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The spatial distribution of galaxies at sufficiently small scales will encode information about the identity
of the dark matter. We develop a novel description of the halo distribution using persistent homology
summaries, in which collections of points are decomposed into clusters, loops, and voids. We apply these
methods, together with a set of hypothesis tests, to dark matter haloes in Milky Way-analog environment
regions of the cold dark matter (CDM) and warm dark matter (WDM) Copernicus Complexio N-body
cosmological simulations. The results of the hypothesis tests find statistically significant differences
(p-values ≤ 0.001) between the CDM and WDM structures, and the functional summaries of persistence
diagrams detect differences at scales that are distinct from the comparison spatial point process functional
summaries considered (including the two-point correlation function). The differences between the models
are driven most strongly at filtration scales ∼100 kpc, where CDM generates larger numbers of
unconnected halo clusters while WDM instead generates loops. This study was conducted on dark
matter haloes generally; future work will involve applying the same methods to realistic galaxy catalogues.
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I. INTRODUCTION

The large scale structure (LSS)—as defined by the
spatial distribution of galaxies—encodes information on
many vital aspects of the standard model of cosmology that
remain open questions in physics [1–4]. For example, the
LSS is sensitive to the characteristics of dark energy, the
unexplained phenomenon that drives the accelerated expan-
sion of the Universe [5,6] and also holds clues as to the
nature of dark matter (DM). Typical LSS observables that
are relevant for DM studies include the abundance of low

mass galaxies [7,8], the paucity of galaxies in voids [9] and
the spatial distribution of Milky Way (MW) satellite
galaxies [10]. An additional, as yet largely untapped,
method for analysing LSS models is the application of
topological methods to the distribution of galaxies and
haloes. These methods describe the spatial distribution of
points as different dimensional holes with clusters, fila-
ments loops, and voids in dimensions 0, 1, and 2,
respectively, and it is possible to envisage that the imprint
of DM physics on the primordial density field may be
detectable in their topological statistics [5,11]. In this paper
we will apply topological methods in order to identify
differences between two competing DM models. The*jjkehe@wisc.edu
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simplest viable model of DM is the cold DM matter model
(CDM), in which the DM particle has a negligible velocity
dispersion at early times and thus DM halos are able to start
collapsing early and in large quantities. The combination of
CDMwith the cosmological constant model of dark energy
is known as ΛCDM. This model has enjoyed success in
predicting the properties of the cosmic microwave back-
ground (CMB) radiation [12] and the distribution of
galaxies at large scales (>2 Mpc) [13]. However, at smaller
scales (<1 Mpc) there are tensions among others with the
densities of dwarf galaxies that may hint at problems for the
CDM model [3]. Given the simultaneous failure to detect
the particle physics candidates that correspond to CDM in
direct detection experiments [14,15] or in indirect detection
observations [16], it is important to consider alternatives.
One compelling alternative to CDM is the warm DM

(WDM) model, in which the DM particles have a signifi-
cant velocity dispersion in the early Universe [17]. The
effects of this velocity dispersion include a drastic reduc-
tion in the number of low mass DM halos. In this study we
compare simulations of these two models to determine
whether persistent homology can detect differences in the
DM halo spatial distribution. In Fig. 1, we present images
of two realizations of the Copernicus Complexio (COCO)
cosmological volume [18], one simulated with the CDM
model, and the second with the WDM model [19]. The
large scale distribution of matter is nearly identical in the
two images—thus WDM preserves the large scale suc-
cesses in explaining the distribution of massive galaxies of

CDM—but at smaller scales the abundance of WDM halos
is strongly suppressed relative to CDM, and the distribution
of the remaining subhalos is much less homogeneous.
In this work, we investigate differences in the spatial

distribution of DM haloes as described in CDM andWDM.
The primary goal is to ascertain whether topological
methods are sensitive to differences between the models
and the second goal is to interpret the differences to
determine whether topological methods have the potential
to discern which DM model most accurately describes the
properties of our own Universe. We restrict our analysis to
the distribution of haloes, which will work as a proof of
concept. A comprehensive comparison with observations
will require a mock galaxy catalogue and we defer this step
to future work.
The persistent homology formulation of topology offers a

novel way to represent, visualize, and interpret complex data
by extracting homological features,which can beused to infer
properties of the underlying structures. Homological features
include the decomposition of halo distributions into clusters,
filaments loops, and voids at different scales controlled by a
parameter that is analogous to halo linking lengths—which in
statistics is known as a filtration parameter—and persistent
homology in particular tracks how the number of such
features changes as the filtration parameter is increased. It
has been successfully applied to problems in astronomy (e.g.,
Refs. [5,20–27]), along with other areas of science (e.g.,
Refs. [28–31]). There have been proposals for hypothesis
testing using persistent homology (e.g.,Refs. [31–35]),which

FIG. 1. Illustration of the DM distributions in the COCO-CDM (a) and COCO-WDM (b) simulations. Each image is a slice through
the simulation of 23 Mpc on a side with an image depth of 10 Mpc. The image intensity encodes the DM column density and the image
color indicates velocity dispersion. Eight of the 77 volumes used in this study (see Sec. II B) are included in this slice, and their locations
are indicated as follows. The MW-analog halo on which each volume is centered is enclosed by a green circle, and the full extent of the
analysis volume (a radius 3 Mpc) is shown with a white circle. Note that the apparent overlap of the white circles in this projection does
not imply that the volumes overlap: there can still be considerable separation between the volumes in the depth direction. See Sec. II for
details on the COCO data.
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we build on as we construct tests that can detect differences
between DM model predictions in the LSS.
We investigate several test statistics to discriminate

between the CDM and WDM halo spatial distributions
that are based on persistent homology functional summa-
ries. Each functional summary is a different transformation
of information to a function that approximates a property of
the topological features, and is a function of the filtration
parameter. We also consider different visualizations in
order to investigate detected differences.
This paper is organized as follows. We begin with

background on the cosmological simulation data we use
in the analysis (Sec. II), then we introduce persistent
homology and functional summaries of persistence dia-
grams that are used in the proposed test statistics (Sec. III).
Then the hypothesis testing framework is presented
(Sec. IV), followed by the investigation of the cosmological
simulation data (Sec. V). We end with concluding
remarks (Sec. VI).

II. COSMOLOGICAL SIMULATION DATA

This section begins with a description of the COCO
simulations, and then continues with our procedure for
selecting MW halo-analog sample regions.

A. The Copernicus Complexio (COCO)
cosmological simulations

The COCO simulation volume constitutes a high reso-
lution spherical region of space with a comoving radius of
approximately 25 Mpc; the full (low-resolution) simulation
volume is a periodic box 100 Mpc on a side.1 The
numerical integration of the gravitational forces begins at
redshift 127. The cosmological parameters are consistent
with the 7-year results from the WMAP satellites: matter
density Ω0 ¼ 0.272, dark energy density ΩΛ ¼ 0.728,
Ωb ¼ 0.04455, Hubble parameter h0 ¼ 0.704, spectral
index ns ¼ 0.967, and power spectrum normalization
σ8 ¼ 0.81. The mass of the simulation particle is
1.135 × 105 M⊙. DM halos and subhalos were identified
using the SUBFIND algorithm [36], and the smallest
permitted number of particles to identify a subhalo is 20
particles. Our definition of halo mass is the total mass
bound gravitationally to each halo as determined by the
halo finder.
Two copies of this volume were run, the first applying

CDM [18] and the second WDM [19]. Both simulations
use the same initial phases, and differ in that the WDM
simulation had wave amplitudes rescaled using the transfer
function of a 3.3 keV thermal relic DM particle, with the
relic mass chosen to be in agreement with the Lyman-α
forest constraints of Ref. [37]. This results in the suppres-
sion of structure on the scale of dwarf galaxies. These

large-scale structure similarities between the WDM and
CDM data due to the same initial phases are shown in
Fig. 1. One issue peculiar to WDM simulations is the
spurious numerical fragmentation of filaments into halos;
these so-called spurious subhalos are identified and
removed from the halo catalog using the algorithm
described in Ref. [38].

B. Milky Way-analog DM halos
and their associated halo samples

Given that we intend to use future work to compare the
models with observations of galaxies around our own MW,
we identify MW-analog halos and their surrounding
regions in the two simulations. The criteria for our MW-
analog halos were that they must be located within 21 Mpc
of the center of the simulation2 and have a mass in the range
½0.5; 2� × 1012 M⊙. We also required that there be no other
halo with a mass greater than 0.5 × 1012 M⊙ within
0.7 Mpc. This procedure resulted in 77 MW-analog DM
halos in each of the COCO CDM and WDM simulations;
for each MW-analog DM halo in the WDM data, there is a
matching MW-analog DM halo in the CDM.
We now discuss our selection of halos in the vicinity of

the 77 MW halo-analogs. In both CDM and WDM
realizations we identify halos that are within 3 Mpc of
the MW-analog.3 For the WDM case we include all halos in
the 3 Mpc region. However, CDM forms hundreds of times
more halos than WDM in our resolved mass range. If we
were to include all CDM halos, the abundance difference
would dominate our statistical results. Therefore, the CDM
samples were downsampled to match the number of DM
halos in the corresponding WDM sample. The down-
sampling was accomplished by selecting the most massive
DM halos from each of the CDM samples. An example of
one of the MW-analog DM halo neighborhoods from
COCO-CDM and COCO-WDM is displayed in Fig. 2.
The two sets of samples for the CDM andWDM data are

defined as

Y c ¼ fYc;1;…;Yc;77g; Yw ¼ fYw;1;…;Yw;77g ð1Þ

where Y c and Yw represent the set of 77 CDM and 77
WDM samples, respectively. Each Yk;i ∈ Rni×3 for k ¼ c,
w and i ¼ 1;…; 77 where ni indicates the number of DM
halos in sample i; an individual DM halo in simulation k of
sample i is indicated by Yk;i;j for j ¼ 1;…; ni.

1All distances are in comoving Mpc.

2The central high-resolution sphere of COCO extends out to
about 25 Mpc.

3Objects with ∼0.2 Mpc of each analog are typically referred
to as “subhalos” that orbit within the analog “host halo.” In this
study we refer to all bound DM objects simply as “halos” and
include all of them in our analysis, not drawing any distinction
between subhalos and other classes of object.

DIFFERENTIATING SMALL-SCALE SUBHALO DISTRIBUTIONS … PHYS. REV. D 106, 023521 (2022)

023521-3



III. TOPOLOGICAL DATA ANALYSIS METHODS
FOR QUANTIFYING LSS

Homology is one way to study the features of topological
spaces (e.g., manifolds); specifically, the multidimensional
“holes” in the space (e.g., connected components, loops,
voids). Persistent homology studies the spatial structure of
a parameterized family of topological spaces that keeps
track of the so-called births and deaths of homological
features as a topological space changes with a filtration
parameter. In particular, we focus on point cloud data,
where each point can represent some unit of mass or an
object (e.g., a point may represent a center of a DM halo).
In this section, we provide a brief overview of the necessary
concepts; however, see, e.g., Refs. [39–41] for a more
thorough introduction to algebraic and computational top-
ology. The homological features that are tracked in the
filtration have cosmological interpretations in dimensions
zero, one, and two. Before providing more details about
persistent homology, we explain the interpretation of
different dimensional holes with respect to the distribution
of DM halos.
Clusters—A connected component, or zeroth-dimen-

sional homology feature (H0), is a maximal subspace of
a topological space that cannot be covered by two disjoint
open sets; that is, a connected component is a whole piece
of the space. For example, under some assumptions on the
topological space, a connected component is a cluster of
data points.4 In cosmology, the connected components
represent clusters of halos or galaxies. Persistent homology
tracks the appearance of new connected components and
the merging of distinct components.
Filaments and loops—A loop, or one-dimensional

homology feature (H1), provides information about the

connectivity of data. As the filtration parameter increases,
nearby connected components can merge together in such a
way that a loop or cycle is formed. For DM halos, this
would appear as filaments of halos joined together in
a loop.
Cosmological voids—A void, or two-dimensional

homology feature (H2), represents the boundary of
three-dimensional empty regions within the topological
space (e.g., the boundary of a football). In cosmology, these
are the thin walls surrounding the low-density regions that
are typically referred to as cosmological voids.

A. Persistent homology

Persistent homology is a framework for describing the
homology of a dataset at different scales. Given a dataset,
one defines a filtration (that is, a sequence of nested
topological spaces) of intermediate structures, on which
the homology is computed at different values of the
filtration parameter. Homological features (specifically,
the homology generators) are tracked as they form and
merge as the filtration parameter changes. Various methods
can be used in order to transform a discrete point set into a
connected topological space. For example, simplicial com-
plexes (see below) such as the Vietoris–Rips complex (VR
complex) can be used, or a function can be defined over the
domain of the data using an empirical distance function or a
kernel density estimate (KDE) of the point cloud.
In this work, we use a VR complex to construct the

filtration (discussed below). As an illustration, suppose
points are randomly sampled on three loops as displayed in
Fig. 3(a). The data points on their own do not form any
loops (i.e., H1 features), but from observing the data one
may conjecture that the underlying topological space has
three loops. With persistent homology using the VR
complex, each data point becomes the center of a ball
with a diameter t. The diameter, t, is the parameter that
determines a filtration as it increases from t ¼ 0 to t ¼ ∞.
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FIG. 2. A MW-analog DM halo neighborhood sample for (a) the COCO-CDM data and (b) the COCO-WDM data. The red triangles
indicate the MW-analog DM halo that was selected along with the other DM halos that are within 3 Mpc from it.

4There is no clear or established relationship between the
definition of homological clusters and galaxy clusters. In this
paper, the term “cluster” is only used for the homology definition.
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In Fig. 3(a), the diameter is t ¼ 0.5 and some of the balls
intersect and, therefore, become connected. As t
increases, more balls intersect and eventually in the
joined complex a loop forms as in Fig. 3(b). The scale
at which the loop forms and eventually gets filled in is
tracked as the birth and death times of the features, and its
persistence is the difference between the death and birth
times (i.e., t-diameter values at birth and death). A higher
persistence means that feature survived longer in the
filtration.
The birth and death times of all detected features are

captured in a persistence diagram such as the one displayed
in Fig. 3(c). Features that last longer in the filtration are
further from the diagonal line, y ¼ x. If instead of the data
used in Fig. 3 that were sampled on three circles, we
considered data points randomly scattered in the same 2D
window, there could still be H1 features that form and die,
but they may not persist as long in the filtration. In this
section we provide more background on persistent homol-
ogy including key concepts.

1. Simplicial complexes

Simplicial complexes are the intermediate structures that
are used to compute the homology of data on different
scales. For our 3D halo data, the simplices we use are zero-
simplices (vertices), one-simplices (edges), two-simplices
(triangles), and three-simplices (tetrahedrons). More gen-
erally, a geometric k-simplex is the convex hull of kþ 1
affinely independent points. A face of a simplex is another
simplex obtained by removing zero or more points (e.g., a
triangle has seven faces: itself, three edges, and the three
vertices). An abstract simplicial complex,K, is defined as a
finite set of simplices such that (i) if σ ∈ K, then every face
of σ is also in K, and (ii) if σ1; σ2 ∈ K, then either σ1 ∩
σ2 ∈ K or σ1 ∩ σ2 ¼ ∅. In this work, we use simplicial
complexes to represent topological spaces, as they are the
standard input to code to compute homology.

2. Filtrations

To use persistent homology, the input is not just one
simplicial complex, but a whole filtration or sequence of
topological spaces (represented as simplicial complexes).
In our setting, as the diameter t increases, the simplicial
complex grows to include more segments, triangles, and
tetrahedra, but any simplicial complex that existed for a
smaller value of t is also included in the larger simplicial
complex. Consider the following more formal description.
Given dataset y1; y2;…; yn ∈ Y ⊆ R3, one common way to
create a simplicial complex is to choose some t ∈ R such
that t ≥ 0 and replace each yi ∈ Y with a ball of diameter t.
The Vietoris–Rips complex at scale t (the t-VR complex) is
created by representing each of these balls as a vertex, and
creating a k-simplex anytime there are kþ 1 balls that
pairwise intersect. Specifically:

VRtðSÞ ¼ fσ ⊆ Sjdðx; zÞ ≤ t; ∀ x; z ∈ σ; g ð2Þ

where dð·; ·Þ is the Euclidean distance [41,42]. That is,
VRtðSÞ is a simplicial complex containing the vertex set S,
edges between all the vertices that are separated by at most
t, and triangles for sets of three vertices that have pairwise
distances of at most t.
We obtain the VR filtration by increasing t from 0 to ∞

(recall that t is referred to as the filtration parameter).5 Note
thatVRt1ðSÞ is a subset ofVRt2ðSÞ (i.e.,VRt1ðSÞ ⊆ VRt2ðSÞ)
for t1 ≤ t2. Sometimes, for the right selection of t and a dense
enough sample, we can recover the underlying true homol-
ogy of Y (see, e.g., Ref. [43]); however, using the whole
sequence of complexes, we can recover information aboutY
with more relaxed sampling conditions.
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FIG. 3. Persistence diagram example where observations were sampled around three circles with noise. The data are displayed in (a)
and (b) as black points (zero-simplices) with cyan balls with diameters of 0.5 and 1, respectively, along with the one- and two-simplices
of the corresponding VR complexes. The persistence diagram for the VR filtration of the points is displayed in (c) with the three circles
indicated by the cyan triangles (H1). The H0 features represent the connected components, which all have birth times at 0.

5In practice, the maximum filtration value t we consider
correspond to the largest scales encompassed by a given
galaxy/halo catalog.
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To derive the persistent homology for a VR filtration, the
homology of VRtðSÞ is computed as t changes. If t is
initialized at 0, then only the data points contribute to the
homology. In our setting, this generally implies that at t ¼ 0,
each data point will represent an H0 feature and no higher
dimensional homological features exist yet. The evolving
topological space is characterized by its homology as t
increases toward∞. For a Y ⊆ R3, the persistent homology
would then track the connected components (H0), loops
(H1), and voids (H2) that appear and disappear in the VR
filtration. As was discussed previously, an example of a VR
filtration with a two-dimensional domain is presented in
Fig. 3: Figs. 3(a) and 3(b) display the data points with balls
of diameter t ¼ 0.5 and 1, respectively, along with the one-
and two-simplices of the corresponding VR complex.
Figure 3(c) shows the persistence diagram for the data
points using the VR filtration, which is discussed next.

3. Tracking homology generators

The birth and death times of the homology group
generators are displayed in a persistence diagram. These
times correspond to values of the filtration parameter,
which is the diameter of the balls t when considering a
VR filtration. Suppose a filtration is defined over some data
points y1; y2;…; yn ∈ Y ⊆ R3, then a persistence diagram,
D, can be written as a multiset of points:

D ¼ fðrj; bj; djÞ∶j ¼ 1;…; jDjg ∪ Δ ð3Þ

where ðrj; bj; djÞ are the homology group dimension, the
birth time, and the death time, respectively, of feature j, jDj
indicates the number of homology group generators with
dj > bj, and Δ represents a set of points on the diagonal
(birth time ¼ death time) with infinite multiplicity (which is
included for mathematical reasons). The persistence diagram
is a nice summary because small changes in the input data Y
will result in only small changes in the diagram [44,45],
making the diagrams stable summaries of the data.
Figures 3(a) and 3(b) show an example where the

filtration parameter, t, increases from 0.5 to 1. In that
interval, the homology changed from having 15 connected
components (H0features) and zero loops (H1features) to
having five connected component and one loop. The time
in the filtration when homology features appear, the birth of
the feature, and the time when a feature joins other features,
the death of the feature, are captured in a persistence
diagram. Figure 3(c) displays the persistence diagram,
where the location of each point represents the birth height
(x-axis) and death height (y-axis) of a homological feature
for a VR filtration, and the shape and color represent the
homology group dimension. A point ð·; x; xÞ on the
diagonal represents a feature with a zero-length lifespan.
The persistence of a point ð·; b; dÞ is the length of the
interval of the persistence parameter that supports that
feature: jd − bj. In the persistence diagram, the distance

from ð·; b; dÞ to the diagonal is proportional to this value; in
fact, the L∞ distance of ð·; b; dÞ is 1

2
jd − bj. When working

with empirical experimental or observational data, it is
necessary to be concerned with the associated intrinsic
noise of such measurements. This is especially important in
the context of a spatial distribution of objects derived either
from N-body simulations or galaxy catalogs. N-body
simulations are limited by their spatial resolution, where
their Monte Carlo sampling nature starts to breaks down
and is overrun by the shot-noise. The astronomical obser-
vations are limited by imperfections including those related
to involved instruments which contribute to measurements
errors. For these reasons, it is important in a persistent
homology analysis to be able to distinguish between real
features really present in the target and those that are noise-
induced transients. A notion of a topological significance
can be derived in this context by considering features with
longer lifetimes as more significant, and those with short
lifetimes (i.e., closer to the diagonal) as topological noise
[46]. Distinguishing between topological signal and noise
is a problem of a great interest in real applications of TDA
(e.g., Ref. [26]).

B. Persistence diagram summaries

While persistence diagrams and their individual features
provide useful information about the topology of a dataset,
persistence diagrams are not easy objects to work with
directly for statistical analyses. For example, the distance
between two persistence diagrams can be calculated
using metrics such as the bottleneck distance or the
p-Wasserstein distance, but both are computationally
expensive because they require finding a certain optimal
matching between the features on each diagram; see
Eq. (B2) in the Appendix for the definition of the
bottleneck distance. Fréchet means and medians have been
defined for spaces of persistence diagrams [47], but are also
computationally expensive and not necessarily unique
(although ways around this exist as addressed in
Ref. [48]). Instead, we consider transformations and
summaries of persistence diagrams that make computations
more tractable [31]. Below are several approaches that
transform a persistence diagram into a functional summary,
which are used in Sec. IV to formulate test statistics for
hypothesis tests.

1. Landscape functions

Landscape functions [33] are popular functional summa-
ries of persistence diagrams [31,49,50], which are defined as
follows. Let Dr ¼ fðbj; djÞgnrj¼1 be the finite set of off-
diagonal points of a homology dimension r persistence
diagram. Next, rotate the persistence diagram such that each

point ðbj; djÞ ∈ Dr is mapped to pr;j ¼ ðbjþdj
2

; dj−bj
2

Þ ∈ eDr.
Isosceles right triangles are formed from each pr;j to the
base as
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Λpr;j
ðtÞ ¼

8>><
>>:

t − bj t ∈ ½bj; djþbj
2

�
dj − t t ∈ ½djþbj

2
; dj�

0 otherwise;

ð4Þ

where t ∈ ½tmin; tmax�. The persistence landscape is then
defined as the following collection of functions

λDr
ðk;tÞ¼ kmax

pr;j∈D̃r;
Λpr;j

ðtÞ;t∈ ½tmin;tmax�; k¼1;…;nr; ð5Þ

where kmax is the kth largest value. An example of a
persistence landscape function is displayed in Fig. 4.
Rather than working with each k of λDr

ðk; tÞ individually,
a subset of the landscape layers can be concatenated to a long
vector as

F landðI ; r; tÞ ¼ ⊕k∈I λDr
ðk; tÞ; ð6Þ

where I is the index set of the included landscape layers.

2. Weighted silhouette functions

Rather than working with each k of λDr
ðk; tÞ from Eq. (5)

individually, weighted silhouette functions provide a way

of combining the information in the collection of landscape
functions. Silhouettes are weighted averages of the indi-
vidual functions for homology dimension r defined as

F silðr; tjpÞ ¼
Pnr

j¼1 jdr;j − br;jjpΛpr;j
ðtÞPnr

j¼1 jdr;j − br;jjp
; ð7Þ

where the jdr;j − br;jjp act as weights that can give more
emphasis or less emphasis to features with longer lifetimes
depending on the user-specified parameter p. The form of
these weights are suggested in Ref. [51]. An example of a
weighted silhouette function is provided in Fig. 4(b). More
details and theoretical properties of landscapes and silhou-
ettes can be found in Ref. [51].

3. Betti and Euler characteristic functions

The rth Betti number is the rank of the rth homology
group (that is, the number of homological features of
dimension r). The Euler characteristic (EC) is a topological
invariant and can be defined as the alternating sum of the
Betti numbers. As the persistent homology filtration
parameter t changes and new features are born or old ones
die, the Betti numbers and EC changes, allowing for the
definition of Betti functions and an EC function. The Betti
functions can be defined as

F bettiðr; tÞ ¼ jfðr; bj; djÞ∶bj ≤ t; dj > tgj; ð8Þ

which indicates the number of dimension r homology
group generators that persist in the filtration at time t. The
only nontrivial homology groups for data in R3 are in
dimensions 0, 1, and 2; thus, the Euler characteristic
equation we use is

F ecðtÞ ¼
X2
r¼0

ð−1ÞrF bettiðr; tÞ: ð9Þ

Betti and EC functions have been used in applications [e.g.,
Refs. [23,25,52–56] ] and some of their theoretical proper-
ties have been explored [e.g., Refs. [35,57–60]]. Before
these recent uses of EC and Betti functions, the EC and a
related concept genus were put forward as a new method
for characterizing the topology of the Universe. Here, these
statistics were used as a measure of the connectivity of the
matter distribution in the Universe (e.g., Refs. [61–65]).
There are a number of other summary functions of

persistence diagrams that have been defined [e.g.,
Refs. [34,66,67]]. For a general discussion of summary
functions of persistence diagrams, including some theo-
retical properties, see Ref. [31].
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IV. METHODS: TOPOLOGICAL HYPOTHESIS
TESTS FOR LSS

A primary goal in this work is to develop a framework
that can inferentially discriminate between different real-
izations of weblike geometric data structures such as the
Cosmic Web. Our TDA-based framework allows for
extracting information, encoded in large-scale galaxy/halo
distribution, that goes beyond methods commonly used in
cosmology N-point clustering statistics. The motivation is
to detect differences between the DM halo spatial distri-
butions (i.e., 3-manifolds) evolved in cosmological simu-
lations where initial conditions were set to be either that of
CDM or WDM-type. In this section we present a hypoth-
esis testing framework using test statistics derived from the
summaries of persistence diagrams presented in Sec. III B.
These topological hypothesis tests build on the work
outlined in Ref. [31], including their notation.
The proposed hypothesis tests rely on permutation

methods to compute the p-values. We adopt this method-
ology because the distributions of the test statistics based
on the functional summaries of the persistence diagrams are
unknown. (The permutation tests are described below).
There exist some results based on the central limit theorem
for summary functions of persistence diagrams (e.g., Betti
functions) and persistent homology-based hypothesis tests
statistics using asymptotic theory (e.g., Refs. [35,58,68]).
These results, however, generally assume the data were
drawn from a homogenous Poisson point process. Both the
large and small-scale halo/galaxy distribution in the
Universe cannot be described by a homogeneous
Poisson process. Owing to the nature of initial conditions
(i.e., an adiabatic Gaussian random field) and the gravita-
tional instability (a mechanism responsible for the growth
and evolution of the cosmic structures) halos spatial
distribution is clustered with non-Gaussian features on
small (nonlinear) scales. Naturally, also the COCO DM
simulations provide halo samples which are not close to
resembling homogeneous Poisson point processes, which
is discussed in Appendix A. Furthermore, as we present
below, the WDM and CDM samples are not independent of
one another due to the cosmological simulation design: it is
therefore necessary to use matched-pairs hypothesis tests.

A. Test statistic and p-value computations

For the proposed hypothesis tests, we consider two
samples of observations,

Y1¼fY1;1;…;Y1;n1g; and Y2¼fY2;1;…;Y2;n2g ð10Þ

where each Yj;i, i ¼ 1;…; nj and j ¼ 1, 2 is a dataset of
which a persistence diagram can be computed. For our
cosmological simulation data, each Yj;i will have a set of
points in R3, but, in general, the Yj;i’s could take different
forms; for example, each Yj;i could be an image of a fibrin

network [31] or a brain artery tree [29]. One sample
represents the COCO-CDM, and the other sample repre-
sents the COCO-WDM data.
Each observation from Eq. (10) will have a correspond-

ing persistence diagram

D1 ¼fD1;1;…;D1;n1g; and D2¼fD2;1;…;D2;n2g: ð11Þ

These samples of diagrams can be used to test the
hypotheses,

H0∶P1 ¼ P2 vs: H1∶P1 ≠ P2; ð12Þ

where P1 and P2 are the true underlying distributions of
persistence diagrams from group 1 and 2, respectively.6

Given two samples of persistence diagrams, there are a
number of possible ways to derive test statistics; we
consider the functional versions of persistence diagrams
presented in Sec. III B as test statistics. These functional
summaries can be understood as a map between the space
of persistence diagrams, P, to the space of functions, F ,
defined as F∶P → F . Therefore, the diagrams from above
can be used to define the collection of functional summaries
with j ¼ 1, 2 as

Fj ¼ fFj;1 ¼ FðDj;1Þ;…; Fj;nj ¼ FðDj;njÞg: ð13Þ

A test statistic for the two-sample hypothesis test of
Eq. (12) can be derived using estimates of functional
summaries. Letting Fj;i ¼ FðDj;iÞ; i ¼ 1;…; nj, and
j ¼ 1, 2 [see Eq. (13)], the mean functional summaries
are defined as

F̄jðtÞ ¼ n−1j
Xnj
i¼1

Fj;iðtÞ: ð14Þ

Then our test statistic for the different functional summaries
is based on the following distance between mean functional
summaries,

dðF̄1; F̄2Þ ¼
Z
T
jF̄1ðtÞ − F̄2ðtÞjdt; ð15Þ

where T defines the domain of the functions. Note that the
T is related to the range of values of the filtration parameter,
which depends on the functional summary. For example,
for the EC function, the T covers the range of the filtration
parameter, but for the landscape and silhouette functions it
represents the range of a transformed filtration parameter
since the persistence diagram is rotated.

6Probability measures can be theoretically defined on a space
of persistence diagrams (with a Wasserstein metric) as presented
in Ref. [69].
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1. Matched-pairs permutation test

Since the distributions of the test statistics of Eq. (15) for
the different functional summaries we consider are
unknown, the p-values for the two-sample hypothesis tests
can be computed using the usual permutation testing
framework. The general procedure is to randomly assign
the n1 þ n2 functional summaries into two groups, because
this random assignment is consistent with the null hypoth-
esis (H0) from Eq. (12) where the two groups follow the
same distribution. In other words, because the null hypoth-
esis states that the two samples were drawn from the same
distribution of persistence diagrams, when we take the null
hypothesis as true it should not matter to which group, 1 or
2, that a given sample is assigned. We can then create a
number of random group assignment permutations. For
each random group assignment, a new mean functional

summary is estimated for each group using Eq. (14), eFðlÞ
1

and eFðlÞ
2 , which are used to compute the distance

dðeFðlÞ
1 ; eFðlÞ

2 Þ from Eq. (15), for l ¼ 1;…; nl random per-
mutations [31]. The resulting (approximate) permutation p-
value can then be computed as

pperm ¼ n−1l
Xnl
l¼1

IðdðeFðlÞ
1 ; eFðlÞ

2 Þ ≥ dðF̄1; F̄2ÞÞ; ð16Þ

where IðAÞ is an indicator function that takes the value 1 if
A is true and 0 if A is false.
In summary, a standard permutation p-value is computed

by assuming the null hypothesis is true (i.e., assuming no
difference between the distributions of the two samples of
persistence diagrams), and randomly permuting the group
assignments a number of times. For each random permu-
tation, a test statistic is computed from Eq. (15). The
collection of all these test statistics provides an approxi-
mation of the distribution of the test statistic when the null
hypothesis is true. Then a p-value is computed by compar-
ing the observed test statistic (i.e., the test statistic using the
original groupings for the two samples), and estimating the
probability of observing the test statistic that we did or one
further in the tail of the null distribution. As usual, a small
p-value is evidence against the null hypothesis.
When the two sets of samples are independent, the above

permutation p-value is reasonable. However, as explained
in Sec. II, the CDM and WDM COCO data, Y c and Yw, are
not independent due to the initial conditions of the
simulations. Instead, the samples Yc;i and Yw;i for i ¼
1;…; 77 have a similar spatial structure which should be
accounted for in the computation of the permutation
p-values. Therefore, we consider a matched-pairs version
of the permutation p-values. The matched-pairs approach to
hypothesis testing is common in settings where there is a
clear connection between individual samples in two groups
(e.g., studies carried out on monozygotic twins, pre- and
postassessments on participants that were randomly

assigned treatments and each participant is matched with
themselves). In our setting with CDM and WDM data, the
matching is necessary because of the same initial con-
ditions used in each run of the COCO simulation.
The difference between this matched-pairs version and

the permutation test outlined above is in how the two
groups are randomly assigned for each permutation. The
matched-pairs permutation involves randomly selecting
one of the two matched samples to go into each of the
two groups (e.g., one of Yc;i or Yw;i will be randomly
assigned to group 1, and the other will be assigned to group
2). The matched-pairs permutation p-value is then defined
in the same manner as above, as

pmatched ¼
Xnl
l¼1

IðdðeFðlÞ
1;matched;eFðlÞ

2;matchedÞ≥ dðF̄1; F̄2ÞÞ; ð17Þ

where eFðlÞ
j;matched; j ¼ 1, 2, are the mean functional summary

for permutation l using the matched-pairs random assign-
ment. This matched-pairs permutations p-value computa-
tion accounts for correlations between the COCO CDM
and WDM samples by including one of the two matched
samples within each group for each permutation, but
randomizing which label (CDM or WDM) is assigned.

V. INVESTIGATION OF COCO
SIMULATION DATA

In order to investigate differences between the CDM and
WDM COCO samples of MW-analog halo neighborhoods
described in Sec. II B, Y c and Yw, respectively, we carry out
the two-sample hypothesis tests defined in Eq. (12) and
described in the previous section. The test statistics are
based on the functional summaries of persistence diagrams
outlined in Sec. III B, along with several other methods
discussed below. The comparison methods include a test
statistic that uses persistence diagrams directly (rather than
a functional summary of them) and non-TDA functional
summaries that capture second-order properties of spatial
point processes. The collective goals of the test statistics
considered are (i) to detect differences between CDM and
WDM MW-analog halo neighborhoods, and (ii) to under-
stand and interpret any detected differences (e.g., the
distance scale at which differences occur).
In addition to the test statistics using the functional

summaries presented in Sec. IV, we also consider other
approaches. One method is the persistence diagram-based
test (PDT) of Ref. [32] which has a test statistic defined
using distances between persistence diagrams. We also
consider two functional summaries of spatial point proc-
esses which do not use persistence diagrams, namely
the G-function and the two-point correlation function
(2PCF). The G-function gives the distribution function
of the nearest-neighbor distances, and 2PCF uses the
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Landy-Szalay estimator [70] and is one of the most basic
and fundamental objects used to study clustering in
cosmology [71]. These methods are described in more
detail in Appendix B. The p-values for these additional tests
are also carried out using permutations, and we have also
adapted them to work for our matched-pairs design.

A. Hypothesis testing results

All the hypothesis tests that use statistics derived from
persistence diagrams (including the PDT) use the same
persistence diagrams, which were computed using a VR
filtration. These computations were carried out with Ripser
[72]. P-values were computed for the test statistics dis-
cussed previously based on 20,000 permutations using the
traditional and matched-pairs permutation methods of
Sec. IVA. The results are displayed in Table I. Below
we discuss the resulting p-values, and in the next section we
investigate and interpret where the differences are most
pronounced.
Overall, statistically significant differences with p-values

< 0.001 are apparent between the CDM and WDM MW-
analog DM halo neighborhoods samples, and pperm ≥
pmatched for all test statistics considered.7 Since the two
sets of samples are from different populations (CDM vs.

WDM COCO data), it is a positive result that our proposed
tests are able to detect differences. For H0 and H1, all the
function-based tests had pmatched < 0.001, and this was also
the case for the G-function and 2PCF test statistics. PDT
has pperm and pmatched ≤ 0.003 for H0, but higher p-values
for H1 with pperm ¼ 0.255 and pmatched ¼ 0.036. Because
the PDT uses the bottleneck distance, only one H1 feature
on each of the persistence diagrams contribute to the test
statistic for each MW-analog halo neighborhood sample,
while the functional summary-based test statistics considers
all the features on the persistence diagrams (except for the
landscape functions which only includes features that
contribute to the first 10 layers).
Aside from the silhouette function tests, the H2 p-values

are < 0.01 for both pperm and pmatched. The pperm for the
silhouette function tests are > 0.10, but then drop below
0.01 for pmatched. The EC function test statistic, similar to
the related Betti function test statistics, has both pperm and
pmatched ≤ 0.001. For the TDA-based test statistics, the EC,
Betti, and Landscape function test statistics appear to be
best able to detect differences between the CDM andWDM
MW-analog halo neighborhood samples for both the tradi-
tional and matched-pairs permutation tests across the three
homology dimensions (H0, H1, H2). Tuning could be
carried out for the landscape function tests to find which
landscape function layers are most informative at detecting
differences. Since the results with the first 10 layers

TABLE I. COCO data results. Permutation p-values (pperm) and matched permutation p-values (pmatched) for tests
comparing the CDM andWDMMW-analog halo neighborhood samples. The p-values are rounded to three decimal
places and are based on 20,000 permutations as described in Sec. IVA.

Test statistic Notation Homology dimension pperm pmatched

Landscape F landð1∶10; 0; tÞ 0 0 0
Silhouette F silð0; tjp ¼ 0.5Þ 0 0.009 0
Silhouette F silð0; tjp ¼ 1Þ 0 0.001 0
Silhouette F silð0; tjp ¼ 2Þ 0 0 0
Betti F bettið0; tÞ 0 0.001 0
PDT T PDTðD1;·j0; D2;·j0j∞; 1Þ 0 0.003 0
Landscape F landð1∶10; 1; tÞ 1 0 0
Silhouette F silð1; tjp ¼ 0.5Þ 1 0.009 0
Silhouette F silð1; tjp ¼ 1Þ 1 0.007 0
Silhouette F silð1; tjp ¼ 2Þ 1 0.014 0
Betti F bettið1; tÞ 1 0 0
PDT T PDTðD1;·j1; D2;·j1j∞; 1Þ 1 0.255 0.036
Landscape F landð1∶10; 2; tÞ 2 0 0
Silhouette F silð2; tjp ¼ 0.5Þ 2 0.123 0.003
Silhouette F silð2; tjp ¼ 1Þ 2 0.158 0.009
Silhouette F silð2; tjp ¼ 2Þ 2 0.135 0.008
Betti F bettið2; tÞ 2 0.001 0
PDT T PDTðD1;·j2; D2;·j2j∞; 1Þ 2 0.009 0
Euler characteristic F ecðtÞ 0–2 0.001 0
G-function FGðtÞ Not applicable 0 0
2PCF F 2PCFðtÞ Not applicable 0 0

7If our test statistics were Gaussian distributed, a p-values <
0.001 would correspond to > 3σ significance.
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performed well, we did not consider tuning for this
analysis.
Given that we only have one COCO-CDM and one

COCO-WDM realization, and that we seek to evaluate the
performance of the proposed test statistics when the null
hypothesis is true, we consider bootstrap samples of the
data from the CDM data and from the WDM data. The
distribution of the p-values when the null hypothesis is true
should follow a uniform distribution. Details of this
simulation study and the results are presented in
Appendix C. Overall, we find the p-values resulting from
proposed test statistics based on the functional summaries
of persistence diagrams under the null hypothesis are
generally consistent with uniform distributions.

B. Interpretation of results

In this section, we explore the Betti functions in more
detail and develop other visualizations to aid in the
interpretation of the results in order to investigate the
scales at which the differences between the CDM and
WDM MW-analog halo neighborhood samples occur and
are significant. Since our interest is in where the test
statistics diverge, the mean difference function is displayed
where the signal is based on the matched data in the CDM
and WDM COCO MW-analog halo neighborhood samples
using

F̄diffðtÞ ¼ n−1s
Xns
i¼1

ðFc;iðtÞ − Fw;iðtÞÞ ð18Þ

where Fc;iðtÞ and Fw;iðtÞ are functional summaries for
CDM and WDM sample i, respectively, and ns ¼ 77.
Additionally, 95% global confidence bands are computed
using the bootstrap approach outlined in Sec. 3.2 of
Ref. [31], with 1000 bootstrap samples.8

The CDM and WDM MW-analog halo neighborhood
samples’ persistence diagrams were generated using using
a VR filtration. For example, Fig. 5 displays the persistence
diagrams for the COCO CDM and WDM samples of
Figs. 2(a) and 2(b), respectively. The CDM and WDM
persistence diagrams in this example share a similar pattern
where generally theH0 features are all connected by around
a filtration parameter value of 1, H1 features persist longer
than theH2 features across the range of birth times. TheH0

feature plotted on both diagrams at (0, 2.57) represents an
H0 feature that in fact persists indefinitely and should,
technically, be plotted at a death time of infinity.
The mean differences (CDM—WDM) of the Betti

functional summaries are displayed in Fig. 6 along with
the corresponding 95% confidence bands. Overall, these
summaries suggest that the CDM and WDM samples differ

on shorter distance scales, but then start to resemble each
other at longer distance scales in keeping with Fig. 1.
Recall that the Betti functions count the number of features
that are persistent at the filtration parameter values (i.e., the
x-axis) so by considering the average difference of the Betti
functions we observe at which scales the number of features
differ between the CDM and WDM. For H0, the number of
features, on average, for the CDM data is larger than the
number for the WDM for distances until scales of around
0.4 Mpc, and then the number of WDM features is slightly
higher than the number of CDM features until distances of
∼0.75 Mpc. The number of H1 features is greater, on
average, for the WDM data over the CDM data when
t ≤ 0.13 Mpc, and then the CDM has more H1 features
until around 0.9 Mpc. A similar pattern is observed with the
H2, but the average differences between the CDM and
WDM are within only two H0 features.
While Betti functions capture the number of features that

persist across the filtration parameter values, we defined
analogous functions that instead capture the maximum
persistence (MaxPers) and average persistence (AvePers),
which are displayed in Figs. 7(a) and 7(b), respectively.
Similar to the plots in Fig. 6, the mean difference (CDM-
WDM) of these MaxPers and AvePers functions for the
matched samples were computed. However, for Fig. 7, in
order to visualize the variability in the mean differences,
pointwise error bars (� one standard error) are included.
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FIG. 5. Persistence diagrams for the MW-analog halo neigh-
borhood sample for (a) the CDM data of Figs. 2(a), and 2(b) the
WDM data of Fig. 2(b).

8Note that the hypothesis tests use L1 distances between
functions [see Eq. (15)] while the confidence bands are inves-
tigating differences across the functions.
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The filtration parameter grid ranges from 0 to 2.5 Mpc with
a spacing of 0.05. This is a lower resolution than the Betti
function figures, which we adopt here in order to be able to
improve the visibility of the individual error bars. There are
larger differences between CDM and WDM MaxPers in
H0, H1, and H2 for t≲ 1.85 Mpc: generally the H0

MaxPers are greater for WDM than CDM, the H1

MaxPers is greater for CDM than WDM at scales
≲1.1 Mpc when this tendency switches and WDM has
greater MaxPers, and the H2 MaxPers are higher for CDM
than WDM. A similar pattern is apparent with the AvePers
functions except the H1 AvePers are similar for CDM and
WDM until scales around 1 Mpc, after which WDM
generally has greater AvePers until around 2 Mpc.
Basic spatial point process summary functions, such as

the 2PCF, are commonly employed tools in cosmological
large-scale structure study. To quantify the degree to which
our persistence diagrams provide new information over
these standard statistics, we calculate and show mean
difference functions for the G-functions and 2PCFs in
Figs. 8(a) and 8(b), respectively. The plotted data indicate
that the WDM functions take, on average, greater values
than the CDM variants for t≲ 0.5 Mpc. This result points
toward a similar direction as what we observed with the
differences in the H0 Betti function mean differences

displayed in Fig. 6(a). This is not surprising since the
H0 Betti functions, the G-functions, and the 2PCFs have
different ways of assessing the closeness of the halos within
the samples. However, the H1 and H2 Betti functions,
together with the MaxPers and AvePers methods, appear to
detect differences between the CDM and WDM at different
scales, suggesting that they provide distinct information
from the spatial point process functions. In particular, the
H1 and H2 functions suggest that as the halos become
connected (i.e., the death of H0 features), the CDM and
WDMmodels are forming loops and voids (i.e.,H1 andH2

features, respectively) in different ways. Also, the MaxPers
and AvePers of the H0 features differ between the CDM
and WDM data on different scales than those of the H0

Betti functions.

VI. CONCLUSION

The LSS contains valuable information about the com-
position, and evolution, and the physical nature of the
Universe. TDA tools such as persistent homology provide a
novel opportunity to extract this information from cosmo-
logical data. While TDA-based approaches have been
applied in various fields of statistical studies, its application
to cosmological data and analysis is still in its infancy. In
this paper, we introduced a hypothesis testing framework
built on persistent homology that extends the work of
Ref. [31] in order to compare topological summaries of

0

100

200

0.00 0.25 0.50 0.75 1.00
T (Mpc)

F
di

ff,
be

tti
(0

)

(a) Fbetti(0, t)

−20

−10

0

10

20

0.0 0.5 1.0 1.5 2.0
T (Mpc)

F
di

ff,
be

tti
(1

)

(b) Fbetti(1, t)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0 2.5
T (Mpc)

F
di

ff,
be

tti
(2

)

(c) Fbetti(2, t)

FIG. 6. Mean differences (CDM-WDM) of the Betti functional summaries along with 95% confidence bands (shaded regions) for the
noted functional summaries. The x-axis limits were set to highlight the nonzero mean differences regions.

−0.20

−0.15

−0.10

−0.05

0.00

0.00 0.25 0.50 0.75 1.00
Distance (Mpc)

F
di

ff,
G

−200

−150

−100

−50

0

0.00 0.25 0.50 0.75 1.00 1.25
Distance (Mpc)

F
di

ff,
2P

C
F

FIG. 8. Mean differences (CDM-WDM) of the point process
functions along with 95% confidence bands (shaded regions).

−0.3

−0.2

−0.1

0.0

0.1

0.0 0.5 1.0 1.5 2.0 2.5
Distance [Mpc]

F
di

ff,
M

ax
P

er
s

H0
H1
H2

−0.2

−0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5
Distance [Mpc]

F
di

ff,
A

ve
P

er
s

H0
H1
H2

FIG. 7. Mean differences (CDM-WDM) of the maximum (a)
and average (b) persistences � one standard error. Means and
standard errors were computed every 0.05 Mpc between 0 and
2.5. Gray dotted vertical lines are plotted every 0.10 Mpc. Note
that the H0 feature that persists indefinitely has been removed
from this analysis.

JESSI CISEWSKI-KEHE et al. PHYS. REV. D 106, 023521 (2022)

023521-12



MW-analog halo neighborhoods (3 Mpc spheres) evolved
under two different DM models: CDM and WDM (WDM
thermal relic mass: 3.3 keV). Next, we have assessed the
sensitivity and robustness of this framework in the context
of differentiating between CDM and WDM variants. The
proposed collection of test statistics based on persistence
diagrams uses summaries that were recently proposed in
the literature [23,31,33,49–51], and are easier to work with
than the original persistence diagrams. The results of the
persistence diagram-based functional summaries were
compared to two spatial point process functional summa-
ries (G-functions and 2PCF) and test statistics that use
persistence diagrams directly (PDT) [32].
We showed empirically that such a framework is able to

infer differences between CDM and WDM, and inves-
tigated the scales at which differences occur. While most of
the test statistics were able to detect statistically significant
differences with pmatched ≤ 0.009 for all tests considered
except the PDT for H1 (Sec. VA, especially Table I), the
persistent homology-based functional summaries appear to
detect differences between the CDM and WDM data on
different scales from the spatial point process functional
summaries (Sec. V B).
Our results imply that the homology properties of clus-

tered CDM andWDM haloes distributions are very different
on small scales. CDM haloes are distributed across a larger
number of clusters (homology dimension 0) than WDM
haloes, especially at the ∼80 kpc filtration scale [Fig. 6(a)],
although the clusters that form in WDM are more persistent
on average [Fig. 7(b)]. The 80 kpc scale is alsowhere the two
process functions return the biggest difference between the
models—in both cases an excess of clustering in CDM
relative to WDM—plus the filtration scale at which WDM
featuresmore loops (homology dimension 1) than CDM.We
thus build a picture in which CDM rapidly builds up a large
number of small clusters, whereas WDM builds a smaller
number of clusters, many of which will be rapidly converted
into loops.
This picture is consistent with the formation of haloes in

and around cosmological filaments. In CDM, the distribu-
tion of filaments extends to near arbitrarily small scales and
fills much of configuration space, whereas the WDM cutoff
restricts WDM haloes to lie along large filaments and so
their spatial distribution is much more constrained.
Therefore, the dispersed CDM haloes form large numbers
of small, isolated clusters, whereas WDM haloes are
quickly joined up along cosmological filaments into loops.
The question remains as to whether this difference

between the models can be detected in the spatial distri-
bution of observed Local Group galaxies. One will have to
select haloes that are likely to form a galaxy, where most of
the haloes that we included in this study will be below the
HI cooling limit and thus dark [73,74]. Reducing the
number of haloes available in this manner will likely lead
to a reduction in the statistical significance of differences

between the models’ persistent homology properties: it is
therefore imperative to make halo selections based on, for
example, peak halo mass or a semianalytic models [75] to
confirm the potential persistent homology has for under-
standing which DM models best describe the Local Group.

Data and code associated with this work is available at
https://github.com/JessiCisewskiKehe/DarkMatterTDA.
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APPENDIX A: DISTRIBUTIONAL ASSUMPTIONS
OF DM SAMPLES

In this section, we carry out tests to show that the spatial
distributions of the halo samples do not follow a homo-
geneous Poisson point process (i.e., complete spatial ran-
domness, CSR), which then precludes the use of many
theoretical results that rely on that assumption; see Sec. IV for
a brief discussion about some asymptotic results in persistent
homology. Reference [76] describe a straightforward
Monte Carlo test for checking CSR. Using the same number
of observations (i.e., the number of halos in the MW-analog
halo neighborhoods) and the same window volume (i.e., a
spherewith radius 3Mpc),NMCMonteCarlo realizations are
generated assuming CSR and then their G-functions are
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estimated; see Appendix B and Equation (B4) for back-
ground on G-functions. Then a global envelope is defined
using the NMC summary functions based on the maximum
absolute deviation of the simulated summary functions from
the (known) theoretical summary function (assuming CSR).
If the summary function for the observations are outside the
band, then that is evidence against CSR for those data.
The global envelope was computed by generating NMC

realizations of a homogeneous Poisson process within a
sphere of radius 3Mpc using rejection sampling. The number
of points was set to match the number of halos in each of the
MW-analog halo neighborhood samples. Then a G-function
was estimated for each sample using theG3est function in the
spatstat R package. For each simulated G-function, the
maximum absolute deviation was computed using the true
G-function of the corresponding Poisson process, defined as

FGðtÞ ¼ 1 − e−
4
3
πλ̂t3 ðA1Þ

where λ̂ is the intensity estimated as the number of points
divided by the volume of the sphere. The interpretation is that
if the observed G-function is outside the envelope for any
value t Mpc, then we can reject CSR at a significance level of
1=ð1þ NMCÞ (Ch. 10, Ref. [76]). Using NMC ¼ 19, these
global envelopes were computed for all 77 samples of the
CDM and WDM data, and all observed G-functions have
regions outside the envelopes. For illustration purposes, the
resulting global envelope and observed G-functions for the
CDM and WDM MW-analog halo neighborhood samples
from Fig. 2 are displayed below in Fig. 9. Notice that the
estimated G-functions for the CDM and WDM samples are
outside the gray band for scales below 0.375Mpc suggesting
that they are not consistent with CSR.

APPENDIX B: COMPARISON METHODS IN
COCO ANALYSIS

In addition to the test statistics proposed based on
functional summaries of persistence diagrams, we include
three comparison test statistics in our investigation of the
COCO simulation data presented in Sec. V. The compari-
son methods are the persistence diagram test (PDT), and
test statistics derived using the G-function and two-point
correlation function (2PCF) which are popular functional
summaries of spatial point processes. The comparison
methods are described below.

1. Persistence diagram test (PDT)

Ref. [32] developed a two-sample test that compares
persistence diagrams rather than functional summaries of
persistence diagrams. The PDT test statistic takes the
following form,

T PDTðD1;1∶n1jr; D2;1∶n2jrjp; qÞ

¼
X2
l¼1

1

2nlðnl − 1Þ
Xnl
i¼1

Xnl
j¼1

WpðDl;ijr; Dl;jjrÞq ðB1Þ

where Dl;1∶nljr is a set of nl persistence diagrams for
homology dimension r from population l ¼ 1, 2, q satisfies
1 ≤ q < ∞, and Wpð·; ·Þ is the p-Wasserstein distance,
with 1 ≤ p ≤ ∞. In this work, we set q ¼ 1 and p ¼ ∞.
The W∞ distance is also known as the bottleneck distance,
and is defined as

W∞ðD1; D2Þ ¼ inf
η∶D1→D2

sup
x∈D1

kx − ηðxÞk∞ ðB2Þ

where D1 and D2 are persistence diagrams, η defines a
bijection between the two persistence diagrams that allows
for matches to the diagonal Δ, and k · k∞ is the L∞ norm in
R2 computed between the birth and death coordinates of x
and ηðxÞ for a fixed homology dimension r.

2. Spatial point process functions

In order to investigate properties of the spatial distribu-
tions of the data, which in our setting is the location of the
DM halos, we consider a popular functional summary of
spatial point processes, the G-function,9 along with the
2PCF which is commonly used in cosmology research. The
G-function is defined below and estimated using the
implementation for three-dimensional point patterns in
the R package spatstat [77]10; see Ref. [76] for more
details. The 2PCF uses the Landy-Szalay estimator [70].
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FIG. 9. The estimated spatial point process summary functions
for the CDM (dashed blue line) and WDM (dotted red line) MW-
analog halo neighborhood samples displayed in Fig. 2, along with
the theoretical summary function assuming CSR (solid black
line) and its global envelope (gray region) using NMC ¼ 19
samples. Because this is a global envelope, we can reject the
hypothesis that the CDM and WDM samples were generated
from homogenous Poisson point process at the 1=ð1þ NMCÞ ¼
0.05 level of significance.

9Also referred to as the “nearest-neighbor distance distribution
function”.

10The R function from the spatstat package is G3est.
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The G-function and 2PCF are estimated for each sample
of the DM halos, Yk;i ∈ Rni×3 for k ¼ w, c and
i ¼ 1;…; 77. Given a sample Y ∈ Rn×3, let each point
be denoted by Yi ¼ ðYi;1; Yi;2; Yi;3Þ for i ¼ 1;…; n. Define
a distance function, ρ, as

ρðx;AÞ ¼ inffkx − ak∶a ∈ Ag ðB3Þ

which represents the shortest distance between some point
x ∈ R3 and a closed set A ⊂ R3. The G-function gives the
distribution function of the nearest neighbor distances, and
can be defined as

FGðtÞ ¼ PðρðYi;Y−Yi
Þ ≤ tjYi ∈ YÞ ðB4Þ

where Y−Yi
is the set of points Y excluding the point Yi.

The Kaplan-Meier estimator of Ref. [78] is used to address
the edge effects (i.e., boundary issues).

APPENDIX C: DISTRIBUTION OF P-VALUES
UNDER THE NULL HYPOTHESIS

The results of the proposed hypothesis tests are pre-
sented in Sec. VA. Many of the test statistics find
statistically significant differences between the CDM and
WDMmodels with p-values ≤ 0.001. In order to verify that
the test statistics do not inappropriately reject the null
hypothesis when the null hypothesis is true (i.e., when both
groups come from either CDM or WDM), we carry out the

following experiment. We repeatedly generate two sets of
bootstrap realizations from either the CDM or WDM
samples, and then compute permutation p-values for the
test statistics presented in the main text. The distribution of
the p-values in this setting where the null hypothesis is true
should follow a uniform distribution. To compute one
p-value, two bootstrap samples (with replacement) of
77 MW-analog halo neighborhoods are selected from the
CDM (WDM) data. Then the hypothesis testing framework
presented in Sec. IVA is used to compute a traditional
permutation p-value (since the matched pairs design is not
present in this setting) using 20,000 permutations. This
computation is repeated for 100 independent iterations for
the CDM (WDM) data with the same sampled indexes used
for the CDM and WDM bootstrap samples. Figures 10 and
11 display the results for the CDM and WDM samples,
respectively, as uniform quantile-quantile plots with 99%
pointwise bands based on the distribution of order statistics
of uniform random variables (i.e., Beta(k, nþ 1 − k) where
k is the order and n ¼ 100). The resulting p-values for each
test statistic are generally consistent with uniform
distributions. The CDM H1 landscape function p-values
[Fig. 10(b)] have some values that are not within the
99% confidence band, but this does not occur with the
WDMH1 landscape function p-values [Fig. 11(b)] nor with
the other landscape function p-values so it appears to not be
a reason for concern about the landscape function-based
test statistics.
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FIG. 10. Uniform quantile-quantile plots of the 100 permuta-
tions p-values calculated for each test statistic using bootstrap
realizations of the CDM MW-analog halo samples. Each boot-
strap sample includes 77 MW-analog halo neighborhoods, and
20,000 permutations were used to compute each p-value.
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FIG. 11. Uniform quantile-quantile plots of the 100 permuta-
tions p-values calculated for each test statistic using bootstrap
realizations of the WDM MW-analog halo samples. Each boot-
strap sample includes 77 MW-analog halo neighborhoods, and
20,000 permutations were used to compute each p-value.
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