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How do we appropriately fit a model based on an idealized Friedmann-Lemaître Robertson-Walker
spacetime to observations made from a single location in a lumpy universe? We address this question for
surveys that measure the imprints of the baryon acoustic oscillation in galaxy distribution and the peak
apparent magnitude of the type 1A supernova. These observables are related to the cosmological model
through the Alcock-Paczyński parameters and the distance-redshift relation. Using the corresponding
inhomogeneous spacetime expressions of these as observed data, we perform a parameter inference
assuming that the background Friedmann-Lemaître Robertson-Walker model is the correct model of the
Universe. This process allows us to estimate the best fit Hubble rate and the deceleration parameter. We find
that the inferred Hubble rate from the monopole of the Alcock-Paczyński parameters is in tension with the
Hubble rate determined using the distance-redshift relation. The latter gives the best fit Hubble rate for the
cosmological expansion. The constraint on the Hubble rate from the Alcock-Paczyński parameters is
contaminated by the environment. When the environmental contribution is restricted to modes in the
Hubble flow, we find about (9–12)% discrepancy in the Hubble rate. Finally, we comment on the
insufficiency of the method of cosmography in constraining the deceleration parameter.
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I. INTRODUCTION

The distribution of large scale structures in the Universe
on ultralarge scales appear homogeneous and isotropic
[1–3]. On scales of superclusters, there are inhomogeneities
[4]. The Universe seen on scales of clusters appears very
lumpy with sources moving with discernible peculiar
velocities within clusters and clusters interacting gravita-
tionally with each other [5,6]. Ellis and Stoeger pointed out
in [7] that fitting models based on homogeneous and
isotropic Friedmann-Lemaître Robertson-Walker (FLRW)
spacetime to observation of a lumpy universe leads to a
geometry that ignores on average the details present on
small scales. Such a description of physical reality by the
best-fit FLRW model embodies a smoothing scale that is
usually not made explicit. Ellis and Stoeger further argued
that any relevant averaging procedure that yields a best-fit
FLRW model must be performed on the past light cone of
the observer [7,8]. This is particularly important because
averaging on the hypersurface of constant time could be
gauge dependent. The question of which of the N-possible
observers in the Universe sees a homogeneous and iso-
tropic FLRW spacetime is still unaddressed [8,9]. It is

important to note that observing the isotropic distribution of
matter on the past light cone of an observer does not
immediately imply a homogeneous distribution of matter
without a further assumption of the Copernican principle
[10,11]. This work is about the cosmological fitting
problem in the light of the current Hubble tension.
Hubble tension refers to the discrepancies in the value of

the Hubble rate, H0, when late/early time observations are
interpreted using the FLRW spacetime. For example, the
SH0ES collaboration constrains H0 to be H0 ¼ 73.2�
1.3 km=sec=Mpc from the intercept of the Hubble diagram
of type 1A supernova (SNIa) with the absolute luminosity
calibrated using nearby Cepheid variables [12], detached
eclipsing binary system in the large magellanic cloud [13]
and distance to the NGC 4258 [14]. The Carnegie-Chicago
Hubble Program (CCHP) constrainsH0 to beH0 ¼ 69.6�
1.9 km=sec=Mpc using the information contained in the
Hubble diagram at low redshift. Here, the absolute lumi-
nosity is calibrated using the tip of the red giant branch
(TRGB) stars in the Hertzsprung-Russell diagram [15].
The calibration of the absolute luminosity using different
anchors by the two groups does not seem to be the source
of the discrepancy but rather the ability to synchronize the
zero-point of the distance modulus [16]. The baryon
acoustic oscillation (BAO) spectroscopic survey, how-
ever, constrains a combination of the Alcock-Paczyński*obinna.umeh@port.ac.uk
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parameters [17] with respect to the BAO peak at an
effective redshift different from zero. The Alcock-
Paczyński parameters are then interpreted in terms of
the flat FLRW model to make a determination of H0 ¼
68.6� 1.1 km=sec=Mpc [18–20]. There are a whole lot of
other determinations of H0 with values falling into either
within BAO or SH0ES categories, for details see Ref. [21].
All these efforts assume that the FLRW spacetime

provides the correct description of the Universe on all
scales [12,15,18,20,22,23], yet they return different deter-
minations of H0. We study this tension by averaging over
the spacetime independent inhomogeneous generalization
of each of the observable-redshift relations used in the
determination of H0. We make use of the formalism deve-
loped by Kristian and Sachs [24] to derive these equations
in the limit of small redshifts. We fit the FLRW model
at fixed redshift to the corresponding monopole (past-light
cone average) of the generalized observable-redshift rela-
tions. We made use of the 1þ 3 covariant decomposition
formalism developed in [25,26] to decompose the observ-
able-redshift relations into covariant irreducible units. In
addition, we made use of the observer past-light cone
moment decomposition formalism developed in [27,28] to
extract the monopole in a coordinate independent way. This
allows us to obtain the best-fit Hubble rate and the
deceleration parameter, q0, using each of the observable-
redshift relations by matching the monopole of the arbitrary
inhomogeneous model to that of the homogeneous and
isotropic FLRW spacetime order by order in redshift.
We find that the difference between the Hubble rate

obtained from fitting the local distance modulus for the
SNIa and the Alcock-Paczyński parameters to the FLRW
model is proportional to the square of the shear tensor
associated with a geodesic observer in our local group. In a
perturbed FLRW spacetime, this term is proportional to the
variance in the mass density field fluctuation smoothed at
scale R. We show that the smoothing scale R corresponds to
a scale where the geometry of the local observer decouples
from the large scale expansion of the Universe (i.e., the
radius of the zero-velocity surface). We argue that the
smoothing scale must be set to this value in order to avoid
the caustics or the conjugate point at the boundary of our
local group [29]. Taking the mass of our local group to be
MLG ∼ ð1011–1012Þ M⊙ [30–32] gives a smoothing scale
of R ∼ ð0.8–1.2Þ Mpc. The translates to about (9–12)%
discrepancy in the Hubble rate and this is the amount
needed to resolve the supernova absolute magnitude
tension as well [33]. In addition, we find that the decel-
eration parameter q0 obtained from cosmography is also
impacted by cosmic structures. We find a discrepancy in the
determination of q0. The value we find is in agreement with
the recent measurement of q0 from Pantheon supernova
sample [34]. It is important to note that monopole of the
low redshift Taylor series expansion of the area distance
differs significantly from the full expression [35], therefore,
this result may not be trusted. We argue that it is rather an

indication of a breakdown of the low redshift Taylor series
expansion since the determination using the full expression
gives a much lower value [36].
The rest of the paper is organized as follows: we describe

the underlying philosophy behind the cosmological fitting
problem in Sec. II. This is followed by a description of the
generalized spacetime independent inhomogeneous models
for the area/luminosity distance in Sec. II A. We describe
how to fit inhomogeneous models of various observables to
the FLRW model in Sec. III. We specialized the discussion
to a perturbed FLRW model in Sec. IV. We discuss the
existence of a causal horizon and how to identify it in
Sec. IVA. We conclude in Sec. V. We provide details on
how the generalized inhomogeneous observable-redshift
relations were derived in the Appendix.
Cosmology.—We adopt the following values for the

cosmological parameters of the standard model [22]: the
dimensionless Hubble parameter, h ¼ 0.674, baryon density
parameter, Ωb ¼ 0.0493, dark matter density parameter,
Ωcdm ¼ 0.264, matter density parameter, Ωm ¼ΩcdmþΩb,
spectral index, ns ¼ 0.9608, and the amplitude of the
primordial perturbation, As ¼ 2.198 × 10−9.

II. INTRODUCTION TO THE COSMOLOGICAL
FITTING PROBLEM

There are two approaches for building a model of the
Universe; the pragmatic and observational approaches. The
pragmatic approach makes assumptions about the geometry
of the Universe and then use observations to validate those
assumptions. For example, the standard model of cosmol-
ogy is built on a priori assumption that all physical
quantities measured by a comoving observer are spatially
homogeneous and isotropic (cosmological principle). This
assumption restricts a set of all possible spacetimes of
the Universe to the FLRW [37]. The current effort in
cosmology is mainly directed towards making a very
precise determination of the free parameters of this model
[22,38,39]. While the alternative observational approach
uses observational data from our past light cone such as
apparent luminosities, angular diameters and number count
of sources without assuming the cosmological principle to
construct the geometry of the Universe [40–42]. The
observational approach encounters difficulties due to the
absence of the initial data [43]. However, it holds a huge
promise that when all the issues are resolved, it will not
only provide us with the exact geometry of the Universe, it
will also allow us to quantify the homogeneity scale if
anything like that exists.
The cosmological fitting approach we describe here is an

intermediate approach between these two approaches [44].
It does not assume a priori that the FLRW spacetime
describes the observable Universe accurately at all times
and at all distances, rather it considers it as a fiducial model
of the Universe. For example, we assume that the fiducial
model is specified by
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Ū ¼ fM̄; ḡab; ūa; ρ̄; N̄; μ̄; āb; ᾱk; ᾱ⊥g; ð1Þ

where M̄ is Riemanian manifold, ḡab is the metric, ūa is
the four velocity, N̄ is the number count of sources, μ̄ is
the distance-redshift relation (distance modulus), ab is the
intercept of the Hubble diagram, ᾱk and ᾱ⊥ are the radial
and orthogonal components of the Alcock and Paczyński
parameters [17]. Then, it takes some hints from the obser-
vational approach such that it assumes that there exists a
model of the observed Universe that gives a realistic
representation of the Universe including all inhomogene-
ities down to some specified length scale jx1 − x2j > R

U ¼ fM; gab; ua; ρ; N; μ; ab; αk; α⊥g: ð2Þ

The task then is to determine a best fit model of the
Universe given U. Just like in the observational approach,
the most optimal procedure for obtaining the best fit model
is to fit the observed data or observables on the past light
cones C−ðp̄Þ and C−ðpÞ of points p̄, p in Ū and U,
respectively. Since Ū is homogenous and isotropic, any
point is equally likely; for the points in U, we smooth over
angular dependence of any observable, X, associated with
U, on the past light cone of an observer with four velocity
ua within a sphere of constant redshift

hXðz; n̂ÞiΩ ¼ 1

4π

Z
d2ΩXðz; n̂Þ ¼

Z
dn̂Xðz; n̂Þ; ð3Þ

where n̂ is line of sight direction. We assume that the
redshift is monotonic for points separated by a distance
greater than R. We compare the monopole of the observable
X obtained by smoothing out anisotropies on the past null
cone C−ðpÞ to the corresponding prediction by the fiducial
model of the same observable. The free parameters of the
fiducial model, i.e., Ū are then adjusted to obtain the best-
fit value to the angular average of the observable in the
lumpy universe. In principle, we evaluate the χ2 of any
observable X:

χ2X ¼
X
i

�hXiiΩ − X̄ðzijHX
0 ; q

X
0 Þ

σXi

�
2

; ð4Þ

where σXi is the covariance (in a single parameter, it reduces
to the variance) and H0 and q0 are the Hubble rate and the
deceleration parameter, respectively. Then we find the
optimum values of HX

0 and qX0 by minimizing the χ2X with
respect to HX

0 and qX0

∂χ2X
∂HX

0

¼ 0; and
∂χ2X
∂qX0

¼ 0: ð5Þ

In order to build a complete picture of the best-fit model,
the ideal thing we will be to obtain the optimum values of
H0 and q0 by minimaxing the joint χ2 ¼ χ2μ þ χ2ab þ χ2αk þ

χ2α⊥ þ � � � with respect to H0 and q0 simultaneously. We do
not consider this here because our focus is to identify the
source of tension in the inferred Hubble rate. This is best
done by independently fitting the late and early Universe
observables to their corresponding FLRW space models.
This intermediate approach offers tremendous advan-

tages over the other two approaches, such as the following:
(i) Clear description of the relevant physics: It makes

apparent the geometrical and physical interpretation
of the FLRW models we use because it provides a
clear link between the highly symmetric fiducial
model and more realistic descriptions of the lumpy
universe we observe.

(ii) Delineation of scales: It helps to establish the
appropriate scale of validity of the best-fit model
of the Universe. That is it helps to address statement
that the Universe can be regarded as an almost FLRW
universe if averaged out over a specified length scale.

(iii) Guidance in the presence of tension: It does not only
enable one to determine the best-fit FLRW universe
model, it allows to predict the presence of tension in
the model parameters. For example, under this
framework tensions appear in the model parameters
when the fiducial model is fit to data from length
scales or time in the evolution of the Universe where
the background FLRW spacetime is not applicable
(i.e., nonlinear scales). We discuss this point in
greater detail in the subsequent sections.

(iv) Wider application: It is possible to use it repeatedly;
that is, to consider which of the lumpy universe
modelsU and another lumpiness model, sayU0, give
an even better description of the real Universe than
U, i.e., which one of them describes the inhomo-
geneities in even more detail.

A. Inhomogeneous distances in a realistic model
of the Universe

We work in the geometric optics limit; i.e., we assume
that the wavelength of photon is small compared to the
radius of curvature of the Universe. In this limit, null
geodesics describes photon propagation and a tangent
vector to the null geodesic is given by ka ¼ dxa=dλ and
it satisfies

kaka ¼ 0 and kb∇bka ¼ 0; ð6Þ

where λ is the affine parameter. When initialized at the
observer position, it increases monotonically [45]. ∇ is
the covariant derivative of the physical spacetime of the
Universe. With respect to a set of fundamental comoving
observers with the average four velocity ua, we can
decompose ka into parallel and orthogonal components:

ka ¼ ð−ubkbÞðua − naÞ ¼ Eðua − naÞ; ð7Þ
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where na is the line of sight spatial direction vector with a
normalization nana ¼ 1, E ¼ −ubkb is the photon energy
measured by ua. na is orthogonal to ua; naua ¼ 0. Note that
our choice of na is opposite to the direction of photon
propagation. ka is pointing along an incoming light ray on
the past light cone of the observer. The apparent magnitude
of any source,m, is related to the observed flux density FdL
measurement at a given luminosity distance dL in a given
spectral filter according to

m ¼ −2.5 log10½FdL �: ð8Þ

The absolute magnitude, M, of the same source is defined
as the apparent magnitude measured at a distance DF

M ¼ −2.5 log10½FDF
�; ð9Þ

where FDF
is called the reference flux or the zero point of

the filter [46–48]. The observed flux density at both
distances obey the inverse square law with the luminosity
distance, dL: FdL=FDF

¼ ½DF=dL�2. The distance modulus
is defined as the difference between m and M

m −M ¼ −2.5 log
�
FdL

FDF

�
¼ 5 log

�
dL
DF

�
¼ 5 log

�
dL
½pc�

�
− 5:

ð10Þ

In the last equality, we set DF ¼ 10 pc for historical
reasons. In this case, it means that the absolute magnitude
is the apparent magnitude if the telescope is placed at
a distance of 10 pc. In cosmology however, DF is set to
DF ¼ 1 Mpc leading to

μðz; n̂Þ ¼ mðz; n̂Þ −M ¼ 5 log

�
dL

½Mpc�
�
þ 25; ð11Þ

where dL is in the units of Mpc. This implies that, for
cosmological purposes, the consistently calibrated cosmic
distance ladder would have a reference flux determined at
1 Mpc. The generalized coordinate independent expres-
sions for the area and the luminosity distance at low redshift
are (see the Appendix for details of the derivation) [24,49]

dAðz; n̂Þ ¼
z

½KcKd∇cud�o
−
1

2

�
KcKdKe∇e∇duc
ðKcKd∇cudÞ3

�
o
z2

þOðzÞ3; ð12Þ

dLðz; n̂Þ ¼
z

½KcKd∇duc�o

�
1þ 1

2

�
4 −

KcKdKe∇e∇duc
ðKcKd∇cudÞ2

�
o
z

þOðz2Þ
�
; ð13Þ

where Ka is a normalized null vector: Ka ¼ ua − na. The
associated null geodesic tangent vector is given by

ka ¼ ð1þ zÞKa. In general, dL is related to dA via distance
duality relation: dL ¼ ð1þ zÞ2dA [50–52]. We neglect the
effect of the heliocentric peculiar velocity. Its contribution
will not substantially change the determination of the
Hubble rate, especially via the local distance ladder [53].
The redshift in Eqs. (12) and (13) corresponds to the
cosmological redshifts.
On the FLRW background space, Eqs. (12) and (13)

reduce to

d̄AðzÞ ¼
z
H0

�
1 −

1

2
ð3þ q0ÞzþOðzÞ2

�
; ð14Þ

d̄LðzÞ ¼
z
H0

�
1þ 1

2
½1 − q0�zþOðzÞ2

�
: ð15Þ

The magnitude-redshift relation is given by Eq. (11) with
the luminosity distance given by Eq. (15). We have
truncated the Taylor series expansion at second order in
redshift expansion because our focus is on how the cosmic
structures impact the measurement of the Hubble rate, H0

and the deceleration parameters, q0. It is certainly debatable
whether these series expansions on arbitrary spacetime
have much relation with the magnitude-redshift relation in
the observable Universe. In particular, is it analytic,
especially in the region where shell crossing occurs?
These doubts are valid, but this is how we address them:

(i) Differentiability at z ¼ 0: We showed in [35] that dA
expanded up to second order in standard cosmo-
logical perturbation theory on an FLRW background
spacetime is differentiable at z ¼ 0. The linearly
perturbed FLRWequations can be rewritten in terms
of the equations of the exact inhomogeneous Szekeres
models [54]. This shows that the generalized inho-
mogeneous model is also differentiable at z ¼ 0.

(ii) Shell crossing singularity: It is likely that, in certain
directions, the Taylor series expansion of observables
will be multivalued as a light beam passes through
collapsing regions, this is a valid concern.We show in
Sec. IVA that the collapsing region around the
observer can be isolated from the expanding space-
time by setting the smoothing scale at the zero-
velocity surface [35]. Similar restrictionwas deployed
recently in an attempt to estimate Eq. (13) from a
general relativistic N-body simulation [55].

(iii) Convergences of the series expansion: Convergence
of series expansion is a problem in general, in our
case, it is well known that, for z < 0.1, Eqs. (14) and
(15) converge at second order in redshift expansion.
It is likely that, in the presence of structures, a
higher-order redshift correction will be needed to
achieve convergence at the same redshift. We find
some hints of this in [35] but a more detailed study is
needed since next to leading order terms were
neglected in the analysis. Currently, we are essen-
tially interested in what happens in the limit where
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z ≪ 1 and we have no reason to believe that second-
order series expansion in redshift will not be enough
to determine the Hubble rate.

B. Covariant and multipole moment
decomposition of observables

We are primarily interested in the multipole moment
decomposition of the observable-redshift relations so that
the monopole or the all-sky average can be compared to the
corresponding expression based on the background FLRW
spacetime. To accomplish this, we decompose KaKb∇aub
and KaKbKc∇a∇buc into irreducible physical quantities
that live on the hypersurface orthogonal to ua using in 1þ 3
covariant decomposition formalism [25,26,51,56–58]. The
irreducible decomposition of the spacetime covariant deriva-
tive of ua for geodesic observers is given by [26,58]

∇bua ¼
1

3
Θhab þ σab; ð16Þ

whereΘ denotes the expansion (Θ > 0)/contraction ðΘ < 0Þ
of the nearby geodesics associated with ua, σab is the shear
tensor (it describes the rate of change of the deformation of
spacetime in the neighborhood of the observer),hab ¼ gab þ
uaub is the metric on the hypersurface orthogonal to the
timelike ua (uaua ¼ −1), and gab is the physical spacetime
metric. The vorticity vanishes for irrotational fluids or
geodesic observer. There is a one-to-one mapping between
all symmetric trace-free tensors of rank l and the spherical
harmonics of order l [27,59–61]. We can see this by
decomposing the line of sight direction vector na at the
observer position on an orthonormal tetrad basis [60,62]

naðθ;ϕÞ ¼ ð0; sin θ sinϕ; sin θ cosϕ; cos θÞ: ð17Þ

In the standard spherical harmonics decomposition formal-
ism, any function f on the sky may be expanded in spherical
harmonics, Ylmðn̂Þ according to

fðn̂Þ ¼
XL
l¼0

Xl
m¼−l

FlmYlmðn̂Þ ¼
X∞
l¼0

FAl
nAl

¼ F þ Fana þ Fabnanb þ Fabcnanbnc; ð18Þ

where Flm is the spherical harmonic coefficients. Al ¼
a1a2…al is a compound index notation that denotes
number of indices, FAl

is the moments: it is symmetric,
trace-free, andorthogonal toua,FAl

¼ FðAlÞ,FAlabh
ab ¼ 0,

and FAlau
a ¼ 0, respectively. Here, “ð� � �Þ” brackets in the

subscript denote the symmetrization overall indices and the
angle brackets “h� � �i” denotes PSTF part. In the second
equality, we show an equivalent way of performing the
spherical harmonic expansion in projected symmetric
trace-free (PSTF) tensors in a na basis [27,59–61]. The
PSTF part of any index tensor is given by [27,63–66]

FhAli ¼
X½l=2�
n¼0

Blnhða1a2…:ha2n−1a2nFa2nþ1…alÞ;

with Bln ¼
ð−1Þnl!ð2l − 2n − 1Þ!!
ðl − 2nÞ!ð2l − 1Þ!!ð2nÞ!! : ð19Þ

½l=2�means the largest integer part less than or equal to l=2,
l! ¼ lðl − 1Þðl − 2Þðl − 3Þ…ð1Þ, and l!! ¼ lðl − 2Þ×
ðl − 4Þðl − 6Þ…ð2 or 1Þ. The moment and covariant
decomposition of KaKb∇aub and KaKbKc∇a∇buc within
general relativity for dust is given by [8,67,68]

KaKb∇aub ¼
1

3
Θþ σabnanb; ð20Þ

KaKbKc∇a∇buc ¼ OþOana þOabnanb þOabcnanbnc;

ð21Þ

where O, Oa, Oab, and Oabc are the monopole, dipole,
quadrupole, and octupole moments of KaKbKc∇a∇buc

O ¼ 1

6
ρþ 1

3
Θ2 −

1

3
Λþ σabσ

ab; ð22Þ

Oa ¼
1

3
D̃aΘþ 2

5
D̃bσ

b
a; ð23Þ

Oab ¼ Eab þ 2Θσab þ 3σcaσbc; ð24Þ

Oabc ¼ D̃aσbc: ð25Þ

Here ρ is the matter density, Λ is the cosmological constant,
Eab is the electric part of theWeyl tensor, and D̃a is the spatial
derivative on the hypersurface. Eab describes how nearby
geodesics tear apart from the equation. It is crucial in the
discussion that follows. An extension to modified gravity
theories and general matter fields should be straightforward.

III. THE COSMOLOGICAL FITTING PROBLEM

In this section, we consider how surveys that measure the
imprints of the BAO in galaxy distribution and the apparent
magnitude of the type 1A supernova are compared to a
cosmological model through the Alcock-Paczyński param-
eters, the distance-redshift relation. Our key focus will be to
estimate how inhomogeneity affects the determination of
the Hubble rate and the deceleration parameter.

A. Cosmological fitting problem:
Alcock-Paczyński parameters

The BAO scale constitutes an important link between the
physics, before and around the drag and present epoch.
Similar to the cosmic microwave background radiation
(CMB), the plasma physics of acoustic density waves
before decoupling imprints a characteristic scale in the
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matter distribution. The characteristic scale, i.e., BAO
scale, appears as an excess in the probability of finding
galaxies separated by some distance in the distribution of
sources seen today on the sky. Since a fiducial model for the
separation is required for calculating the separation
between galaxies, Alcock and Paczyński [17] introduced
a clever way to recover the true separation. For a spherical
symmetric distribution of sources, the two-point correlation
function, ξg, is given by [69]

ξgðr12k ; r12⊥Þ ¼
1

αkα2⊥
ξgðαkrfid12k ; α⊥rfid12⊥Þ; ð26Þ

where r12 and rfid12 are the true and fiducial separation
between two galaxies, respectively. Within the cosmologi-
cal standard model treatment, the difference between the
fiducial model and true model are parametrized by

ᾱk ¼
H̄fid

H̄
; ᾱ⊥ ¼ d̄A

d̄fidA
: ð27Þ

Here H̄fid and d̄fidA are the fiducial Hubble rate and area
distance, respectively. H̄ and d̄A are then adjusted to obtain
the best-fit to the observed data. BAO is sensitive to the
Hubble rate through the distortions (αk and α⊥) at the survey
mean redshift z. The determinationof thevalue of theHubble
rate today is made assuming a model. The measurement of
the monopole of Eq. (26) constrains α ¼ α2=3⊥ αk1=3 [18,70],
while the quadrupole moment is most sensitive to the
Alcock-Paczyński ratio ϵ ¼ α⊥=αk [69]. Using the void-
galaxy cross-correlation from the BOSS survey at the mean
redshift of z ¼ 0.57, [69] finds a strong constraint on
α⊥=αk ¼ 1.016� 0.011 using the CMASS galaxy sample
of the BOSS DR12 data release. This constraint when
interpreted within the ΛCDM model [i.e., Eq. (27) with
the sound horizon, rs, set to the Planck value] is consistent
with the Planck collaboration’s determination ofH0 from the
analysis of the anisotropies in the CMB [22]:

H0 ¼ 67.4� 0.5 km= sec =Mpc: ð28Þ
In a lumpy universe, the structure of Eq. (26) will change

slightly, however, it holds for a spherical symmetric distri-
bution of sources. We will discuss modifications away from
this limit elsewhere. For an almost FLRW spacetime for
whichwe are interested here, Eq. (27) generalizes as follows:

αk ¼
∂rk
∂rfidk

¼ ∂rk
∂z

∂z
∂rfidk

≃
dλ
dz

dz
dλfid

; ð29Þ

¼ H̄fid

H

�
1þ σab

H
nanb

�
−1
; ð30Þ

¼ H̄fid

H

�
1 −

σab
H

nanb þ σab
H

σcd
H

nanbncnd þOðσ4Þ
�
;

ð31Þ

where H ¼ Θ=3 in the last equality. This is the Hubble rate
associated with the expansion of the nearby congruence in a
lumpy universe. Moreover, we assumed that the real
Universe is almost statistically homogeneous and isotropic,
i.e., σabnanb=H ≪ 1. To move from the first line of Eq. (29)
to the second, we made use of the propagation equation for
the redshift [71]

dz
dλ

¼ −ð1þ zÞ2½H þ σabnanb�; ð32Þ

dz
dλfid

¼ −ð1þ zÞ2H̄fid: ð33Þ

Note that on the fiducial FLRWspacetime, the shear vanishes
σab ¼ 0. At low redshift, the generalized counterpart
to ᾱ⊥ involves replacing the background area distance
with Eq. (12).
To obtain the best-fit model from the radial component of

the separation in the limit z → 0, we compare ᾱk to the all-
sky average of αk

ᾱk ¼ hαkiΩ ¼ H̄fid

H

�
1þ

�
σab
H

σcd
H

nanbncnd
�

Ω
þOðσ4Þ

�
;

ð34Þ

¼ H̄fid

H

�
1þ 2

15

σabσ
ab

H2
þOðσ4Þ

�
: ð35Þ

To perform the all-sky average we decompose σðabσcdÞ into
an irreducible unit and then extract the monopole using

nanbncndσðabσcdÞ ¼ nanbncndσhabσcdi

þ 4

7
nanbσchaσbic þ

2

15
σabσ

ab: ð36Þ

This can also be done by performing the angular integration
in Eq. (34) right away [28]. Comparing Eq. (27) to Eq. (35),
we obtain the effective Hubble rate

Hαk ¼ H

�
1 −

2

15

σabσ
ab

H2
þOðσ4Þ

�
: ð37Þ

The Hubble rate inferred from the constraint on αk is biased
by −2σabσab=15H2. For the orthogonal component, α⊥, we
focus on dA, since the fiducial model is the same, it is
reduced to comparing Eq. (14) to the all-sky average of
Eq. (12) at a fixed redshift. At the leading order in redshift,
the effective Hubble rate from fitting the monopole of area
distance in a lumpy universe to the FLRW spacetime is
given by
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1

HdA
0

¼
�

1

H0

�
1þ σab

H0

nanb
	

−1





z¼zo

�
Ω

¼ 1

H0

�
1 −

σhabi
H0

nanb þ σðab
H0

σcdÞ
H0

nanbncnd þOðσ4Þ
�
;

ð38Þ

where Θo ¼ 3H0 is the monopole component of
KaKb∇aub. Again, we expanded ðKaKb∇aubÞ−1 up to
second order in σabnanb=H0 ≪ 1. Using Eq. (36) again and
noting that σaa ¼ 0, we find

1

HdA
0

≡ 1

H0

�
1þ 2

15

σabσ
ab

H2






zo

þOðσ4Þ
�
: ð39Þ

The Hubble rate inferred from the area distance by fitting
the area distance information from the lumpy universe to an
FLRW background spacetime is given by

HdA
0 ¼ H0

�
1 −

2

15

σabσ
ab

H2






zo

þOðσ̃4Þ
�
: ð40Þ

Furthermore, the evolution of σab is sourced by the electric
part of the Weyl tensor, Eab [26,58]

Dσab
Dτ

¼ −
2

3
Θσab − σchaσbic − Eab: ð41Þ

Again, Eab contains information about the tidal forces due
to gravity, it represents how nearby geodesics tear apart
from each other [58]. In an almost FLRW spacetime (i.e.,
small perturbation on top of an FLRW spacetime), σij is
related to Eij in comoving spacetime

σijðη; xÞ ∼ −
Z

η

ηini

dη0Eijðη0; x0Þ: ð42Þ

In this form, it is straightforward to see that σij describes
the cumulative effect of the local geometry deformation
from the initial seed time to the time of observation. It also
helps to understand why σij characterizes the cosmic web
more transparently than Eij [72,73].
For the deceleration parameter today, we compare

Eq. (14) to the monopole of Eq. (12) at the second order
in redshift

ð3þ qdA0 Þ
HdA

0

¼
�
KaKbKc∇a∇buc
ðKaKb∇aubÞ3

�
Ω
: ð43Þ

Decomposing the denominator in terms of the expansion
and shear tensor and expressing the result into irreducible
unit, we found

ðKaKb∇aubj0Þ3 ¼
1

27
Θ3þ 1

3
Θ2σabþ σabσcdΘnanbncnd

þOðσ3Þ; ð44Þ

¼Hð3Þ þHð3Þ
abnanb þHð3Þ

abcdnanbncnd

þOðσ3Þ: ð45Þ

In the second equality, we have introduced the first few
multipole moments as

Hð3Þ ¼ H3

�
1þ 6

15

σabσ
ab

H2

	
; ð46Þ

Hð3Þ
ab ¼

1

3
Θ2σab þ

4

7
σchaσbicΘ; ð47Þ

Hð3Þ
abcd ¼ σhabσcdiΘ: ð48Þ

Here Hð3Þ is the monopole and Hð3Þ
ab and Hð3Þ

abcd
are the quadrupole and the hexadecapole moments of
ðKaKb∇aubj0Þ3, respectively. Using Eqs. (21) and (45)
we find that the best-fit deceleration parameter is given by

qdA0 ¼ −3þ HdA
0

Hð3Þ

�
O
�
1þ 2

15

Hð3Þ
abHð3Þab

Hð3Þ2

	

−
2

15

Hð3Þ
ab

Hð3Þ Oab

�




z¼z0

; ð49Þ

≈
1

H2

�
1

6
ρ−

1

3
Λþ 3

5
σabσ

ab

þ 2

3

�
1

6
ρ−

1

3
Λ
	
σabσab
H2

−
2

5

σabEab

H

�




z¼z0

: ð50Þ

Given that the distance duality relation or Etherington
reciprocity theorem holds, the Hubble and deceleration
parameters obtained from the monopole of luminosity
distance must correspond to the Hubble rate given in
Eqs. (40) and (50), respectively [74]. We checked and
find that this holds, thus for the Hubble rateHdL

0 ¼ HdA
0 and

the deceleration parameter qdL0 ¼ qdA0 .

B. Cosmological fitting problem: Distance modulus

The CCHP uses the distance modulus with the lumi-
nosity distance given by the flat FLRW spacetime (15) to
estimate H0 and q0 [15].

μðz;H0; q0Þ ¼ m −M; ð51Þ
¼ 5log10dL þ 25

¼ 5log10

�
z
H0

�
1þ 1

2
ð1 − q0ÞzþOðz2Þ

	�

þ 25: ð52Þ
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One unique feature of the CCHP approach is that it uses the
TRGB to calibrate the SNIa samples. According to [75], the
best-fit H0 depends crucially on the accuracy with which
the absolute magnitude of the SNIa is calibrated

M ¼ m − μTRGB0 ; ð53Þ

where m is the apparent magnitude of the peak of the SNIa
light curve for a given subsample of SNIa colocated with
the TRGB, μTRGB0 is the true calibrator distance modulus.
After calibrating M [15,76], Eq. (51) is used for the SNIa
sample in the Hubble flow [i.e., within the redshift range
(0.03 ≤ z ≤ 0.4)]. CCHP usually put uninformative prior
(the value of q0 does not vary in the model estimates of
distance to each of the SNIa in the sample) on q0 ¼ −0.53
to determine the Hubble rate to be [15]

H0 ¼ 69.6� 1.9 km= sec =Mpc: ð54Þ

The generalized form of the distance modulus is obtained
by replacing dL given in (15) with the generalized form
given Eq. (13). We then compare the all-sky average to
Eq. (51)

hμiΩ ¼ hmiΩ − hMiΩ ¼ 5hlog10½dLðz; n̂�iΩ þ 25: ð55Þ

Comparing Eqs. (55) and (51) requires that we perform the
angular integration over logarithm of dL

hlog10 dLðz; n̂ÞiΩ ¼ −hlog10½KcKd∇duc�oiΩ
þ hlog10 ½d̂Lðz; n̂Þ�iΩ; ð56Þ

where we have used the quotient rule for logarithm to
rewrite Eq. (13). We have also introduced the generalized
form of the normalized luminosity distance

d̂Lðz; n̂Þ ¼ z

�
1þ 1

2

�
4 −

KcKbKa∇a∇buc
ðKcKb∇cubÞ2

�
0

zþOðz2Þ
�
:

ð57Þ
In order to simplify hlog10½KcKd∇duc�oiΩ further, we use
the irreducible decomposition of KaKb∇aub

log10½KaKb∇aubj0� ¼ log10

�
H0

�
1þ σab

H0

nanb
	�

¼ log10H0 þ log10

�
1þ σab

H0

nanb
	
:

ð58Þ
For σabnanb=H0 ≪ 1, we can expand the second term in
Taylor series and use Eq. (36) to obtain the PSTF part

log10

�
1þ σab

H0

nanb
	

¼ 1

log 10

�
σab
H0

nanb −
1

2

σab
H0

σcd
H0

nanbncnd þOðσÞ3
�
; ð59Þ

¼ 1

log10

�
−

1

15

σabσ
ab

H2
0

þ
�
σab
H0

−
2

7

σchaσbic
H2

0

	
nhanbi−

1

2

σhabσcdi
H2

0

nhanbncndi þOðσÞ3
�
: ð60Þ

Now it straightforward to perform the all-sky average to obtain the monopole

hlog10½KaKb∇aubj0�iΩ ¼ log10H0 − log10

�
1þ 1

15

σabσ
ab

H2
0

�
: ð61Þ

Extracting the monopole of hlog10 ½d̂Lðz; n̂Þ�iΩ is a little more algebraically more involved. We go through it step by step.
First, we decompose d̂Lðz; n̂Þ in multipole moments

d̂Lðz; n̂Þ ¼
X∞
l¼0

d̂Al
ðzÞnhAli ¼ d̂L0 þ d̂Lana þ d̂Labn

anb þ d̂Labcn
anbnc þOðd̂LAl>3

Þ; ð62Þ

where d̂L0 , d̂
L
a , and d̂Lab are the monopole, dipole, and quadrupole moments of the Hubble rate-normalized luminosity

distance, respectively. Then by factoring out the monopole of d̂L and requiring that d̂LAl>1
=d̂L0 ≪ 1 allows us to expand the

anisotropic part on the background of its monopole moment

log10ðd̂Lðz; n̂Þ ¼ log10d̂
L
0 þ 1

log 10

�
d̂La
d̂L0

na þ d̂Lab
d̂L0

nanb −
1

2

�
d̂La
d̂L0

d̂Lb
d̂L0

nanb þ d̂Lab
d̂L0

d̂Lcd
d̂L0

nanbncnd
	
þO

�
d̂LAl

d̂L0

	3�
: ð63Þ

Then taking the all-sky average leads to
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hlog10ðd̂Lðz; n̂ÞiΩ ¼ log10d̂
L
0 −

1

2

1

log 10

�
2

15

d̂Lab
d̂L0

d̂abL
d̂L0

þ 1

3

d̂La
d̂L0

d̂aL
d̂L0

	
þO

�
d̂LAl

d̂L0

	3

: ð64Þ

We neglect the contribution of the second term since their contribution is second order in redshift Oðz2Þ

d̂Lab
d̂L0

d̂abL
d̂L0

¼ d̂La
d̂L0

d̂aL
d̂L0

≈ 0: ð65Þ

We can now make use of the product rule for logarithms to rewrite hlog10 d̂Lðz; n̂ÞiΩ as

hlog10d̂Lðz; n̂ÞiΩ ¼ log10czþ log10

�
1þ 1

2

�
4 −

�
KcKbKa∇a∇buc
ðKcKb∇cubÞ2

�
Ω
z

�
þOðz2Þ

�
: ð66Þ

We simplify this further by first decomposing the denominator into irreducible parts

ðKaKb∇aubj0Þ2 ¼
1

9
Θ2 þ 2

3
nanbσabΘþ nanbncndσabσcd; ð67Þ

¼ Hð2Þ þ nhanbiHð2Þhabi þ nhanbncndiHð2Þhabcdi; ð68Þ

where Hð2Þ is the monopole, Hð2Þhabi is the normalized quadrupole and Hð2Þhabcdi is the hexadecapole

Hð2Þ ¼ 1

9
Θ2 þ 2

15
σabσ

ab ¼ H2

�
1þ 2

15

σabσ
ab

H2

	
; ð69Þ

Hð2Þhabi ¼
4

7
σchaσbic þ

2

3
Θσhabi; ð70Þ

Hð2Þhabcdi ¼ σhabσcdi: ð71Þ

Therefore, the monopole of the argument of the second term in Eq. (66) becomes

�
KcKbKa∇a∇buc
ðKcKb∇cubÞ2






0

�
Ω
¼ 1

Hð2Þ

�
O
�
1þ 2

15

Hð2Þ
abHð2Þab

Hð2Þ2

	
−

2

15

Hð2Þ
ab

Hð2Þ Oab

�
; ð72Þ

¼ 3þ 1

H2

�
1

6
ρ −

1

3
Λþ 3

5
σabσ

ab þ 6

15

�
1

6
ρ −

1

3
Λ
��

σhabiσhabi

H2

�
−

4

15

σhabiEhabi
H

�
: ð73Þ

Finally, we find that the monopole of the logarithm of the Hubble rate normalized luminosity distance is given by

hlog10d̂Lðz; n̂ÞiΩ ¼ log10

�
z

�
1þ 1

2

�
1 −

1

H2

�
1

6
ρ −

1

3
Λþ 3

5
σabσ

ab

þ 6

15

�
1

6
ρ −

1

3
Λ
�
σhabiσhabi

H2
−

4

15

σhabiEhabi
H

	�
zþOðz2Þ

�
: ð74Þ

Putting everything back to Eq. (55), we find that the monopole of the distance modulus is given by

hμiΩ ¼ hmiΩ − hMiRΩ ¼ 25þ 5log10

�
1

Hμ
0

�
z

�
1þ 1

2
ð1 − qμÞzþOðz2Þ

	��
; ð75Þ

where the following terms were defined by comparing to the equivalent FLRW expression given in Eqs. (51) and (52)

hMiRΩ ¼ hMiΩ þ 5log10

�
1þ 1

15

σabσ
ab

H2






z¼0

�
; ð76Þ
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Hμ
0 ¼ H0; ð77Þ

qμ ¼ 1

H2

�
1

6
ρ −

1

3
Λþ 3

5
σabσ

ab þ 2

3

�
1

6
ρ −

1

3
Λ
�
σhabiσhabi

H2
−

4

15

σhabiEhabi
H

	




z¼0

: ð78Þ

This indicates that the best-fit absolute magnitude hMiRΩ of
the SNIa includes the effect of tidal deformation of the local
geometry. Stated differently, the measurement of the
Hubble rate via the local distance ladder accounts for
the impact of tidal deformation on the luminosity distance.
The Hubble rate determined using the local distance ladder
with a properly calibrated absolute magnitude corresponds
to the global volume expansion.

C. Cosmological fitting problem:
Intercept of the Hubble diagram

On the other hand, the SH0ES collaboration uses the
Cepheid variable stars to calibrate the absolute magnitude
of the SNIa. The estimate of the Hubble rate is obtained
from the constraint on the intercept of the magnitude-
redshift relation with the luminosity distance given by the
flat FLRW spacetime. Starting from Eq. (11), they rewrite
the distance modulus as follows [12]:

m ¼ M þ 25þ 5 log10 d̄L ¼ −5ab þ 5 log10 d̂LðzÞ; ð79Þ

where ab is the intercept of the of the Hubble diagram and
d̂L is the Hubble parameter normalized luminosity distance:

5ab ¼ −ðMb þ 25 − 5log10H0Þ; ð80Þ

d̂LðzÞ ¼ z

�
1þ 1

2
ð1 − q0ÞzþOðz2Þ

�
: ð81Þ

The Hubble rate is then determined from Eq. (80)

log10H0 ¼
Mb þ 25þ 5ab

5
; ð82Þ

where Mb is called standardizable absolute luminosity in
[12], but it does the same job as Eq. (53) in CCHP

Mb ¼ mb;SNIa − μ0;ceph; ð83Þ

where μ0;ceph is an independent distance modulus to
Cepheids and mb;SNIa is the apparent magnitude of a
subsample of nearby SNIa that live in the same host as
the Cepheids. The SH0ES collaboration has since made use
of different geometrical distance estimates such as the NGC
4258 obtained by modeling the water masers in the nucleus
of the galaxy orbit about its supermassive black hole [14],
the large magellanic cloud using eclipsing binary systems
composed of late-type stars [13], and Milky Way Cepheids

using parallax methods [77,78] to calibrate Mb. Even
though the SH0ES collaboration limits the type Ia super-
nova sample to z ¼ 0.023 due to systematics associated
with disentangling the peculiar velocities of the sources
from the coherent Hubble flow, they have accurate infor-
mation on the intercept

ab ¼ log10

�
cz

�
1þ 1

2
ð1 − q0ÞzþOðz3Þ

��
− 0.2Mb;

ð84Þ
≈ log10 cz − 0.2Mb: ð85Þ

Similarly, the SH0ES collaboration puts uninformative prior
on q̄0 ¼ −0.55 [79] to determine ab ¼ 0.71273� 0.00176.
With the constraint onMb, they found that the Hubble rate is
given by [80,81]

H0 ¼ 73.1� 1.4 kms−1Mpc−1: ð86Þ

Note that the quoted error here are the error associated with
the determination of ab and Mb added in quadrature [12].
We will now show how the approach taken by the

SH0ES collaboration may be generalized to apply to
arbitrary inhomogeneous models. The key ingredient in
the generalized expression is the luminosity distance given
in Eq. (13). Starting from Eq. (11) and following similar
steps that starts from Eq. (79) in the FLRW limit

hmiΩ ¼ hMiΩ − 5hlog10½KcKd∇duc�oiΩ
þ 5hlog10½d̂Lðz; n̂Þ�iΩ þ 25; ð87Þ

¼ −5habiΩ þ 5hlog10 d̂Lðz; n̂ÞiΩ; ð88Þ

where d̂Lðz; n̂Þ is given in Eq. (57) and the generalized
intercept is given by

habðn̂ÞiΩ ¼ −
1

5
ðhMiΩ þ 25 − 5hlog10½KaKb∇aubj0�iΩÞ:

ð89Þ
Recall that the decomposition of hKaKb∇aubiΩ is discussed
between Eqs. (58)–(61). Putting this back into Eq. (89) gives

habðn̂ÞiΩ ¼ −
1

5
ðhMiRΩ þ 25 − 5 log10H0Þ; ð90Þ

where we have introduced a renormalized absolute magni-
tude defined in Eq. (76). Similarly, the Hubble rate depends
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on the monopole of the intercept and renormalized absolute
luminosity according to

log10H0 ¼
hMiRΩ þ 25þ 5habiΩ

5
: ð91Þ

habiΩ is obtained independently by fitting to the intercept of
the distance modulus of the SNIa peak magnitudes. The
intercept of thedistancemodulus constrains hMiRΩ þ 5habiΩ,
from where we find

habðn̂ÞiΩ ¼ hlog10d̂Lðz; n̂ÞiΩ − 0.2hMiRΩ; ð92Þ

≈ log10

�
cz

�
1þ 1

2

�
4 −

�
KcKbKa∇a∇buc
ðKcKb∇cubÞ2

�
Ω

�
0

zþOðz2Þ
��

− 0.2hMiRΩ; ð93Þ

¼ log10

�
cz

�
1þ 1

2

�
1 −

1

H2

�
1

6
ρ −

1

3
Λþ 3

5
σabσ

ab þ 6

15

�
1

6
ρ −

1

3
Λ
�
σhabiσhabi

H2

−
4

15

σhabiEhabi
H

	�
zþOðz2Þ

�
− 0.2hMiRΩ; ð94Þ

≈ log10cz − 0.2hMiRΩ: ð95Þ

where we made use of Eq. (66) in the second equality; in
the third equality, we used Eq. (74) and the very low
redshift approximation is enough [12].
Finally, we remark that the Hubble rate and the decel-

eration parameter obtained from fitting to the monopole of
the Alcock-Paczyński parameters for the BAO signal in the
two-point correlation function agree:

HdL
0 ¼ HdA

0 ¼ H
αk
0 ; ð96Þ

qdL0 ¼ qdA0 : ð97Þ

But they differ from the local cosmic distance ladder
measurement determination

HμI
0 ¼ Hμ

0; ð98Þ

qμI0 ¼ qμ0: ð99Þ

The Hubble rate from the local cosmic distance measure-
ment corresponds to volume expansion without any con-
tamination due to the tidal deformation of the local
spacetime geometry. The Hubble rate and the deceleration
parameter determined from the local cosmic ladder and
Alcock-Paczyński parameters of the BAO signal differ
according to

HdA
0 −Hμ

0 ≈ −
2

15

σabσ
ab

H






z¼0

þOðσ3Þ; ð100Þ

qdA0 − qμ0 ≈ −
2

15

σhabiEhabi
H2






z¼0

þOðσ3Þ: ð101Þ

It is possible to calibrate the SNIa using the BAO distance
information (proper distance traveled by the acoustic waves
from the initial time to the last scattering surface) instead of
the nearby distance anchors [82]. This approach usually
involves the use of a model that does not include the tidal
fields we discussed here in the calibration process [83],
thus, we can associate the absolute magnitude of the SNIa
determined through this process to hMiΩ. On the other
hand, the local cosmic distance ladder approach does not
assume any model for distance (apart from the parallax
formula for distance, flux inverse square law, period-
luminosity relation for Cepheids) during the calibration
process, hence, we can associate the absolute magnitude it
determines to hMiRΩ. The difference is given by

hMiRΩ − hMiΩ ≈
1

3 log 10
σabσ

ab

H2






z¼0

þOðσ3Þ: ð102Þ

IV. THE PERTURBED FLRW SPACETIME

The results we have derived so far by fitting the FLRW
model to an inhomogeneous model is general, they apply to
any inhomogeneous cosmological model provided that
anisotropies are small when compared to the monopole.
In this section, we specialize to a universe where the
inhomogeneities could be described as small perturbations
on top of a flat FLRW background spacetime. We work in a
conformal Newtonian gauge (our result is gauge invariant):

ds2 ¼ ā2½−½1þ 2Φ�dη2 þ ð½1 − 2Φ�δij�; ð103Þ

where δij is the metric of the Minkowski spacetime, ā is
the scale factor of the expanding background FLRW
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spacetime, and Φ is the Newtonian gravitational potential.
The components of the timelike four velocity in perturba-
tion theory are given by

u0 ¼ 1 −Φþ 3

2
Φ2 −

1

2
Φð2Þ þ 1

2
∂iv∂iv; ð104Þ

ui ¼ ∂
ivþ 1

2
við2Þ þ 1

2
∂
ivð2Þ; ð105Þ

where vi is the peculiar velocity, ∂i is the spatial derivative
on the Minkowski spacetime in Cartesian coordinates, and
v is the peculiar velocity potential. The indices with the
small English alphabets denote the spatial component of
the spacetime. The green superscripts denote terms evalu-
ated at second order in perturbation theory.
Using Eqs. (103), (104), and (105) at leading order in

perturbation theory, the shear tensor, σab becomes

σijðη; xÞ ¼ ā∂hi∂jivðη; xÞ: ð106Þ

The ensemble average of the shear scalar is given

σabσ
ab

H2
¼ 2

3
f2ðzÞσ2RðzÞ; ð107Þ

where f is the rate of growth of structures. We made use of
the continuity to express the velocity potential and the in
terms of the matter density contrast δm

vðk; ηÞ ¼ H
k2

fðηÞδmðk; ηÞ: ð108Þ

In addition, we introduced the variance in matter density
field

σ2R ¼
Z

kUV

0

dk
2π2

½k2PmðkÞ� ¼
Z

∞

0

dk
2π2

½ðkWðkRÞÞ2PmðkÞ�:

ð109Þ

Here, Pm is the power spectrum of the matter density field.
We have introduced a top-hat window function,W, instead
of a UV dependent momentum integral. The scale, R, will
be fixed shortly. For the different determinations of the
Hubble rate, we focused on the dominant terms only,
perturbing the monopole of various definitions of the
Hubble rate give

Hμ
0 ¼ HμI

0 ≃ H̄0; ð110Þ

HdA
0 ¼ HdL

0 ¼ H
αk
0 ≃ H̄o

�
1 −

4

45
f2ðzÞσ2RðzÞ






0

�
: ð111Þ

Note that Θ is well described by the FLRW background
spacetime to an accuracy better than 0.1% [84], thus we
neglect its perturbations and approximate Hμ

0 and HμI
0 with

the FLRW background prediction, H̄0. The relationship
between the rest of Hubble rate determinations and HμI

0 is
given

H
αk
0

HμI
0

¼ 1 −
4

45
f2ðzÞσ2RðzÞj0: ð112Þ

Therefore, the BAO determination of the Hubble rate
differs from the local measurements by a factor of
1 − 4f2ð0Þσ2R=45. The electric part of the Weyl tensor,
Eab, at leading order in perturbation theory is given by

Eijðη; xÞ ¼ ∂hi∂jiΦðη; xÞ: ð113Þ

We use the Poisson equation to express Φ in terms δm

Φðk; ηÞ ¼ −
3

2
ΩmðzÞ

�
H
k

	
2

δmðk; ηÞ; ð114Þ

where Ωm is the matter-energy density parameter. Using
Eqs. (108) and (114) we find that

σabEab

H3
¼ −ΩmfðzÞσ2RðzÞ: ð115Þ

Expanding the first two terms in q0 ¼ ð1
6
ρ − 1

3
Λþ

σabσabÞ=H2
0 up to second order in perturbation theory gives

1

H2
0

�
1

6

1

ρ
−
1

3
Λ
	





zo

≈ q̄0 −
1

3H0

Ωmδm∂
2v

þ 1

3H2
0

q̄0ð∂2vÞ2; ð116Þ

≈ q̄0 þ
1

3
Ωmfð0Þσ2R þ 1

3
q̄0f2ð0Þσ2R:

ð117Þ

The product of q0 and shear scalar in perturbation theory is
given by

1

H2
0

�
1

6

1

ρ
−
1

3
Λ
	





zo

σabσ
ab

H2






zo

¼ 2

3
q̄0f2ð0Þσ2R; ð118Þ

where q̄0 is the deceleration parameter on the background
FLRW spacetime with the dust and cosmological constant

q̄0 ¼
Ωm

2
−ΩΛ ¼ −1þ 3

2
Ωm; ð119Þ

where ΩΛ is the energy density due to the cosmological
constant. In the second equality, we made use of the
Friedmann equation Ωm þΩΛ ¼ 1 to express q̄0 in terms
of Ωm only. The matter density and the cosmological
constant today are defined in terms of these parameters
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as ρ̄0 ¼ 3H2
0Ωm0 and Λ ¼ 3H2

0ΩΛ0. Using Eq. (117), q0
perturbed up to second order is given by

1

H2
0

�
1

6
ρ −

1

3
Λþ σabσab

	

≈ q̄0 þ
1

3
Ωmfð0Þσ2R þ 1

3
q̄0f2ð0Þσ2R þ 2

3
ðf2ð0ÞÞσ2RðzÞ:

ð120Þ

Finally, the deceleration parameter for both cases becomes

qdA0 ¼ qdL0 ≃ q̄0 þ
11

15
Ωmfð0Þσ2R þ

�
7

9
q̄0 þ

2

5

	
f2ð0Þσ2R;

ð121Þ

qμ0 ¼ qμI0 ≃ q̄0 þ
3

5
Ωmfð0Þσ2R þ

�
7

9
q̄0 þ

2

5

	
f2ð0Þσ2R:

ð122Þ

The exact magnitude of the difference between the pred-
ications of the effective Hubble rate and deceleration
parameter from different ways of fitting an FLRW model
to a lumpy universe depends on σ2R. We discuss how we
handle the dependence on σ2R in Sec. IVA.

A. Causal horizon and the expanding
regions of spacetime

In cosmology, the well-known causal limits are deter-
mined by the dynamics on the null cone, for example, the
particle horizon, which indicates the maximum distance
light from particles could have travelled to the observer in
the age of the Universe. Ellis and Stoeger argued in [85]
that there exists a causal horizon that is determined not by
the dynamics on the light cone but by the dynamics of our
timelike geodesic. It is given by the boundary of the
comoving region that has contributed most significantly
to the dynamics of our local environment. The dominant
interaction within this region are not mediated by massless
particles (i.e., the vector and tensor perturbations on an
FLRW background spacetime have negligible impact on
the dynamics within this region); instead, they are mediated
by massive particles that travel at very low speeds relative
to the cosmic rest frame. It is these differences in speed that
cause our local environment to decouple from the Hubble
expansion because it cannot keep up the cosmic rest frame
[85,86]. We determine the causal horizon as the comoving
radius where divergence of our four velocity vanish. This is
also called the zero-velocity surface [87]. At the leading
order in cosmological perturbation theory, this is given by

Θ ≃ 3H0 þ ∂i∂
ivjz¼0 ¼ 3H0 þ

c
r
d ln ρ
d ln r

: ð123Þ

In the second equality, we made use of the continuity
equation: δ0m ¼ −∂i∂iv with δm ≡ δρ=ρ̄ ¼ ðρ − ρ̄Þ=ρ̄ and
use the chain rule to express the conformal time derivative
of δm in terms of radial derivative of ρ

δ0m ¼ dδm
dη

¼ 1

ρ̄

∂r
∂η

∂ρ

∂r
≈ −

1

ρ̄

∂ρ

∂r
≈ −

c
r
d ln ρ
d ln r

: ð124Þ

The radius of the zero-velocity surface Θð0; rÞ ¼ 0 is
given by

R0 ¼ −
c

3H0

d ln ρ
d ln r

: ð125Þ

The spacetime in the region r < R0 are not expanding and it
defines the local sphere of influence with respect to the
observer. We estimate Eq. (123) using a dark matter halo
model with the Einasto [88] and Navarro—Frenk—White
(NFW) profiles [89] with the outer profile given by themean
matter density [90]. The result is shown in Fig. 1. R0 is
obtained from Fig. 1 as the value of r where the curves
intersect the Θð0; rÞ ¼ 0 horizontal line. We find that R0 is
dependent on the mass of the host halo. The larger the halo
mass, the higher the causal horizon.Onemight ask, how isR0

related to the virial radius, rΔc
(Δc is an overdensity

constant). The mass contained with rΔc
(virial mass) is the

mass of a gravitationally bound astrophysical system,
assuming the virial theorem holds. Recent studies have
shown that rΔc

does not correspond to the physical boundary
of a gravitationally bound astrophysical system. The reason
is that the mass contained within rΔc

is subject to pseudoe-
volution [91,92]. And there are physical processes that are
known to redistribute substructures formed during collapse
from small to large radii greater than rΔc

[93–95]. For these
reasons, the splashback radius, rsp,was introduced as a radius
that includes all matter that orbits a halo [91,96]. The
splashback radius of haloes of different masses is shown
in the right panel of Fig. 1. We find that R0 is different from
the splashback radius of the host halo. In fact from Fig. 1, we
find that R0 is always greater than the rsp at any of the given
halomasswe considered. There are observational constraints
for the radius of the zero-velocity surface for our local group
R0 ∼ ð0.95–1.05Þ Mpc [30,87,97] and this is the value we
use for the rest of the analysis.

B. The cosmological tensions: Hubble rate, absolute
magnitude and the deceleration parameter

Now that we have determined the minimum length scale
participating in the cosmic expansion, it is straightforward
to calculate the Hubble discrepant [i.e., Eq. (112)]. The
minimum length scale corresponds to the distance where
the reference flux or the absolute magnitudes of sources in
the Hubble flow are calibrated. This makes sense because
cosmic evolutionary effect does not contribute to the
absolute magnitude. Setting the smoothing scale to the
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radius of the zero-velocity surface R ¼ R0. The full result is
shown in Fig. 2. We find about ∼ð9–12Þ% difference in the
determination of the Hubble rate between the local mea-
surements using the cosmic distance ladder and the BAO
determinations.
Although, the cosmological interpretation of the peak

magnitude of the SNIa by the SH0ES and CCHP groups
was done using a smooth luminosity distance, Both groups
differ on the calibration of the supernova absolute magni-
tude. The SH0ES build a local cosmic distance ladder
using distance measurements to a set of anchors to infer
the absolute magnitude of the SNIa. Other than using the
standard formula for the parallax for the Milky Way
Cepheids or the inverse square law for flux for the detached
eclipsing binaries, or Leavitt’s law for Cepheids [98], etc.,

the process of calibrating the absolute magnitude of the
SNIa is cosmological model independent. Since these sets
of anchors live nearby, the calibration of the local cosmic
distance ladder includes the impact of the tidal deforma-
tions on the local spacetime that we discuss here [35]. We
showed how the impact of the tidal deformation results in a
renormalization of the absolute magnitude in Sec. III B.
Calibrating the SNIa absolute magnitude using the proper
distance acoustic waves could have travelled from the
origin of the Universe to the surface of the last scattering as
an anchor, requires that we assume a particular model based
on the FLRW spacetime. This model does not include the
impact of the tidal field on distance measurement [82].
The supernova absolute magnitude tension refers to the

disparity in the determination of the supernova absolute

FIG. 1. The horizontal line in the left panel shows the zero-velocity (expansion) surface:Θð0; Rn̂Þ ¼ 0, i.e., the transition radius where
the spacetime goes from expansion to contraction. The exact position of R depends on the halo mass. The three curves, thick, dashed,
and dash-dotted lines, correspond to the following halo massesM ¼ ½1011; 1012; 1013� M⊙, respectively. On the right panel, we compute
the gradient of the halo density only for the same halo masses shown in the left panel. The splashback radius for a given halo mass is the
position of the least gradient. The splashback radius is always less than the radius of the zero-velocity surface. In both cases, we fixed the
halo concentration at 5.

FIG. 2. Left panel: we show the fractional difference between the Hubble rates determined using the local measurement of the peak
apparent magnitude of SNIa and the interpretation of the Alcock-Paczyński parameters in terms of the FLRW spacetime. Right panel:
we show the difference between the renormalized absolute magnitude due to the impact of the tidal deformations on the distance to the
anchor and the intrinsic absolute magnitude. We made use of the linear theory matter power spectrum to evaluate these.
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magnitude between the inverse distance ladder method with
the sound horizon scale at the surface of the last scattering
as an anchor and local cosmic distance ladder with the
anchors in the nearby universe [83,99]. Using the inverse
distance method on Pantheon supernova peak magnitudes,
[33] found the absolute magnitude to be

MP18 ¼ −19.387� 0.021 mag: ð126Þ

For this same supernova sample, but using the SH0ES
Cepheid photometry for the geometric distance estimates,
[33] finds the absolute magnitude to be

ME21 ¼ −19.214� 0.037 mag: ð127Þ

The difference between Eqs. (126) and (127) is given by

ME21 −MP18 ¼ 0.173� 0.04 mag: ð128Þ

We can relate Eq. (126) to hMiΩ and Eq. (127) to hMiRΩ so
that the difference between them is given by Eq. (76)

hMiRΩ − hMiΩ ¼ 2

9 log 10
f2ð0Þσ2R: ð129Þ

We show the result of calculating Eq. (129) in the right
panel of Fig. 2. With R ¼ D ¼ 1 Mpc, we find a difference
of about 0.12 mag
In addition to the Hubble rate and the absolute magni-

tude, we also derived the expression for the deceleration
parameter by fitting the FLRW model to the monopole of
an inhomogeneous model of the area distance, distance
modulus, etc. In this case, we find that both the local
measurements and the BAO measurements (Alcock-
Paczyński parameters) give deceleration parameter that
differ substantially from the prediction of an FLRW model

qdA=μ0 − q̄0 ¼ ΔqdA=μ0 ; ð130Þ

where ΔqdA=μ0 depends on the scalar invariant of a combi-
nation of shear tensor and the electric part of the Weyl
tensor, i.e., σhabiEhabi=H2jz¼0 and σabσ

ab=H2jz¼0. The
corresponding cosmological perturbation limit of both
expressions are given in Eqs. (121) and (122). Again the
local cosmic ladder and the Alcock-Paczyński parameter
determinations of the deceleration parameter differ only
in the coefficient of this term σhabiEhabi=H2jz¼0 [see
Eq. (101)]. σhabiEhabi=H2jz¼0 is related to the spatial
curvature of the local domain.
We show in Fig. 3, the fractional difference between the

deceleration parameters derived in Eqs. (121) and (122)
and the FLRW predictions. We found over a 100% differ-
ence between the deceleration parameter from the local
measurement interpreted based on an FLRW model and

Planck prediction. This finding is consistent with the
recent measurements of the deceleration parameter using
the Pantheon supernova samples and the cosmographical
expression for the luminosity distance in FLRW limit
[34,99]. However, it differs from the measurement of the
deceleration parameter by the SH0ES collaboration [36].
Note that the SH0ES collaboration made use of the full
expression for the luminosity distance based on the back-
ground FLRW spacetime and not its cosmographical
approximation [79]. Given that [36] made use of the dataset
used by [34,99] but supplemented with another dataset that
is composed of high redshift SNIa. It is most likely that the
reason for this disparity is related to the breakdown of
Taylor series expansion in the presence of structures as
reported in [35].
The Hubble tension is usually described as a discrepancy

between the early and late-time Universe determination of
the Hubble rate [21]. We have shown that it could be a
consequence of how the distance measurements in the
neighborhood of the observer are interpreted within the
ΛCDM model. The key factor is that the local spacetime
around the observer is tidally deformed, the background
FLRW spacetime does not capture this effect. We showed
that the model of area/luminosity distance that includes the
effects of inhomogeneities through the perturbation of the
FLRW spacetime would be able to explain the Hubble
tension without any need of invoking any exotic evolving
dark energy [100,101] (see Refs. [102,103] for a list of all
possible models within this framework), frame-dependent
dark energy [104] (this approach explains the SH0ES
result but gives a large value of the Hubble constant from
the BAO analysis), quantum measurement uncertainties
[105], evolving gravitational constant [106], modification
of gravity [107,108]. One unique thing about all these
approaches except the frame dependent dark energy which

FIG. 3. We show the fractional difference between the decel-
eration parameters derived in Eqs. (121) (thick lines) and (122)
(dashed lines) and the FLRW predictions.
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breaks 4D diffeomorphism invariance but retains 3D
coordinate invariance is that they assume that the FLRW
background spacetime is valid on all scales and at all times.
This is contrary to the findings in [35] that showed that the
FLRW background spacetime in the presence of structures
break down at about 1 Mpc. This scale is consistent with
the scale where caustics or conjugate points appears [109].
Appearance of the conjugate points is a unique indicator for
the breakdown of the coordinate system [29].
Furthermore, we showed that the interpretation of the

BAO measurement (i.e., Alcock-Paczyński parameters)
using the area distance based on the background FLRW
spacetime infers a wrong H0 because the symmetries of
background FLRW spacetime does not allow the contri-
bution of the electric part of the Weyl tensor or the effect
of the tidal deformations around the observer. If the
Alcock-Paczyński parameters are consistently interpreted
or evolved from high redshift to low redshifts using a model
of the area distance that includes the impact of the tidal field
or the area distance derived from a perturbed FLRW
spacetime as described in [35], then the tensions in the
Hubble parameter would not arise.
Of course, we are not the first to claim that the effects of

inhomogeneities could resolve the Hubble tension. In fact it
was argued in [110] that the large scale outflows due to
the presence of local voids could be the cause of the
Hubble tension and it could potentially explain the late time
cosmic acceleration by dark energy [111]. The authors
defined a spatial averaging procedure following the
Buchert averaging formalism [112]. They found that an
average under density of about hδi ¼ −0.3 is enough to
explain the discrepant Hubble rate. A more detailed study of
this has shown that this does work [113]. Second, the authors
did not compute the average values of what is observed;
rather, they calculated the average density on the spatial
hypersurface. An observer does not have access to the entire
hypersurface; rather, it has access only to the screen space (2D
surface) due to restriction imposed by the constant speed of
light [114]. Similarly, it has been conjectured that anisotropies
in the superhorizon perturbations could explain the Hubble
tension. This approach has some fine-tuning issues to resolve.
This simplestmodel of this has three free parameters that have
to be chosen precisely for it to work [115].

V. CONCLUSION

We have deployed the cosmological fitting approach
introduced by Ellis and Stoeger [7,44] to study how well
the FLRW spacetime fits an inhomogeneous universe on
average. The FLRW model could be characterized by a set
of free parameters such as the Hubble rate, deceleration
parameter, etc., and we show how to obtain the best-fit
Hubble rate and the deceleration parameter given general-
ized inhomogeneous models of the following observables:
Alcock-Paczyński parameters, magnitude-redshift relation,
and the intercept of the distance modules.

We made use of the results of the low redshifts Taylor
series expansion of the generalized inhomogeneous expres-
sion of the area distance and luminosity distance developed
by Kristian and Sachs in 1966 [24]. Using the 1þ 3
covariant decomposition formalism, we decomposed these
expressions in terms of irreducible observables with respect
to a geodesic observer. In this limit, the only key observ-
ables are the rate of expansion (a scalar) and the rate of
shear deformation tensor. The rate of expansion scalar
describes the rate at which nearby geodesics expands/
contract with respect to a geodesic observer. It corresponds
to the Hubble rate in the FLRW limit. The shear tensor, on
the other hand, describes the rate of change of the
spacetime deformation in the neighborhood of the observer
[26]. It vanishes in the FLRW limit.
Using these tools, we derived the generalized inhomo-

geneous equations for theAlcock-Paczyński parameters. The
Alcock-Paczyński parameters constrain the imprints of the
Baryon Acoustic Oscillation in the galaxy distribution
through the N-point correlation function. These parameters
are usually interpreted in terms of the background FLRW
model.We showed how to generalize the two components of
the Alcock-Paczyński parameters to an inhomogeneous
spacetime model. By comparing the monopole of the gen-
eralized radial component to the corresponding FLRW
counterpart, we find that the inferred Hubble rate is biased
by the impact of the tidal deformation tensor at the observer
location. The orthogonal part is proportional to the area
distance, hencewe compare themonopole of the generalized
area distance to the corresponding FLRW limit. At the
leading order in redshift, we find that the Hubble rate today
is biased as well by the scalar invariant of the shear tensor. At
second order in redshift, we obtain the generalized expres-
sion for the deceleration parameter, which is also biased by
the scalar invariant of the shear tensor and the product of the
shear tensor and the electric part of the Weyl tensor.
Furthermore, we considered the magnitude-redshift

relation. This is the key observable from which the deter-
mination of the Hubble rate is made from the peak
magnitude of the type IA supernovae. We showed that
the tidal deformation tensor that biases the determination
of the Hubble rate from the monopole of the Alcock-
Paczyński parameters impacts the measurement of the
supernova absolute magnitude instead. The Hubble rate,
in this case, is not biased, it corresponds exactly to the rate
of expansion scalar which describes the rate of volume
expansion/contraction. The deceleration parameter, how-
ever, is biased by the same terms as in the case of the
orthogonal component of the Alcock-Paczyński parameter.
We quantified these terms within the cosmological

perturbation theory assuming Gaussian and adiabatic
initial conditions. We showed that the expectation value
of these biasing terms is proportional to the smoothing
scale-dependent variance in the matter density field. We
argued that the most physically motivated smoothing scale
corresponds to the comoving radius (causal horizon) where
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the spacetime region goes from a contracting to an
expanding phase. We use the halo model to quantify this
exactly. We find that it is slightly greater than the splash-
back radius of the host halo. Setting the mass of our local
group to about ∼ð1011–1012Þ M⊙, we find the smoothing
scale in the range of R ∼ ð0.8–1.2Þ Mpc. This leads to
about ∼ð8 − 12Þ% fractional difference in the determina-
tion of the Hubble rate between the local measurements and
the Alcock-Paczyński parameters. With the same range of
values for the smoothing scales, we find that it explains the
supernova absolute magnitude tension [33,99] and the
values obtained from recent measurement of the deceler-
ation parameter today using the Pantheon supernova
samples [34]. The interpretation of the inferred values of
the deceleration parameters should be taken with caution
because cosmography in the presence of structures at
second order in redshift differs from the full expression
by more than 100% at about z ∼ 0.1.
Finally, it is undeniable that the FLRW spacetime has

played a big role in our current understanding of the
Universe. Our results show that the tidal deformation of the
observer spacetime region due to the gravitational inter-
action among nearby structures cannot be neglected. This
interaction is characterized by tensors that vanish on the
FLRW background spacetime. We have shown that not
taking these into account when using the FLRW model
alone to analyze cosmological observation leads to cos-
mological tensions. We showed that the determination of
Hubble rate from the analysis of the local distance ladder
for the SNIa peak magnitudes takes into account the impact
of the tidal deformation of the local spacetime consistently.
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APPENDIX: COVARIANT COSMOGRAPHY
ON THE PAST LIGHT CONE

The distance-redshift relation on arbitrary spacetime may
be expanded in Taylor series up to any order following the

formalism developed by Kristain and Sachs [24]. The
formalism uses the null focusing equation to propagate
the deviation vector, ξa, with the tail on the central ray, L
and head on the nearby geodesics from a source with four
velocity uas to the observer with four velocity uao

d2ξa

dλ2
¼ −Ra

cbdkckdξb; ðA1Þ

where Ra
cbd is the Riemann curvature tensor, ξa lives on the

screen space, and ka is the tangent vector to the null
geodesics. The solution to Eq. (A1) needs to satisfy the
following initial conditions at source

ðξaÞs ¼ 0;

�
dξa

dλ
ua

	
s
¼ 0;

�
dξa

dλ
ka

	
s
¼ 0; π

�
dξa

dλ
dξa
dλ

	
s
¼ −ðuakaÞsdΩ: ðA2Þ

Equation (A1) is valid provided there are no focal points
between the observer and the source. Expanding ðξaξbÞ in
Taylor series in λ up to fifth order, gives

ðξaξbÞo ¼ ðξaξbÞs þ
�
d
dλ

ðξaξbÞ
�
s
λo þ

1

2

�
d2

dλ2
ðξaξbÞ

�
s
λ2o

þOðλ3oÞ: ðA3Þ

Using Eq. (A1) and the boundary conditions [Eq. (A2)]
gives

ðξaξbÞo ¼ λ2o

�
dξc

dλ
dξc
dλ

	
s

�
gab −

1

3
kckdRacbdλ

2
o þOðλ3oÞ

	
:

ðA4Þ

The area element is defined as dA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξaξbÞo
p

dΩ,
therefore

dAo ¼ dΩλ2oðuakaÞ2s
�
1 −

1

6
kckjRcjλ

2
o þOðλ32Þ

	
: ðA5Þ

Tomake contact with observationwe expand the redshift in λ

ð1þ zÞ ¼ Es

Eo
¼ 1

ðkauaÞ0

�
kaua þ kakb∇aubλ

þ 1

2
kakbkc∇a∇bucλ2 þOðλ3Þ

�
: ðA6Þ

Using the fact that the area distance is the ratio of the cross
sectional area at the observer to the cross sectional area at the
source according to

d2A ¼ dA0

dΩ
ðuakaÞ2o
ðuakaÞ2s

: ðA7Þ
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Using Eq. (A5) in (A7) we find

d2A ¼ ðuakaÞ20λ20
�
1 −

1

6
kckdRcdλ

2
0 þOðλ30Þ

�
: ðA8Þ

Inverting the series is Eq. (A8) gives the affine parameter in
terms of the area distance,

λ0 ¼ dA

�
1þ 1

12
KcKdRcdd2A þOðd3AÞ

�
; ðA9Þ

where we defined normalized photon tangent vector Ka ≔
ka

ðuakaÞ0 ¼ −ua þ na. Then putting Eq. (A9) in (A6) gives

z ¼ KaKb∇aubjodA þ 1

2
ðKaKbKc∇a∇bucÞjod2A þOðd3AÞ:

ðA10Þ

Inverting Eq. (A10) gives the area distance in terms of the
redshift

dA ¼ z
KcKj∇cujj0

�
1 −

�
1

2

KcKjKk∇k∇juc
ðKcKj∇cucÞ2

�
0

zþOðz2Þ
�
:

ðA11Þ

Using the reciprocity theorem dL ¼ dAð1þ zÞ2, we find the
luminosity distance to be

dL ¼ z
KcKj∇jucj0

�
1þ 1

2

�
4 −

KcKjKk∇k∇juc
ðKcKj∇cucÞ2

�
0

z

þOðz2Þ
�
: ðA12Þ
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