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In this work, we study quantum fluctuations in the stress energy tensor of spinor fields evolving in
general Friedmann-Robertson-Walker (FRW) spacetimes. We quantify these fluctuations by the noise
kernel of spinor fields. For the particular case of de Sitter spacetime, we place the spinor field in what is
called the fermionic Bunch Davies vacuum and study the variation of the noise kernel with the mass of the
field. We then make use of the conformal invariance of massless spinor fields and employ an equivalence
that relates a massless spinor field in any given FRW spacetime with a corresponding massless spinor field
in de Sitter spacetime. Using this equivalence, we study the behavior of the noise kernel of massless spinor
fields in general FRW spacetimes while placing the fields in the Bunch Davies vacuum of the
corresponding massless spinor field of the de Sitter spacetime. We extend this analysis to a coordinate
invariant quantity which is built from the noise kernel of the field. We compare these results for spinor
fields in considered spacetimes with the analogous results for scalar fields. This study helps us better
understand whether the spin 1=2 fermionic matter remains strongly correlated in considered spacetimes
leading to considerable backreaction or not.
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I. INTRODUCTION

With the ever so precise cosmological data [1–3]
becoming available to us, we have increasing density of
empirical references against which we can test the validity
of our theories, arrived at either through intuition or to
explain observations obtained in other astrophysical or
cosmological contexts, and gain new insights into the
origin of the Universe and its evolution history. For
example, the anisotropies in the cosmic microwave back-
ground (CMB) are believed to be related to the power
spectrum of the quantum fluctuations of the inflaton field
[4,5] and therefore, corrections to this quantity coming
from higher order effects can show up themselves in the

finer details of the observed anisotropies [6]. In scenarios
where fluctuations over the background quantities can be
considered small, we see that the matter fluctuations (over
the background matter fields) can couple to the gravita-
tional fluctuations (over the background metric) through
their stress energy tensors.1 Therefore, if we quantize these
fluctuations, then such an interaction term can be seen as
providing a perturbed Hamiltonian term to the free dynam-
ics of these fluctuations and as such the propagators of
these fluctuations get corrections from this term [7]. From
the structure of the interaction term, it is clear that it would
inevitably involve n-point correlators of the matter field
stress energy operators. Calculating n-point correlators of
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1This can be easily seen by noticing that

Stotal ¼ Sgravityðg̃Þ þ Smatterðg̃; ϕ̃Þ
¼ Sgravityðgbg þ hÞ þ Smatterðgbg þ h;ϕbg þ δϕÞ

¼ ðSð0ÞgravityðgbgÞ þ Sð0Þmatterðgbg;ϕbgÞÞ þ Sð2Þmatterðgbg; δϕÞ þ Sð2ÞgravityðhÞ þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffi−gbg

p �
−
1

2
habTab

δϕ

�
þ � � � :

where gbg and ϕbg are the background metric and the background matter field respectively and similarly h and δϕ are the respective
fluctuations over these background quantities. We have dropped the terms which are first order in h or δϕ as they contain expressions
which correspond to the equations of motion for the background quantities and, hence, are zero. Here the terms Sð2Þ are second order in h
and δϕ and provide the free dynamics of the matter and the gravity fluctuations. We see that one of the interaction terms between the
gravity fluctuations and the matter field fluctuations is proportional to the stress energy tensor of the matter field fluctuations i.e.,
Tab
δϕ ¼ − 2ffiffiffiffiffiffiffi−gbg

p δSmatterðδϕÞ
δgabðbgÞ .
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stress energy operators is, in general, a very difficult task.
However, in order to study the second order effect (after
taking into account the first order semiclassical effects of
the one-point quantum averages of stress energy operators)
coming from this interaction term, one only needs the
knowledge of two-point correlators of quantum field stress
energy operators. A number of previous investigations have
undertaken the task of calculating and studying the behav-
ior of these two-point correlations of quantum field stress
energy operators (mainly, that of scalar fields). These works
have considered the dynamics of quantum fields over
different types of background spacetimes ranging from
the Minkowski spacetime [8–10] to the de Sitter spacetime
[11,12] to the more general conformally flat spacetimes
[13] among others [14–16]. These studies have been
performed by placing quantum fields in different types
of vacua, for example, [11,12] have carried out the analysis
by placing the scalar field in the Bunch Davies vacuum
[17,18]. A number of works have also focused attention on
how the fluctuations in quantum stress energy tensors affect
the geometry of spacetimes, for example [19,20] have
considered how congruences of geodesics are affected by
these fluctuations and similarly, [21–23] have considered
how these fluctuations manifest themselves in the power
spectra of primordial gravity waves and hence provide
possible observable effects of these fluctuations. These
fluctuations in stress energy operators, or more appropri-
ately the noise kernel (which is the vacuum expectation of
symmetrized stress energy bitensors, see below) play a
fundamental role in the stochastic gravity [24] framework
where they feed the stochastic fluctuations appearing in the
Einstein Langevin equations. Therefore, in any attempt to
go beyond the first order semiclassical analyses, we would
always end up requiring one to calculate the behavior of the
noise kernel of matter fields.
Since the present-day Universe contains both bosonic

and fermionic types of particles, it is natural to assume that
(during their journey through the evolution of the Universe)
they could couple with gravitational waves with the above
types of interaction terms. Although the majority of the
above cited works have considered only the effects of
bosonic fields such as scalar and electromagnetic fields,
there are some works that have also considered the effects
of fermionic fields on gravitational waves. For example,
assuming that the fermions were produced after inflation, in
the reheating era [25,26], Ref. [27] has considered the
backreaction of fermionic fields on gravitational waves.
Similarly, [28,29] have looked at the modification in
gravitational wave spectra caused by spinor fields during
inflation. These works have used the spinor mode sums in
momentum space and have arrived at the fermionic field
corrections to the gravitational wave spectra. In this work,
we aim to determine the coordinate space expression of the
noise kernel for spinor fields in general Friedmann-
Robertson-Walker (FRW) spacetimes. In order to carry

out this task for the particular case of spinor fields in de
Sitter spacetime, we consider that the fields are placed in
the fermionic Bunch Davies vacuum [30,31] which is
defined by choosing the fermionic mode functions in such
a way that, in the asymptotic past, the leading order
behavior of these mode functions is like that of the
Minkowski spacetime positive and negative frequency
mode functions. Then, we deal with massless spinor fields
in general FRW spacetimes and for these cases, we employ
a mapping that relates a massless spinor field in any FRW
spacetime to another massless spinor field in any other
FRW spacetime and also relates the corresponding
Wightman functions. Therefore, using this mapping, we
place a massless spinor field in a given FRW spacetime in
the Bunch-Davies vacuum of the corresponding massless
spinor field in de Sitter spacetime (or equivalently, in terms
of the Poincare vacuum of the Minkowski spacetime). We
also compare the behavior of the noise kernel of spinor
fields in the above spacetimes with the analogous studies
for scalar fields in the same spacetimes [12]. Since different
epochs of the Universe are approximately FRW type
spacetimes, the analysis of massless spinor fields in
FRW spacetimes is applicable to these different epochs
of the Universe, in particular, to the present-day dark
energy driven universe. As the surveys [1] put the dark
energy equation of state parameter to be −1.03� 0.03,
having knowledge of the behavior of the noise kernel
for spinor fields in both the quintessence regime
ð−1 < w < − 1

3
Þand the phantom regime (w < −1) may

be useful [32]. Therefore, our analysis considers spinor
fields not only for quintessence but also for phantom
cosmologies and in fact, for all types of FRW spacetimes.
Carrying out this analysis for phantom cosmologies
becomes physically more sound and, hence, all the more
appealing when we can evade the unwanted big rip feature
(i.e., the scaling factor and the energy density going to
infinity in a finite interval of time) of the phantom models
[32,33] with a dynamical equation of state parameter
generated by properly chosen phantom field potentials
[34]. These types of potential allow for the possibility of
having a phantom spacetime phase for some time and then
exiting this phantom phase before a big rip occurs.
The rest of the paper is organized as follows. In Sec. II,

we give a brief review of the dynamics of spinor fields in
curved spacetimes and also provide an outline of a
calculation to arrive at the expression of the Wightman
function corresponding to the fermionic Bunch Davies
vacuum of the de Sitter spacetime. We then employ a
mapping between massless spinor fields in de Sitter and
general FRW spacetimes and, using this mapping, we relate
the expression of the Wightman function of a massless
spinor field in de Sitter spacetime with the corresponding
expressions for massless spinor fields in general FRW
spacetimes. In Sec. III, we use the point splitting technique
to write the noise kernel for spinor fields as an expression
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involving some derivative operators acting on a product of
Wightman functions. In Sec. IV, we arrive at the expression
of the noise kernel for a spinor field (placed in the Bunch
Davies vacuum) in de Sitter spacetime and analyze how the
noise kernel behaves as a function of the mass of the field.
In Sec. V, we perform a similar analysis for massless
fermions in general FRW spacetimes. In Sec. VI, we
summarize our findings and discuss their implications.
We use the ð−;þ;þ;þÞ, convention for the spacetime
metric.

II. PRELIMINARIES

The dynamics of spinor fields in curved spacetimes is
best described using the formalism of tetrad bases. The
action for a minimally coupled spinor field in curved
spacetime is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½iψ̄γμ∇μψ −mψ̄ψ �

¼
Z

d4x
ffiffiffiffiffiffi−gp
2

½iψ̄γμ∇μψ − ið∇μψ̄Þγμψ − 2mψ̄ψ �

þ
Z

d4x
ffiffiffiffiffiffi−gp
2

∇μðiψ̄γμψÞ; ð1Þ

where γμ ¼ eμaΓa, fΓa;Γbg ¼ −2ηab and the four diver-
gence term is a boundary term. Here eμa are the tetrad basis
which satisfy eμaeνbη

ab ¼ gμν. Also ∇μ ¼ ∂μ − 1
8
ωab
μ ½Γa;Γb�

where ωab
μ ¼ eaλe

τbΓλ
τμ − eτb∂μeaτ (see [35,36]). The equa-

tion of motion for the above action has the following form:

ðiγλ∇λ −mÞψ ¼ 0: ð2Þ

Since we are ultimately interested in general FRW space-
times for which one can choose coordinate systems in which
the metric can be cast into a conformally flat form [37], let us
consider ds2 ¼ a2ðηÞð−dη2 þ dx⃗2Þ. For these spacetimes,
we can take the tetrad basis to be eμa ¼ 1

a δ
μ
a. Using this tetrad

basis and the fact that Γλ
μν ¼ a0

a ðδλνδ0μ þ δλμδ
0
ν − ημνη

λ0Þ, we
can calculate ωμab ¼ a0

a ðηaμδ0b − ηbμδ
0
aÞ where 0 represents

a derivative with respect to η. Using these expressions, we
find that

iγλ∇λ ¼
i
a
Γμ

�
∂μ −

1

8
ωμab½Γa;Γb�

�

¼ i
a

�
Γμ
∂μ þ

a0

4a
ημaΓμ½Γ0;Γa�

�

¼ i
a

�
Γμ
∂μ þ

3a0

2a
Γ0

�
: ð3Þ

Substituting this into the equation of motion, it modifies to

�
iΓμ

∂μ þ
3ia0

2a
Γ0 − am

�
ψ ¼ 0: ð4Þ

Going to the Fourier space i.e., writing ψðη; x⃗Þ ¼R
d3k⃗
ð2πÞ3 e

ik⃗:x⃗ψ k⃗ðηÞ, we obtain that

�
iΓ0

∂0 − k⃗:Γ⃗þ 3ia0

2a
Γ0 − am

�
ψ k⃗ðηÞ ¼ 0; ð5Þ

and, for field redefinition χ k⃗ðηÞ ¼ a
3
2ðηÞψ k⃗ðηÞ, it reduces

further to the following form:

ðiΓ0
∂0 − k⃗:Γ⃗ − amÞχ k⃗ðηÞ ¼ 0: ð6Þ

Following [31], let us now decompose the 4-column
spinors into chirality-helicity basis i.e.,

χhðk⃗; ηÞ≡ χk⃗ðηÞ ¼
�
χL;hðk⃗; ηÞ
χR;hðk⃗; ηÞ

�
⊗ ξh; ð7Þ

where ξh are 2-column eigenvectors of ðk̂:σ⃗Þ i.e., ðk̂:σ⃗Þξh ¼
hξh with eigenvalues h being�1.2 The functions χL;hðk⃗; ηÞ
and χR;hðk⃗; ηÞ are 1-column functions and are called left-
and right-handed spinors of helicity h, respectively. Here
⊗ is the tensor product symbol.
Using the Weyl representation for Gamma matrices i.e.,

Γ0¼
�
0 1

1 0

�
⊗
�
1 0

0 1

�
; Γi ¼

�
0 1

−1 0

�
⊗ σi; ð8Þ

where ⊗ is, again, the tensor product symbol and σ0is are
2 � 2 Pauli matrices, the Dirac equation reduces to the
following set of coupled linear differential equations:

i∂0χR;hðk⃗; ηÞ − khχR;hðk⃗; ηÞ − amχL;hðk⃗; ηÞ ¼ 0;

i∂0χL;hðk⃗; ηÞ þ khχL;hðk⃗; ηÞ − amχR;hðk⃗; ηÞ ¼ 0: ð9Þ

Defining u�hðk; ηÞ ¼ χL;hðk⃗;ηÞ�χR;hðk⃗;ηÞffiffi
2

p and specializing to the

de Sitter spacetime case i.e., taking aðηÞ ¼ − 1
Hη, we get the

following equations:

2Using the form of the Pauli matrices and demanding that
ξ†hξh ¼ 1, we can take the helicity eigenvectors to be

ξþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1− k̂zÞ

q
�
k̂x− ik̂y

1− k̂z

�
; ξ− ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ k̂zÞ

q
�−k̂xþ ik̂y

1þ k̂z

�
;

where
ˆ
k⃗ ¼ k⃗

jjk⃗jj.
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u00�h þ
�
k2 þ

1
4
− ð1

2
∓ im

H Þ2
η2

�
u�h ¼ 0; ð10Þ

where 0 represents a derivative with respect to η. These
equations have the form of a Bessel’s equation and hence
the most general solutions for u�h are given by [38,39]

u�hðk; ηÞ ¼ αh�k

ffiffiffiffiffiffiffiffi
−kη

p
Hð1Þ

ν� ð−kηÞ þ βh�k

ffiffiffiffiffiffiffiffi
−kη

p
Hð2Þ

ν� ð−kηÞ;
ð11Þ

where ν� ¼ 1
2
∓ im

H and αh�k’s and βh�k’s are arbitrary
constants to be fixed by initial condition. In order to
proceed further with the analysis, we need to make a
choice of vacuum for the spinor field and in this work, we
choose to work with what is called the fermionic Bunch
Davies vacuum.

A. The fermionic Bunch Davies vacuum

The Bunch Davies vacuum for spinor fields in de Sitter
spacetime is defined analogously to how one defines it for
scalar fields. For this, we fix αh�k’s and βh�k’s in such a
way that the mode functions u�hðk; ηÞ, considered in
the asymptotic past, behave like flat spacetime mode
functions. To make it more precise, we notice that in the
asymptotic past i.e., η → −∞ limit, Eq. (10) reduces to
u00�h þ k2u�h ¼ 0. This implies that there exists positive
and negative frequency modes in the asymptotic past i.e.,
e�ikη. Using the following large argument expansions of
Hankel functions [39] i.e.,

Hð1Þ
ν ðzÞ ¼

ffiffiffiffiffi
2

πz

r
eiðz−π

2
ν−π

4
Þ
�
1þO

�
1

z

��
; ð12Þ

Hð2Þ
ν ðzÞ ¼

ffiffiffiffiffi
2

πz

r
e−iðz−π

2
ν−π

4
Þ
�
1þO

�
1

z

��
; ð13Þ

for jzj→∞; ReðνÞ>−
1

2
and jargðzÞj< π; ð14Þ

we see that, for nonzero αh�k’s and vanishing β
h
�k’s, the mode

functions,u�hðk; ηÞ, indeed behave like positive frequncy (or
particle) modes in the η → −∞ limit. In fact, by substituting

u�hðk; ηÞ ¼ αh�k

ffiffiffiffiffiffiffiffi
−kη

p
Hð1Þ

ν� ð−kηÞ in equations ofmotion and
using certain properties of Hankel functions, we find that
αh−k ¼ ihαhþke

iπν− . Demanding that limη→−∞uþhðk;ηÞ¼ e−ikηffiffi
2

p ,

we should take αhþk ¼
ffiffi
π
4

p
ei

π
2
ðνþþ1=2Þ and therefore, we have,

for particle modes,

uþhðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−πkη
4

r
ei

π
2
ðνþþ1=2ÞHð1Þ

νþ ð−kηÞ≡ fðk; ηÞ; ð15Þ

u−hðk; ηÞ ¼ −h
ffiffiffiffiffiffiffiffiffiffiffi
−πkη
4

r
ei

π
2
ðν−þ1=2ÞHð1Þ

ν− ð−kηÞ
≡ −hg�ðk; ηÞ: ð16Þ

This implies that

χL;hðk; ηÞ ¼
f − hg�ffiffiffi

2
p ; ð17Þ

χR;hðk; ηÞ ¼
f þ hg�ffiffiffi

2
p : ð18Þ

Similarly, we can determine the antiparticle modes. For

antiparticlemodes,we denote the Fourier coefficient of e−ik⃗:x⃗

to be νk⃗ðηÞ and hence, in the helicity-chirality basis, the
differential equations have −k in place of k. Therefore, by
flipping the definitions of the left- and right-handed fermions
i.e., taking

νhðk⃗; ηÞ≡ νk⃗ðηÞ ¼
�
νR;hðk⃗; ηÞ
νL;hðk⃗; ηÞ

�
⊗ ξh; ð19Þ

we end up with the same set of differential equations for νR;h
and νL;h as (9). Now demanding that the corresponding u�h’s
go to eikηffiffi

2
p in the asymptotic past, we conclude that

νL;hðk; ηÞ ¼
hf� þ gffiffiffi

2
p ; ð20Þ

νR;hðk; ηÞ ¼
−hf� þ gffiffiffi

2
p : ð21Þ

Using the above considered Bunch Davies modes, we can
write the field operator and its conjugate as follows3:

ψ̂ðη; x⃗Þ ¼ a−
3
2ðηÞ

Z
d3k⃗
ð2πÞ3

X
h

½âk⃗;hχhðk⃗; ηÞeik⃗:x⃗

þ b̂†
k⃗;h
νhðk⃗; ηÞe−ik⃗:x⃗� ð22Þ

and

ˆ̄ψðη; x⃗Þ ¼ a−
3
2ðηÞ

Z
d3k⃗
ð2πÞ3

X
h

½â†
k⃗;h
χ̄hðk⃗; ηÞe−ik⃗:x⃗

þ b̂k⃗;hν̄
hðk⃗; ηÞeik⃗:x⃗�: ð23Þ

Here â’s and b̂’s are the annihilation operators while â†’s and
b̂†’s are the creation operators corresponding to the above
described Bunch Davies modes. We now define the Bunch

3For the rest of this subsection, aðηÞ represents − 1
Hη.
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Davies vacuum, j0i, to be the statewhich is annihilated by all
âk⃗;h’s and b̂k⃗;h’s i.e., âk⃗;hj0i ¼ 0 and b̂k⃗;hj0i ¼ 0. From the
expressions for the field operator and its adjoint, we find that
the Wightman functions are given by

Sijðx; x0Þ ¼ hψ̂ iðxÞ ˆ̄ψ jðx0Þi

¼ a−
3
2ðηÞa−3

2ðη0Þ
Z

d3k⃗
ð2πÞ3

X
h

χhi ðk⃗; ηÞχ̄hj ðk⃗; η0Þ

× eik⃗:ðx⃗−x⃗0Þ ð24Þ

and

Rjiðx0; xÞ ¼ h ˆ̄ψ jðx0Þψ̂ iðxÞi

¼ a−
3
2ðηÞa−3

2ðη0Þ
Z

d3k⃗
ð2πÞ3

X
h

νhi ð−k⃗; ηÞ

× ν̄hj ð−k⃗; η0Þeik⃗:ðx⃗−x⃗0Þ
¼ −Sijðx; x0Þ. ð25Þ

After some manipulations, one can show that (see [30,31])

Sijðx; x0Þ ¼ hψ̂ iðxÞ ˆ̄ψ jðx0Þi

¼ aðηxÞ½iγλ∇⃗x
λ þm� H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðηxÞaðηx0 Þ
p

×

�
Sþðx; x0Þ

1þ Γ0

2
þ S−ðx; x0Þ

1 − Γ0

2

�
; ð26Þ

where

S�ðx; x0Þ ¼
Γð2� i mHÞΓð1 ∓ i mHÞ

ð4πÞ2

× 2F1

�
2� i

m
H
; 1 ∓ i

m
H
; 2; Zðx; x0Þ

�
ð27Þ

and Zðx; x0Þ ¼ 1þ ðη−η0Þ2−ðΔx⃗Þ2
4ηη0 . Using that ∇⃗x

λ ¼ ∂λ −
1
8
ωabλ½Γa;Γb� ¼ ∂λ þ a0

4a ηλa½Γ0;Γa� and γλ∇⃗x
λ ¼ 1

a ðΓλ
∂λ þ

3a0
2a Γ

0Þ, the above expression can be written as

Sijðx; x0Þ ¼
�
iΓλ

∂
x
λ þ

3ia0ðηxÞ
2aðηxÞ

Γ0 þ aðηxÞm
�

H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðηxÞaðηx0 Þ

p

×

�
Sþðx; x0Þ

1þ Γ0

2
þ S−ðx; x0Þ

1− Γ0

2

�

¼ H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðηxÞaðηx0 Þ

p
�
iΓλ

∂
x
λ þ i

a0ðηxÞ
aðηxÞ

Γ0 þ aðηxÞm
�

×

�
Sþðx; x0Þ

1þ Γ0

2
þ S−ðx; x0Þ

1− Γ0

2

�
: ð28Þ

We need the forms of theWightman functions, Sijðx; x0Þ and
Rjiðx0; xÞ, later on in thisworkwhenwe study the behavior of
the fluctuations in the stress energy operator which, as we
shall see, can be expressed as certain derivatives acting on
products of Wightman functions.

B. Equivalence between massless spinor fields
in FRW spacetimes and de Sitter spacetime

It has been established, in [40], that massless scalar fields
in FRW spacetimes can be mapped to massive scalar fields
in de Sitter spacetime and hence one can make use of this
equivalence to study the dynamics in one setup in terms of
the another. In this subsection, we make use of the
conformal invariance of massless spinor fields and relate
the Wightman functions of massless spinor fields in general
FRW spacetimes with the Wightman function of a massless
spinor field in de Sitter spacetime. In fact, we start with a
massive spinor field in an arbitrary FRW spacetime and try
to relate it to another spinor field in some other arbitrary
FRW spacetime. For this, consider the action of a spinor
field in a spacetime with ds2 ¼ c2ðηÞð−dη2 þ dx⃗2Þ i.e.,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½iψ̄γμ∇μψ −mψ̄ψ �

¼
Z

d4xc3ψ̄

�
iΓμ

∂μ þ i
3c0

2c
Γ0 − cm

�
ψ : ð29Þ

Considering the transformation ψ ¼ FðηÞΩ, we observe
that the above action transforms to

S¼
Z

d4xc3F2Ω̄
�
iΓμ

∂μþ i
3c0

2c
Γ0þ i

F0

F
Γ0−cm

�
Ω ð30Þ

and now demanding that c3F2 ¼ b3 and ½i 3c0
2c Γ

0 þ i F
0

F Γ0 −
cm� ¼ ½i 3b0

2b Γ
0 − bm0�, the above action becomes

S ¼
Z

d4xb3Ω̄
�
iΓμ

∂μ þ i
3b0

2b
Γ0 − bm0

�
Ω ð31Þ

which is the action of a spinor field, Ω, in a spacetime
with ds2 ¼ b2ðηÞð−dη2 þ dx⃗2Þ.
We notice that the condition that c3F2 ¼ b3 automati-

cally gives

3c0

2c
þ F0

F
¼ 3b0

2b
: ð32Þ

Therefore, from the condition that

�
i
3c0

2c
Γ0 þ i

F0

F
Γ0 − cm

�
¼

�
i
3b0

2b
Γ0 − bm0

�
; ð33Þ

we obtain that m0 ¼ c
bm. A number of interesting con-

clusions can be drawn from this analysis. But for our
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purposes, all we need to observe is that a massless spinor
field in an FRW spacetime can always be mapped to
another massless spinor field in any other FRW spacetime,
in particular, we can map a massless spinor field in any
FRW spacetime to a massless spinor field in de Sitter or flat
spacetime. We make use of this equivalence and determine
the desired results in general FRW spacetimes in terms of
the de Sitter quantities4 i.e., we take bðηÞ ¼ aðηÞ ¼ − 1

Hη. In
particular, we observe that the Wightmann function for a
massless spinor field in an FRW spacetime [with scale
factor being cðηÞ] is given by

SFRWij ðx; x0Þ ¼ hψ iðxÞψ̄ jðx0Þi ¼ ðFðηÞFðη0ÞÞhΩiðxÞΩ̄jðx0Þi

¼
�
aðηÞ
cðηÞ

�3
2

�
aðη0Þ
cðη0Þ

�3
2

SdSij ðx; x0Þ

¼ 1

c
3
2ðηxÞc3

2ðηx0 Þ
Sflatij ðx; x0Þ: ð34Þ

Similarly, we have

RFRW
ji ðx0; xÞ ¼ hψ̄ jðx0Þψ iðxÞi ¼ ðFðηÞFðη0ÞÞhΩ̄jðx0ÞΩiðxÞi

¼
�
aðηÞ
cðηÞ

�3
2

�
aðη0Þ
cðη0Þ

�3
2

RdS
ji ðx0; xÞ

¼ 1

c
3
2ðηxÞc3

2ðηx0 Þ
Rflat
ji ðx0; xÞ: ð35Þ

We make use of these relations later on in this work and
find that the noise kernel for massless spinor fields in
general FRW spacetimes is related to the de Sitter noise
kernel again by conformal factors.

III. NOISE KERNEL AND POINT SPLITTING

Using the expression that

TμνðxÞ ¼ −
2ffiffiffiffiffiffi−gp δS

δgμνðxÞ ; ð36Þ

we find that, for spinor fields in curved spacetimes, the
stress energy tensor [35,36] is given by

Tμν ¼ −
i
2
gμν½ψ̄γλ∇⃗λψ − ψ̄∇⃖λγ

λψ �

þ i
2
½ψ̄γðμ∇⃗νÞψ − ψ̄∇⃖ðνγμÞψ � þmψ̄ψgμν

¼ −
gμν
2

ψ̄ ½ðiγλ∇⃗λ −mÞ − ði∇⃖λγ
λ þmÞ�ψ

þ i
2
ψ̄ ½γðμ∇⃗νÞ − ∇⃖ðνγμÞ�ψ : ð37Þ

Using the point splitting technique [17], this can succinctly
be written as

TμνðxÞ ¼ lim
x0→x

Pμνijðx; x0Þψ̄ iðxÞψ jðx0Þ; ð38Þ

where summation over i and j is understood and

Pμνijðx; x0Þ ¼ −
gμν
2

½ðiγλ∇⃗x0
λ −mÞ − ði∇⃖x

λγ
λ þmÞ�ij

þ i
2
½γðμ∇⃗x0

νÞ − ∇⃖x
ðνγμÞ�ij: ð39Þ

To conclude whether the semiclassical analyses (based only
on the expectation values of the stress energy operators)
alone are sufficient or not, we must have knowledge of the
behavior of the quantum fluctuations in stress energy
tensors. In stochastic gravity paradigm [24], these are
characterized by the noise kernel which is given by

Nabcdðx; yÞ ¼ hT̂abðxÞT̂cdðyÞi − hT̂abðxÞihT̂cdðyÞi; ð40Þ

where, as usual, the quantum stress energy operator is
obtained from the classical expression by replacing the
classical fields by their corresponding operator quantities.
Using the above notations, we find that the noise kernel

can be written as

Nabcdðx; yÞ ¼ lim
x0→x

lim
y0→y

Pabijðx; x0ÞPcdklðy; y0Þ

× ½h ˆ̄ψ iðxÞψ̂ jðx0Þ ˆ̄ψkðyÞψ̂ lðy0Þi
− h ˆ̄ψ iðxÞψ̂ jðx0Þih ˆ̄ψkðyÞψ̂ lðy0Þi�: ð41Þ

Applying Wick’s theorem to the first term, we see that the
noise kernel is now given by

Nabcdðx; yÞ ¼ lim
x0→x

lim
y0→y

Pabijðx; x0ÞPcdklðy; y0Þ

× ½h ˆ̄ψ iðxÞψ̂ lðy0Þihψ̂ jðx0Þ ˆ̄ψkðyÞi�: ð42Þ

Since ψ̂ is a linear combination of the solutions of the Dirac
equation and ˆ̄ψ is a linear combination of the solutions of
the adjoint of the Dirac equation, we see that, in the stress
energy operator, the terms which correspond to the Dirac
equation and its adjoint drop out. Therefore, we are left
with the following expression for the noise kernel:

4As we have seen that massless spinor fields in FRW space-
times are equivalent to massless spinor fields in flat spacetime as
well, we could have equally well carried out the FRWanalyses in
terms of the flat spacetime quantities. But since we are going to
analyze the de Sitter noise kernel before going to the general
FRW cases, it seems more seamless with the flow of the paper to
map FRW analyses to the de Sitter case.
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Nabcdðx; yÞ ¼ lim
x0→x

lim
y0→y

1

4
½γða∇⃗x0

bÞ − ∇⃖x
ðaγbÞ�ij½γðc∇⃗y0

dÞ − ∇⃖y
ðcγdÞ�klSjkðx0; yÞSliðy0; xÞ

¼ lim
x0→x

lim
y0→y

1

4
½Trðγða∇⃗x0

bÞSðx0; yÞγðc∇⃗y0
dÞSðy0; xÞÞ − Trðγða∇⃗x0

bÞSðx0; yÞ∇⃖y
ðcγdÞSðy0; xÞÞ

− TrðSðx0; yÞγðc∇⃗y0
dÞSðy0; xÞ∇⃖x

ðaγbÞÞ þ TrðSðx0; yÞ∇⃖y
ðcγdÞSðy0; xÞ∇⃖x

ðaγbÞÞ�: ð43Þ

The analysis done in this section is independent of the
spacetime that we consider and as such holds for all
types of spacetimes. In the next section, we calculate the
behavior of the noise kernel in de Sitter spacetime
while placing the quantum spinor field in the Bunch
Davies vacuum and therefore we use the Wightmann
function for this state given in the previous section.
In particular, we calculate the ða ¼ b ¼ c ¼ d ¼ 0Þ com-
ponent of the noise kernel as this can be related to a
coordinate invariant quantity as discussed later on in
this work.

IV. NOISE KERNEL IN DE SITTER SPACETIME

In this section, we specialize to the case of a spinor
field evolving in the de Sitter spacetime. As mentioned in
the previous section, we are interested in calculating the
ða ¼ b ¼ c ¼ d ¼ 0Þ component of the noise kernel i.e.,
N0000ðx; yÞ. Since we have expressed the noise kernel as a
sum of derivatives acting on a product of Wightman func-
tions, we take the above given expression of the Wightman
function for a spinor field (in de Sitter spacetime) placing it in

the Bunch Davies vacuum. Using that ∇⃗x
0 ¼ ∂

x
0, we see that

5

N0000ðx; yÞ ¼ lim
x0→x

lim
y0→y

aðηxÞaðηyÞ
4

½∂x00 ∂y
0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �TrðΓ0Sðx0; yÞΓ0Sðy0; xÞÞ

¼ lim
x0→x

lim
y0→y

axay
4

½∂x00 ∂y
0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �

H4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiaxax0ayay0
p

× Tr

�
Γ0

�
iΓλ

∂
x0
λ þ i

a0x0
ax0

Γ0 þ ax0m

��X
ϵ¼�

Sϵðx0; yÞ
1þ ϵΓ0

2

�

× Γ0

�
iΓσ

∂
y0
σ þ i

a0y0
ay0

Γ0 þ ay0m

��X
ϵ¼�

Sϵðy0; xÞ
1þ ϵΓ0

2

��
: ð44Þ

It can be easily shown that the factor H4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axax0ayay0

p , after having been operated by all the derivative operators, simply come in

front of the bigger square brackets (which contain the derivative operators) as it is and in the above limits cancel out the
already present axay factor. Finally, we obtain

N0000ðx; yÞ ¼ lim
x0→x

lim
y0→y

H4

4
½∂x00 ∂y

0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �

×Tr

�
Γ0

�
iΓλ

∂
x0
λ þ i

a0x0
ax0

Γ0 þ ax0m

��X
ϵ¼�

Sϵðx0; yÞ
1þ ϵΓ0

2

�

× Γ0

�
iΓσ

∂
y0
σ þ i

a0y0
ay0

Γ0 þ ay0m

��X
ϵ¼�

Sϵðy0; xÞ
1þ ϵΓ0

2

��
:

ð45Þ

Thus, we see that, in the expression of the noise kernel, we have traces of the Dirac matrices. Therefore, we can use the well-
known properties [35] of these traces to proceed further with our calculations.

5From this section onwards, we always take ax≡aðηxÞ¼− 1
Hηx

.
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A. “Gammatronics”

Using the cyclic property of traces, we can write the noise kernel expression in the following expanded form:

N0000ðx; yÞ ¼ lim
x0→x

lim
y0→y

H4

4
½∂x00 ∂y

0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �

×
X
ϵ¼�

X
δ¼�

Tr
�
Γ0

�
iΓλ

∂
x0
λ þ i

a0x0
ax0

Γ0 þ ax0m
��

1þ ϵΓ0

2

�

× Γ0

�
iΓσ

∂
y0
σ þ i

a0y0
ay0

Γ0 þ ay0m

��
1þ δΓ0

2

��
Sϵðx0; yÞSδðy0; xÞ

¼ lim
x0→x

lim
y0→y

H4

4
½∂x00 ∂y

0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �

×
X
ϵ¼�

X
δ¼�

Tr

�
i2ΓλMΓσP∂x

0
λ ∂

y0
σ þ i2ΓλMΓ0P

a0y0
ay0

∂
x0
λ þ iay0mΓλMP∂x

0
λ þ i2

a0x0
ax0

Γ0MΓσP∂y
0
σ

þ i2
a0x0
ax0

a0y0
ay0

Γ0MΓ0Pþ im
a0x0
ax0

ay0Γ0MPþ iax0mMΓσP∂y
0
σ þ iax0m

a0y0
ay0

MΓ0Pþ ax0ay0m2MP

�

× Sϵðx0; yÞSδðy0; xÞ; ð46Þ

where M ¼ ½Γ0þϵ
2
� and P ¼ ½Γ0þδ

2
�. Employing the known properties of the traces of the Gamma matrices, we find that the

above expression reduces to

N0000ðx;yÞ ¼− lim
x0→x

lim
y0→y

2H4

4
½∂x00 ∂y

0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0− ∂

x
0∂

y0
0 �

×

�X
ϵ¼�

�
∂
x0
0 ∂

y0
0 þ

�
a0x0
ax0

− ϵimax0
�
∂
y0
0 þ

�a0y0
ay0

− ϵimay0
�
∂
x0
0 þ

�a0y0
ay0

− ϵimay0
��

a0x0
ax0

− ϵimax0
��

Sϵðx0; yÞSϵðy0;xÞ

þ δkl∂x
0
k ∂

y0
l ðSþðx0;yÞS−ðy0; xÞþS−ðx0; yÞSþðy0; xÞÞ

�
: ð47Þ

B. Behavior on equal time sheets

In order to study how the stress energy tensors for spatially separated points are correlated with each other, we specialize
to the case where ηx ¼ ηy. But before we consider this case, we have to perform all the derivatives above. While performing
these calculations, we make use of the fact that S�ðx; x0Þ ¼ S�ðZðx; x0ÞÞ i.e., it is a function of the invariant distance Z. We
should take extra care to make sure that we take all the limits only after performing all the derivatives. Using the formulas
given in Appendix A, we find that, on equal time sheets, we have

−
2

H4
N0000ðx; yÞ ¼ ðS00þS0− þ ð− ↔ þÞÞ

�
−
ðΔx⃗Þ4
8η8

−
ðΔx⃗Þ2
4η6

�
þ ðS00þS00−Þ

�
−
ðΔx⃗Þ6
16η10

�
þ ðS000þS0− þ ð− ↔ þÞÞ

�ðΔx⃗Þ6
32η10

�

þ
X
ϵ¼�

�
1 −

ϵim
H

��ðS0ϵÞ2
4

�ðΔx⃗Þ4
2η8

−
ðΔx⃗Þ2
η6

�
þ 2

η4
SϵS0ϵ þ SϵS00ϵ

�
−
3ðΔx⃗Þ4
8η8

−
ðΔx⃗Þ2
4η6

�

þ ðSϵS000ϵ − S0ϵS00ϵ Þ
ðΔx⃗Þ6
32η10

�
þ
�
1 −

ϵim
H

�
2
�ðS0ϵÞ2

4

�ðΔx⃗Þ4
2η8

�
þ SϵSϵ

η4
þ SϵS0ϵ

�ðΔx⃗Þ2
2η6

þ 1

η4

�
− SϵS00ϵ

ðΔx⃗Þ4
8η8

�

þ
�ðS0ϵÞ2

4

�ðΔx⃗Þ4
4η8

− 2
ðΔx⃗Þ2
η6

þ 2

η4

�
þ S0ϵS00ϵ

8

ðΔx⃗Þ4
4η6

�
2

η2
þ ðΔx⃗Þ2

η4

�
þ S00ϵS00ϵ

16

ðΔx⃗Þ8
8η12

−
S0ϵS000ϵ
16

ðΔx⃗Þ8
8η12

�
: ð48Þ

Now we are interested in seeing the behavior of this noise kernel for late time limits i.e., η → 0 limit. Recalling that the S0ϵs
are just hypergeometric functions (see Sec. II) and using the fact that their derivatives are again hypergeometric functions
[39] and also making use of their asymptotic behavior, we find that the leading order behavior of the noise kernel is given by
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N0000ðx; yÞ ¼
2H4η2

π3ðΔx⃗Þ6
ð1þ m2

H2Þðm3

H3Þ
sinhð2πmH Þ þOðη4Þ: ð49Þ

Thus, from the above expression, we see that, irrespective
of how massive or light the fermionic fields are, the
considered component of the noise kernel vanishes in
the late time limit i.e., η → 0 limit. In that sense, the decay
of the noise kernel component for a spinor field in de Sitter
spacetime is a universal phenomenon independent of the
mass of the field. This is in contrast to the behavior of the
noise kernel for quantum scalar fields in de Sitter spacetime
where the considered noise kernel component shows a
transition from vanishing to divergent behavior as mass is
varied from ½0; 3

2
� with “critical mass” value being m2

H2 ¼ 2

(see [12]). This implies that, if we start with two spatially
separated points on a constant time sheet in the past, then
the corresponding local stress energy tensors (physically
speaking, energy momentum content) do not develop any
correlations in the far future. In fact, more appropriately, the
correlations between the quantum stress energy tensor at
different points get washed away as the de Sitter spacetime
evolves to late time limit. To present this conclusion in a
more illuminating manner, we notice that at the start of the
inflation i.e., in the η → −∞ limit, all points, on this very
early constant time slice of the de Sitter spacetime, are
separated by zero physical distances and hence, the
quantum field at different coordinate distances (but with
zero physical separations) have maximum correlations.
However, as the de Sitter spacetime evolves, the physical
distances between spatially separated points increase and
intuitively, we expect that the correlations between the
corresponding local stress energy tensors (for that matter,
between the field operators themselves or any other
functions of the field operators) should decrease. The
above obtained results suggest that the quantum dynamics
of the spinor fields in de Sitter spacetime is not so that it can
overcome the diminishing effect of increasing physical
distances and we have an overall vanishing of the noise
kernel in the late time limit. But we see (from the behavior
of the noise kernel of scalar fields [12]) that, for quantum
scalar fields in de Sitter spacetime, there are mass ranges for
which their dyanmics can overcome the effect of the
classical expansion of the de Sitter spacetime and we
obtain divergent noise kernel for these cases. Another
important yet very intuitive property of the noise kernel
is that the vanishing of the noise kernel is inversely
proportional to the coordinate distances between spatially
separated points i.e., the lesser the coordinate distances are
(between the spatially separated points), the later (in the
evolution history of the de Sitter spacetime) the correla-
tions decay.
As the noise kernel is a (bi)tensor quantity and hence is

expressed differently in different coordinate systems, let us
express the above obtained results in terms of a coordinate
invariant quantity. To define this quantity, let us consider a

vector field which, in conformal coordinates, is given by
tαðη; x⃗Þ ¼ ð 1

aðηÞ ; 0; 0; 0Þ so that gαβtαtβ ¼ −1 at all space-

time points. In fact, the considered vector field is a
normalized tangent vector field to comoving observers
whose spatial coordinates remain fixed. Using this vector
field, we can construct a coordinate invariant object like

TαβðxÞtαðxÞtβðxÞ (¼ T00ðη;x⃗Þ
a2ðηÞ in conformal coordinates) for

any spacetime point. It can be shown that the vacuum
expectation value of the stress energy tensor for spinor
fields in the considered spacetimes can be written in the
perfect fluid form with the above chosen vector field
(shown in Appendix B) i.e., hTμνi ¼ ðρþ pÞtμtν þ pgμν
and therefore, we see that hTαβitαtβ is equal to the energy
density i.e., −hT0

0i ¼ ρ. We can define a correlator for these
invariant objects at two spacetime points as follows:

hðT̂μνðxÞtμðxÞtνðxÞÞðT̂αβðyÞtαðyÞtβðyÞÞi
−hðT̂μνðxÞtμðxÞtνðxÞÞihðT̂αβðyÞtαðyÞtβðyÞÞi

¼ðhT̂μνðxÞT̂αβðyÞi−hT̂μνðxÞihT̂αβðyÞiÞtμðxÞtνðxÞtαðyÞtβðyÞ
¼Nμναβðx;yÞtμðxÞtνðxÞtαðyÞtβðyÞ: ð50Þ

We see that it is a manifestly invariant quantity and will
refer to it as the invariant correlator for the rest of this
paper. For the conformal coordinates, the above correlator
becomes

Nμναβðx; yÞtμðxÞtνðxÞtαðyÞtβðyÞ ¼
N0000ðx; yÞ
a2ðηxÞa2ðηyÞ

: ð51Þ

So, it is important to remember that it is the quantity

Nμναβðx; yÞtμðxÞtνðxÞtαðyÞtβðyÞ ð52Þ

which is coordinate invariant but not N0000ðx;yÞ
a2ðηxÞa2ðηyÞ. It is just that

the coordinate invariant quantity is equal to N0000ðx;yÞ
a2ðηxÞa2ðηyÞ in

conformal coordinates.
From the expression of the noise kernel on constant time

slices, we find that the invariant correlator, on late constant
time sheets, has leading order behavior of the form

2H8η6

π3ðΔx⃗Þ6
ð1þm2

H2Þðm
3

H3Þ
sinhð2πmH Þ . Although there is an extra factor of

ðHηÞ4 in front of the invariant correlator compared to
the noise kernel and hence leading to an even faster decay
at late times, the qualitative remarks, made above for the
noise kernel, hold equally good for the invariant correlator
as well. Let us now move on to discuss similar studies but
now in general FRW settings and for massless spinor
fields only.
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V. BEHAVIOR OF THE NOISE KERNEL AND THE
INVARIANT CORRELATOR FOR MASSLESS
SPINORS IN GENERAL FRW SPACETIMES

In this section, we analyze the behavior of the noise
kernel and the invariant correlator for massless spinor fields
in general FRW spacetimes. To carry out this task, we make
use of the equivalence of massless spinors in FRW space-
times with massless spinors in de Sitter spacetime to relate
the corresponding noise kernels. This equivalence between
massless spinors in FRW and de Sitter spacetimes is
analogous to the equivalence between massless scalar
fields in FRW spacetimes with massive scalar fields in
de Sitter spacetime established in [40]. Now recalling that a
massless spinor field, ψ , in an FRW spacetime [with scale
factor, cðηÞ] is related to a massless spinor field, Ω, in
de Sitter spacetime by the relation ψðxÞ ¼ ðaðηÞcðηÞÞ

3
2ΩðxÞ

(see Sec. II B), we find that the Wightmann functions in
the corresponding spacetimes are related by

SFRWij ðx; yÞ ¼
�
aðηÞ
cðηÞ

�3
2

�
aðη0Þ
cðη0Þ

�3
2

SdSij ðx; yÞ ð53Þ

and

RFRW
ji ðy; xÞ ¼

�
aðηÞ
cðηÞ

�3
2

�
aðη0Þ
cðη0Þ

�3
2

RdS
ji ðy; xÞ; ð54Þ

where aðηÞ ¼ − 1
Hη. Using these expressions in Eq. (43), we

see that the considered component of the FRW noise kernel
is given by6

NFRW
0000 ðx; yÞ ¼ lim

x0→x
lim
y0→y

cxcy
4

½∂x00 ∂y
0
0 þ ∂

x
0∂

y
0 − ∂

x0
0 ∂

y
0 − ∂

x
0∂

y0
0 �H4

ðaxax0ayay0 Þ
ðcxcx0cycy0 Þ32

× Tr

�
Γ0

�
iΓλ

∂
x0
λ þ i

a0x0
ax0

Γ0

��X
ϵ¼�

Sϵðx0; yÞ
1þ ϵΓ0

2

�
Γ0

�
iΓσ

∂
y0
σ þ i

a0y0
ay0

Γ0

��X
ϵ¼�

Sϵðy0; xÞ
1þ ϵΓ0

2

��
: ð55Þ

After operating all the derivative operators (present in the

bigger square brackets) on the H4 ðaxax0ayay0 Þ
ðcxcx0cycy0 Þ

3
2

term, we find

that this term comes in front of the bigger square brackets as it
is. Therefore, we can conclude that the massless spinor field

noise kernel in general FRW spacetimes is just ðaxayÞ
2

ðcxcyÞ2 factor

multiplying the de Sitter noise kernel expression of the
previous section along with the fact that we also havem ¼ 0

and hence SþðZðx; yÞÞ ¼ S−ðZðx; yÞÞ ¼ 1
16π2ð1−Zðx;yÞÞ. Like

in the previous section, we consider the ða¼b¼c¼d¼0Þ
component of the noise kernel on equal time sheets i.e.,
ηx ¼ ηy ¼ η, which, in this case, is given by

NFRW
0000 ðx; yÞ ¼

a4x
c4x

3H4η4

2π4ðΔx⃗Þ8 ¼
3

2π4ðΔx⃗Þ8 c
−4
x : ð56Þ

Thus, we see that the considered component of the noise
kernel of a massless spinor field in an FRW spacetime [with
scale factor being cðηÞ] behaves in a manner that is opposite
to the behavior of the scale factor. This implies that the
correlations, between (massless) spinor matter located at
spatially separated points on constant time sheets, decay
during the expanding phases of the universe while they grow
during the contracting phases of the universe. We also notice
that the behavior of the noise kernel component ismonotonic

(nonmonotonic) if the scale factor changes monotonically
(nonmonotonically). By monotonic growth (or decay) of the
noise kernel, we simply mean that the value of the noise
kernel for spatially separated points on any constant time
sheet is always more (or less) than its values on earlier time
sheets. We now specialize to the cosmologically interesting
power-law type expanding FRW spacetimes i.e., cðηÞ ∝ η−q.
For these cases, we have

NFRW
0000 ðx; yÞ ¼

3

2π4ðΔx⃗Þ8 ðHηÞ4q: ð57Þ

Since η → 0 limit is the late time limit for spacetimes
with positive values of q, we notice that, for these space-
times, the considered component of the noise kernel
vanishes in this limit. For these spacetimes i.e.,
q ∈ ð0;∞Þ, the equation of state parameter, w, lies in
the range ð−∞;− 1

3
Þ and these are acceleratingly expanding

spacetimes. These spacetimes include both phantom cos-
mologies (see [32]) i.e., w ∈ ð−∞;−1Þ, as well as quintes-
sence cosmologies i.e., w ∈ ð−1;− 1

3
Þ. In fact, the most

accurate data to date puts the present-day dark energy
driven universe in this regime i.e., ω ¼ −1.03� 0.03 [1].
For spacetimes with negative values of q, the late time limit
is the η → ∞ limit and we see that, for these spacetimes
also, the considered component of the noise kernel vanishes
in the late time limit. For these spacetimes i.e.,
q ∈ ð−∞; 0Þ, the equation of state parameter, w, lies in
the interval ð− 1

3
;∞Þ. These spacetimes are also expanding

6Here, like in the case of de Sitter scale factor (ax), cx stands
for cðηxÞ.
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spacetimes but, for them, the rate of expansion decreases
with time i.e., the expansion is decelerating. These space-
times include cosmologically interesting epochs like radi-
ation dominated and dust dominated cases as well. These
considerations imply that the vanishing of the noise kernel
component, in the scaling factor going to large value limit,
is universal for all power-law type expanding FRW
cosmologies and we know that this should be the case
for expanding spacetimes as we have already seen that the
behavior of the considered noise kernel component is
opposite compared to the behavior of the scaling factor.
As argued in the de Sitter case, this implies that the
quantum dynamics of massless spinor fields in power-
law type FRW spacetimes is not such that it can overcome
the effects of increasing physical distances between spa-
tially separated points. Thus, we see that the quantum
correlations between local stress energy operators (at
different points on constant time slices) are suppressed
by the increasing physical distances in these expanding
spacetimes.
Like in the previous section, we see that the considered

noise kernel component may change its form under
coordinate transformations. Therefore, we look for the
coordinate independent quantity of the previous section
i.e., the invariant correlator which is given by (on equal
time sheets)

NFRW
0000 ðx; yÞ

c2ðηxÞc2ðηyÞ
¼ c−8x

3

2π4ðΔx⃗Þ8 : ð58Þ

This implies that, like the considered component of the
noise kernel, the behavior of the invariant correlator is also
opposite to the behavior of the scale factor (of the FRW
spacetime). In particular, it vanishes for all power-law type
expanding FRW spacetimes. All the remarks made above
for the ða ¼ b ¼ c ¼ d ¼ 0Þ component of the noise
kernel hold for the invariant correlator as well except for
the fact that the invariant correlator depends on even more
negative power of the scale factor compared to the
considered noise kernel component.
For the special case of power-law type FRW spacetimes,

one can compare these results for massless spinor fields
with the corresponding results for massless scalar fields
[12]. Whereas in the case of massless spinor fields in
power-law FRW spacetimes, there are no second order
quantum corrections, [12] shows that, in case of massless
scalar fields evolving in these FRW spacetimes, there are a
number of these power-law FRW spacetimes for which the
second order quantum corrections coming from the noise
kernel are significant e.g., for ω ∈ ð0;− 1

3
Þ ∪ ð− 1

3
;−1Þ

universes there are large quantum fluctuations. This implies
that, for scenarios where we have both massless spinor and
massless scalar fields present in power-law FRW space-
times, the results, obtained by performing only the (first

order) semiclassical analysis, get corrections only from the
scalar sector but not from the spinor sector.
At this point, it is important that we look at our results in

the light of previously obtained results for the dynamics of
spinor fields in de Sitter and other FRW spacetimes. In our
work, we have considered free fermions in FRW space-
times and have calculated the stress energy correlators for
them. But one can also study their dynamics in the presence
of interactions with other fields. For example, [41,42] have
studied the dynamics of massless fermions in de Sitter
spacetime which are Yukawa-coupled to massless and
nearly massless (and/or minimally coupled) scalar fields,
respectively. Reference [41] shows that fermions remain
massless but experience particle production whereas [42]
shows that massless fermions acquire a mass. But the
results of the previous section on the correlations of
massive fermions in de Sitter spacetime implies that even
though the fermions acquire mass through Yukawa cou-
pling, the stress energy correlations between them still
decay as the spacetime evolves. Other important studies for
Yukawa coupled fermions in de Sitter and other FRW
spacetimes are considered in [43–45] and in fact, one can
try to extend the noise kernel analysis for spinors in more
general curved spacetimes with more general Yukawa
couplings as considered in [46,47] and study the second
order quantum corrections for these more general settings.
Similarly, one can consider the effect of the gravitons on the
dynamics of spinors in the de Sitter spacetime. For
example, [48] computes the one-loop self-energy of mass-
less fermions induced by their interactions with gravitons
and [49] solves for the dynamics of the fermions corrected
by this one-loop self-energy. A similar study for nearly
massless fermions in de Sitter spacetime has been per-
formed in [50]. A direct conclusion regarding the behavior
of the noise kernel for spinors in these settings cannot be
made without actually explicitly calculating them and
hence these possibilities provide opportunity for potentially
important future investigations.

VI. SUMMARY AND CONCLUSIONS

In this work, we have tried to understand the dynamics of
arbitrarily massive spinor fields living on de Sitter space-
time. In particular, we have looked at the correlations
between local stress energy operators in the late time limit
while assuming the Bunch Davies initial conditions for the
spinor fields at early times. We have also considered the
behavior of these correlations for masssless spinor fields in
general FRW spacetimes. In order to carry out this analysis,
we employed a conformal mapping from massless spinor
fields in a general FRW spacetime to massless spinor fields
in de Sitter spacetime. This mapping helps us place
massless spinor fields (in FRW spacetimes) in Bunch
Davies like vacua. Below, we give a brief summary of
the results obtained in this work:
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(i) Behavior of the noise kernel for spinor fields in de
Sitter spacetime: We consider the ða ¼ b ¼ c ¼
d ¼ 0Þ component of the noise kernel for a spinor
field in the de Sitter spacetime. We find that, in the
late time i.e., η → 0 limit, the leading order behavior
tells us that the considered component of the noise
kernel (on constant time slices) decays. From this,
we infer that the quantum dynamics of the spinor
fields is washed away by the classical accelerated
expansion of the de Sitter spacetime. This domi-
nance of the classical dynamics of the background
over the quantum dynamics of the spinor field is
universal, in the sense that it occurs irrespective of
the mass of the field. This behavior of the noise
kernel for spinor fields is in stark contrast to the
behavior of the noise kernel for scalar fields (in
de Sitter spacetime) [12] where the noise kernel,
considered at late times, decays for scalar fields
with ð2 < m2

H2 < 9
4
Þ but diverges for scalar fields with

(0 < m2

H2 < 2). For spinor fields, we observe that the
invariant correlator also decays. In fact, the decay is
faster for this correlator. We also find that these
correlators show the usual dependence on the
coordinate distance for points on equal time sheets
i.e., that these correlations become less and less
important as the comoving distances increase.

(ii) Behavior of the noise kernel for spinor fields in
FRW spacetimes: Using the equivalence that exists
between massless spinor fields in FRW spacetimes
and massless spinor fields in de Sitter spacetime, we
consider the behavior of the ða ¼ b ¼ c ¼ d ¼ 0Þ
component of the noise kernel for massless spinor
fields in FRW spacetimes, again on constant time
slices. In this setting, we find that the considered
component of the noise kernel behaves in a manner
that is opposite to the behavior of the scale factor i.e.,
it decays (or grows) with expanding (or contracting)
scale factors. This implies that the noise kernel
component always decays for power-law type ex-
panding FRW spacetimes. These results, for power-
law type expanding FRW spacetimes, are in stark
contrast to the behavior of the considered noise
kernel component for quantum scalar fields for
which the noise kernel does not always decay
[12]. Like the noise kernel component, the invariant
correlator of the massless spinor fields is also
inversely related to the scale factor.

From the above results, one can conclude that, for systems
involving massless spinor fields in power-law type expand-
ing FRW spacetimes and arbitrarily massive spinor fields in
de Sitter spacetime, the first order quantum treatments
(based solely upon considering quantum averages of the
stress energy operator) do not get significant corrections
from the second order quantum effects coming from the
noise kernel and hence, inferences made from a first order

analysis will remain robust against the considered quantum
fluctuations. It is important to emphasize that these con-
clusions have been arrived at for spinor fields by placing
them in the Bunch-Davies-like vacua. Since the conclu-
sions of field theories in curved spacetimes are markedly
different for different vacua [30,51,52], it would be
interesting to investigate how the noise kernel for spinor
fields behaves for other de Sitter spacetime vacua like the
fermionic alpha-vacua [30] etc. For general FRW space-
times, we can again use the conformal invariance of
massless spinor fields and carry out the analysis for the
FRW vacua corresponding to other de Sitter spacetime
vacua. It would also be interesting to extend the analysis of
the behavior of the noise kernel for Majorana fermions
[53,54] as well especially in CP-violating backgrounds
[55] in which we would expect to see some differences
between the Dirac and the Majorana cases.

ACKNOWLEDGMENTS

A. D. would like to thank Kinjalk Lochan for carefully
reading the manuscript of this paper and giving useful
suggestions. A. D. would also like to acknowledge finan-
cial support from University Grants Commission,
Government of India, in the form of Senior Research
Fellowship (UGC-CSIR JRF/Dec2016/510944).

APPENDIX A: SOME USEFUL FORMULAS

Here we enlist some important formulas that are
used in evaluating noise kernel in the main portion of
the draft:

Zðx0; yÞ ¼ 1þ ðηx0 − ηyÞ2 − ðx⃗0 − y⃗Þ2
4ηx0ηy

; ðA1Þ

∂Zðx0; yÞ
∂x0μ

¼ 1

2

�
Δs2

2η2x0ηy
δμ0 −

ðx0 − yÞμ
ηx0ηy

�
; ðA2Þ

∂Zðx0; yÞ
∂yν

¼ 1

2

�
Δs2

2ηx0η
2
y
δν0 þ

ðx0 − yÞν
ηx0ηy

�
; ðA3Þ

∂
2Zðx0; yÞ
∂x0ν∂x0μ

¼ 1

2

�
−

Δs2

η3x0ηy
δμ0δν0 þ

ðx0 − yÞν
η2x0ηy

δμ0

þ ðx0 − yÞμ
η2x0ηy

δν0 −
ημν
ηx0ηy

�
; ðA4Þ

∂
2Zðx0; yÞ
∂yν∂yμ

¼ 1

2

�
−

Δs2

ηx0η
3
y
δμ0δν0 −

ðx0 − yÞν
ηx0η

2
y

δμ0

−
ðx0 − yÞμ
ηx0η

2
y

δν0 −
ημν
ηx0ηy

�
; ðA5Þ
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∂
2Zðx0; yÞ
∂yν∂x0μ

¼ 1

2

�
−

Δs2

2η2x0η
2
y
δμ0δν0 −

ðx0 − yÞν
η2x0ηy

δμ0

þ ðx0 − yÞμ
ηx0η

2
y

δν0 þ
ημν
ηx0ηy

�
; ðA6Þ

∂
3Zðx0; yÞ

∂yρ∂x0ν∂x0μ
¼ 1

2

�
Δs2

η3x0η
2
y
δμ0δν0δρ0

−
ðx0 − yÞν
η2x0η

2
y

δμ0δρ0 −
ðx0 − yÞμ
η2x0η

2
y

δν0δρ0

þ ημν
ηx0η

2
y
δρ0 −

ημρ
η2x0ηy

δν0 −
ηνρ
η2x0ηy

δμ0

þ 2
ðx0 − yÞρ
η3x0ηy

δμ0δν0

�
; ðA7Þ

∂
3Zðx0; yÞ

∂x0ρ∂yν∂yμ
¼ 1

2

�
Δs2

η2x0η
3
y
δμ0δν0δρ0

þ ðx0 − yÞν
η2x0η

2
y

δμ0δρ0 þ
ðx0 − yÞμ
η2x0η

2
y

δν0δρ0

þ ημν
η2x0ηy

δρ0 −
ημρ
ηx0η

2
y
δν0 −

ηνρ
ηx0η

2
y
δμ0

− 2
ðx0 − yÞρ
ηx0η

3
y

δμ0δν0

�
: ðA8Þ

APPENDIX B: PERFECT FLUID FORM OF THE
STRESS-ENERGY EXPECTATION

In this appendix, we show that the vacuum expectation
value of the spinor field stress energy operator in the
considered spacetimes can be written in the perfect fluid
form. The expectation value of the stress energy tensor can
be written in the following point split form:

hTμνðxÞi ¼ lim
x0→x

Pμνijðx; x0Þhψ̄ iðxÞψ jðx0Þi; ðB1Þ

where summation over i and j is understood and

Pμνijðx; x0Þ ¼
i
2
½γðμ∇⃗x0

νÞ − ∇⃖x
ðνγμÞ�ij: ðB2Þ

Before we proceed, we write the equation of motion in the
following manner:

Γ0
∂0ψ ¼

�
−Γp

∂⃗p þ
3a0

2a
Γ0 − iam

�
ψ : ðB3Þ

Similarly, its adjoint can be written as

ð∂0ψ̄ÞΓ0 ¼ ψ̄

�
−∂⃖pΓp þ 3a0

2a
Γ0 þ iam

�
: ðB4Þ

Now we consider the partial derivative of the Wightman
function with respect to spatial coordinates i.e.,

∂
x0
pRijðx; x0Þ ¼ −∂x0pSjiðx0; xÞ

¼ −a−3
2ðηÞa−3

2ðη0Þ
Z

d3k⃗
ð2πÞ3

X
h

χhj ðk; η0Þ

× χ̄hi ðk; ηÞðikpÞeik⃗:ðx⃗0−x⃗Þ ðB5Þ

and we see that if we take the x0 → x limit and perform the
θ;ϕ integrals, we get 0. This is easily seen to be true for
spatial partial derivatives with respect to the x spacetime
point as well. Therefore, single partial derivatives of the
Wightman function with respect to spatial coordinates
vanish in the x0 → x limit. With these preparations, let
us look at the temporal spatial components i.e.,

hT0pðxÞi ¼ − lim
x0→x

ia
4

�
Γ0

�
∂⃗
x0
p −

a0

2a
Γ0Γp

�
þ Γp∂⃗

x0
0 −

�
∂⃖
x
p þ

a0

2a
Γ0Γp

�
Γ0 − ∂⃖

x
0Γp

�
ij
Sjiðx0; xÞ

¼ − lim
x0→x

ia
4

�
−
a0

2a
Γ0Γ0Γp þ Γp∂⃗

x0
0 þ a0

2a
Γ0Γ0Γp − ∂⃖

x
0Γp

�
ij
Sjiðx0; xÞ

¼ − lim
x0→x

ia
4
ðΓpΓ0Γ0

∂⃗
x0
0 − ∂⃖

x
0Γ0Γ0ΓpÞijSjiðx0; xÞ: ðB6Þ

Using the above given form of the equation of motion and its adjoint, we see that

hT0pðxÞi ¼ − lim
x0→x

ia
4

�
ΓpΓ0

�
−Γp

∂⃗p þ
3a0

2a
Γ0 − iam

�
−
�
−∂⃖pΓp þ 3a0

2a
Γ0 þ iam

�
Γ0Γp

�
ij
Sjiðx0; xÞ

¼ − lim
x0→x

ia
4
ð−ΓpΓ0Γp

∂⃗p þ ∂⃖pΓpΓ0ΓpÞijSjiðx0; xÞ ¼ 0: ðB7Þ

Similarly, we can consider the spatial-spatial components i.e.,
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hTmnðxÞi ¼ − lim
x0→x

ia
4

�
Γm

�
∂⃗
x0
n −

a0

2a
Γ0Γn

�

þ Γn

�
∂⃗
x0
m −

a0

2a
Γ0Γm

�
−
�
∂⃖
x
m þ a0

2a
Γ0Γm

�
Γn

−
�
∂⃖
x
n þ

a0

2a
Γ0Γn

�
Γm

�
ij
Sjiðx0; xÞ: ðB8Þ

The above expression vanishes as can be easily seen by
using the basic properties of the gamma matrices and
also making use of the fact that the spatial derivatives
acting on the Wightman function in the coincidence limit
give 0. Finally, let us calculate the temporal-temporal
component i.e.,

hT00ðxÞi ¼ − lim
x0→x

ia
2
ð−Γ0

∂⃗
x0
0 þ ∂⃖

x
0Γ0ÞijSjiðx0; xÞ ðB9Þ

which, using the above given form of the equation of
motion, becomes

hT00ðxÞi ¼ − lim
x0→x

ia
2

�
−
�
−Γp

∂⃗p þ
3a0

2a
Γ0 − iam

�

þ
�
−∂⃖pΓp þ 3a0

2a
Γ0 þ iam

��
ij
Sjiðx0; xÞ

¼ a2m lim
x0→x

TrðSijðx0; xÞÞ≡ ρa2: ðB10Þ

These calculations imply that we can write the vacuum
expectation of the stress energy operator for spinor fields in
FRW spacetimes in the perfect fluid form with the tangent
vector field tα ¼ 1

a ð1; 0; 0; 0Þ i.e.,

hTμνi ¼ ðρþ pÞtμtν þ pgμν: ðB11Þ

Therefore, we see that hTμνitμtν ¼ ρ. Also, we see that
p ¼ 0 in this case. Similarly, one can write the vacuum
expectation of the stress energy operator of the scalar field
in FRW spacetimes in a perfect fluid form.
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