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We construct α-attractor versions of hybrid inflation models. In these models, the potential
of the inflaton field φ is uplifted by the potential of the second field χ. This uplifting ends due to a
tachyonic instability with respect to the field χ, which appears when φ becomes smaller than
some critical value φc. In the large N limit, these models have the standard universal α-attractor
predictions. In particular, ns ¼ 1 − 2

N for the exponential attractors. However, in some special cases, the
large N limit is reached only beyond the horizon, for N ≳ 60. This may change predictions for the
cosmological observations. For any fixed N, in the limit of large uplift Vup, or in the limit of large φc, we
find another attractor prediction, ns ¼ 1. By changing the parameters, Vup and φc, one can continuously

interpolate between the two attractor predictions ns ¼ 1 − 2
N and ns ¼ 1. This provides significant

flexibility, which can be very welcome in view of the rapidly growing amount and precision of the
cosmological data. Our main result is not specific to the hybrid inflation models. Rather, it is generic to
any inflationary models, where the inflaton potential, for some reason, is uplifted, and inflation ends
prematurely.

DOI: 10.1103/PhysRevD.106.023522

I. INTRODUCTION

In this paper, we will study two-field cosmological
attractors, using the α-attractor generalization of the origi-
nal version of hybrid inflation as an example [1,2].
In cosmological α-attractors of a single inflaton field, the

predictions for the spectral index ns and for the tensor to
scalar ratio r are very stable with respect to significant
modifications of the inflaton potential. The inflaton field in
these models can be real, but the most interesting inter-
pretation of these models appears in supergravity describ-
ing complex fields with hyperbolic geometry [3–8]. In such
models, kinetic terms of the scalar field are singular at the
boundary of the hyperbolic space. The singularity disap-
pears after a transformation making the real part of the
scalar field canonically normalized. This transformation
modifies the original inflaton potential V, which acquires
an infinitely long plateau in terms of the canonically
normalized inflaton field φ.
In this paper, we will focus on phenomenology of

α-attractors in hybrid inflation. Therefore in the main part

of the paper, for simplicity, we will consider models
describing real scalar fields, but our results can be also
formulated in terms of complex fields, in the context of
supergravity; see Appendix A.
While the plateau shape of the potential is a generic

property of all α-attractors, the approach to the plateau can
be slightly different.
In exponential α-attractors [5], where the field

approaches the plateau exponentially fast, in the large N
limit, where N is the number of e-foldings, one has

V ¼ V0ð1 − e−φ=μ þ…Þ; μ ¼
ffiffiffiffiffiffi
3α

2

r
;

ns ≈ 1 −
2

N
; r ≈

12α

N2
; ð1:1Þ

for μ ≲Oð1Þ. For example, for N ¼ 55,

ns ≈ 1 −
2

55
≈ 0.963: ð1:2Þ

Predictions of the simplest models of this class can
completely cover the left part of the ns − r area favored
by the latest Planck/BICEP/Keck data [9], nearly inde-
pendently of the choice of the original inflaton potential.
For the family of polynomial α-attractors [10], where the

potential approaches a plateau as inverse powers of the
inflaton field, one has
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V ∼ V0

�
1 −

μk

φk þ…

�
; ns ¼ 1 −

2

N
kþ 1

kþ 2
;

r ≈
8k2μ

2k
kþ2

½ðkðkþ 1ÞÞN�2kþ2
kþ2

: ð1:3Þ

Here, k can take any positive value. For example, in k ¼ 2
case,

V ∼ V0

�
1 −

μ2

φ2
þ…

�
; ns ≈ 1 −

3

2N
; r ≈

ffiffiffi
2

p
μ

N3=2 :

ð1:4Þ

For N ¼ Ntotal ¼ 55, we have

ns ≈ 1 −
3

110
≈ 0.973: ð1:5Þ

By taking smaller k, one can increase the value of ns in this
scenario from 1 − 2

N to 1 − 1
N. As a result, predictions of the

simplest models of exponential and polynomial attractors
completely cover the ns − r area favored by the latest
Planck/BICEP/Keck data; see Fig. 3 of [10].
Thus, it would seem that a rather simple set of models of

this type can describe any set of data which any future
observations may bring. However, there are still some
issues that one may try to address.
(1) One may wonder whether it is possible to increase ns

to cover the right part of the ns − r area favored by
the latest Planck/BICEP/Keck data within the more
familiar class of exponential α-attractors (1.1).

(2) There are ongoing efforts to solve the H0 and S8
problems by modifying the standard ΛCDM model
[11,12]. Some of these efforts require a significant
reinterpretation of the available data, resulting in
much higher values of ns, all the way up to the
Harris-Zeldovich value ns ¼ 1; see Refs. [13,14]
and references therein. Thus, one may wonder
whether one may find some versions of α-attractors
that would be compatible with such values of ns.

(3) In models of α-attractors inspired by string theory
and M theory, one may encounter many interacting
scalar fields, each of which may have inflaton
potentials with different values of α [15–24]. There-
fore, it is important to explore multifield α-attractors.
In the simplest cases, one may have several different
stages of inflation, but in many models, the last
N ∼ 50–60 e-foldings of inflation are described
by a single stage of inflaton, with the predictions
described above.

However, this is not always the case. For example,
suppose that there is a short secondary stage of inflation
describing ΔN e-foldings after the α-attractor stage. In this
case, we must carefully distinguish between the total
number of e-foldings Ne ∼ 50–60 responsible for the

observable structure of the universe and its part N related
to inflation in the α-attractor regime,

N ¼ Ne − ΔN: ð1:6Þ

The observational predictions of α-attractors are still
described by (1.1), (1.4), but the value of N ¼ Ne − ΔN
becomes smaller than Ne ∼ 50–60 [20,25]. This may
significantly decrease the value of ns, which may contradict
the observational data unless the second stage of inflation is
very short.
This issue is less important for polynomial attractors

(1.3) because they predict higher values of ns. That is why
some of the popular models of large PBH formation [26]
can be formulated in the context of the KKLTI polynomial
α-attractors [24], whereas similar models based on expo-
nential α-attractors tend to predict very small PBHs [27]. It
would be interesting to see whether one may overcome
these limitations and find a way to increase ns, if required.
In this paper, we will show how one can significantly

increase ns in two-field inflationary models. The main
mechanism that we are going to discuss is rather general.
As an example, we will study the original version of the
hybrid inflation scenario [1,2] and then explore its
α-attractor implementation. In these models, the potential
of the inflaton field φ is uplifted by the potential of the
second field χ, but this uplifting ends due to a tachyonic
instability with respect to the field χ, which happens when
the field φ becomes smaller than its critical value φc. This
instability typically leads to a nearly instant end of inflation
and rapid reheating, but it may also occur slowly, in a
secondary inflationary stage.
We will confirm that the main attractor predictions (1.1),

(1.4) remain true in these models in the large N limit.
However, we will show that in some models the large N
limit is achieved only for N > 60, and for N ≲ 60, one may
have an intermediate asymptotic regime with ns that can be
greater than the attractor values (1.1), (1.4). In particular,
for any fixedN (e.g., forN ∼ 50), in the large uplift limit, or
in the limit of large value of φc, we find another attractor
prediction, the Harrison-Zeldovich spectrum with ns → 1.

II. SINGLE FIELD α-ATTRACTORS

We will begin with describing single field α-attractors.
The simplest example is given by the theory,

Lffiffiffiffiffiffi−gp ¼ R
2
−

ð∂μϕÞ2
2ð1 − ϕ2

6αÞ2
− VðϕÞ: ð2:1Þ

Here, ϕðxÞ is the scalar field, the inflaton. In the limit
α → ∞, the kinetic term becomes the standard canonical

term − ð∂μϕÞ2
2

. The new kinetic term has a singularity at
jϕj ¼ ffiffiffiffiffiffi

6α
p

. However, one can get rid of the singularity and
recover the canonical normalization by solving the equation
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∂ϕ

1−ϕ2

6α

¼ ∂φ, which yields ϕ ¼ ffiffiffiffiffiffi
6α

p
tanh φffiffiffiffi

6α
p . The full theory,

in terms of the canonical variables, becomes a theory with a
plateau potential,

Lffiffiffiffiffiffi−gp ¼ R
2
−
ð∂μφÞ2

2
− V

� ffiffiffiffiffiffi
6α

p
tanh

φffiffiffiffiffiffi
6α

p
�
: ð2:2Þ

We called such models T-models due to their dependence
on the tanh φffiffiffiffi

6α
p . Asymptotic behavior of the potential at

large φ > 0 is given by

VðφÞ ¼ V0 − 2
ffiffiffiffiffiffi
6α

p
V 0
0e

−
ffiffiffi
2
3α

p
φ: ð2:3Þ

Here, V0 ¼ VðϕÞjϕ¼ ffiffiffiffi
6α

p is the height of the plateau

potential, and V 0
0 ¼ ∂ϕVjϕ¼ ffiffiffiffi

6α
p . The coefficient 2

ffiffiffiffiffiffi
6α

p
V 0
0

in front of the exponent can be absorbed into a redefinition
(shift) of the field φ. Therefore, inflationary predictions of

this theory in the regime with e−
ffiffiffi
2
3α

p
φ ≪ 1 are determined

only by two parameters, V0 and α; i.e., they do not depend
on many other features of the potential VðϕÞ. That is why
they are called attractors.
At large N, predictions of these models for As, ns, and r

coincide in the small α limit, nearly independently of the
detailed choice of the potential VðϕÞ,

As ¼
V0N2

18π2α
; ns ¼ 1 −

2

N
; r ¼ 12α

N2
e
: ð2:4Þ

These models are compatible with the presently available
observational data for sufficiently small α.
Importantly, these results depend on the height of the

inflationary plateau, which is given by V0 ¼ VðϕÞjϕ¼ ffiffiffiffi
6α

p ,
but they do not depend on many other details of behavior of
the potential VðϕÞ in (2.1). This explains, in particular,
stability of the predictions of these models with respect to
quantum corrections [28].
The amplitude of inflationary perturbations in these

models matches the Planck normalization As≈2.01×10−9

for V0

α ∼ 10−10, N ¼ 60, or for V0

α ∼ 1.5 × 10−10, N ¼ 50.

For the simplest model V ¼ m2

2
ϕ2, one finds

V ¼ 3m2αtanh2
φffiffiffiffiffiffi
6α

p : ð2:5Þ

This simplest model is shown by the prominent vertical
yellow band in Fig. 8 of the paper on inflation in the
Planck2018 data release [29]. In this model, the condition
V0

α ¼ 3m2 ¼ ∼10−10 readsm ∼ 0.6 × 10−5. The small mag-
nitude of this parameter accounts for the small amplitude of
perturbations As ≈ 2.01 × 10−9. No other parameters are
required to describe all presently available inflation-related
data in this model. If the inflationary gravitational waves

are discovered, their amplitude can be accounted for by the
choice of the parameter α in (2.4).
The results described above are valid under assumptions

that the potential VðϕÞ and its derivatives are nonsingular at
the boundary jϕj ¼ ffiffiffiffiffiffi

6α
p

. If one keeps the requirement that
the potential VðϕÞ is nonsingular, but allows its derivatives
to be singular, the potential VðφÞ remains a plateau
potential in canonical variables, but it may become a
polynomial attractor, with properties and predictions
described in (1.3), (1.4) [10].
One should note also that these results rely on a hidden

assumption that inflation occurs in the single field regime
with a potential (1.1) or (1.3), and ends when the slow-roll
conditions are no longer satisfied. This assumption is
natural indeed, but one can find, or engineer, some models
where it may be violated.
As we already mentioned in the previous section, the

simplest possibility to do it is to arrange for a second
stage of inflation with duration ΔN. This modification
decreases ns. For exponential α-attractors (1.1), this
decrease is not particularly desirable.
However, there is yet another possibility, which may

allow many interesting variations of the main theme. One
may consider multifield models, where the single-field
inflation regime ends prematurely because of the instability
of the inflationary trajectory or because of its sharp turn.
The simplest well-known example is provided by hybrid

inflation [1,2]. In this scenario, inflation driven by the fieldϕ
is terminated because of the tachyonic waterfall instability
with spontaneous generation of the second field σ. This
mechanism involves two ingredients, each of which allow us
to control (increase) ns. First of all, this scenario involves
uplift of an inflationary potential by some potential depend-
ing on σ. This uplift disappears after the waterfall instability,
but during inflationwithϕ > ϕc, the uplift increasesV while
keeping V 0 intact. This decreases slow-roll parameters and
increases ns for ϕ > ϕc. Secondly, one can control the value
of ϕc by a proper choice of parameters. As a result, one can
also control the value of the field ϕN corresponding to
N e-foldings prior to termination of inflation. This provides
an additional tool to control ns.
In this paper, we will consider hybrid models of α-

attractors and explain how both of these mechanisms affect
inflationary predictions for ns and r. To avoid misunder-
standings, we should emphasize that hybrid α-attractors are
more complicated than the single-field α-attractors.
However, realistic inflationary models often involve more
than one scalar field. As we will see, investigation of their
α-attractor versions can be quite instructive.

III. HYBRID INFLATION

A. Original hybrid inflation model

Let us first consider the simplest hybrid inflation model
[1,2]. The effective potential of this model is given by
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Vðσ;ϕÞ ¼ 1

4λ
ðM2 − λσ2Þ2 þm2

2
ϕ2 þ g2

2
ϕ2σ2: ð3:1Þ

To illustrate the main features of this potential, we show it
in Fig. 1.
The effective mass squared of the field σ at σ ¼ 0 is

equal to

Vσ;σðσ ¼ 0Þ ¼ −M2 þ g2ϕ2: ð3:2Þ

For ϕ > ϕc ¼ M=g, the only minimum of the effective
potential Vðσ;ϕÞ with respect to σ is at σ ¼ 0. The
curvature of the effective potential in the σ direction is
much greater than in the ϕ direction. Thus, we expect that at
the first stages of expansion of the universe the field σ
rolled down to σ ¼ 0, whereas the field ϕ could remain
large for a much longer time.
The potential at σ ¼ 0 can be written as

Vðσ ¼ 0;ϕÞ ¼ Vup þ
m2

2
ϕ2; ð3:3Þ

where the uplifting potential is

Vup ¼
M4

4λ
: ð3:4Þ

At the moment when the inflaton field ϕ becomes
smaller than ϕc ¼ M=g, the phase transition with the
symmetry breaking occurs. For a proper choice of param-
eters, this phase transition occurs very fast, and inflation
abruptly ends [1,2]. However, there are some situations
where inflation may continue for a while in the process of
spontaneous symmetry breaking, which may lead to
production of primordial black holes (PBHs) [30].

Unfortunately, these models are disfavored by the data in
most of its parameter space: at m2

2
ϕ2 ≳ Vup, the tensor-to-

scalar ratio is too high, whereas at m
2

2
ϕ2 ≪ Vup, the spectral

index ns is too high: ns > 1 [31].
Once we switch to α-attractor version of hybrid inflation,

the first of these problems disappears. As we will show
later, the second problem may also disappear: in the largeN
limit, these models lead to the standard α-attractor pre-
dictions (1.1), (1.3). The issue we need to carefully examine
is whether N ∼ 60 is large enough to be described by the
large N limit.
Before we switch to α-attractors, we should mention a

property of such models, which may be either a problem or
an advantage. As one can see from Fig. 1, at the ϕ < ϕc, the
field σ may fall into one of the two minima of the potential.
At σ ¼ �M=

ffiffiffi
λ

p
, this may divide the universe into many

domains with σ ¼ �M=
ffiffiffi
λ

p
separated by domain walls.

Unless Vup is extremely small, this leads to unacceptable
cosmological consequences.
The simplest way to avoid this problem is to study

models where the field σ is a complex field. Then, instead
of domain walls, one has cosmic strings [2]. IfM=

ffiffiffi
λ

p
is not

too large, these strings may have interesting cosmological
implications. On the other hand, in the models with a large
magnitude of symmetry breaking, one may want to avoid
productions of topological defects. The simplest possibility
is to add a tiny linear term cσ to the potential (3.1). If this
term is very small, it leads only to a minor tilt of the
potential towards one of the directions, which may be
sufficient to eliminate the production of the topological
defects, while leaving other predictions of the scenario
intact. Other ways to avoid production of topological
defects can be found in [32,33]. In the next section and
in the Appendix, we will describe two novel mechanisms
which can suppress production of the topological defects in
the context of α-attractors.

B. Hybrid α-attractors

Here we will explore what may happen if we generalize
the hybrid inflation model (3.1) by embedding it in the
context of exponential α-attractors. We will discuss poly-
nomial attractors [10] in Sec. 8,

Lffiffiffiffiffiffi−gp ¼ R
2
−

ð∂μϕÞ2
2ð1 − ϕ2

6αÞ2
−

ð∂μσÞ2
2ð1 − σ2

6βÞ2
− Vðσ;ϕÞ: ð3:5Þ

Upon a transformation to canonical variables φ and χ, the
hybrid inflation potential becomes

Vðχ;φÞ ¼ 1

4λ

�
M2 − 6βλtanh2

χffiffiffiffiffi
6β

p
�

2

þ 3m2αtanh2
φffiffiffiffiffiffi
6α

p

þ 18g2αβtanh2
φffiffiffiffiffiffi
6α

p tanh2
χffiffiffiffiffi
6β

p : ð3:6Þ

FIG. 1. Hybrid inflation potential (3.1) for m ¼ 0.2, M ¼ 1,
λ ¼ 0.5, and g ¼ 0.8.
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The shape of this potential for some particular values of
parameters is shown in Fig. 2.
In Fig. 3, we show by the blue line the original potential

(3.1) along the flat direction ϕ for σ ¼ 0, and we also show
by the brown line the potential of the α attractor (3.6) for
α ¼ 1 along the flat direction φ for χ ¼ 0. It illustrates the
flattening of the inflaton potential for α-attractors.
The curvature of the potential in the χ direction at χ ¼ 0

coincides with the curvature with respect to σ at σ ¼ 0,

Vχ;χðχ ¼ 0Þ ¼ Vσ;σðσ ¼ 0Þ ¼ −M2 þ g2ϕ2

¼ −M2 þ 6αg2tanh2
φffiffiffiffiffiffi
6α

p : ð3:7Þ

For ϕ > ϕc ¼ M=g, this curvature is positive, and the
inflationary trajectory with χ ¼ 0 remains stable until field
ϕ rolls below the critical point,

ϕc ¼
ffiffiffiffiffiffi
6α

p
tanh

φcffiffiffiffiffiffi
6α

p ¼ M=g: ð3:8Þ

If the last 60 e-foldings of inflation occur when
jϕj ≪ ffiffiffiffiffiffi

6α
p

, jσj ≪ ffiffiffiffiffi
6β

p
, then most cosmological conse-

quences of this model will coincide with those of the
original version of hybrid inflation [1,2].
Notice that in the limit when jϕj ≪ ffiffiffiffiffiffi

6α
p

, jσj ≪ ffiffiffiffiffi
6β

p
, the

kinetic terms in Eq. (3.5) become canonical, and therefore,
the shape of the potential reduces to the one in the original
version of hybrid inflation. In particular, in the large α limit,
inflation ends at ϕc ≈ φc ¼ M=g. In this paper, we will
be interested in the opposite possibility, when the last 60
e-foldings occur in the α-attractor regime where φc ≫

ffiffiffiffiffiffi
6α

p
.

One should note also that the standard scenario with the
waterfall phase transition shown in Fig. 2 occurs only if
ϕc ¼ M=g <

ffiffiffiffiffiffi
6α

p
. In the opposite case,ϕc ¼ M=g >

ffiffiffiffiffiffi
6α

p
,

the field χ does not vanish at any values of φ because all
values of φ correspond to ϕ <

ffiffiffiffiffiffi
6α

p
. The amplitude of

spontaneous symmetry breaking grows during inflation
starting from χ2 ¼ M2−6α

λ at φ → ∞ and gradually approach-

ing its maximal value χ2 ¼ M2

λ at ϕ ¼ 0. Since the symmetry
breakingwith respect to the sign of the field χ is present from
the very beginning of inflation, see the left panel of Fig. 4,
topological defects do not form in this scenario. Thus, it does
not suffer from any problems with topological defects which
may appear in the scenario shown in Figs. 1 and 2; see the
previous section.
To illustrate what happens for M=g >

ffiffiffiffiffiffi
6α

p
, we plot in

the left panel of Fig. 4 the potential (3.6) for the same
values of parameters as in Fig. 2. The only parameter we
change is g, which we take smaller, g ¼ 0.35.
This is not the last of the surprises that may await us after

introducing hybrid α-attractors, see the right panel in Fig. 4,
where we plot the same potential for the same parameters as
in Fig. 2, but for a smaller value of β. As we see, in this
case, the position of the minimum of the potential with
respect to χ disappears, and we end up with the potential
describing the α-attractor generalization [34–36] of the
quintessential inflation [37,38]. This happens because for
sufficiently small β the position of the minimum of the
potential with respect to σ moves outside the boundary of
the moduli space at σ ¼ ffiffiffiffiffi

6β
p

.
It is not our goal to describe all of these interesting

possibilities in this paper. In what follows, we will study the
more traditional regime described by Fig. 2. In this regime,
the initial stages of inflation occur at χ ¼ 0, until the field
reaches a critical point φc. After that, the tachyonic
instability with respect to the field χ terminates the stage
of inflation at χ ¼ 0. Depending on the parameters of the

FIG. 2. Hybrid inflation potential for the model (3.6) with
m ¼ 0.2, M ¼ 1, λ ¼ 0.5, g ¼ 0.8, α ¼ 1, β ¼ 1. It looks very
similar to the original potential shown in Fig. 1, but the potential
along the valley χ ¼ 0 is much more flat; see Fig. 3.

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

1.2

V

FIG. 3. The blue line shows the original potential (3.1) along
the flat direction ϕ for σ ¼ 0 and ϕ < 5 The brown line shows the
potential of the α attractor (3.6) for α ¼ 1 along the flat direction
φ for χ ¼ 0 and φ < 5. Note that the α-attractor potential is much
more flat, because the full potential VðφÞ is produced by the
horizontal stretching of the part of the potential VðϕÞ with
ϕ <

ffiffiffiffiffi
6α

p
.
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model, this may lead either to an abrupt end of inflation, or
to a beginning of a short additional period of inflation. We
will focus on the first of these two possible outcomes, and
calculate inflationary parameters As, ns, and r assuming
that inflation ends at the moment when the field φ reaches
φc (3.8).
Inflationary potential at χ ¼ 0 is given by

VðφÞ ¼ M4

4λ
þ 3m2αtanh2

φffiffiffiffiffiffi
6α

p : ð3:9Þ

Using Eq. (2.3), one can represent this potential during
inflation at φ ≫

ffiffiffiffiffiffi
6α

p
in this model as

V ¼ Vup þ V0ð1 − 4e−
ffiffiffi
2
3α

p
φ þ � � �Þ; ð3:10Þ

where Vup ¼ M4

4λ is the value of the uplifting potential
1
4λ ðM2 − λσ2Þ2 at σ ¼ 0, and V0 ¼ 3m2α is the value of the
α-attractor potential 3m2α tanh2 φffiffiffiffi

6α
p at its plateau.

Let us first consider the regime Vup ≫ V0, i.e.,

M4 ≫ 12αλm2: ð3:11Þ

The Hubble constant in this case is

H2 ¼ M4

12λ
: ð3:12Þ

Thus, M2 ≫ H2 for

M2 ≪ 12λ: ð3:13Þ

If M2 ≪ 12λ, then shortly after the field ϕ moves below
the critical value ϕc ¼ M=g, the effective mass squared of
the field χ becomes negative. Once its absolute value
becomes greater than H2, the tachyonic instability of the
field χ develops, which leads to an abrupt termination of

inflation at ϕ ≈ ϕc, as in the standard version of the hybrid
inflation scenario [1,2].

IV. INFLATIONARY PREDICTIONS OF HYBRID
α-ATTRACTORS

In our investigation of perturbations in the hybrid
inflation, we will try to be as model-independent as
possible. The results to be obtained in this section will
be applicable not only to hybrid inflation, but to any
α-attractor potentials uplifted by an additional term similar
to the first term in (3.1). Wewill also assume that the single-
field regime may end not because of the violation of the
slow-roll conditions but because some kind of instability
terminating the original stage of inflation in a vicinity of a
critical field ϕc, as in the hybrid inflation scenario.
The general α-attractor potential (2.3) at large φ can be

represented as

VðsÞ ¼ V0ð1 − e−
ffiffiffi
2
3α

p
s þ � � �Þ; ð4:1Þ

where s is given by

s ¼ φ −
ffiffiffiffiffiffi
3α

2

r
ln

�
2

ffiffiffiffiffiffi
6α

p V 0
0

V0

�
; ð4:2Þ

and V 0
0 ¼ ∂ϕVjϕ¼ ffiffiffiffi

6α
p at the boundary ϕ ¼ ffiffiffiffiffiffi

6α
p

, as in (2.3).
To give a particular example, in the simplest T-model (2.5),
one has

s ¼ φ −
ffiffiffiffiffiffi
3α

2

r
ln 4 ≈ φ − 1.7

ffiffiffi
α

p
: ð4:3Þ

Thus, for α≲ 1, one has φ ¼ sþOð1Þ.
Now we will uplift this potential by adding to it a

constant Vup. In the hybrid inflation model (3.1), one has
Vup ¼ M4

4λ . The full potential becomes

FIG. 4. Left panel shows potential (3.6) for m ¼ 0.2, M ¼ 1, λ ¼ 0.5, g ¼ 0.35, α ¼ 1, and β ¼ 1. Right panel shows potential (3.6)
for m ¼ 0.2, M ¼ 1, λ ¼ 0.5, g ¼ 0.8, α ¼ 1, and β ¼ 1=4.
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VðsÞ ¼ Vup þ V0ð1 − e−γsÞ; ð4:4Þ

where γ is related to the Kähler curvature,

γ ¼
ffiffiffiffiffiffi
2

3α

r
; γ2 ¼ 2

3α
: ð4:5Þ

This form correctly describes the potential for

e−γs ≪ 1: ð4:6Þ

We consider a stage of N ≫ 1 e-foldings of inflation,
which begins at sN and ends at sc. Inflation may continue
when the field reaches sc, or it may end abruptly if the
inflationary trajectory changes at sc because of the waterfall
instability at in hybrid inflation.
Equation describing evolution of s in the slow-roll

regime is

ds
dN

¼
dV
ds

VðsÞ ¼
V0γe−γs

Vup þ V0ð1 − e−γsÞ : ð4:7Þ

We are interested in the regime e−γs ≪ 1. In that case, one
can ignore the exponent in the denominator and find a
solution of this equation,

eγsN ¼ γ2V0N
Vup þ V0

þ eγsc ; ð4:8Þ

where sN is the value of the field s at N e-foldings before
the end of this stage of inflation before it reaches sc, i.e.,
sN ¼ sc at N ¼ 0.
The standard expression for ns is

ns ¼ 1− 3

�
V 0

V

�
2

þ 2
V 00

V
≈ 1−

3V2
0γ

2e−2γsN

ðVup þV0Þ2
−
2V0γ

2e−γsN

Vup þV0

≈ 1−
2V0γ

2e−γsN

Vup þV0

: ð4:9Þ

Here, the derivatives are taken with respect to s. Using
eq. (4.8), we find

ns ¼ 1 −
2V0γ

2

V0γ
2N þ ðVup þ V0Þeγsc

: ð4:10Þ

In the large N limit, we always have the standard universal
α-attractor prediction, independently of all other parameters
of the model,

ns ¼ 1 −
2

N
: ð4:11Þ

However, the range accessible to observations is limited,
N ≲ 50–60. For

eγsc ≫
γ2V0N

Vup þ V0

; ð4:12Þ

one has, in accordance with (4.8),

eγsN ≈ eγsc ; ð4:13Þ

and instead of the large N limit, one has a different limiting
case,

1 − ns ¼
2V0γ

2e−γsN

Vup þ V0

≈
2V0γ

2e−γsc

Vup þ V0

≪
2

N
; ð4:14Þ

where the last inequality follows from (4.12). Thus, in the
large Vup limit (for large ratio Vup=V0), or in the large sc
limit (for γsc ≫ 1), when the inequality (4.12) is satisfied,
we have ns → 1, i.e., the Harrison-Zeldovich spectrum.
Interpolating between these two limiting cases by

changing Vup=V0, or by changing sc, one can find any
value of ns in the range,

1 −
2

N
≲ ns ≲ 1: ð4:15Þ

In particular, for

Vup þ V0 ¼ V0γ
2Ne−γsc ; ð4:16Þ

we have

ns ¼ 1 −
1

N
: ð4:17Þ

Let us consider the implications for the amplitude of
perturbations As and for r,

As ¼
V3

12π2ðV 0Þ2 ≈
ðVup þ V0Þ3e2γsN

12π2V2
0γ

2
: ð4:18Þ

In the large N limit, one finds

As ¼
ðVup þ V0ÞN2

18απ2
: ð4:19Þ

Meanwhile, for Vup þ V0 ≫ V0γ
2Ne−γsc, one has

As ¼
αðVup þ V0Þ3e2

ffiffiffi
2
3α

p
sc

8π2V2
0

; ð4:20Þ

and for Vup þ V0 ¼ V0γ
2Ne−γsc, one has

As ¼
2ðVup þ V0ÞN2

9απ2
: ð4:21Þ

Finally, let us calculate the tensor to scalar ratio r,
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r ¼ 8

�
V 0

V

�
2

¼ 8V2
0γ

2e−2γsN

ðVup þ V0Þ2
: ð4:22Þ

In the large N limit, one has the standard α-attractor result,

r ¼ 12α

N2
: ð4:23Þ

Meanwhile, for Vup þ V0 ≫ V0γ
2Ne−γsc, the value of r is

smaller,

r ¼ 8V2
0γ

2e−2γsc

ðVup þ V0Þ2
≪

12α

N2
; ð4:24Þ

and for Vup þ V0 ¼ V0γ
2Ne−γsc, one has

r ¼ 3α

N2
: ð4:25Þ

What is the meaning of these results? First of all, we
confirmed that in the large N limit,

N ≫
3α

2
e

ffiffiffi
2
3α

p
sc

�
Vup

V0

þ 1

�
; ð4:26Þ

the predictions of α-attractors are universal, as shown in
Eq. (2.4). To be more precise, the amplitude of the
perturbations As in (4.19) now depends not on V0 but
on the total height of the plateau Vup þ V0.
Meanwhile, for smaller values of N (smaller wave-

lengths), such that

N ≪
3α

2
e

ffiffiffi
2
3α

p
sc

�
Vup

V0

þ 1

�
; ð4:27Þ

which may still exceedN ∼ 50–60 for sufficiently large Vup

and
ffiffiffiffi
2
3α

q
sc, the predictions approach the flat Harrison-

Zeldovich spectrum,

As≈
αðVupþV0Þ3e2

ffiffiffi
2
3α

p
sc

8π2V2
0

; 1−ns¼
4V0e

−
ffiffiffi
2
3α

p
sc

3αðVupþV0Þ
≪

2

N
;

r≈
16V2

0e
−2

ffiffiffi
2
3α

p
sc

3αðVupþV0Þ2
≪

12α

N2
: ð4:28Þ

Note that these predictions are also universal. They do
depend on constants Vup, V0, α, and sc but not on the
detailed choice of the original α-attractor potential.
All results obtained above are formulated in terms

of the field s related to the field φ by the Eq. (4.2). As
we already noted, in the simplest T-model (2.5), one has

s ¼ φ −
ffiffiffiffi
3α
2

q
ln 4 ≈ φ − 1.7

ffiffiffi
α

p
. Thus, for α≲ 1, one has

φ ¼ sþOð1Þ. In many cases, this difference can be

ignored, but if an exact relation is needed, one can always
return back from s to φ in the final results using (4.2).
In particular, for the simplest hybrid inflation model

(3.1), one has

N ≈
3αðVup þ V0Þ

8V0

�
e

ffiffiffi
2
3α

p
φN − e

ffiffiffi
2
3α

p
φc

�
: ð4:29Þ

We have also derived this formula in Appendix A directly
for the model (3.1).
In the limit of large Vup and/or large φc, one has

As≈
αðVupþV0Þ3e2

ffiffiffi
2
3α

p
φc

128π2V2
0

; 1−ns≈
16V0e

−
ffiffiffi
2
3α

p
φc

3αðVupþV0Þ
≪

2

N
;

r≈
256V2

0e
−2

ffiffiffi
2
3α

p
φc

3αðVupþV0Þ2
≪

12α

N2
; ð4:30Þ

where Vup ¼ M4

4λ and V0 ¼ 3m2α.

V. INTERPRETATION AND SOME EXAMPLES

Since the hybrid inflation models considered in the
previous section belong to the general class of α-attractors,
some of the formal results obtained above may seem rather
unexpected, especially the existence of the Harrison-
Zeldovich attractor with ns ¼ 1. In this section, we will
provide a simple interpretation of our results.
The standard approach to evaluation of nsðNÞ consists of

two steps. First of all, we find the point where the slow-roll
approximation breaks down and inflation ends. Then we
solve equations of motion to find the values of the fields
driving inflation N e-foldings back in the cosmological
evolution and find nsðφÞ at that time.
In hybrid inflation, the approach is somewhat different.

We find the position of the inflaton field φc (or sc) where
the slow-roll conditions with respect to the field φ may still
be satisfied, but inflation ends because of the tachyonic
instability with respect to the field χ. The value of the field
φc depends on parameters M and g, so by taking proper
values of these parameters, one can dial almost any
desirable value of the field φc. After that, one finds φN
(or, equivalently, sN); see Eq. (4.8).
We found that in the limit of large uplift and/or large sc

(or φc), one has φN ≈ φc (4.13). And once φN is known,
one can further increase Vup without changing V 00. One may
also exponentially decrease V 00ðφNÞ by increasing φc. In
both cases, the slow roll parameters decrease, and ns
asymptotically increases up to the Harrison-Zeldovich
value ns ¼ 1.
To explain potential implications of these results, we will

consider some simple numerical examples illustrating these
ideas. A fully developed example of a hybrid inflation
model will be considered in the next section.
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(1) Let us take γ ¼ 1, Vup ¼ V0. Suppose first that we
want to achieve N ¼ 50 e-foldings of inflation and
then trigger the waterfall transition along the lines of
the hybrid inflation scenario at sc ¼ 1. Then, ns will
be given by Eq. (4.11), ns ¼ 0.96 for N ¼ 50. The
value of s50 will be determined by Eq. (4.8) with
γ ¼ 1,

esN ¼ N
2
: ð5:1Þ

Here, we ignored es0 ≈ 2.7 as compared to N
2
¼ 25

(large N approximation). This gives s50≈ ln25¼ 3.2.
(2) Now let us change our game. Let us trigger the end

of inflation not at sc ¼ 1 but at s�c ¼ 3.2. We put here
a star to emphasize that this is a different regime,
where inflation ends at the point s�c ¼ s50 ≈ 3.2. In
that case (for γ ¼ 1, Vup ¼ V0), the point from
which inflation goes for N ¼ 50 e-foldings until it
reaches s�c ¼ s50 ¼ 3.2 will be given by

es
�
50 ¼ 50

2
þ s�c ¼ 50: ð5:2Þ

Equation for ns for N ¼ 50 will read

ns ¼ 1 −
1

N
¼ 0.98: ð5:3Þ

That is a significant modification of ns achieved by
changing the point at which N e-foldings of
inflation end. This is achieved because if not for
the waterfall, inflation from the point s�N would last
2N ¼ 100 e-foldings. We just interrupted it mid-
way, but the calculation of ns for the perturbations
prior to the waterfall goes the same way as if it
began at the beginning of inflation of duration
N ¼ 100. That is why instead of ns ¼ 1–2=50 we
have ns¼ 1–2=100¼ 0.98.

(3) Let us change the game once more. Suppose that
after (or during) the waterfall phase transition at
s�c ¼ s50 ≈ 3.2, inflation does not end but continues
in the waterfall regime for additional ΔN ¼ 20
e-foldings. This may happen, in particular, in the
models where the distance from the ridge to the
minimum of the potential with respect to the field χ
is greater than Mp ¼ 1; see Refs. [30,39] and also a
discussion in the next section near Eq. (6.9). Then the
inflationary perturbations that we are going to see at
the horizon are the ones generated in the α-attractor
regimeduringN ¼ 50 − ΔN ¼ 30e-foldings prior to
the waterfall. This corresponds to the point from
which (if not for the waterfall), the field would roll
during N ¼ 80 e-foldings. This yields

ns ¼ 1 −
2

80
¼ 0.975: ð5:4Þ

(4) Finally, suppose that the waterfall occurs at sc ¼ 1.
Naively, in that case, one would not expect any
major changes in ns. However, this is not the case if
the uplift Vup ¼ M4

4λ is much greater than V0 ¼ 3m2α.
This condition is very similar to the standard
assumption H2 ¼ M4

12λ ≫ m2 made in the original
hybrid inflation scenario [1,2]. In particular, from
(4.17), one may conclude that for α ¼ 1, sc ¼ 1,
N ¼ 50, and Vup ≈ 11V0, one would have

ns ¼ 1 −
1

50
¼ 0.98: ð5:5Þ

These examples show that a large uplifting, or a
premature ending of the α-attractor stage of inflation at
γsc ≫ 1, may lead to a significant increase of ns in the
α-attractor versions of the hybrid inflation models.

VI. A FULLY DEVELOPED EXAMPLE

In this section, we will give a fully developed example
including all parameters of the hybrid inflation model (3.1).
In all estimates, we will assume, for definiteness, that α ¼ 1

(i.e., γ ¼ ffiffiffiffiffiffiffiffi
2=3

p
), the number of e-foldings is N ¼ 50, and

the critical value of the field is given by sc ¼ 2. This
corresponds to φc ≈ sc þ 1.7 ¼ 3.7. In terms of the original
geometric field ϕ, the critical point is at ϕc ¼ 2.22.
To evaluate the importance of the effects considered in

the previous sections, we study here the intermediate
regime (4.16), where

ns ¼ 1 −
1

N
¼ 0.98; ð6:1Þ

see (4.17). For α ¼ 1, one can use (4.25) to find

r ¼ 3

N2
¼ 0.0012: ð6:2Þ

For α ¼ 1, sc ¼ 2, the condition (4.16) reads

Vup þ V0 ¼ V0

100

3
e−2

ffiffiffiffiffiffi
2=3

p
¼ 6.5V0: ð6:3Þ

Using (4.21) and Planck normalization As ¼ 2.1 × 10−9 for
α ¼ 1 and V0 ¼ 3m2, we find

m ¼ 1.95 × 10−6; ð6:4Þ

and
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Vup ¼ 6.3 × 10−11: ð6:5Þ

Then using (6.3), we find

M ¼ 0.004λ1=4: ð6:6Þ

To have the critical point at ϕc ¼ 2.22, one should
take g ¼ M=ϕc ¼ 0.0018λ1=4.
To understand the dynamics of the waterfall instability in

this model is important to compare the tachyonic mass
−M2 at χ ¼ φ ¼ 0 with the square of the Hubble constant
at that point,

H2ð0Þ ¼ Vup

3
¼ 2.1 × 10−11: ð6:7Þ

The Hubble constant at the critical point ϕc is very similar.
Meanwhile,

M2 ¼ 1.5 × 10−5
ffiffiffi
λ

p
: ð6:8Þ

Thus,M2 ≫ H2 unless λ≲ 10−12. This means that unless λ
is extremely small, the absolute value of the tachyonic mass
−M2 þ g2ϕ2

c of the field χ becomes much greater than H2

almost instantly after the inflaton field φ becomes smaller
than its critical value φc, and inflation ends, just as in the
original version of the hybrid inflation scenario [1,2].
Thus, we gave here a particular example of the

α-attractor version of hybrid inflation, where ns ¼
1 − 1=N ¼ 0.98 instead of the standard result ns ¼
1–2=N ¼ 0.96 (for N ¼ 50). This shows that by changing
Vup and φc, one can change ns anywhere in the range from
ns ¼ 1–2=N to ns ¼ 1.
This does not mean that the theory of α-attractors is not

predictive. In order to modify the standard prediction
ns ¼ 1–2=N, we needed to consider two-field models with
very special properties, such as uplifting Vup and a
premature end of the α-attractor stage of inflation.
Nevertheless, it is important to know that such models
do exist and can be easily constructed in the familiar
framework of hybrid inflation. Other mechanisms which
may lead to a premature end of inflation were reviewed, for
example, in [40].
Finally, let us try to understand what is so special

about the exceptional regime λ≲ 10−12. The amplitude
of spontaneous symmetry breaking in the Higgs potential
1
4λ ðM2 − λσ2Þ2 for λ≲ 10−12 is given by

σ ¼ Mλ−1=2 ≳ 4: ð6:9Þ

In this case, the Higgs potential 1
4λ ðM2 − λσ2Þ2 becomes an

inflationary potential, because the length of the slope from
σ ¼ 0 to σ ¼ Mλ−1=2 is super-Planckian. This length is
even greater in terms of the canonically normalized field χ.
It is well known that theories with super-Planckian

symmetry breaking typically allow long stage of inflation;
see, e.g., Refs. [41–43]. This means that inflation may not
end at the critical point but may continue during the process
of spontaneous symmetry breaking in this model.
A detailed theory of this second stage of inflation in the

context of the hybrid inflation scenario is described in [30].
The second stage of inflation may last long, or it can be
short, the durationΔN being controlled by λ. The amplitude
of perturbations produced at the onset of the second stage
of inflation can be very large, all the way up to Oð1Þ,
leading to copious formation of black holes, with masses
depending exponentially on the number of e-foldings ΔN
at the second stage of inflation. As proposed in [30,39],
primordial black holes produced in such models may be
sufficiently abundant to play the role of dark matter.
The existence of the second stage of inflation means that

the number of e-foldings at the α-attractor stage is
Ne − ΔN. For example, for Ne ¼ 50 and ΔN ¼ 20, it
leaves only N ¼ 30 e-foldings for α-attractors. Then the
standard expression ns ¼ 1–2=N would lead to ns ∼ 0.933,
which is ruled out by Planck2018 [29]. However, in the
regime studied above, one has ns ¼ 1 − 1=N ≈ 0.967,
which is in a very good agreement with the Planck data.

VII. THE SECOND α-ATTRACTOR REGIME IN
THE SAME HYBRID INFLATION MODEL

It could seem that we already fully explored the basic
hybrid inflation model (3.6) shown in Fig. 2. But even this
simple model has some other interesting features, which are
not apparent in Fig. 2. To reveal them, we show the
potential of this model in Fig. 5, with the same parameters
as in Fig. 2, but in a larger range of values of φ and χ.
As one can see, this potential has not one, but two flat

directions, corresponding to each of the inflaton fields,φ and
χ. Until now, we studied only the scenario where the field φ
rolls down along theyellowvalley at χ ¼ 0, see Figs. 2 and 5,
and then the inflationary trajectory turns towards one of the
two red minima of the potential at χ ≠ 0. All results obtained
until now are describing this possibility.
The second possibility is that initially the field φ was

small, whereas the field χ was large, and it was playing the
role of the inflaton field, rolling down along the blue valley
towards one of the two minima of its potential shown as red
areas in Fig. 5.
Fortunately, investigation of this second scenario is fairly

simple. The potential of the field χ along the valley φ ¼ 0 is
not uplifted by the potential of the field φ, inflation ends in
the standard way at the end of the slow-roll regime, so all
observational consequences are described by the standard
α-attractor predictions (1.1).
This means that there are two sets of cosmological

predictions for the hybrid inflation model (3.6), depending
on initial conditions for inflation. The first set corresponds
to the hybrid inflation regime starting at χ ¼ 0 and large φ.
These predictions are described in the previous sections.
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The second set of predictions corresponds to the usual
single-field α-attractor regime, which begins and ends at
φ ¼ 0, with the predictions given in (1.1).

VIII. HYBRID POLYNOMIAL ATTRACTORS

Similar results can be obtained for other types of plateau
inflation models. Let us consider, as an example, KKLTI
models with potentials approaching the plateau as inverse
powers of the canonically normalized inflaton field φ,

V ∼ V0

�
1 −

μk

φk þ � � �
�
; ð8:1Þ

where k can be any (integer or not) positive constant. Such
models, which were invented in the context of D-brane
inflation [44–50] and pole inflation scenario [6,8,51,52],
were recently incorporated in the general α-attractor frame-
work [10].
As before, we uplift this potential by adding to it Vup,

which is going to disappear after an instability at φ ¼ φc.
We will only consider here the spectral index ns. Before the
uplift, the spectral index in the large N approximation is
given by

ns ¼ 1 −
2

N
1þ k
2þ k

: ð8:2Þ

After the uplift, we have

ns ¼ 1 −
2V0kð1þ kÞμk

V0kð2þ kÞμkN þ ðVup þ V0Þφ2þk
c

: ð8:3Þ

In the large N limit, one has the original result (8.2). In the
large uplift limit (or large φc limit), one finds

ns ¼ 1 −
2V0kð1þ kÞμk
ðVup þ V0Þφ2þk

c
: ð8:4Þ

In the small k limit, one has the Harrison-Zeldovich result
ns ¼ 1, whereas in the intermediate case with
ðVup þ V0Þφ2þk

c ¼ V0kð2þ kÞμkN, one has

ns ¼ 1 −
1

N
1þ k
2þ k

: ð8:5Þ

As in the case of exponential attractors, depending on
initial conditions, there is also the standard single-field
α-attractor regime, similar to the one described in the
previous section. In that case, the predictions are given
by (1.3).

IX. DISCUSSION

In this paper, we constructed α-attractor versions of the
simplest two-field hybrid inflation models. We found that
the standard inflationary predictions of α-attractors, such as
ns ¼ 1 − 2

N, remain valid in the limit of large number of
e-foldings N. However, in some special cases, the large N
limit is reached only beyond the horizon, forN ≳ 60, which
changes predictions for the cosmological observations
at N ≲ 60.
This happens because the end of inflation in the hybrid

inflation scenario is not related to breaking of the slow-roll
condition for the inflaton field φ but is due to the waterfall
instability with respect to the field χ. Prior to the instability,
which happens at φ < φc, the potential of the field χ
contributes to the inflaton potential, but after the instability
this contribution disappears, and inflation either ends, or
continues in a very different regime.
The critical value φc is controlled by a combination of

different parameters of the model. We studied the situations
where φc belongs to the α-attractor plateau of the potential
(1.1) or (1.3), and the universe experienced N e-foldings of
inflation before the field φ rolled down from φN to φc. We
confirmed the validity of the standard predictions of α-
attractors in the large N limit. But we also found that for
any particular value of N, there is another attractor point:IIn
the limit of large uplift, or of large value of φc, the position
of the point φN moves very close to φc, all slow roll
parameters become very small, and the spectral index
approaches the Harrison-Zeldovich attractor point ns ¼ 1.
This also implies that by changing the uplifting con-

tribution Vup of the field χ, or the position of the critical

FIG. 5. The view from the top at the hybrid inflation potential
for the model (3.6) with m ¼ 0.2, M ¼ 1, λ ¼ 0.5, g ¼ 0.8,
α ¼ 1, β ¼ 1. This is the same potential as the one shown in
Fig. 2, with the same parameters, but now we show it for a much
larger range of values of φ and χ.
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point φc, one can dial any desirable value of ns in the broad
range 1 − 2=N ≤ ns ≤ 1. This does not take anything away
from the universality of the standard single-field α-attractor
predictions (1.1) or (1.3) because this flexibility comes at a
price of introducing a very specific two-field model (3.1),
(3.5) with many free parameters. However, there are many
situations where such flexibility can be desirable.
In this paper, we only briefly outlined some other aspects

of this flexibility. In particular, now we can have a second
stage of inflation during the waterfall instability without
violating the observational constraints on ns. Under some
conditions (or with slight modifications of the original
hybrid inflation model), this instability may lead to
production of PBHs, which may be abundant enough to
play the role of dark matter [30,39].
In the models withM=g >

ffiffiffiffiffiffi
6α

p
, the original inflationary

trajectory shifts away from σ ¼ 0, as shown in the left part
of Fig. 4. This allows us to avoid production of topological
defects, while preserving most of the results obtained in
this paper.
Finally, there is a large spectrum of possibilities related

to the potential shown in the right part of Fig. 4. It shows
the potential for which the position of the minimum at
σ ¼ M=

ffiffiffi
λ

p
is beyond the boundary of the moduli space

σ ¼ ffiffiffiffiffi
6β

p
. In terms of the canonical variable χ, this would

mean that instead of having a minimum at χ ≠ 0, we have
an infinitely long plateau describing quintessence/dark
energy, similar to quintessential inflation in single-field
or two-field α-attractor models studied in [34,35].
Depending on the parameters M and λ, this dark energy

stage may be preceded by a short waterfall stage and
reheating, or a secondary inflation stage during the water-
fall. For extremely small Vup, one may also have a primary
stage of dark energy domination during the waterfall,
followed by the secondary dark energy regime during
the rolling along the exponentially flat quintessential
potential. Taking into account that this rolling may end
up in the universe with vacuum energy that can be either
positive, negative, or zero, and there can be various phase
transitions along the way, modifying density of the dark
energy, we have lots of interesting possibilities to be
explored.
We should also mention that whereas in this paper we

described hybrid inflation, some of our qualitative results
may apply to other multifield models as well, such as
cascade inflation, which may occur in some string theory
motivated inflationary models [16,17,21–23].
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APPENDIX A: SUPERGRAVITY VERSION
OF HYBRID α-ATTRACTORS

There are several popular versions of the hybrid inflation
models in supergravity that are known as F-term and
D-term inflation [53–56]. Original versions of these mod-
els, just as the original hybrid inflation model [1,2],
required various modifications to become compatible with
observations.
Cosmological α-attractors have deep roots in super-

gravity describing complex fields with hyperbolic geom-
etry [3–8]. In such models, kinetic terms of the scalar field
are singular at the boundary of the hyperbolic space.
Some of these models, the so-called E-models [5], can be

described by the Kähler potential KðT;T̄Þ¼−3α lnðTþ T̄Þ,
where T ¼ e−

ffiffiffi
2
3α

p
φðxÞ þ iaðxÞ is a geometric half-plane

variable. The Kähler geometry gTT̄ ¼ ∂T∂T̄K defines the
relevant kinetic term Lkin as follows:

K ¼ −3α lnðT þ T̄Þ ⇒ Lkin ¼ −3α
dTdT̄

ðT þ T̄Þ2 : ðA1Þ

The kinetic term given above describes hyperbolic geometry
of a half-plane T þ T̄ > 0. The axion aðxÞ in these
models is often stabilized, and the potential depends on

t ¼ TþT̄
2

¼ e−
ffiffiffi
2
3α

p
φ.

The kinetic term of the scalar field T is singular at the
boundary t ¼ T þ T̄ ¼ 0. One may consider potentials that
take the form V ¼ V0ð1 − tþ � � �Þ near the singularity.
Then one can make a field transformation from the geo-
metric variable t to a canonically normalized field φ to
reproduce the exponential α-attractors (1.1). Potentials

V ¼ V0ð1 − 2
3α

μ2

ln2t þ � � �Þ lead to polynomial α-attractors
(1.4). See Ref. [10] for more information.
Similarly, one may consider the following Kähler poten-

tial of the disk variable Z ¼ tanh φðxÞffiffiffiffi
6α

p þ iaðxÞ:

K ¼ −3α lnð1 − ZZ̄Þ ⇒ Lkin ¼ −3α
dZdZ̄

ð1 − ZZ̄Þ2 : ðA2Þ

The kinetic term given above describes hyperbolic geom-
etry of a Poincare disk ZZ̄ < 1. One may consider any
potential VðZ; Z̄Þ such that the field a is stabilized at a ¼ 0

during inflation. If the potential is not singular at ZZ̄ ¼ 1, it
becomes a plateau potential Vðtanh φffiffiffiffi

6α
p Þ in terms of the

canonical inflaton field φ [5], see Sec. II. Inflationary
models of such type are called T-models [3].
Kähler potentials mentioned above and their generalized

versions often appear in string theory related supergravity
models. New powerful methods developed during the last
decade allow us to construct inflationary models in super-
gravity with almost any desirable potential, with any degree
of supersymmetry breaking, and with any value of the
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cosmological constant, by using models with nilpotent
fields [15–24]. As we will see, this includes α-attractor
models discussed in this paper.
Here we present two supergravity versions of the

α-attractor generalization (3.6) of the original hybrid
inflation model (3.1). This can be done by introducing
two chiral multiplets Z1 and Z2, both described by some
hyperbolic geometries with noncanonical kinetic terms,

Zi ¼ zieiθi ¼ tanh
φiffiffiffiffiffiffiffi
6αi

p eiθi ; ðA3Þ

and one nilpotent multiplet X.
(1) The first supergravity version is designed to have the

angular fields θ1 and θ2 stabilized at their minimum
θ1 ¼ θ2 ¼ 0. The class of models described in (3.5),
(3.6) can be presented by the following Kähler potential
and superpotential [22,23] (here, we call φ ¼ φ1, χ ¼ φ2,
and α ¼ α1 and β ¼ α2):

K ¼ −3
X
i¼1;2

αi logð1 − ZiZ̄iÞ þ
F2
X

F2
X þ V inflðZi; Z̄iÞ

XX̄;

ðA4Þ

and superpotential,

W ¼ ðW0 þ FXXÞ
Y
i¼1;2

ð1 − Z2
i Þ3αi=2; ðA5Þ

which yields

V totalðziÞ ¼ Λþ V inflðZi; Z̄iÞjZi¼Z̄i¼zi
; ðA6Þ

where VinflðZi; Z̄iÞ is a Hermitian function and Λ ¼ F2
X −

3W2
0 is the cosmological constant. For zi ¼ tanh φiffiffiffiffiffi

6αi
p ,

θ1 ¼ θ2 ¼ 0, this provides a supergravity embedding of
the models with a broad class of inflationary potentials of
the real part of the fields zi. In most cases, the potentials
have stable minima at θ1 ¼ θ2 ¼ 0, or they can be
stabilized by adding some terms to the Kähler potential.
As an example, one may consider the potential,

V inflðZi; Z̄iÞ ¼ 3αm2Z1Z̄1 þ
1

4λ
ðM2 − 6βλZ2Z̄2Þ2

þ 18g2αβZ1Z̄1Z2Z̄2: ðA7Þ

In this model, the fields θi are stabilized, θi ¼ 0, and using
(A3), one can show that the potential coincides with the
α-attractor version of hybrid inflation (3.5), (3.6).
In this model, the two inflatons are real fields. Therefore,

if at the end of inflation, the “Higgs” field χ can fall to the
two different minima where it has either positive or
negative value; it leads to formation of domain walls,
which may lead to undesirable cosmological consequences.
To avoid this problem, it is sufficient to make the

potential slightly asymmetric with respect to the field χ.
To do it, one may add to V inflðZi; Z̄iÞ a small term
proportional to Z2 þ Z̄2 ¼ 2χ and also slightly modify
the SUSY breaking parameter W0 to achieve vanishing of
the cosmological constant at the minimum of the potential.
This practically does not affect the early stages of inflation,
but the term proportional to Z2 þ Z̄2 slightly breaks the
symmetry with respect to the change χ → −χ, which is
responsible for the formation of topological defects; see
Fig. 6. As a result, the inflationary trajectory brings the field
χ to the deeper minimum, which eliminates the domain
wall problem.
Alternatively, one may consider the version of the model

in the regime shown in the left panel of Fig. 4, where
symmetry breaking occurs at the very early stages of
inflation and domain walls do not form.
(2) The second model of this type is a model where the

complex parts of both fields are not fixed; the theory has
Uð1Þ2 symmetry, resulting in production of cosmic strings
instead of domain walls [18–20,24],

K ¼ −3
X
i¼1;2

αi logð1 − ZiZ̄iÞ þ
F2
XXX̄Q

i¼1;2ð1 − ZiZ̄iÞ3αiðF2
X − 3W2

0 þ V inflðZi; Z̄iÞÞ þ 3W2
0ð1 −

P
i¼1;2αiÞ

; ðA8Þ

and superpotential,

FIG. 6. Hybrid inflation potential for the model (3.6) with
m ¼ 0.2, M ¼ 1, λ ¼ 0.5, g ¼ 0.8, α ¼ 1, and β ¼ 1, modified
by adding a small term linear in χ and by modifying Λ to make
the cosmological constant (almost exactly) vanish at the mini-
mum. This looks very similar to the original potential shown in
Fig. 2, but inflation always ends in the minimum with χ < 0.
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W ¼ W0 þ FXX; ðA9Þ

For
P

i¼1;2 αi < 1, this yields

V totalðziÞ ¼ Λþ V inflðZi; Z̄iÞ; ðA10Þ

whereΛ ¼ F2
X − 3W2

0. Importantly, this result describes the
potential of the complex fields Zi, not only of their real
parts as in (A6). This gives a lot of freedom in the choice of
inflationary potentials of the two fields, under the con-
dition

P
i¼1;2 αi < 1.

For the same choice of the hybrid inflation potential as
the ones considered above in Eq. (A7), one reproduces the
hybrid potential (3.6), but in this context, the variables φ
and ξ describe the absolute values of complex fields, and
the potentials do not depend on the phases θi. For a
sufficiently small amplitude of spontaneous symmetry
breaking, cosmic strings produced in this scenario do
not affect the amplitude of scalar perturbations.
If one wants to avoid any topological defects, which is

important if the field χ after inflation becomes large, then,
just like in the previous model, one can add a small term
proportional to Z2 þ Z̄2, or one may consider the version of
the model in the regime shown in the left panel of Fig. 4,
where symmetry breaking occurs at the very early stages of
inflation and cosmic strings do not form.

APPENDIX B: INFLATIONARY EVOLUTION
IN MODELS Vup +V0tanh2 φffiffiffiffi

6a
p

In Sec. IV, we analyzed inflationary evolution in general
α-attractor models with potentials of the type,

VðsÞ ¼ V0ð1 − e−
ffiffiffi
2
3α

p
s þ � � �Þ; ðB1Þ

where s is given by

s ¼ φ −
ffiffiffiffiffiffi
3α

2

r
ln
�
2

ffiffiffiffiffiffi
6α

p V 0
0

V0

�
; ðB2Þ

and V 0
0 ¼ ∂ϕVjϕ¼ ffiffiffiffi

6α
p at the boundary ϕ ¼ ffiffiffiffiffiffi

6α
p

. Here, we
will do it directly in terms of the field φ, for the simplest
model,

V ¼ Vup þ V0tanh2
φffiffiffiffiffiffi
6a

p ; ðB3Þ

which is a part of the hybrid inflation model (3.6).
The number of e-foldings N for inflation beginning at

the point φN and proceeding via slow-roll up to the point φc
is given by

N ≃
Z

φN

φc

dφ
V
Vφ

: ðB4Þ

Here,

Vφ ¼
ffiffiffiffiffiffi
2

3α

r
V0 tanh

φffiffiffiffiffiffi
6α

p sech2
φffiffiffiffiffiffi
6α

p ; ðB5Þ

and

Z
dφ

V
Vφ

¼ 3α

4V0

�
ðVφ þ V0Þ cosh

ffiffiffiffiffiffiffiffiffi
2

3α
φ

r
þ Vup

�
4 log

�
sinh

φffiffiffiffiffiffi
6α

p
�
− 1

��
: ðB6Þ

Thus, in the slow roll approximation,

N ≃
Z

φN

φc

dφ
V
Vφ

¼ 3α

4V0

�
ðVup þ V0Þ cosh

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3α
φN

r
þ 4Vup log

�
sinh

φNffiffiffiffiffiffi
6α

p
��

−
3α

4V0

�
ðVup þ V0Þ cosh

ffiffiffiffiffiffiffiffiffiffiffi
2

3α
φc

r
þ 4Vup log

�
sinh

φcffiffiffiffiffiffi
6α

p
��

: ðB7Þ

In the α-attractor regime with φN > φc and 2
3α φc ≫ 1, this equation reads

N ≃
3αðVup þ V0Þ

8V0

�
e

ffiffiffi
2
3α

p
φN − e

ffiffiffi
2
3α

p
φc

�
: ðB8Þ

Using Eq. (4.2), one can show that is equivalent to Eq. (4.8), which was obtained for generic α-attractors.
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