However,
this restriction was entirely dropped in the second part of
the paper, introducing further technical complications.
Moreover, we took into consideration additional no-

go conditions that emerge in the presence of non-
dynamical background fields in modified-gravity theories
[64,68,99,100]. We then derived the first and second modi-
fied Friedmann equations for each of the sectors governed by
u, snn, and sij. On the one hand, the scalar background field u
was found to act as a mere scaling factor that can be absorbed
into a redefined density and pressure of standard matter.
Therefore, it does not imply a nonstandard regime of
accelerated expansionof theUniverse. Furthermore, although
we assert that snn is not a simple scaling factor, it does also not
result in a stage of accelerated expansion.
On the other hand, the time evolution of the Universe

based on a nonzero sij was found to exhibit more interesting
behaviors. We studied different explicit choices of this
background. One choice implies an accelerated expansion
without exotic matter or radiation present, but only within a
very restricted time frame. At a certain instant of time, the
scale factor becomes complex and loses its physical inter-
pretation, which is indicative of a breakdown of the effective
model under study. Finding other background field configu-
rations that lead to the desired behavior turned out to be
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intricate. Some configurations were encountered to repro-
duce the standard evolution equations, i.e., they are not
expected to be observable in cosmology, at all.
The outcomes of this paper demonstrate the challenge of

finding suitable choices for nontrivial background fields u
and sμν that satisfy all the necessary requirements of
Eqs. (8), (37), (44) and provide interesting cosmological
behaviors. Unfortunately, as was demonstrated in Sec. V,
the situation does not change much by dropping Eq. (8),
i.e., by allowing for time-dependent background fields.
There is still too little freedom in choosing background
fields u and sμν such that an accelerated expansion can
occur over long periods without exotic forms of matter and
radiation. To the best of our knowledge, together with
Refs. [80,83,84], our paper is one of the first to apply the
gravitational SME to cosmology. The methods developed
and findings made shall serve as a precursor for further
research to be carried out in this interesting subfield.
One possibility of disregarding the very restrictive no-go

results of Eqs. (37), (44) would be to elaborate modified-
gravity theories based on the gravitational SME with
diffeomorphism invariance violated spontaneously such
as in bumblebee-type models [102–115]. By doing so,
conflicts with the Bianchi identities of Riemannian geom-
etry are neatly avoided. Other complications may then
arise by having to choose suitable potentials for the
background fields as well as having to take fluctuations
of the backgrounds into account. The latter transform
in a nontrivial way under diffeomorphisms, i.e., they are
indispensable to restore diffeomorphism symmetry of the
theory.
Another intriguing question to answer could be

whether the method of functional derivatives of the
ADM-decomposed action provides the same modified
Friedmann equations as the Hamiltonian or covariant
approaches. Based on the findings of Ref. [81], this is
definitely expected to be the case for background fields that
obey Eq. (8). According to Ref. [82], the Hamiltonian
approach is consistent with the covariant formalism even
when dropping Eq. (8). However, what can be said about
the technique that relies on the functional derivatives of the
action is open for investigation.
Finally, more interesting cosmological solutions could

possibly also be encountered by deriving a set of modified
Friedmann equations based on a perturbed FLRW metric.
This approach will be more challenging from a technical
viewpoint, but it is a natural further step in studying the
time evolution of the Universe based on the gravitational
SME. These lines of research may provide a worthwhile
future continuation of the current project.
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APPENDIX: ALTERNATIVE
EVOLUTION EQUATIONS

Here we intend to derive another set of equations from
the first modified Friedmann equation by following the
procedure often employed in GR. First of all, we will focus
on time-independent background fields. By differentiating
Eq. (21) for the time variable, using Eq. (23), and inserting
the first Friedmann equation again, we arrive at an alter-
native modification of the second Friedmann equation of
GR. There are two possibilities of putting the latter on
paper. The first is to have it depend on the scalar curvature k
explicitly. In the second form, k is eliminated via the first
Friedmann equation of Eq. (21):

k
a2

¼ 1

ϒ

�
ρ

3
þ1

6
ðDiDjsij−DiDisnn−2DiDiuÞþΛ

3
−ΞH2

�
:

ðA1Þ

The two equivalent forms are then given by

_HþH2 ≈−
1

6Ξ

��
1þ 2s

3Ξ

�
ρþ 3P−

2

Ξ
ð1− u− snnÞΛ

−
�
1−

s
3ϒ

�
1þ snn

Ξ

��

× ðDiDjsij −DiDisnn − 2DiDiuÞ− 2ssnn

Ξ
k
a2

�
;

ðA2aÞ

and

_H þH2 ≈ −
1

6Ξ

��
1þ 2s

3ϒ

�
ϱþ 3P − 2Λ

−
�
1 −

s
3ϒ

�
ðDiDjsij −DiDisnn − 2DiDiuÞ

�

−
s

3Ξϒ

�
snnH2 þ Λ

3

�
; ðA2bÞ

respectively. Here we employed the symbol ≈, which
stands for “weakly equal to zero” [58] in this context, as
the treatment and interpretation of the previous relation-
ships require special care. Since Eqs. (A2a), (A2b) are
deduced from the first modified Friedmann equation, which
is a constraint, the latter equations are only valid whenever
the original constraint is satisfied.
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The number of terms in Eq. (A2a) is larger compared to
Eq. (A2b).However, the right-handsideofEq. (A2b)contains
the Hubble parameter being not the case in Eq. (A2a). By
comparing the latter to Eq. (30), vast differences between

these equations are evident. Note that Eq. (30) is linear in the
background fields, whereas Eqs. (A2b), (A2b) are not.
Allowing for time-dependent background fields

leads to

_H þH2 ≈ −
1

6Ξ

��
1þ

_ϒ
Hϒ

�
ðρþ ΛÞ þ 3ðP − ΛÞ −

�
1 −

_ϒ
2Hϒ

�
ðDiDjsij −DiDisnn − 2DiDiuÞ

−
1

2H
ðDiDj _sij −DiDi _snn − 2DiDi _uÞ þ 2ssnn

H2

ϒ
þ

_H
2H

½_sijhij − 3ð _uþ _snnÞ�

þ 3
H
ϒ

�
ð2 − 2uþ snnÞ _uþ

�
2 − 2uþ s

3

�
_snn

�

þ 1

ϒ
_sijhij

�
−
1

6
_sklhkl þH

�
2 − 2uþ snn þ s

3

�
þ 3

2

�
_uþ _snn

3

��

þ 1

2
̈sijhij −

3

2

�
_u
ϒ
ð2_uþ _snnÞ þ 2üþ ̈snn

��
: ðA3Þ

Here we also quickly observe that Eq. (A3) strongly
differs from Eq. (67b), although each reproduces the
second Friedmann equation of GR for vanishing control-
ling coefficients u; snn; sij. Furthermore, Eq. (A2b) is
reproduced from Eq. (A3) when the background field

coefficients are assumed to be static. A more sophisticated
understanding of Eqs. (A2a), (A2b), and (A3) requires an
elaborate study of the constraint structure of the theory
defined by Eq. (2) as well as the time evolution of
constraints, which is beyond the scope of this work.
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