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We study the magnetic field generation from the cosmological first-order electroweak phase transition.
We calculate the magnetic fields induced by the variation of the Higgs phase for two-bubble and three-
bubble collisions, and find that the generated magnetic field strength with the effect of bubble shape
distortion is about half of that derived without including the shape deformation. Our study shows that
electromagnetic currents in the collision direction produce the ringlike magnetic field in the intersection
area of colliding bubbles, which has a chance to seed the primordial magnetic field constrained by
intergalactic magnetic field observations.

DOI: 10.1103/PhysRevD.106.023510

I. INTRODUCTION

Though observations have established the existence of
cosmological magnetic fields (MFs), their origin is still a
long-standing unsolved problem. The MFs may generate
during inflation [1], and/or electroweak phase transition
[2]. The MFs from the electroweak first-order phase
transition (FOPT) may seed the intergalactic MFs [3].
The phase transition in the Standard Model (SM) is a
crossover [4], and the electroweak FOPT is a general
prediction of many models beyond the SM, e.g., the SM
extended by the dimensional-six operator ðΦ†ΦÞ3=Λ2

[5,6], singlet extension of the SM [7–15], two-Higgs-
doublet models [16–21], George-Macheck model [22],
and next-to minimal supuersymmetric model [23,24].
Therefore, measurements of intergalactic MFs may provide
an additional way to probe physics beyond the SM [25,26].
We refer to Refs. [25,27–30] for previous reviews on the
primordial MFs. For the status of the observation of MFs in
the Galaxy, we refer to Ref. [31].
A FOPT proceeds with vacuum bubbles’ nucleation and

collision. In analogy with Kibble and Vilenkin [32],
Ahonen and Enqvist [33] studied ringlike MF generation
during the collision process of bubbles within an Abelian
Higgs model. They evaluated the root-mean-square MFs to
be around 10−21 G at the comoving scale of 10 Mpc today
after including turbulent enhancement effects. Stevens et al.
[34] studied the MFs created from the currents induced by

the charged W fields for the two-bubble collision scenario,
and they further considered the effect of bubble wall
thickness in Ref. [35]. Recently, they utilized the thermal
erasure principle to solve the equation of motion (EOM) of
electromagnetic fields in the non-Abelian Higgs model, and
found that the strength of the MFs for the two-bubble
collision is comparable to those found in the Abelian Higgs
model; see Ref. [36]. Different from previous studies, in
this work, we take into account the effects of the bubble
dynamics during the FOPT, i.e., the different dynamics
between the bubble walls in the cross regions of bubbles
and other regions induced by the thermal frictions and
bubble wall tension. We consider the MF generation by
bubble collisions during the electroweak FOPT. For con-
creteness and simplicity, we consider the MF generation for
two- and three-bubble collisions. Here, with and without
considering bubble dynamics, are called the ideal situation
and revised situation. The prospect for constraining the
electroweak FOPT with MF observation is studied.
This work is organized as follows. In Sec. II, we

demonstrate the dynamics of bubble collision. In Sec. III,
we calculate theMFs of electroweak bubble collisions in the
ideal and the revised situation. In Sec. IV, we evaluate the
root-mean-squared MFs at correlation length after taking
into account the hydromagnetic turbulent effect, and evalu-
ate the possibility to probe the electroweak FOPT with
Blazars observation.We concludewith Sec. V. In Appendix,
we review the EOMs for theW andZ fields, and howone can
derive the electromagnetic current by solving the Higgs
phase equation and estimate the produced MFs during the
bubble collision process.*lgbycl@cqu.edu.cn
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II. BUBBLE DYNAMICS

In the thin-wall limit, the Lagrangian of the vacuum
bubble is a function of the bubble radius R and can be
written as [37]

L ¼ −4πσR2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ 4π

3
R3p; ð1Þ

where σ is the bubble wall tension and p is the pressure
acting on the bubble wall. The EOM to describe bubble
growth is given by

R̈þ 2
1 − _R2

R
¼ p

σ
ð1 − _R2Þ32: ð2Þ

In terms of Lorentz factor γ, the above equation recasts the
form of

dγ
dR

þ 2γ

R
¼ p

σ
; ð3Þ

where γ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
. It can be solved analytically by

giving an initial condition of γ and R. The smallest bubble
size of the case where bubbles would expand instead of
collapsing after nucleating is Rc ¼ 2σ=p.
When the bubbles are expanding in the plasma back-

ground, the friction force can be exerted by the surrounding
plasma. In the case where the bubble wall is very relativ-
istic, the leading-order friction is caused by the change
of the effective mass during the 1 → 1 particle transmission
and reflection in the vicinity of the bubble wall, which
is independent of the Lorentz factor γ, and is estimated
to be [38]

ΔPLO ≈
Δm2T2

24
; ð4Þ

with the squared masses differences between the symmetric
phase and the broken phase being given by

Δm2 ≡X
i

ciNiΔm2
i : ð5Þ

Where, Ni is the number of internal degrees of freedom of
particles, ci ¼ 1ð1=2Þ for bosons(fermions), Δm2

i ¼ m2
i;t −

m2
i;f is the mass difference of particles in the true vacuum

(“t”) and the false vacuum (“f”), and the sum running over
particles that gain mass in the transition from the false
vacuum to the true vacuum. The next-to-leading order term
arising from the particle splitting and transition radiation of
gauge bosons is proportional to γ [39]:

γΔPNLO ≈ g2ΔmVT3; ð6Þ

with

g2ΔmV ≡X
i∈V

g2i NiΔmi; ð7Þ

where the sum running over all gauge bosons with its
masses changing across the wall (Δmi ¼ mi;t −mi;f), and
the gi are their gauge couplings. After these frictions are
included, the total pressure can be written as

p≡ ΔV − ΔPLO − γΔPNLO; ð8Þ

with ΔV ¼ Vf − Vt being the energy density difference
between the false vacuum and the true vacuum. Equation (3)
becomes [40]

dγ
dR

þ 2γ

R
¼ ΔPNLO

σ
ðγeq − γÞ: ð9Þ

Here, γeq ¼ ðΔV − ΔPLOÞ=ðΔPNLOÞ and limR→∞γðRÞ ¼
γeq [41]. We assume ΔPNLO ≫ σ which means the bubble
wall accelerated rapidly after nucleation, therefore the
Lorentz factor of the bubble wall can be approximately
evaluated as γcol ≈ γeq when the bubble collision started.
Based on above arguments, when the bubble collision

occurs, the bubbles’ walls outside the cross regions can be
described by Eq. (9), and bubbles expand with a constant
velocity where γ ∼ γeq. Meanwhile, we have p≡ 0 in the
cross region of colliding bubbles. Assuming Eqs. (3) and
(9) still hold in these regions, we get

dγ
dR

þ 2γ

R
¼ 0; ð10Þ

with the solution being

γ ¼ γcol
R2
col

R2
; ð11Þ

where Rcol is the radius of the bubble and γcol is the Lorentz
factor of the bubble wall at the collision time tcol. For the
following calculations of the modified MFs’ strength, we
take γcol ¼ γeq.
At the time of t0 ≡ t − tcol ¼ tm, the points on the bubble

wall along the collision axis reach the maximum distance
away from the bubble center with RcolmW ¼ 10. We show
the shape of the bubble walls with solid lines in the left
panel of Fig. 1 (which corresponds to the revised situation
in the right panel). Here we introduce an angle to describe
the position of the points on the wall; the distance between
the wall and bubble center is related to the angle down
from the collision axis, i.e., ϕ. The bubble wall with
different ϕ begins to intersect with that of the other bubble
at different times. Therefore, in the cross regions, the
distance between the points on bubble walls and the bubble
center depends on the angle (ϕ) and the time after collision.
Equation (10) applies until the moment when the points on
the bubble wall with an angle ϕ reach the maximum

JING YANG and LIGONG BIAN PHYS. REV. D 106, 023510 (2022)

023510-2



distance. Meanwhile, the bubble wall outside the inter-
section area still expands with a velocity γ ¼ γeq. The
dashed lines are plotted to describe the ideal case which is
adopted to evaluate the MFs in the previous study of
Ref. [36]. As shown in the figure, the bubble walls are
straightened by their tension force and result in a larger
curvature radius in the cross region, thus yielding a
deviation of bubble shapes from the ideal case where the
bubble shapes are both spheres. In the right panel, we plot
the time evolution of the radius of bubble walls in the
intersection area for the revised and the ideal situation. The
kinetic energy of bubble walls in the intersection area is
converted to the wall surface energy due to the surface
tension, thus leading to the decelerated expansion of bubble
walls in the revised situation rather than a uniform
expansion velocity as in the ideal situation.

III. MAGNETIC FIELD PRODUCTION

For the Higgs potential with proper barrier for quantum
tunneling at finite temperature around Oð102Þ GeV can
feasibly be an electroweak FOPT proceeding with bubble
nucleation and collision [5], and therefore yields produc-
tion of the MFs [25,29,30]. In unitary gauge, the Higgs
field has the form

ΦðxÞ ¼
�

0

ρðxÞ expðiΘðxÞÞ

�
: ð12Þ

It was found that the fluctuations in ρðxÞ became very small
as the bubbles overlapped [34], thus we take ρðxÞ ¼ ρ0 ¼
174 GeV in our calculations where ρ0 is a central value
of ρðxÞ. For the EOMs of Higgs and gauge fields, see
Appendix.
As indicated in Eq. (A14), when bubbles collide there

would be a large gradient of the Higgs phase since different

bubbles may have different Higgs phases, and, conse-
quently, a large electromagnetic current and a large MF will
be generated [as indicated by Eqs. (A16) and (A17)]. In the
following, we take into account the bubble dynamics as
explored in the previous section, and calculate the strength
of the MFs generated by two-bubble collisions and three-
bubble collisions.

A. Collision of two bubbles

The simplest case is that two bubbles nucleate simulta-
neously; one bubble locates at ðt; x; y; zÞ ¼ ð0; 0; 0; vtcolÞ,
and the other one locates at the position of ðt; x; y; zÞ ¼
ð0; 0; 0;−vtcolÞ. Since our calculations of the MFs are only
relevant to the vcol and Rcol, we suppose they are expanding
with the same uniform velocity v and neglect their initial
nucleating radius for simplicity. The system under study
has an Oð2Þ symmetry in the spatial coordinate, we
therefore follow the analysis of Kibble and Vilenkin [32]
and express the EOM in a coordinate ðτ; zÞ which has an
Oð1; 2Þ symmetry when v ¼ 1. To obtain the MFs gen-
erated by the bubbles’ collision, we need to solve the
equation of the Higgs field phase Θ, i.e., Eq. (A15). In the
ðτ; zÞ coordinate, it casts the form of

�
v2 þ 1

τ
þ v2ð1 − v2Þt2

τ3

�
∂Θ
∂τ

þ
�
1þ v2ðv2 − 1Þt2

τ2

�
∂
2Θ
∂τ2

−
∂
2Θ
∂z2

¼ 0; ð13Þ

where τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 − r2

p
with r2 ≡ x2 þ y2. Note that 0 ≤

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 − R2

col

p
in the cross region, where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 − R2

col

p
is the radius of the circular intersection area in the x-y plane
at z ¼ 0, which also indicates Rcol ≤ τ ≤ vt. If we assume
r ≪ vt or v ≈ 1, the equation recasts the form
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FIG. 1. Left: The shape of the two bubbles after collision at time t0 ≡ t − tcol ¼ tm is shown with thick lines. The dashed lines are the
case where γ ≡ γeq is always satisfied on the whole bubble walls. Right: The time dependence of the distance between the bubble center
and the point of the bubble walls along the collision axis in the cross region is shown in the right panel. The blue line represents the
revised situation and the orange one describes the ideal situation.

MAGNETIC FIELD GENERATION FROM BUBBLE COLLISIONS … PHYS. REV. D 106, 023510 (2022)

023510-3



2

τ

∂Θ
∂τ

þ v2
∂
2Θ
∂τ2

−
∂
2Θ
∂z2

¼ 0: ð14Þ

We assume that before the bubble collision occurs, the
Higgs phase for a single bubble is constant throughout the
bubble and the two bubbles have different phases. As in
[33], the boundary conditions of Θ are given by

Θðτ ¼ tcol; zÞ ¼ Θ0ϵðzÞ;
∂

∂τ
Θðτ ¼ tcol; zÞ ¼ 0; ð15Þ

where ϵðzÞ is the sign of z and 0 < Θ0 < π=2. Expressing
ΘðxÞ as a Fourier transform in z, the above equation gives a
τ-depend ordinary differential equation, yielding,

Θðτ; zÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dkeikz

�
akτ

−2þv2

2v2 K1

�
−2þ v2

2v2
;
ωkτ

v

�

þ bkτ
−2þv2

2v2 K2

�
−2þ v2

2v2
;
ωkτ

v

��
; ð16Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, K1 and K2 are the Bessel functions

of the first and second kind, respectively, ak and bk are
determined by the boundary conditions ofΘ. When we take
m → 0, the solution can be obtained. Then, from Eq. (A14),
the jemν ðτ; zÞ takes the form

jemν ðτ; zÞ ¼ ðjzðτ; zÞ; xαjðτ; zÞÞ; ð17Þ

with

jz ¼ −
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

∂

∂z
Θðτ; zÞ; ð18Þ

j ¼ −
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

1

τ

∂

∂τ
Θðτ; zÞ; ð19Þ

and xα ¼ ðvt;−x;−yÞ. It is clear that the electromagnetic
field has the same form as the electromagnetic current,

Aem
ν ðτ; zÞ ¼ ðazðτ; zÞ; xαaðτ; zÞÞ: ð20Þ

Taking the axial gauge az ¼ 0, Maxwell’s equation
becomes [36]

−
∂
2

∂z2
aðτ; zÞ ¼ jðτ; zÞ: ð21Þ

Applying the boundary conditions, namely, aðτ;−∞Þ ¼ 0,
and ∂zaðτ;−∞Þ ¼ 0, we obtain

aðτ; zÞ ¼ −
Z

z

−∞
dz0

Z
z0

−∞
jðτ; z00Þdz00: ð22Þ

With which, and apply Eq. (A17), we get the MF,

Bz ¼ 0;

Bx ¼ −y
Z

z

−∞
jðτ; z0Þdz0;

By ¼ x
Z

z

−∞
jðτ; z0Þdz0: ð23Þ

When v ¼ 1, Eq. (16) reduces to

Θðτ; zÞ ¼ Θ0

τ
θðT − jzjÞzþ Θ0ϵðzÞθðjzj − TÞ; ð24Þ

where T ¼ τ − tcol. Then, the j takes the form

j ¼ g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

Θ0

τ3
θðT − jzjÞz: ð25Þ

Finally, we get

B⃗ ¼ ð−y; x; 0Þ
r

Bϕ; ð26Þ

with

Bϕ ¼ r
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

Θ0

τ3
θðT − jzjÞ × jzj2 − T2

2
: ð27Þ

It is clear to see that the largest MF strength is in the
z ¼ 0 plane. With the increase of the r, r=τ3 would become
larger while T2 would decrease and T2 ¼ 0 at the largest
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 − R2

col

p
, we therefore expect the largest MF

strength appears near the largest r when two bubbles
collide, which grows after the time of bubble collision
(tcol). This reason yields a ringlike distribution of the
created MFs close to the walls of the colliding bubbles.

1. Equal bubbles-ideal situation

We first consider that the two colliding bubbles are of
equal size. In Fig. 2, we show the configuration of the Θ for
v ¼ 0.5 and v ¼ 1 as a function of the distance z along the
axis of collision for different τmW , where the collision
radius is RcolmW ≡ vtcolmW ¼ 10. We find there is only a
slight difference between the cases of v ¼ 0.5 and v ¼ 1
for the same τmW . Thus the MFs strength from the bubble
collisions for the two cases have a similar profile as shown
in Fig. 3. At a distance rmW ¼ 1 and τmW ¼ 20, 30, 40,
and 50, the magnitude of the MFs are of order ∼0.01m2

W. It
can be seen that near the center of the overlap region at
z ¼ r ¼ 0, the MFs are much smaller than the region near
τ ¼ Rcol, and the MFs have a tendency to drop at fixed r
when the overlap region grows.
The magnitude of the MFs in the x-y plane is shown in

Fig. 4. The figure shows that the large magnitude of the
MFs almost distributes near the edge of the overlap region,
which indicates that the produced MF is of a ringlike
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distribution. This feature confirms the discussions
under Eq. (27).

2. Unequal bubbles-ideal situation

Then, we turn to the unequal bubble collision situation,
where the two bubbles nucleate at two different moments.
For simplicity, we consider two bubbles are nucleated at
ðt1;x1;y1;z1Þ¼ð0;0;0;−d1Þ and ðt2; x2; y2; z2Þ ¼ ðd1 − d2;
0; 0; d2Þ, where d1 > d2 > 0. We consider the case where

they expand at a velocity v≡ 1 after nucleating, so they
would collide at z ¼ 0; t ¼ d1. We find nucleation events
have a spacelike interval due to ΔxμΔxμ ¼ ðd1 − d2Þ2−
ðd1 þ d2Þ2 < 0. Therefore, one can use an appropriate
Lorentz boost to obtain a frame in which the two bubbles
are nucleated simultaneously [43]. In the new frame after
the boost, the coordinates ðt00; x00; y00; z00Þ have the form of

t00 ¼ γðt − Δv · xÞ; x00 ¼ x; y00 ¼ y;

z00 ¼ γðz − Δv · tÞ; ð28Þ

where Δv is the velocity of the new frame relative
to the old one. The condition that two bubbles nucleate
simultaneously requires t001¼ t002 , so we get Δv ¼ ðd1 − d2Þ=
ðd1 þ d2Þ.
We take d1mW ¼ 2d2mW ¼ 20, and calculate the

MFs in the new frame using Eq. (27). In order to get
the final result, we perform a Lorentz transformation of the
MFs obtained above back to the old frame. Figure 5 shows
the bubbles’ shape for unequal bubble collisions where
nucleations occur at ðt1; x1; y1; z1Þ ¼ ð0; 0; 0;−2dÞ and
ðt2; x2; y2; z2Þ ¼ ðd; 0; 0; dÞ (see the left panel) and the
producedMFs are in the old frame (see the right panel). The
figure shows that MFs at different times are peaked at
points with different coordinate z, and depicts an asym-
metry between the left-hand side and right-hand side of

mw=20
mw=30
mw=40
mw=50

–40 –20 0 20 40

–1.0
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0.0
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zmw
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mw=50

–40 –20 0 20 40

–1.0

–0.5

0.0

0.5

1.0

zmw

FIG. 2. Higgs phase Θ is shown as a function of the distance z for τmW ¼ 20, 30, 40, 50, with Θ0 ¼ 1. In the left panel, we plot the
case of v ¼ 0.5; tcolmW ¼ 20. In the right panel, we consider the case of v ¼ 1; tcolmW ¼ 10.
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FIG. 3. Magnitude of the MFs for two-bubble collisions. The strength of the MFs is shown as a function of the distance z along the axis
of collision at a distance rmW ¼ 1 from the axis of collision for τmW ¼ 20, 30, 40, and 50. Left: we consider the case
v ¼ 0.5; tcolmW ¼ 20. Right: we consider the case v ¼ 1; tcolmW ¼ 10.

FIG. 4. Magnitude of the MFs for two-bubble collision in the
x-y plane for z ¼ 0 at the time of tmW ¼ 30 for v ¼ 1 and
tcolmW ¼ 10.
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peaks since unequal bubble collision breaks theOð1; 2Þ and
Z2 symmetries in spacetime.

3. Equal bubbles-revised situation

So far, we have calculated the MFs generated by a two-
bubble collision in an ideal case where the velocity of
the whole bubbles is unchanged after the collision, and the
bubbles are of perfect spherical shapes. While, in the
realistic situation, the velocity of the intersecting bubble
walls may change due to the bubble tension, which leads to
a deviation of the bubbles’ shape; see Sec. II for details.
When the friction force is considered, the bubble wall
velocity can never reach 1; however, we found that the
solution of the MFs is not very sensitive to the v. Thus if v
is very close to 1, we can approximately take v ¼ 1 in our
calculations of the MFs. For an illustration, we suppose that
bubbles expand with a velocity v ¼ veq ¼ 0.99 after they
nucleated, and the radius of the two bubbles at the collision
time are both RcolmW ¼ 10. To solve Eq. (14) by using the
boundary conditions Eq. (15), we make an assumption that
the solution of Θ is still nearly proportional to z in the cross
region as shown in Fig. 2. It is easy to find that z=τ0 is a
solution to Eq. (14) at v ¼ 1, where τ ¼ τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
. We

can approximately take τcol ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2colt

2 − r2
p

≈ τ0. Thus the
general solution takes the form

Θðτ0; τðt; rÞ; zÞ ¼ C1ðτðt; rÞÞ �
z
τ0

þ C2ðτðt; rÞÞ: ð29Þ

Then, we fix C1 and C2 by using the boundary condition
Eq. (15) and considering that in the region without
intersection one has a constant phase �Θ0. Considering
the distance between the bubble wall and the bubble center
Rðt; rÞ is a function of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the time after

collision is t − tcol in the cross region, we introduce
τðt; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðt; rÞ2 − r2

p
in our solutions to reflect the

influence of bubble shapes on boundary condition, the
phase in the region without intersection is then given by
�Θ0. We found the solution is

Θðτ0; τðt; rÞ; zÞ

¼ Θ0

τ0
θðTðt; rÞ − jzjÞzþ Θ0ϵðzÞθðjzj − Tðt; rÞÞ; ð30Þ

where Tðt; rÞ ¼ τðt; rÞ − Rcol. By using this solution of Θ,
we found the strength of MFs in the revised situation takes
the form

Bϕ ¼ r
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

q
ρ20
Θ0

τ30
θðTðt;rÞ− jzjÞ× jzj2−Tðt;rÞ2

2
:

ð31Þ
We use this equation to evaluate the strength of MFs in the
following.
To demonstrate the difference between the revised and

the ideal situation, in Fig. 6, we show the MFs as a function
of distance z along the axis of collision with rmw ¼ 1. We
consider the time t − tcol ¼ tm when the points on bubble
walls along the collision axis reach the maximum distance
with bubble center in the revised situation. The MFs
strength in the revised situation is nearly half of the

t'*mw=10
t'*mw=20
t'*mw=30
t'*mw=40

–40 –20 0 20 40

0.000

0.002

0.004

0.006

0.008

zmw

B
/m

w
2

FIG. 5. Left: Bubble shapes for unequal bubbles’ collision. Right: MFs generated by unequal bubbles’ collision. The field is shown at
time t0mW ≡ ðt − tcolÞmW ¼ 10, 20, 30, 40 after collision, in which we consider v ¼ 1, dmW ¼ 10, rmW ¼ 1.
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FIG. 6. The MF strength is shown as a function of the distance z
along the axis of collision with rmW ¼ 1, where vcol ¼ 0.99;
RcolmW ¼ 10. Blue dashed and green dashed lines indicate the
revised and ideal situations, respectively.
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magnitude in the ideal situation, and the distribution
area of the MFs in the revised situation is smaller than
the ideal situation. As in Eqs. (27) and (31), B ∝ T2 − jzj2,
where T ¼ τ − Rcol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 − r2

p
− Rcol in the ideal

situation, in the revised situation T ¼ Tðt; rÞ ¼ τðt; rÞ −
Rcol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðt; rÞ2 − r2

p
− Rcol instead. In the intersection

area, jzj ≤ T which means the MFs strength generated in
the ideal situation is larger than the revised situation due to
vt > Rðt; rÞ at the same z, r, and t. The results are
consistent with the bubbles’ shape after the collision as
shown in Fig. 1. Since the intersection area of bubbles in
the revised situation is smaller than the ideal situation, the
electromagnetic current distributes in a smaller area and
therefore causes a lower strength of the MFs.

B. Collision of three bubbles

In this section, we consider that three equal size bubbles
nucleate simultaneously. We consider they expand at the
same velocity with γcol ¼ γeq and then collide with each
other at the same time. The simplest case is that one bubble
nucleates at ðt;x;y;zÞ¼ ð0;0;0;−RcolÞ and other two
nucleate at ð0; 0; 0; RcolÞ and ð0; 0;− ffiffiffi

3
p

Rcol; 0Þ, respec-
tively. At first, there would be three regions where they
overlap in pairs. After a period, three regions may overlap
and there will be a region (at the center of three bubbles)
bounded by the intersection of the three bubbles. We show
the cross regions of three-bubble collision in Fig. 7. We can
imagine that the MFs strength of the region IV can be
represented by the superposition of the other three regions.
For v ¼ 0.99 ≈ 1, we take τ ¼ τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p
for simplic-

ity. We set the phases of the three bubbles as Θ1 ¼ 0,
Θ2 ¼ 2π

3
, and Θ3 ¼ 4π

3
, we choose the center of region I to

be the original point, the initial conditions can now be
written as follows.

Region I:

Θðτ ¼ tcol; zÞ ¼
Θ1 − Θ2

2
ϵðzÞ þ Θ1 þ Θ2

2
;

Θ0ðτ ¼ tcol; zÞ ¼ 0;

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 − y2

q
: ð32Þ

Region II:

Θ
�
τ0 ¼ tcol;

1

2
ðz − tcolÞ −

ffiffiffi
3

p

2
y

�

¼ Θ3 − Θ2

2
ϵ

�
1

2
ðz − tcolÞ −

ffiffiffi
3

p

2
y

�
þ Θ2 þ Θ3

2
;

Θ0
�
τ0 ¼ tcol;

1

2
ðz − tcolÞ −

ffiffiffi
3

p

2
y

�
¼ 0;

τ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 −

� ffiffiffi
3

p

2
ðzþ tcolÞ þ

1

2
y

�
2

s
: ð33Þ

Region III:

Θ
�
τ00 ¼ tcol;−

1

2
ðzþ tcolÞ −

ffiffiffi
3

p

2
y

�

¼ Θ3 − 2π − Θ1

2
ϵ

�
−
1

2
ðzþ tcolÞ −

ffiffiffi
3

p

2
y

�

þ Θ3 þ 2π þ Θ1

2
;

Θ0
�
τ00 ¼ tcol;−

1

2
ðzþ tcolÞ −

ffiffiffi
3

p

2
y

�
¼ 0;

τ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 −

� ffiffiffi
3

p

2
ðz − tcolÞ −

1

2
y

�
2

s
: ð34Þ

Z

Y

Region I

Region II

Region III

Z

Y

Region I

Region II

Region III

Region IV

FIG. 7. Left: cross regions of three bubbles in the y-z plane at t − tcol ¼ 0.1Rcol; Right: cross regions of three bubbles in the y-z plane
at t − tcol ¼ 0.5Rcol.
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And the MFs of these three regions can be solved
similarly, with

Region I

Bx ¼ −yB1;

By ¼ xB1;

Bz ¼ 0: ð35Þ

Region II

Bx ¼ −ðy −
ffiffiffi
3

p
z −

ffiffiffi
3

p
tcolÞ

B2

2
;

By ¼ x
2
B2;

Bz ¼ −
ffiffiffi
3

p

2
xB2: ð36Þ

Region III

Bx ¼ −ðyþ
ffiffiffi
3

p
z −

ffiffiffi
3

p
tcolÞ

B3

2
;

By ¼ x
2
B3;

Bz ¼
ffiffiffi
3

p

2
xB3: ð37Þ

Region IV

Bx ¼ −yB1 − ðy −
ffiffiffi
3

p
z −

ffiffiffi
3

p
tcolÞ

B2

2
;

− ðyþ
ffiffiffi
3

p
z −

ffiffiffi
3

p
tcolÞ

B3

2
;

By ¼ xB1 þ x
B2

2
þ x

B3

2
;

Bz ¼
ffiffiffi
3

p

2
xðB3 − B2Þ; ð38Þ

where

B1 ¼
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

Θ1 − Θ2

τ2
θðτ − tcol − jzjÞ jzj

2 − ðτ − tcolÞ2
2

;

B2 ¼
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

Θ3 − Θ2

τ02
θ

�
τ0 − tcol−

���� 12 ðz − tcolÞ −
ffiffiffi
3

p

2
y

����
� ��� 12 ðz − tcolÞ −

ffiffi
3

p
2
y
���2 − ðτ0 − tcolÞ2

2
;

B3 ¼
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20

Θ3 − Θ1 − 2π

τ002
θ

�
τ00 − tcol−

���� 12 ðzþ tcolÞ þ
ffiffiffi
3

p

2
y

����
� ��� 12 ðzþ tcolÞ þ

ffiffi
3

p
2
y
���2 − ðτ00 − tcolÞ2

2
:

Note that the solutions are only valid in the cross regions.
After t > 2ffiffi

3
p tcol, three regions may overlap with each other,

and the MFs in region IV are the superposition of the other
three regions.

1. Three equal bubbles-ideal situation

For illustration, we show the strength of the MFs induced
by three-bubble collision at t− tcol¼0.1Rcol and t−tcol¼tm
in the y-z plane in Fig. 8. We can see that the MF

FIG. 8. Magnitude of the MFs (in the ideal situation) produced by three-bubble collision for v ¼ 0.99; Rcolmw ¼ tcolmW ¼ 10.
We show the MFs as a function of lattice numbers Ny and Nz on y and z axes, respectively, with lattice spacing a ¼ 0.1=mW . Left panel:
Magnitude of the MFs at x ¼ 0; t − tcol ¼ 0.1Rcol. Right panel: Magnitude of the MFs at x ¼ 0; t − tcol ¼ tm.
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distribution of the three regions are separated as expected
(see the left panel), where the peak of MF strength is
distributed on the symmetric axis of the overlap region. At a
latter time of t − tcol ¼ tm, the three regions would overlap
and the MFs are continuously distributed (see the right
panel). The magnitude of the MFs is nearly zero in the
vicinity of the center of the cross regions. And the strength
of the MFs in region IV is of the same order as other three
regions.

2. Three equal bubbles-revised situation

While taking into consideration the real bubble collision
dynamics, the cross regions of the three-bubble collision
would be revised as shown in Fig. 9. The bubbles shape and
the MFs generation of three-bubble collision are calculated
at ðx¼ 0; t− tcol ¼ tmÞ with vcol ¼ 0.99 and RcolmW ¼ 10.
In comparison with the ideal situation as shown in Fig. 8,
the magnitude of the MFs strength in the revised situation is
shown to be nearly half of the ideal situation, and the MFs
distribute more continuously.

IV. IMPLICATION FOR COSMOLOGICAL
OBSERVATION

The comoving Hubble length at the electroweak phase
transition temperature T� is given by [44]

λH� ¼ 5.8 × 10−10 Mpcð100 GeV=T�Þð100=g�Þ1=6; ð39Þ

where g� is the number of relativistic degrees of freedom at
the moment when the MF is generated. The comoving
correlation length for the primordial MF at the generation
time can be evaluated to be

ξ⋆ ¼ ΓλH� : ð40Þ

Here, Γ is the factor to account for bubble numbers inside
one Hubble radius at the FOPT, and Γ ≃ 0.01 for the
electroweak FOPToccurring with phase transition duration
∼Oð102Þ. For recent simulations, see Refs. [45,46].
The physical MF amplitudes scale with the expansion of

the Universe as

B� ¼
�
a�
a0

�
2

B; ð41Þ

with the time-temperate relation being

a�
a0

≃ 8 × 10−16ð100 GeV=T�Þð100=g�Þ1=3: ð42Þ

The simulation of the evolution of hydromagnetic turbu-
lence from the electroweak phase transition until recombi-
nation suggests that the root-mean-squared nonhelical MF
amplitude and the correlation length satisfies the following
relation [47],

Brms ¼ B�

�
ξ

ξ�

�
−ðβþ1Þ=2

; ð43Þ

where β ¼ 1, 2, and 4 for nonhelical case, with ξ being the
magnetic correlation length. For illustration, we show in
Fig. 10 the bounds of Blazars spectra on the MF strength at
variant correlation lengths, which depicts that the β ¼ 1
case is allowed by the data. Here we consider the equal
bubbles-ideal situation and the equal bubbles-revised sit-
uation for two-bubble collision; the MFs are generated at
z ¼ 0 with the r (r ∼ 3Rcol), where the largest MF strength
appears at tð¼ tm þ tcol) and we have the ringlike distri-
bution of the MFs. And the strength of the MFs generated
in the revised situation is about half of which is generated in
the ideal situation. The MF strength here is almost the same

–40 –20 0 20 40

–40

–20

0

20

zmw

ymw

0.0

0.2

0.4

0
20

40

60

0

20

40

60

2

FIG. 9. Left panel: The shape of three bubbles after collision at t − tcol ¼ tm for v ¼ 0.99 and RcolmW ¼ 10. Right panel: Magnitude
of the MFs produced by three-bubble collision. The MFs in the revised situation is shown as a function of lattice numbers Ny and Nz on
the y and z axes, respectively, with lattice spacing a ¼ 1=mW at x ¼ 0; t − tcol ¼ tm.
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for the three-bubble collision. Considering the effects of the
turbulent magnetohydrodynamics on the MFs generated
before the recombination, the upper bounds on the MF
strength are shown in Fig. 10 in the gray region, which
excludes the scenarios of Brms ≥ 10−11 G for ξ ∼ 10−4 Mpc
[48] and yield null constraints on the two situations under
study. Primordial MFs suffer bounds from big bang
nucleosynthesis [49,50] and the measurements of the
spectrum and anisotropies of the cosmic microwave back-
ground [51–56], these limits yield null bounds on the
parameter space under study in this work.

V. CONCLUSIONS AND DISCUSSIONS

We study the dynamics of bubbles in this work and we
found that the bubble walls are straightened in the bubbles’
cross regions that yield a deviation of bubble shapes from
spheres. Then we use the EOMs of gauge fields to calculate
the MFs generated during the bubble collisions stage at the
electroweak FOPT. After obtaining the Higgs phases when
bubbles collide with each other, we calculate the MFs
strength after obtaining the electromagnetic current and
apply the approach to the situations of two-bubble and
three-bubble collisions, equal and unequal bubbles, ideal
and revised situations under the assumption that γcol ¼ γeq.
We find that the electroweak bubble collisions produce the
ringlike MF distributions when we consider the revised
situation with bubble walls deviating from the spherical
shape. For that situation, we get a slightly lower MF
strength because the electromagnetic current is distributed
in a smaller area. The scaling law resulting from the
hydromagnetic turbulence after the electroweak FOPT
suggests that this kind of MF under study can be probed
by the observation of the intergalactic MF. The MF strength

calculated here is comparable with the MF generated from
the bubble collisions simulation performed in Refs. [45,46].
We remind the readers that, for the scenariowhere bubbles

collide shortly after nucleating if they are randomly gen-
erated close to each other, the bubbles’ radius and velocity
would be relatively smaller at the collision time, and the
Lorentz factor of bubbles does not have enough time to reach
γeq, which indicates that the assumption of this study does
not hold. For that scenario, one have to conduct numerical
studies as in Refs. [45,46] by specifying different bubbles’
nucleation rates at different spacetimes. We further note
that, in the paradigm of the electroweak baryogenesis, the
Chern-Simons connects the helicity of the MFs produced
during bubble collision and the baryon asymmetry of
the early Universe [3,59]. Therefore, the observation of the
helicity of the primordial MFs may serve as a test of
the electroweak baryogenesis. Reference [60] studied the
primordial MF from first-order phase transition in the
B − L model and the SM extended by the dimensional-six
operator ðΦ†ΦÞ3=Λ2, with the physical implication that the
observable gravitational waves and collider signatures
would be complementary to the MFs observation from
the first-order phase transitions when the inverse cascade
process is taken into account for helical MFs [61–63].
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APPENDIX: EQUATION OF MOTIONS
FOR GAUGE BOSONS

In this section, we review the derivation of the magnetic
field from EOMs of gauge bosons. The relevant Lagrangian
of electroweak bosonic fields is

LEW ¼ L1 þ L2 − Vðϕ; TÞ: ðA1Þ

Here, we consider the VðΦ; TÞ being the Higgs potential
that can drive electroweak FOPT in frameworks beyond the
SM and therefore can admit bubble expansion and collision
as aforementioned. As in Ref. [36], we focus on the general
feature of MF production from bubble collision in this
study and left detailed studies of specific FOPT models for
future work. The other two terms that are related in the
calculation of MFs are given by

FIG. 10. MF strength Brms at the correlation length ξ calculated
for the two-bubble collision of the equal bubbles-ideal situation
(dashed lines) and equal bubbles-revised situation (solid lines).
Gray region shows the upper bound on the MF strength adopting
from Fig. 9 of Ref. [48], which is derived by Ref. [57]. Cyan and
blue regions are plotted to consider the bounds set by Blazars
given in Ref. [58] and Ref. [48].
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L1 ¼ −
1

4
Wi

μνWiμν −
1

4
BμνBμν;

Wi
μν ¼ ∂μWi

ν − ∂νWi
μ − gϵijkW

j
μWk

ν;

Bμν ¼ ∂μBν − ∂νBμ; ðA2Þ

and

L2 ¼
����
�
i∂μ −

g
2
τ ·Wμ −

g0

2
Bμ

�
Φ
����2; ðA3Þ

where, τi is the SUð2Þ generator. The physical Z and Aem
μ

fields are

Aem
μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p ðg0W3

μ þ gBμÞ;

Zμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p ðgW3

μ − g0BμÞ; ðA4Þ

and the Higgs doublet takes the form of

ΦðxÞ ¼
�

0

ρðxÞ expðiΘðxÞÞ

�
; ðA5Þ

where ΘðxÞ is the phase of the Higgs field and ρðxÞ is its
magnitude. For this choice of gauge, the EOM for the B
field is

∂
2Bν − ∂ν∂ · Bþ g0ρðxÞ2ψνðxÞ ¼ 0; ðA6Þ

where the ψν is

ψνðxÞ≡ ∂νΘ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

Zν; ðA7Þ

and satisfies

∂νðρðxÞ2ψνðxÞÞ ¼ 0: ðA8Þ

For i ¼ 3, the gauge field Wi satisfies the following
equation:

∂
2W3

ν − ∂ν∂ ·W3 − gρðxÞ2ψνðxÞ ¼ j3νðxÞ; ðA9Þ

and, for i ¼ 1, 2, we have

∂
2Wi

ν − ∂ν∂ ·Wi þmWðxÞ2Wi
ν ¼ jiνðxÞ; ðA10Þ

where mWðxÞ2 ¼ g2ρðxÞ2=2 and jiνðxÞ is
jiνðxÞ≡ gϵijkðWk

ν∂ ·Wj þ 2Wj · ∂Wk
ν −Wj

μ∂νWkμÞ
− g2ϵklmϵijkW

j
μWlμWm

ν : ðA11Þ
The EOM for Aem casts the form of

∂
2Aem

ν − ∂ν∂ · Aem ¼ jemν ðxÞ;
with

jemν ðxÞ ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p j3νðxÞ: ðA12Þ

And, the EOM for the Z field is obtained as

∂
2Zν−∂ν∂ ·Z−ρðxÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

q
ψνðxÞ¼

g
g0
jemν ðxÞ: ðA13Þ

Utilizing the thermal erasure [36] of hZi ¼ 0, and suppose
ρðxÞ ¼ ρ0, which applies to the thin-wall limit for bubble
collisions. Applying the ensemble averaging to Eqs. (A8)
and (A13), we get

hjemν i ¼ −
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20 × ∂νΘðxÞ; ðA14Þ

∂
2ΘðxÞ ¼ 0: ðA15Þ

Consequently, Eq. (A12) recasts the form of the Maxwell
equation,

∂
2Aν − ∂ν∂ · A ¼ jemν ðxÞ

¼ −
g0

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
ρ20 × ∂νΘðxÞ: ðA16Þ

Due to the magnetic field B⃗ ¼ ∇⃗ × A⃗em, we can calculate
the strength of the magnetic field after obtaining the
electromagnetic current through,

∇2B⃗ ¼ ∇⃗ × j⃗em: ðA17Þ
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