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Interacting dark-energy–dark-matter models have been widely analyzed in the literature in an attempt to
find traces of new physics beyond the usual cosmological (ΛCDM) models. Such a coupling between both
dark components is usually introduced in a phenomenological way through a flux in the continuity
equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a
conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently
does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here
we analyze how the usual cosmological singularities of the standard matter frame are seen from the
dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no
singularities but a non beginning, non ending universe. By considering two simple phenomenological
models we show that such a type of coupling can fit observational data as well as the usual ΛCDM model.

DOI: 10.1103/PhysRevD.106.023523

I. INTRODUCTION

The understanding of space-time singularities continues
to be one of the major challenges in theoretical gravitational
physics. The theorems developed by Penrose and Hawking
(among others) over the 1970s provided a formal and clear
criterion to determine the occurrence of a space-time
singularity by making use of the notion of geodesic
incompleteness [1]. Working under very broad (and rea-
sonable) assumptions on the structure of space-time, these
theorems prove that singularities in the fabric of space-time
are ubiquitous in general relativity (for a pedagogical
discussion see [2]), from the ones hidden behind the event
horizon of black holes to the initial cosmological (big bang)
singularity of the concordance (ΛCDM) model [3]. After
the finding of the cosmological late-time acceleration [4],
other singularities were added to this pool, which may
occur under specific models of dark energy, particularly
when the latter violates some of the energy conditions
[5–7]. Among these new singularities, the most worrisome

one is the so-called big rip [8], in which the divergence of
the scale factor drives all geodesics to end at future finite
cosmic time as measured by a comoving observer in a
Friedmann-Lemaître-Robertson-Walker (FLRW) universe.
Other future singularities are not geodesically incomplete
but can still drive some other magnitudes (such as the
Hubble factor, their derivatives, or the energy density and
the pressure of the matter fields) to diverge at a future time.
This has led the community to establish a general classi-
fication of such singularities according to the degree of
harm (or lack of it) inflicted upon every binding structure
that can be caused for instance, by the occurrence of
arbitrarily large tidal forces [9].
It has been shown that the development of a future

singularity might be in agreement with the observational
data, since the corresponding fits can be statistically as good
as more standard cosmological models [10]. Nonetheless, as
opposed to the ordinary big bang singularity that occurs
under very broad conditions and is intrinsic to any space-
time with an ordinary content of matter, the big rip
singularity requires the violation of the null energy con-
dition, ρþ p > 0, the so-called phantom fluid. The reali-
zation of such equation of state can be easily achieved in
several ways, through noncanonical scalar fields [11–13],
modified gravities [14], or bulk viscosity [15], among others.
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In addition, this singularity might arise in models of
interacting dark energy and dark matter, where the coupling
between both dark components is responsible in inducing the
singularity [7].
Interacting dark-energy–dark-matter models have been

widely analyzed in the literature on the grounds of
exploring new features to discriminate among the many
existing cosmological models (for a review see [16]). The
usual way to introduce such a coupling between dark
components relies on more phenomenological assumptions
than theoretical ones, just by considering a varying function
usually dubbed as Q, that characterizes the flux of energy
between both dark components [17]. As a consequence, the
conservation of the energy-momentum tensor does not hold
separately for each component but for the pair together. A
different approach is to introduce the coupling at the level
of the action and then work out the corresponding field
equations [18–21]. In the simplest case the interaction is
mediated by a function of the scalar field (dark energy) in
front of the dark-matter Lagrangian [18], while in non-
minimally coupled scalar field models the interaction
naturally arises under a conformal transformation [19,20].
As a generalization of the latter, some models assume a
dark-matter Lagrangian coupled to a metric tensor that is
related to the space-time metric by conformal and disformal
transformations that depend on the dark-energy (scalar)
field [22–28]. Such types of models have been widely
analyzed in the literature as they can provide a wide range
of parametrizations of different dark-energy models [22]
while being able to satisfy local and cosmological con-
straints [23–25]. Despite the fact that disformal couplings
were originally introduced for dark matter, these can be
easily extended to multiple fluids [26], and may even
induce changes in the fine-structure constant when the
electromagnetic field is incorporated to the model [27].
Moreover, such models can be constructed in such a way to
mimic the ΛCDM model so as to satisfy current observa-
tional data [28]. An important point here to be noticed is
that such types of couplings induce a fifth force on dark
matter that makes it not follow spacetime geodesics in
comparison to ordinary matter, therefore breaking up the
equivalence principle, a question that has been widely
studied in the literature within different dark-matter frame-
works [29].
The present paper is devoted to the occurrence of future

singularities in interacting dark-energy–dark-matter models
involving conformal and disformal transformations. The
fact that in such models the dark-matter Lagrangian is
coupled to a metric tensor that is different from the metric
seen by ordinary matter sources (and dark energy alike),
implies that the former does not follow geodesics of the
latter, being instead affected by a sort of fifth force that is
the result of the interaction between the two dark compo-
nents. However, since such a force just affects the dark-
matter component, this leaves our observational constraints

untouched, imposing instead some limitations on the free
parameters of the model due to the dynamics of the
cosmological expansion, particularly on the scalar potential
as well as on the conformal/disformal couplings, similarly
to any cosmological model [25]. These features raise
immediately the question on the issue of geodesic com-
pleteness in these models, i.e., when a space-time singu-
larity occurs (and in which frame) and what does it entail
for their observational viability. The main aim of the
present paper is therefore to consider the two most
worrying types of cosmological singularities (the big bang
and big rip, respectively) as seen from the frame of the
ordinary observer (which therefore suffer from geodesic
incompleteness), and to show that by a suitable conformal
transformation such singularities can go away in the dark-
matter frame, i.e., the latter observers see a perfectly regular
space-time. We dub this duality of viewpoints as singular
versus eternal observers. Furthermore, by considering two
simple phenomenological models we show that such an
idea can be promoted as a viable cosmological model by
providing a fitting of its parameters according to
Supernovae IA and BAO data that render them as com-
patible with current data as the ΛCDM model.
The paper is organized as follows: in Sec. II we review

the formalism of conformal and disformal couplings in
interacting dark-energy–dark-matter models. Section III is
devoted to establish a procedure to construct cosmological
solutions starting from a particular theoretical model. In
Sec. IV, the analysis that leads to singular and regular
expansions depending on the observer is performed and
some analytical models are reconstructed. Then, in Sec. V
we consider two simple phenomenological models that
can be reproduced by the interacting models, which are
subsequently compared with observational data in Sec. VI.
Finally, Sec. VII gathers the conclusions of the paper.

II. CONFORMAL AND DISFORMAL COUPLINGS

Let us consider the following gravitational action
sourced by the corresponding fields contained in our
hypothetical universe:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
∂μϕ∂

μϕ − VðϕÞ þ LSMðg;ψmÞ
�

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p
L̃DMðg̃; ψ̃mÞ; ð1Þ

where κ2 ¼ 8πG is Newton’s constant in suitable units,
LSM refers to the Lagrangian for Standard Model (SM)
fields ψm coupled to the metric gμν, whereas L̃DM is the
Lagrangian for the dark-matter fields ψ̃m coupled to
another metric g̃μν. The scalar field ϕ with its kinetic
and potential terms will play the role of dark energy. Since
in these actions SM particles and dark matter are coupled to
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different metrics, they will also follow different sets of
geodesics, in such a way that the cosmological evolution
might be (and will be) different as observed from each
frame. Interacting dark-energy–dark-matter models based
on the action (1) assume that both metrics are related by a
disformal transformation, which introduces a coupling term
among the scalar field and dark matter as [22–28]

g̃μν ¼ CðϕÞgμν þDðϕÞ∂μϕ∂νϕ; ð2Þ

where the functions CðϕÞ and DðϕÞ realize the conformal
and disformal parts of the transformation, respectively.
The field equations for the action (1) are obtained by

varying the action with respect to the metric gμν, leading to

Rμν −
1

2
gμνR ¼ κ2ðTSM

μν þ Tϕ
μν þ TDM

μν Þ; ð3Þ

where the corresponding energy-momentum tensors for
each set of matter fields are defined as follows:

TSM
μν ¼ −2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LSMÞ
δgμν

;

Tϕ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂σϕ∂

σϕþ VðϕÞ
�
;

TDM
μν ¼ −2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−g̃
p

L̃SMÞ
δgμν

; ð4Þ

for the SM particles, dark energy, and dark matter,
respectively. On the other hand, variation with respect to
the scalar field ϕ provides the equation:

□ϕ −
dVðϕÞ
dϕ

¼ −Q; ð5Þ

where Q accounts for the interacting term, given by

Q ¼ C0ðϕÞ
2CðϕÞ g

μνTDM
μν þ D0ðϕÞ

2CðϕÞT
DMμν

∂μϕ∂νϕ

−∇μ

�
DðϕÞ
CðϕÞ T

DMμν∇νϕ

�
: ð6Þ

By computing the divergence of the energy-momentum
tensor for SM and dark-matter particles

∇μTSM
μν ¼ 0; ∇μTDM

μν ¼ Q∇νϕ; ð7Þ

one finds the energy conservation of the SM particles and
the statement on the transfer of energy between the dark-
matter and the (dark-energy) scalar field depending on the
Q-term defined in Eq. (6). Combined with the scalar field
equation (5), these equations ensure the divergence of the
right-hand side of the field equations (3) to be null and,

consequently, the energy conservation of the full matter
sources (SMþ dark energyþ dark matter).
For the sake of the cosmological equations, let us

consider a flat FLRW metric:

ds2 ¼ −dt2 þ a2ðtÞ
X3
i¼1

ðdxiÞ2; ð8Þ

where aðtÞ is the usual scale factor. As for the energy-
momentum tensor for the SM particles and dark matter, we
take it to be described in both cases by the one of a perfect
fluid, i.e.:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð9Þ
where ρ and p account for the energy density and pressure,
respectively. The corresponding FLRW equations for the
metric (8) with this fluid are easily obtained as (here a dot
represents a derivative with respect to time)

H2 ¼
�
_a
a

�
2

¼ κ2

3
ðρb þ ρrad þ ρDM þ ρϕÞ; ð10Þ

_H ¼ −
κ2

2
ðρb þ ρrad þ ρDM þ prad þ ρϕ þ pϕÞ; ð11Þ

where we have spelled out fρb; ρrad; ρDMg as the energy
density for baryons, radiation, and dark matter, respec-
tively. Note that we are assuming here a null pressure for
both baryons, pb ¼ 0, and dark matter, pDM ¼ 0. From (7),
the continuity equations for these components yield the
result

_ρrad þ 3Hðρrad þ pradÞ ¼ 0;

_ρb þ 3Hρb ¼ 0;

_ρDM þ 3HρDM ¼ −Q _ϕ: ð12Þ

As for the scalar field, its energy density and pressure
appearing in Eqs. (10) and (11) are given by

ρϕ ¼ 1

2
_ϕþ VðϕÞ; pϕ ¼ 1

2
_ϕ − VðϕÞ; ð13Þ

respectively, while its equation of motion (5) reads, in the
FLRW background,

ϕ̈þ 3H _ϕþ dVðϕÞ
dϕ

¼ Q: ð14Þ

The set of equations given by (10), (11), (12), and (14)
describe completely the cosmological evolution for a
particular form of the scalar potential and the disformal
transformation (2). Actually the scalar field equation (14) is
not independent with respect to the others and can be used
instead as an auxiliary equation. Any comoving observer as
described by the FLRWmetric (8) would measure a Hubble
expansion rate H governed by the above set of equations,
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whose proper time coincides with the time coordinate t
while their geodesics are expressed in terms of the
Christoffel symbols given by the metric (8). However,
for a dark-matter “observer,” i.e., in the frame correspond-
ing to dark matter, the expansion rate as measured by such a
hypothetical observer will differ with respect to the other
frame. By assuming the following metric in such a frame,

ds̃2 ¼ g̃μνdxμdxν ¼ −dt̃2 þ ã2ðt̃Þ
X3
i¼1

ðdxiÞ2; ð15Þ

and using the disformal transformation (2), the time
coordinates and scale factors in both frames are related
as follows:

dt̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C −D _ϕ

q
dt; ãðt̃Þ ¼

ffiffiffiffi
C

p
aðtÞ: ð16Þ

Hence, theexpansionrateasmeasuredfromeachframemight
look different, depending on the choice of the disformal
transformation (2). This will become very relevant for some
cases analyzed along this paper, as shown below.

III. RECONSTRUCTING
COSMOLOGICAL SOLUTIONS

In this section we shall describe a simple way to
reconstruct the corresponding gravitational action (1) and
the disformal transformation (2) for a given Hubble
solution, to be put to good use later. The scalar field
can be redefined in such a way that the kinetic term in the
action (1) is changed in the following way [12,13]:

∂μϕ∂
μϕ → ωðϕÞ∂μϕ∂μϕ: ð17Þ

Under this transformation, the scalar field equation (14)
becomes

ωðϕÞϕ̈þ 3HωðϕÞ _ϕþ 1

2
ω0ðϕÞ _ϕ2 þ V 0ðϕÞ ¼ Q̃; ð18Þ

where Q̃≡ ffiffiffiffi
ω

p
Q. In this way, we can assume a particular

ansatz for the scalar field ϕ and, consequently, the
dynamics of the field will be encoded in the kinetic term
ωðϕÞ. The interacting Q-term in Eq. (6) is now given by

Q ¼ Tμν
DM

Cð1þ D
Cω∂σϕ∂

σϕÞ

×

�
1

2
ffiffiffiffi
ω

p C0gμν þ
�
−

ffiffiffiffi
ω

p
2

D0 þ ffiffiffiffi
ω

p DC0

C
−

ω0

2
ffiffiffiffi
ω

p D

�

× ∂μϕ∂νϕ −
ffiffiffiffi
ω

p
D∇μ∇νϕ

�
: ð19Þ

Note that from the two first continuity equations in (12) one
easily obtains

ρb ¼ ρb0a−3; ρr ¼ ρr0a−4; ð20Þ

for baryons and radiation, respectively, with ρb0 and ρr0 its
energy densities at the present time. Similarly, the con-
tinuity equation for dark matter in (12) yields:

_ρDM þ 3HρDM ¼ −Q̃ _ϕ : ð21Þ
As for the disformal transformation (2) it now reads as

g̃μν ¼ CðϕÞgμν þ ωðϕÞDðϕÞ∂μϕ∂νϕ
¼ CðϕÞgμν þ D̃ðϕÞ∂μϕ∂νϕ; ð22Þ

where the disformal function is redefined as D̃ðϕÞ ¼
ωðϕÞDðϕÞ, such that the interacting term Q given in (19)
is rewritten in the following way:

Q̃≡ ffiffiffiffi
ω

p
Q ¼ Tμν

DM

Cð1þ D̃
C ∂σϕ∂

σϕÞ

×

�
1

2
C0gμν þ

�
−
D̃0

2
þ D̃C0

C

�
∂μϕ∂νϕ − D̃∇μ∇νϕ

�
;

ð23Þ
thus effectively removing the factor ω from it.
From now on we shall omit the tildes over D and Q for

the sake of notation. Similarly as in the previous section,
the set of equations given by the FLRW equations (10)
and (11), together with the continuity equations (12) and
(21) form an independent set, while the scalar field
equation (18) can be obtained by combinations of the
set itself. The advantage obtained from the redefinition of
the scalar field (17) is that one can always fix the scalar
field as ϕ ¼ t, so its dynamics is then encoded in the kinetic
term ωðϕÞ, as long as the scalar field is monotonic. By
doing so, the corresponding solution for a given scalar
potential and the conformal/disformal transformation are
easily obtained. The inverse process is also useful for
reconstructing the theoretical model for a given solution
HðtÞ, as shown in some previous works [13]. This way,
given the solution,

H ¼ fðtÞ; ρDM ¼ gðtÞ; ϕ ¼ t; ð24Þ

where by consistency aðtÞ ¼ a0eFðtÞ with F0ðtÞ ¼ fðtÞ, and
we can choose a0 ¼ e−Fðt0Þ to keep aðt0Þ ¼ 1, the follow-
ing scalar potential and kinetic term are obtained:

VðϕÞ¼ 1

κ2
½3f2ðϕÞþf0ðϕÞ�

−
1

2
½gðϕÞþρb0ða0eFðϕÞÞ−3þρr0ða0eFðϕÞÞ−4�; ð25Þ

ωðϕÞ ¼ −
2

κ2
f0ðϕÞ

− ½gðϕÞ þ ρb0ða0eFðϕÞÞ−3 þ ρr0ða0eFðϕÞÞ−4�: ð26Þ
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Let us point out that the conformal and disformal functions
CðϕÞ and DðϕÞ are given by means of the continuity
equation for dark matter (21), and they will be obviously
degenerated. In the next section we shall proceed to
reconstruct some particular solutions containing some usual
cosmological singularities, and the corresponding counter-
part in the dark-matter frame will be obtained and analyzed.

IV. SINGULAR VERSUS REGULAR EXPANSIONS

The occurrence of singularities in the fabric of space-
time seems inherent to gravitation, arising from black holes
to cosmology. The most widely accepted notion to capture
their meaning is that of geodesic completeness, namely,
whether any timelike and null geodesic can be extended to
arbitrarily large values of their corresponding affine param-
eter (to the future and to the past). This is so because the
trajectories of idealized physical observers in the absence of
nongravitational interactions are identified with timelike
geodesics. Such observers should be able to observe and
interact with the universe at all times and, therefore, should
be eternal, i.e., they should not come into existence or be
destroyed at any specific finite (proper) times. Something
similar should happen with null geodesics, which represent
the propagation of information. Since information, classical
or quantum, should never be destroyed, null geodesics
should be defined for all values of their affine parameter.
The incompleteness of null geodesics signals the possibility
of creating or destroying information, while the incom-
pleteness of timelike geodesics indicates the impossibility
of performing physical measurements.
The above notion is ingrained in some theorems for-

mulated in the 1970s to provide a clear mathematical
formulation of the conditions under which a space-timewill
hold geodesically incomplete curves [1]. For the sake of
this paper we shall focus on the analysis of the occurrence
of two types of well-known singularities in cosmology
(for a complete list of cosmological singularities see
Refs. [5–7]), in order to determine how they are seen by
the geodesic observers in the ordinary and dark-matter
frames, respectively. Such singularities correspond to the
following:

(i) ‘Big bang” singularity [3]: For t → t0, a → 0, ρ → ∞
and jpj → ∞.

(ii) “Big rip” singularity [8]: For t → ts, a → ∞, ρ → ∞
and jpj → ∞.

Such two singularities are chosen on the grounds of
corresponding to geodesically incomplete space-times.
This can be proven by studying the geodesic equation

d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ 0; ð27Þ

where the curve γμ ¼ xμðλÞ depends on the affine param-
eter λ and Γμ

αβ are the Christoffel symbols. For a FLRW
spacetime, this yields two sets of equations

d2t
dλ2

þHa2δij
dxi

dλ
dxj

dλ
¼ 0; ð28Þ

d2xi

dλ2
þ 2H

dxi

dλ
dt
dλ

¼ 0 →
d
dλ

�
a2

dxi

dλ

�
¼ 0: ð29Þ

The second set of equations (29) can be easily integrated
to give

dxi

dλ
¼ ki0

a2ðtÞ ; ð30Þ

with ki0 integration constants. This way, the geodesic
equation for the time coordinate (28) can be written as

�
dt
dλ

�
2

¼ jk⃗0j2
a2ðtÞ þ C0; ð31Þ

where C0 is another integration constant. As far as the scale
factor does not diverge or vanishes for a finite time
coordinate, the tangent vector has a regular behavior and
geodesics are complete. This is not the case for the two
types of singularities described above. For the big bang
singularity, the universe meets an incomplete geodesic at a
finite past time in which the scale factor goes to zero, while
the big rip singularity produces the opposite effect, namely,
the scale factor becomes infinite at a finite future time
where geodesics meet their end. In geometric scenarios
with two metrics in which the standard matter is coupled to
one of the frames and the dark matter to the other, like in
our case, the discussion of geodesic completeness in the
two frames becomes particularly relevant, as it could
happen that not both of them need be singular simulta-
neously. Avoiding incompleteness in one frame may still
allow for a consistent combined physical description
despite the apparent limitations of a single frame theory.
Thus, besides the interesting technical characteristics of this
kind of model for model building, they may also bring
interesting conceptual advantages for the physical inter-
pretation of the theory, as shown below.

A. Conformal case

To elaborate our discussion, let us start by assuming a
purely conformal transformation between the two frames,
i.e., DðϕÞ ¼ 0 in (2) and a negligible radiation contribu-
tion. In this case, the interacting term (23) reads

Q ¼ C0

2C
gμνTDM

μν ¼ −
C0

2C
ρDM: ð32Þ

Let us consider the following solution for the Hubble
parameter:

HðtÞ ¼ 2

3t
→ aðtÞ ∝ t2=3: ð33Þ
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This solution iswell known todescribe a pressurelessmatter-
dominated universe with an initial singularity located for
convenience at t ¼ 0. By assuming the following ansatz on
the scalar field and dark-matter energy density,

ϕ ¼ t; ρDM ¼ ρDM0

�
t0
t

�
3

∝ a−9=2; ð34Þ

the corresponding kinetic term and scalar potential are
obtained from (25) and (26) as

ωðϕÞ ¼ 4 − 3κ2t20ρ0m
3κ2

1

ϕ2
− ρDM0

�
t0
ϕ

�
3

;

VðϕÞ ¼ 1

2
ωðϕÞ ¼ 4 − 3κ2t20ρ0m

6κ2
1

ϕ2
−
ρDM0

2

�
t0
ϕ

�
3

: ð35Þ

As can be easily seen, this leads to a pressureless scalar field,
pϕ ¼ 0, nothing surprising in our universe dominated by a
pressureless fluid. Then, the corresponding conformal trans-
formation CðϕÞ is obtained through the continuity equation
for dark matter (21) as

CðϕÞ ¼ 1

9H̃2
0

1

ϕ2
; ð36Þ

where H̃0 is an integration constant intentionally written
in such a way. Using this conformal function, the corre-
sponding time coordinate and scale factor as measured by
an observer at rest in the frame of dark matter (16) are
obtained as

t̃ ¼ t̃0 þ
1

3H̃0

log t; ãðt̃Þ ¼ ã0e−H̃0ðt̃−t̃0Þ; ð37Þ

where t̃0 is an integration constant. Then, the Hubble rate as
measured from such an observer remains constant (and
negative), i.e.,

H̃ðt̃Þ ¼ −H̃0: ð38Þ

Hence, the time in which the big bang singularity occurs in
the ordinary matter frame, t ¼ 0, corresponds in the dark-
matter frame to t̃ → −∞ and, moreover, the scalar factor
remains finite and does not vanish in such a frame, while its
geodesics (31) remain extensible to arbitrarily large times.
Therefore, what for an observer in the SM frame is a
singularity (i.e., a geodesically incomplete universe), for
an observer in the dark-matter frame the universe is eternal
and contracting.
A second example corresponds to the future singularity

of the big rip. Let us assume the following ansatz for the
Hubble rate in this case:

HðtÞ ¼ 1

ts − t
→ aðtÞ ∝ 1

ts − t
: ð39Þ

This solution describes a “phantom”-dominated universe
with a big rip occurring at t ¼ ts. As in the previous case,
we assume a particular solution for the scalar field and the
dark-matter fluid given by

ϕ ¼ t; ρDM ¼ ρDM0

�
ts − t
ts − t0

�
2

∝ a−2: ð40Þ

Here t0 is chosen such that the dark-matter density
measured at t ¼ t0 is given by ρDM0. Hence, by the
expressions (25) and (26) the kinetic term and potential
for the scalar field are obtained as

ωðϕÞ¼−4
κ2

1

ðts−ϕÞ2−
�
ρm0

�
ts−ϕ

ts− t0

�
3

þρDM0

�
ts−ϕ

ts− t0

�
2
�
;

VðϕÞ¼−2
κ2

1

ðts−ϕÞ2−
1

2

�
ρm0

�
ts−ϕ

ts− t0

�
3

þρDM0

�
ts−ϕ

ts− t0

�
2
�
;

ð41Þ

respectively, while the interacting term yields

Q ¼ −
1

ts − ϕ
ρDM; ð42Þ

and, consequently, the conformal transformation is
given by

CðϕÞ ¼ 4

H̃2
0

1

ðts − ϕÞ2 ; ð43Þ

where H̃0 is an integration constant written in this way as in
the previous case since it corresponds to the value of the
Hubble parameter as measured from the dark-matter frame.
Hence, the corresponding time and scale factor as measured
in the dark-matter frame (16) are

t̃ ¼ t̃0 −
2

H̃0

logðts − tÞ; ãðt̃Þ ¼ ã0eH̃0ðt̃−t̃0Þ: ð44Þ

Finally the Hubble parameter in the dark-matter frame
yields

H̃ðt̃Þ ¼ H̃0: ð45Þ

As seen by inspection of (44), the Rip time in the ordinary
frame, t ¼ ts, corresponds to t̃ → ∞ in the dark-matter
frame. As in the previous case, an observer in such a frame
does not notice any singularity in its frame but a universe
that expands exponentially as described by the Hubble
parameter (45). Actually its proper time covers the full
infinite range of its comoving time,−∞ < t̃ < ∞, such that
the universe as seen from such frame is eternal and the
geodesics are completely regular.
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B. Disformal coupling

Let us now extend the above analysis to the general case,
where the disformal function DðϕÞ is nonvanishing. Note
that in this case, the additional function in the relation
among metrics implies an extra freedom when constructing
the corresponding model that might lead to interesting
consequences, as shown below. For a generic Hubble rate
given in the ordinary SM frame, the corresponding one as
seen from the DM frame is easily obtained through the
relations (16), leading to

H̃ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
C −D

p
�
H þ C0

C

�
: ð46Þ

We shall consider the same cases as above, but now we
assume a particular ansatz for the conformal/disformal
coupling. By assuming the Hubble parameter (33),
H ¼ 2=3t and ϕ ¼ t, we consider the following ansatze
on CðϕÞ and DðϕÞ:

CðϕÞ ¼ C0ϕ
m; DðϕÞ ¼ C0ϕ

m −D2
0

1

ϕ2
; ð47Þ

where fC0; D0; mg are constants. Then, the relations
among the time coordinates for both frames and the
corresponding scale factors are

t̃ ¼ t̃0 þD0 log t; ãðt̃Þ ¼ ã0eH̃0ðt̃−t̃0Þ; ð48Þ

where H̃0 ¼ 3mþ4
6D0

. Hence, as in the conformal case, the
Hubble parameter might turn out constant by assuming the
appropriate conformal/disformal transformation (47).
Moreover, the Q-interacting term (23) yields

Q ¼ −
D2

0ð1þmÞ
ϕ3

ρDMðtÞ; ð49Þ

whereas by solving the continuity equation for dark
matter (21), this leads to

ρDM ¼ ρDM0

e−
D2
0
ð1þmÞ
2t2

t2
: ð50Þ

Hence, the kinetic term and the potential for the scalar field
are obtained by (25) and (26) as

ωðϕÞ ¼ 1

ϕ2

�
4

3κ2
− ρDM0e

−
D2
0
ð1þmÞ
2ϕ2 − ρ0mt20

�
;

VðϕÞ ¼ 1

6ϕ2

�
4

κ2
− 3ρDM0e

−
D2
0
ð1þmÞ
2ϕ2 − 3ρm0t20

�
: ð51Þ

An interesting feature that arises here in comparison to the
conformal case is that, for m ¼ −1 in (47), the interacting

term (49) becomes null, Q ¼ 0, such that the dark-matter
fluid in the ordinary frame behaves as usual ρDM ∝ a−3 but
the expansion as seen from the dark-matter frame still
remains regular, since geodesics in such frame are governed
by a different metric than the spacetime one.
The same procedure applies for a Hubble parameter that

diverges in a big rip singularity (39),HðtÞ ¼ 1
ts−t

. Following
similar assumptions on the conformal/disformal transfor-
mations, the universe in the dark-matter frame can be kept
regular. Let us consider the following conformal/disformal
transformations:

CðϕÞ¼C0ðts−ϕÞm; DðϕÞ¼C0ðts−ϕÞm−D2
0

1

ðts−ϕÞ2 :

ð52Þ

The time coordinate and the scale factor in the dark-matter
frame yield

t̃ ¼ t̃0 −D0 logðts − tÞ; ãðt̃Þ ¼ ã0eH̃0ðt̃−t̃0Þ; ð53Þ

where H̃0 ¼ 1−m=2
D0

. As in the previous case, the singularity
located at t ¼ ts corresponds to t̃ → ∞ in the dark-matter
frame, where the expansion remains regular as a de Sitter
universe. The reconstruction procedure ends by obtaining
the kinetic term and the potential for the scalar field:

ωðϕÞ ¼ −
2

κ2ðts − ϕÞ2

− ðts − ϕÞ3
�
ðts − t0Þ3ρm0 − e

−
D2
0
ð1þmÞ

2ðts−ϕÞ2ρDM0

�
;

VðϕÞ ¼ 4

κ2ðts − ϕÞ2

−
1

2
ðts − ϕÞ3

�
ðts − t0Þ3ρm0 − e

−
D2
0
ð1þmÞ

2ðts−ϕÞ2ρDM0

�
: ð54Þ

In addition, the Q-interacting term for this case, departing
from the expressions (52), leads to

Q ¼ D2
0ð1þmÞ
ðts − ϕÞ3 ρDM; ð55Þ

while the dark-matter density evolution is given by

ρDM ¼ ρDM0ðts − tÞ3e−
D2
0
ð1þmÞ

2ðts−ϕÞ2 : ð56Þ

As in the big bang case, one might consider the particular
case where m ¼ −1, which removes the flux among dark
matter and dark energy, recovering the evolution function
of standard cosmology for the dark-matter fluid, but
keeping a regular expansion in the dark-matter frame.
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The bottom line of the discussion on all of the examples
above is that for an appropriate coupling between dark
energy and dark matter, described by the conformal
function CðϕÞ and for the disformal case also DðϕÞ, the
universe expansion will be singular or regular depending on
the frame each observer is living at. This follows simply
from the fact that by the assumption (1), different species
follow geodesics described by different metrics, such that
the geometry as seen from one or another frame turns out to
be different to such observers. While these results have
been obtained for arguably toy models constructed ad hoc
just for showing this theoretical possibility, in the next
section we shall assume some particular phenomenological
parametrizations of the Hubble parameter in order to fit
them with different sources of data, to discuss whether such
a construction might be a good description of the observ-
able universe.

V. SOME PHENOMENOLOGICAL MODELS

Let us now consider a phenomenological parametriza-
tion of the Hubble parameter that contains the core ideas
discussed above on the interacting dark-energy–dark-
matter model described by the action (1) in order to be
compared with different observational data to check
whether the theoretical possibility explored in the previous
section is viable. Firstly, we can express the continuity
equations for dark matter and the scalar field in Eqs. (12)
and (21) in terms of the redshift instead of the time, i.e.,

−ð1þ zÞρ0DM þ 3ρDM ¼ −ð1þ zÞQϕ0; ð57Þ

−ð1þ zÞρ0ϕ þ 3ðρϕ þ pϕÞ ¼ ð1þ zÞQϕ0; ð58Þ

where primes denote derivatives with respect to the redshift
z. Paralleling our analysis above, we can define the scalar
field as ϕ ¼ z such that its dynamics is encoded in the
kinetic term function ωðzÞ. Unless Q ¼ 0, that recovers the
uncoupled case, the dark-matter energy density will deviate
from the usual ρDM ∝ ð1þ zÞ3 of the ΛCDM model.
Hence, we can assume that the dependence on the redshift
goes as a different power of the redshift:

ρDM ¼ ρDM0ð1þ zÞ3þm=2; ð59Þ

where m is a free parameter that accounts for deviations
with respect to the CDM model and is the target to be fit
with the observational data. For simplicity, we shall also
assume that dark energy (i.e., the scalar field energy
density) follows another power law of the redshift:

ρϕ ¼ ρϕ0ð1þ zÞn; ð60Þ

being n another free parameter. Hence, by the first
Friedmann equation (10), the corresponding Hubble
parameter is obtained as

H2ðzÞ ¼ H2
0½ΩDMð1þ zÞ3þm=2 þΩϕð1þ zÞn�; ð61Þ

where Ωi ¼ ρi0
3H2

0
=κ2 are the usual cosmological parameters

and for coherence, 1 ¼ ΩDM þΩϕ.
For the phenomenological model above we have

neglected the radiation and baryon contributions, so that
we have as free parameters fn;m;ΩDMg. Nevertheless,
we may impose some additional restrictions—priors—on
fn;mg in order to avoid large correlations that naturally
arise as can be easily seen by inspection of (61). Hence,
we are considering as a first testable model the Hubble
parameter given in (61) and assuming a Gaussian prior on
the parameterm centered in zero. This is a natural choice as
one expects small deviations from the ΛCDM model. On
the other hand, note that as far as n < 0 a big rip singularity
occurs (in the frame of the standard matter fields). Whether
or not this singularity is noticed by an observer in the dark-
matter frame will depend on the conformal/disformal
couplings, while the Q-interacting term can be expressed
in terms of the redshift as

Q ¼ ρDMðzÞ
CðzÞ − dðzÞ

�
−
1

2
C0 þ d · C0

C
−
1

2
d0
�

ð62Þ

where dðzÞ ¼ DðzÞH2ðzÞð1þ zÞ2. From (57) and the
ansatz (59) for dark matter, the following constraint is
obtained for the conformal and disformal transformations:

DðzÞ ¼ CðzÞ þD0C2ðzÞð1þ zÞ−m
H2ðzÞð1þ zÞ2 : ð63Þ

For an observer in the dark-matter frame, the redshift z̃
measured for a photon propagating towards the observer is
related to the redshift measured by the ordinary observer as

1þ z̃ ¼ ã0
ãðt̃Þ ¼

ã0
a0

1ffiffiffiffiffiffiffiffiffiffi
CðzÞp ð1þ zÞ; ð64Þ

where ã0 is the scale factor measured at t̃0 by the dark-
matter observer while a0 is the one measured by the
ordinary observer at t0. The Hubble parameters for both
frames are related as follows:

H̃ðz̃Þ ¼ HðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðzÞ −DðzÞp

�
1 − ð1þ zÞ C

0ðzÞ
2CðzÞ

�
: ð65Þ

Hence, one may consider any particular CðϕÞ that might
regularize the universe expansion in the dark-matter frame.
For the sake of simplicity, let us consider the following
example:

CðϕÞ ¼ C0ð1þ ϕÞm: ð66Þ

Then, the disformal function DðϕÞ is obtained by (63) as
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DðϕÞ ¼ D0

ð1þ ϕÞm−2

H2ðϕÞ : ð67Þ

Here D0 has been redefined accordingly. The correspond-
ing relation for both redshifts results in

1þ z ¼ ζð1þ z̃Þ 2
2−m; ð68Þ

where ζ ¼ ð ffiffiffiffiffiffi
C0

p a0
ã0
Þ 2
2−m is a constant. By the expression (65)

the corresponding Hubble parameter H̃ðz̃Þ in the dark-
matter frame for the model (61) is obtained after some
algebra as

H̃ðz̃Þ¼H0ð2−mÞ
2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩDMζ

6−m
2 ð1þ z̃Þ6−m2−mþΩϕζ

n−mð1þ z̃Þ2ðn−m2−mÞ

C0−
D0ð1þz̃Þ−4=ð2−mÞ

ΩDMζ
6þm
2 ð1þz̃Þ6þm

2−mþΩϕζ
nð1þz̃Þ 2n

2−m

vuuut : ð69Þ

For redshifts close to z ∼ 0 (or even negative −1 < z < 0 if
one considers z just as the independent variable) and n < 0
(big rip singularity), the term dominating in (61) will be the
dark energy one:

HðzÞ ∼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωϕð1þ zÞn

q
; ð70Þ

while in the dark-matter frame the corresponding Hubble
parameter reads

H̃ðzÞ ∼H2
0ð2 −mÞΩϕ

2
ffiffiffiffiffiffiffiffiffijD0j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2þ2n−mð1þ z̃Þ22þ2n−m

2−m

q
: ð71Þ

For 2þ2n−m
2−m ≥ 0, there is no future singularity in the dark-

matter frame even when n < 0. Nevertheless, a simpler
case can be considered by assuming just a conformal
coupling, with D ¼ 0. Hence, by imposing this constraint
in (63) then the corresponding Hubble parameter in the
dark-matter frame (65) leads to

H̃ðz̃Þ¼H0ð2−mÞ
2

ffiffiffiffiffiffi
C0

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩDMζ

6−m
2 ð1þ z̃Þ6−m2−mþΩϕζ

n−mð1þ z̃Þ2ðn−m2−mÞ
q

: ð72Þ

As previously, for redshifts close to z ∼ 0 and n < 0 (big rip
singularity), the Hubble parameter in the ordinary frame
mimics (70) while in the dark-matter frame the correspond-
ing Hubble parameter reads

H̃ðzÞ ∼H0ð2 −mÞ
2

ffiffiffiffiffiffi
C0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωϕζ

n−mð1þ z̃Þ2ðn−m2−mÞ
q

: ð73Þ

For n ¼ 0, the Hubble parameter turns out constant. Hence,
as a second testable model we might consider n ¼ m,

which reduces the number of free parameters and opens up
the possibility to have a singular universe in the ordinary
matter frame and an eternal one from the point of view of
the dark-matter frame, where the universe would tend
asymptotically to de Sitter. Therefore, the second model
considered here is given by

H2ðzÞ¼H2
0½ΩDMð1þ zÞ3þm=2þð1−ΩDMÞð1þ zÞm�: ð74Þ

This model is just a simplification with respect to the
previous model as it involves just two free parameters
fm;ΩDMg and it provides a de Sitter expansion in the dark-
matter frame by construction.

VI. FITTINGS AND RESULTS

In order to fit the free parameters of both models (61)
and (74) with observational data, we use the Union 2.1 SN
catalog (see [30]) with the data of NSN ¼ 557 supernovae
of type Ia. This dataset provides the redshift and the
distance modulus for each SNe Ia and the corresponding
errors σobs. The theoretical distance modulus is given by

μtheoðz;ΩDM;n;mÞ¼ μ̄þ5 log10 ½DLðz;ΩDM;n;mÞ�: ð75Þ

Here μ̄ ¼ −5 log10½H0

c � þ 25 is a nuisance parameter andDL

is the luminosity distance defined as

DLðz;Ωm;ΩDM; n; mÞ ¼ ð1þ zÞ
Z

z

0

dz0
H0

Hðz0;ΩDM; n; mÞ :

ð76Þ

We are using Monte Carlo Markov chains with the
Metropolis-Hastings algorithm to explore the free param-
eters space, which consists on random checks on the
parameter space subjected to maximize the likelihood,
the latter defined as

L ¼ N e−χ
2=2: ð77Þ

Here N is a normalization constant and χ2 is given by

χ2SNe ¼
XN
i¼1

ðμobsðziÞ − μtheoðzi; μ̄;ΩDM; n;mÞÞ2
σ2obsðziÞ

: ð78Þ

The nuisance parameter μ̄ can be easily marginalized by
expanding (78) and minimizing the expression with respect
to μ̄ (for more details see Refs. [31,32]).
In addition, we also use datasets from baryonic acoustic

oscillations (BAO [33]), which provide one of the follow-
ing two magnitudes:

dzðzÞ ¼
rsðzdÞ
DVðzÞ

; AðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffi
ΩDM

p
cz

DVðzÞ: ð79Þ
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Here rsðzdÞ is the comoving sound horizon at decoupling
zd and is given by

rsðzÞ¼
Z

∞

z

csðz0Þ
Hðz0Þdz

0

¼ 1ffiffiffi
3

p
Z

1=ð1þzÞ

0

da

a2HðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½3Ω0

b=ð4Ω0
γÞ�a

q ; ð80Þ

whereas DVðzÞ is

DVðzÞ ¼
�
czD2

MðzÞ
HðzÞ

�
1=3

;

where DMðzÞ ¼
DLðzÞ
1þ z

¼ c
Z

z

0

dz̃
Hðz̃Þ : ð81Þ

In total we use 17 BAO data points. The χ2 for the BAO
data (79) is obtained as follows:

FIG. 1. Contour plots and likelihoods for the two parameters model (74).

FIG. 2. Contour plots and likelihoods for the three parameters model (61).
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χ2BAOðΩDM;…Þ¼Δd ·C−1
d ðΔdÞT þΔA ·C−1

A ðΔAÞT; ð82Þ

where Cd and CA are the covariance matrices for the
correlated data, whileΔd andΔA are the differences among
the observational and the theoretical values.
The data concerning the Hubble parameter HðzÞ that is

used here corresponds to the set obtained by estimating the
age of galaxies at different redshifts [34]. The χ2 is given by

χ2HðΩDM;…Þ ¼
XNH

j¼1

�
Hðzj;ΩDM;…Þ −HobsðzjÞ

σj

�
2

ð83Þ

where we marginalize over the nuisance parameter H0.
Then, the total χ2Tot is calculated by the sum of the whole set
of fittings:

χ2Tot ¼ χ2SNe þ χ2BAO þ χ2H: ð84Þ

The results of the fittings are summarized in Tables II
and III for the two-parameter (74) and the three-parameter
(61) models, respectively, where the mean values and the
corresponding errors for the parameters are shown together
with the χ2min and the reduced χ2, which is useful for
comparing the goodness of fits among different models and
is defined as follows:

χ2red ¼
χ2min

N − c − 1
; ð85Þ

whereN is the number of the data points and c is the number
of free parameters of the model. As a comparison, the same
fits for the ΛCDM model are included in Table I. Moreover,
the corresponding contour plots are depicted in Figs. 1 and 2
for both phenomenological models, where we have used the
Python library getdist (see Ref. [35]). As shown in the tables,
both models fit the data as good as the ΛCDM model
according to the χ2red. Nevertheless, the two parameters
model (74) exhibits large errors when fit with SNe Ia data
for both free parameters, but become better constrained
when including BAO and H(z) datasets. It is clear from the
expression of this model (74) and by inspection of Fig. 1 that
both free parameters are correlated and that is the reason
behind such large errors. In comparison, the model with
three parameters (61) shows much smaller errors as shown in
Table III and Fig. 2, where we have assumed a Gaussian
prior for the power m in order to avoid even larger
correlations than the previous model. Such a prior just
assumes that the dependence of dark matter with respect to
the redshift does not deviate too much from ΛCDM, which
is perfectly natural, as shown also by the two parameters
model (74) where such a parameter is let free but fits close to
zero when all the datasets are included in the analysis.
As pointed out in the previous section, any negative

power for the redshift in the dark-energy contribution
implies a future big rip singularity. In Fig. 3 the future
evolution for the scale factor for the two-parameter (74) and
three-parameter (61) models is depicted on the left and right
panels, respectively, where we assume the mean values for
the free parameters shown in Tables II and III, respectively.
For the two parameters model (74), the mean value for m is
negative for SNe Ia and BAO, while it remains positive
when considering all the datasets together, although com-
pletely centered in zero. It is clear that one cannot infer the
dependence of dark energy by these results (as pointed out
in many papers before), but for illustrative purposes Fig. 3
(left panel) shows the rip time (from t0 and in units of H−1

0 )
for those cases where the singularity occurs, together with

TABLE I. Mean values for ΛCDM model with the correspond-
ing errors for the fitting with SNe Iaþ BAOþ HðzÞ.

SNe Iaþ BAOþ HðzÞ
Ωm 0.30þ0.009

−0.009
χ2min 580.35
χ2red 0.96

FIG. 3. Scale factor evolution for the two parameters model (74) (left) and the three parameters model (61) (right).
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the case [SNe Iaþ BAOþ HðzÞ] where no singularity
occurs. The rip time is in agreement with other previous
analysis where the possibility of a big rip singularity is
considered [10]. By construction, this model leads to a
regular and constant Hubble parameter in the dark-matter
frame and the rip time corresponds to an infinite proper
time for dark-matter observers, which therefore do not
observe any timelike singularity throughout their entire
cosmological history.
The case for the three parameters model (61) shows that

the corresponding mean for the power of the dark-energy
contribution is less than zero for all the datasets, which
corresponds to a big rip singularity. Such a possibility
suggested by every dataset is obviously not conclusive
statistically. The corresponding future evolution for the
scale factor is depicted in Fig. 3 (right panel), which shows
the rip time for every fit. Whether this singularity is felt
from the dark-matter frame or not depends on the relative
values of m=n as can be easily inferred from the Hubble
expression (72), which neglecting the dark-matter contri-
bution will go as ð1þ z̃Þ22þ2n−m

2−m , where 2 2þ2n−m
2−m ¼ 0.66 such

that for the mean values of Table III, a big rip singularity
does not occur in the dark-matter frame but the universe
seems eternal for a dark-matter observer. Nevertheless, as
in the previous model, the errors are large enough to
include the possibility to have a singular universe.

VII. CONCLUSIONS

In the present paper we have analyzed a novel perspec-
tive in the framework of interacting dark-energy–dark-
matter models that are constructed from conformal and

disformal couplings between their corresponding metric
tensors. Because of this construction, such types of models
induce a fifth force on the dark-matter component due to
the interaction with dark energy, in such a way that the
former does not follow the same spacetime geodesics as the
latter (and as SM particles), and consequently its depend-
ence on the scale factor (redshift) departs from the usual
cold dark-matter model. While these types of models have
been widely analyzed in the literature on dark-matter model
building, in particular, being shown to be perfectly com-
patible with observational data, in this work we focused on
conceptual aspects related to the potential development
of singularities on each (standard and dark-matter) frame
within them, while at the same time analyzing their
observational viability as well.
By establishing a standard procedure to obtain analytical

solutions for both cases when conformal and disformal
couplings are considered, we have obtained several sol-
utions holding the two most worrying kinds of cosmologi-
cal singularities, namely, the big bang and the big rip one,
as defined by their geodesically incomplete character. We
have shown that for the appropriate conformal/disformal
coupling, both types of singularities that occur in the frame
of ordinary SM observers do not necessarily occur in the
dark-matter frame, since the trajectories for the observers in
the latter are perfectly regular and extendible to infinite
values of their affine parameter. Hence, while an ordinary
SM observer will experience a singularity on its past/future
light cone according to its perspective, the universe will be
eternal in the dark-matter frame. This is the main con-
ceptual observation of our work.
Let us further elaborate on the result above. First of all,

this does not imply the existence of two separate space-time
metrics (and hence two curvatures associated to them) for
each type of observer, but it is rather the presence of a fifth
force that affects the trajectories and distorts the observable
expansion from each frame. The space-time metric as
measured from each frame is the one that influences the
dynamics for those observers in such a frame, while
particles from the other frame do not follow the geodesics
as measured by such hypothetical observer. This naturally
resonates with Geroch’s old arguments [36] on the fact that a
regular (singular) space-time in terms of geodesic complete-
ness could harbor singular (regular) accelerated observers via
the acting of (finite) forces. On the other hand, while the
conformal couplings considered here may distort the cos-
mological expansion as seen from each frame, disformal
couplings also imply that light cones differ from one frame to
the other, which might have important causality implications
(and potentially violations of the equivalence principle),
specially on those dark-matter models that interact weakly
with SM particles. Therefore, the framework considered in
thiswork and the results derived in it, while it does not act as a
remedy of the singularities present in the SM frame, might
help in the understanding of singular space-times in

TABLE II. Mean values for the free parameters including the
corresponding errors for the two parameters model (74) for the
fittings with SNe Ia, BAO, and SNe Iaþ BAO þ HðzÞ.

SNe Ia BAO SNe Iaþ BAOþ HðzÞ
Ωm 0.48þ0.23

−0.23 0.28þ0.016
−0.018 0.30þ0.016

−0.016
m −1.04þ1.18

−1.13 −0.056þ0.11
−0.11 0.020þ0.080

−0.086

χ2min 542.67 9.98 580.23
χ2red 0.98 0.67 0.96

TABLE III. Mean values for the free parameters including the
corresponding errors for the three parameters model (61) for the
fittings with SNe Ia, BAO, and SNe Iaþ BAO þ HðzÞ.

SNe Ia BAO SNe Iaþ BAOþ HðzÞ
Ωm 0.30þ0.09

−0.08 0.28þ0.015
−0.017 0.30þ0.016

−0.016
m −0.051þ0.31

−0.30 0.034þ0.20
−0.20 0.29þ0.16

−0.15
n −0.34þ0.78

−0.61 −0.11þ0.18
−0.20 −0.28þ0.16

−0.16
χ2min 542.51 9.81 574.49
χ2red 0.98 0.70 0.96
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gravitation, as the presence of fifth forces (in this case felt
by the hypothetical dark-matter observer) can make the job
of partially healing a particular space-time for some
families of observers for which information is always
accessible (never created nor destroyed) and physical
observations always possible.
The second main result of our work was to investigate

the observational viability of the models based on these
principles. In order to do so we have proposed two simple
phenomenological implementations of them in which a
future singularity may arise in one frame but be absent in
the other. We have shown that for some subsets of both
cases (as defined by their corresponding model parameters)
the occurrence of a future big rip in the standard matter
frame is compatible with observations [SNe Ia, BAO, and
H(z)], while the expansion remains regular from the point
of view of an observer in the dark-matter frame. This
effectively proves that the current constraints of cosmo-
logical observations are compatible with the fact that the
latter observers actually see an eternal universe in com-
parison to the singular one viewed by the ordinary
observers. The bottom line of this analysis is that singu-
larities for DM observers can be removed by a suitable
choice of the corresponding interacting term between the
dark components while the corresponding cosmological
background evolution is still compatible with current data,
a result that might help to get a better grip on the actual
meaning of cosmological singularities. Moreover, since
geodesics and curvature scalars are not invariant under
conformal/disformal transformations, the very notion of
singularity, under these perspectives, becomes also more
subtle. Finally, while one might think that a deviation from
the standard DM dependence on the redshift would imply

the existence of a particular interaction among the dark
components, one of the examples analyzed above, where
some particular conformal and disformal couplings make
the Q-interaction null but geodesics are still affected by a
fifth force, implies that even with a standard evolution of
dark matter this fifth force will still be there. Hence, in this
work we have highlighted this fact by working out the dark-
matter sector in order to (partially) alleviate conceptual
problems that afflict the standard GR description.
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