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Using the Schwarzschild metric as a rudimentary toy model, we pedagogically revisit the curious
prediction that the mass of a classical black hole in a constant temperature thermal bath diverges in a finite
amount of time. We study in detail how this instability behaves if the temperature of the bath is allowed to
vary with time and conclude that whatever the background behavior (but for a zero-measure subspace of the
initial conditions), the black hole mass either diverges or vanishes in a finite time if the Hawking radiation is
taken into account. The competition between both effects is subtle and not entirely governed by the
hierarchy of the relevant temperatures. This instability is also shown to be reached before the background
singularity in a contracting universe, which has implications for bouncing models. The results are
generalized to spaces with extra dimensions, and the main conclusions are shown to remain true. The
limitations of the model are reviewed, both from the point of view of the dynamical black hole horizon and
from the point of view of the background space expansion. Comparisons with other approaches are
suggested and possible developments are underlined.
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I. INTRODUCTION

This work does not contain fundamentally new results. It
basically aims at pedagogically “rediscovering” in a wider
way a strange behavior of black holes absorbing a continu-
ous flux of energy and at exploring interesting situations
relevant for cosmology. Most of our points are established
using the Schwarzschild metric in a Bondi-Hoyle-Lyttleton
basic approximation scheme, which can only be considered
as a very rough toy model. Interesting features can be
guessed while neglecting both the background space expan-
sion and the truly dynamical nature of the black hole horizon
but extreme care should be taken when considering the
results literally: technical and conceptual issues should be
addressed before firm conclusions are drawn. Our aim is
therefore not to make any strong claim but to encourage
further studies so as to clarify interesting features and to
attract the attention of the unfamiliar reader to some strange
situations.
A classical black hole in a thermal bath obviously grows

by absorbing the surrounding radiation. If the temperature of
the bath is constant, itmight be naively expected that itsmass
tends to infinity after an infinite amount of time. We show
that, without any exotic assumption, the mass actually
diverges at finite time. This has first been noticed in [1]
(translated in [2]).Manyworkswere devoted to the so-called
self-similar solution, to the investigation of different
equations of state, to the existence of a Friedmann or
quasi-Friedmann asymptotic behavior, and to the separate
universe issue [3–17]. Although those points are of unques-
tionable importance, we do not here deal with these

subtleties and mostly focus on some strange consequences
of a naïve Schwarzschild-based analysis. Our aim is not to
derive reliable conclusions—as a static metric is used
beyond its regime of validity—but to underline some
(maybe) surprising situations that could deserve a closer
look and seem, to the best of our knowledge, quite ignored
by the community.
We show that the pathological behavior depends neither

on the kind of radiation nor on the initial black hole mass. If
the background varies with time, the situation becomes
intricate. Depending both on the speed of the space dilation
and on the initial conditions, the mass of the black hole can
either diverge in a finite amount of time or tend to a finite
asymptotic value. The “natural” expectation (M → ∞ for
t → ∞) actually happens only for a subset of zero measure
in the parameter space (which has already received a great
deal of attention in the literature and will not be our focus).
We compare the critical black hole mass with the Hubble

mass and show that different hierarchies have to be
considered. When the Hawking evaporation is also taken
into account, the mass can vanish for a part of the possible
initial states. This shows that, under the strong simplifica-
tions performed, in all cases, the black hole is unstable and
its mass either diverges or vanishes in a finite amount of
time. The relative value between the initial temperature of
the bath and the initial temperature of the black hole does
not determine the long run behavior.
Importantly, in contracting cosmological solutions, the

black hole instability is always reached before the back-
ground singularity. Some consequences for bouncing
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models are drawn, underlying that this catastrophic behav-
ior can happen before the Planck energy is reached. The
competition between the absorption and the evaporation is
quite involved.
We study how extra dimensions would influence the

picture and conclude that the diverging behavior remains
true although the singularity is reached later when D > 4.
Finally, some comparisons with analog black holes are

suggested, and links with chemistry and statistical physics
are pointed out. The limitations of the toy model used in this
work are discussed in detail and possible developments are
underlined, focusing on some relevant generalized metrics.
We stress that the curious results—some already well
known, others quite new—shown in this work are more
to be understood as a strangeness of the Schwarzschild
solution pushed beyond what it was intended for than as
realistic physical effects. Still, they can be useful to discover
situations deserving deeper investigations.

II. ABSORPTION BY A BLACK HOLE
IN A THERMAL BATH AT

CONSTANT TEMPERATURE

To fix ideas, let us begin by considering a black hole in a
constant temperature thermal bath of photons, disregarding
the Hawking evaporation. Throughout the article we use
Planck units except as otherwise stated. The energy density
of the equilibrium distribution is given by

ρ ¼ g
2π2

Z
∞

0

E

e
E−μ
T − 1

E2dE; ð1Þ

where g is the number of internal degrees of freedom, E is
the energy, and μ is the chemical potential assumed to be
negligible in the following. This leads to the standard
relation

ρ ¼ π2

15
T4: ð2Þ

The radius of a static1 nonspinning and uncharged black hole
of mass M is 2M. Photons will fall in the black hole if
they approach its center at a distance smaller that 3M in
Schwarzschild coordinates. This corresponds to an impact
parameter at infinity b ¼ ffiffiffiffiffi

27
p

M. Assuming that the wave-
length of the background radiation is much smaller than the
size of the black hole, that is, assuming that the optical limit
holds, the effective cross section is simply given by 108M2

(the factor π being lost by averaging over the isotropic
distribution). Themass evolution therefore immediately reads

dM
dt

¼ 36

5
π2T4M2: ð3Þ

The energy density given by Eq. (2) and entering Eq. (3) is
defined at infinity. The equation is trivially integrated in

1

Mi
−

1

M
¼ 36

5
π2T4t; ð4Þ

where Mi is the initial mass of the black hole and t is time
elapsed since its formation. Interestingly (and maybe
surprisingly), the mass does not diverge in the limit
t → ∞ but at finite time:

td ¼
5

36π2T4Mi
; ð5Þ

such that

lim
t→td

M ¼ ∞: ð6Þ

This basically means that any black hole in a thermal bath,
described at this level of approximation, is unstable.
(Alternatively, this also means, with the same limitations,
that any steady-state cosmological scenario—relying on an
infinitely old universe and trying to account for a black-
body radiation usually assumed to be at constant temper-
ature—is basically incompatible with the existence of black
holes in the usual sense.)
This result remains true if the initial mass of the black

hole is such that the wavelength of the surrounding
radiation is much larger than the Schwarzschild radius.
In this case, the scattering cross section is given by [18]

σ ¼ 64πM4E2

3
: ð7Þ

This new behavior is due to the fact that the incoming wave
cannot be approximated to a point particle anymore. The
additional E2 factor shows that the greybody factor is, as
expected, suppressed in the limit ME → 0. In this regime,
and assuming E ∼ T, the evolution equation becomes

dM
dt

¼ 256

45
π2T6M4: ð8Þ

Calling λ the mean wavelength of the thermal radiation, we
define the equilibrium time (corresponding to the transition
between a black hole smaller than the typical photons to a
black hole larger than the typical photons) te such that
MðteÞ ∼ λ ∼ 1=T. This defines the change of regime
between the optical cross section ∝ M2 and the low-energy
cross section ∝ M4E2. Neglecting the oscillations (which
would not change the order of magnitude), te can be
estimated to be given by integrating Eq. (8):

1Once again, we emphasize that this hypothesis is not fulfilled
in our calculation, hence the “toy model” qualification.
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te ¼
15

256π2T6
ðM−3

i − T3Þ; ð9Þ

with Mi < 1=T by hypothesis.
After the time te, the black holes are in the usual regime

and the remaining time before divergence is

Δt ¼ 5

36π2T3
: ð10Þ

The full time between formation and divergence is
therefore in this case

td ¼
5

36π2T3
þ 15

256π2T6
ðM−3

i − T3Þ ð11Þ

¼ 186

2304π2T3
þ 15

256π2T6M3
i
; ð12Þ

which is again finite for any value of Mi and T. The
dependence upon the initial mass is, as expected, stronger
than before as the absorption at the beginning is highly
suppressed. This phenomenon, however, does not prevent
the mass divergence at finite time.
If the thermal bath is made of relativistic fermions

instead of photons, the result is mostly the same in the
case of a black hole larger that the mean wavelength of the
radiation. The energy density of the bath is simply modified
by a factor of 7g=16 and

td ¼
20

63π2gT4Mi
: ð13Þ

The “small mass regime,” however, strongly differs from
the case of photons. The scattering cross section for
fermions in the E → 0 limit is [18]

σ ¼ 2πM2: ð14Þ

The same reasoning as previously leads to

te ¼
30

7π2gT4
ðM−1

i − TÞ: ð15Þ

And the full divergence time reads

td ¼
20

63π2gT3
þ 30

7π2gT4
ðM−1

i − TÞ ð16Þ

¼ 30

7π2gT4Mi
−

256

63π2gT3
: ð17Þ

This shows that, in all cases, the mass of a classical black
hole in a constant temperature bath tends to infinity in a
finite amount of time.

This unusual behavior is, of course, entirely rooted in the
specific mass-radius relation of black holes. A ball of
standard matter with a cross section proportional to M2=3

would grow gently as M ∝ t3 and would never experience
any singularity.

III. ABSORPTION IN A THERMAL BATH
AT DECREASING TEMPERATURE

Although the mass divergence in finite time might come,
at first sight, as a physical surprise, it is a mathematically
obvious consequence of having dM=dt ∝ Mδ with δ > 1. It
is now worth considering the case of a classical black hole
immersed in a thermal bath with decreasing temperature.
Let us assume that

T ¼ T0

�
t
t0

�
α

: ð18Þ

The constants T0 and t0 could be absorbed in a single
parameter but keeping both of them helps the physical
intuition. The exponent α is negative (otherwise the
divergence is just trivially amplified). The evolution equa-
tion (focusing on the case of an initial mass larger than the
radiation mean wavelength) is

dM
dt

¼ kT4M2 ¼ kT4
0

�
t
t0

�
4α

M2; ð19Þ

with k ¼ 36π2=5 for photons. This leads to

1

M
¼ 1

Mi
−

kT4
0

ð4αþ 1Þt4α0
ðt4αþ1 − t4αþ1

i Þ; ð20Þ

where ti is the formation time of the black hole and Mi its
corresponding mass. Calling β ¼ 4αþ 1, the mass diverges
ð1=M ¼ 0Þ at time

td ¼ e
1
β ln ð

βtβ−1
0

kMiT
4
0

þtβi Þ
: ð21Þ

This will actually happen if the argument of the logarithm is
positive. If β > 0, this is always true. Otherwise stated, if
the cooling of the universe in slow enough (T ∝ tα with
α > −1=4), the mass divergence at finite time happens
whatever the initial conditions. On the other hand, if β < 0,
the divergence requires Mi > Mc with

Mc ¼ −
βtβ−10 t−βi
kT4

0

ð22Þ

¼
�

8

3ð1þ wÞ − 1

�
t
− 8
3ð1þwÞ

0

kT4
0

t
ð 8
3ð1þwÞ−1Þ
i : ð23Þ

In a cosmological setting, T ∝ a−1—with a the scale

factor–that is, T ∝ t−
2

3ð1þwÞ with w ¼ p=ρ the equation of
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state parameter for the dominant fluid. The condition β>0,
or equivalently α > −1=4, translates into w > 5=3. This
value, greater than one, corresponds to “superstiff” matter.
Although quite exotic, this behavior can be encountered in
realistic models such as Horava-Lifshitz gravity (see [19]).
In this case, even if the temperature is decreasing, the black
hole mass diverges whatever its initial value. If α < −1=4,
the divergence is associated with the condition given by
Eq. (23). The important point is that there always exists an
initial mass beyond which the divergence does occur.
In this sense, part of the parameter space is unavoidably
unstable.
It is interesting to compare Mc with the Hubble mass

MH. At time ti, the latter is of orderMH ∼ ti. The condition
Mc < MH is always fulfilled when β > 0, which means
that the considered black hole can form without any
causality issue. On the other hand, if β < 0, the condition
reads

t−β−1i <
kT4

0

−βtβ−10

: ð24Þ

Let us define the critical crossing time

tcH ¼
�

kT4
0

−βtβ−10

� −1
βþ1

: ð25Þ

If − β − 1 > 0 (that is, α < 1=2 or w < 1=3), the condition
translates into ti < tcH, whereas if −β − 1 < 0 (that is,
α > 1=2 or w > 1=3), the condition translates into ti > tcH.
For content with an equation of state softer than radiation,
unstable (with diverging mass) black holes can be causally
formed early in the history of the Universe, while for a
background equation of state stiffer than radiation, unstable
black holes can form late in the cosmological history. If
w ¼ 1=3 exactly, the condition simply reads −βtβ−10 < kT4

0.
In all cases a part of the parameter space leads to diverging
black holes. The detailed investigation of hierarchy
between the horizon of the black hole and the cosmological
horizon (particle horizon before the inflation, Hubble
horizon after the inflation) has been extensively studied,
e.g., in [3,6,11], and we will not repeat the analysis here.
Interestingly, the naively expected behavior (M → ∞ for

t → ∞), which is also the one that has generated some
interest from the point of view of general relativity, happens
only for a zero measure parameter space. In the general case
where the instability is avoided, the mass tends to a finite
asymptotic value M∞ in the remote future:

M∞ ¼
�

1

Mi
þ kT4

0t
β
i

βtβ−10

�−1

: ð26Þ

This is illustrated in Fig. 1. Depending on the initial mass
and on the speed at which the temperature of the thermal

bath decreases, the evolution of the black hole mass
corresponds to one of the two cases displayed.

IV. SWITCHING ON THE EVAPORATION

Obviously, the full picture requires one to also take into
account the Hawking evaporation [20] which is mandatory
to have a consistent thermodynamical understanding
(although the truly dynamical horizon is still ignored).
The evolution equation now reads

dM
dt

¼ kT4M2 − γM−2: ð27Þ

In principle, the γ parameter depends on the mass M as the
number of degrees of freedom available increases with the
black hole temperature TBH ¼ 1=ð8πMÞ. New channels are
opened each time the temperature becomes higher than the
rest mass of a given particle species. For this study it is
clearly sufficient to assume γ to be constant [21]. Its
numerical value can be straightforwardly calculated by
integrating the Hawking spectrum (multiplied by the
energy Q of the emitted particle):

dMevap

dt
¼ −

Z
Γ
2π

ðe Q
TBH − ð−1Þ2sÞÞ−1QdQ; ð28Þ

where s is the spin of the particle and Γ ¼ Q2σ=π is the
greybody factor.
The Hawking evaporation has an immediate conse-

quence. If the black hole happens to be in an initial state
where the evaporation dominates over the absorption, it
automatically remains in this regime: the mass decreases
and the M−2 term becomes more and more important with
respect to the absorption one. The situation considered at
the end of the first section is therefore purely academic: in
practice, if the size of the black hole is smaller than the
wavelength of the surrounding radiation, the black hole

0 10 20 30 40 50 60
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Elapsed time t since ti in billion years

M
(t

+
t i)

/M
(t

i)

FIG. 1. Evolution of the mass of a black hole in a perfect fluid
with w ¼ 0. The blue curve corresponds to a black hole with an
initial mass slightly lower than the critical mass Mc, whereas the
yellow curve corresponds to a mass slightly higher. Dashed lines
represent asymptotic behaviors. No “in-between” dynamics is
possible.
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behavior is dominated by the evaporation. Its mass vanishes
in a time

tevap ¼
M3

i

3γ
: ð29Þ

This means that, in a thermal bath, a black hole is anyway
unstable: its mass either diverges or reaches zero2 in a finite
amount of time. The Hawking time scales as M3

i and the
divergence time scales as M−1

i .
The reciprocal of the previous statement is, however, not

true in an expanding universe. If the absorption initially
dominates, this does not mean that it will remain so forever.
Actually, it cannot remain true in most cases. If the cooling
of the Universe is “usual” (e.g., associated with an equation
of state w ¼ 1=3 or w ¼ 0) and the initial black hole mass
is such that the divergence is avoided (Mi < Mc), the
evaporation will inevitably dominate at some point. In the
absorption-dominated regime, the mass of the black hole
increases and its temperature decreases. However, as
previously shown, the mass necessarily tends to a finite
value in the remote future. This means that, as far as
absorption is concerned, dM=dt → 0. On the other hand,
the mass variation due to the evaporation has a constant
asymptotic value dM=dt ¼ −γM−2

∞ . After some time t� this
latter term will dominate. This basically means that the
naive idea according to which, in a dynamical thermal bath,
a black hole either absorbs radiation or evaporates depend-
ing only on the respective (initial) values of the bath and of
the black hole temperatures is wrong. If the initial temper-
ature of the black hole is smaller than the initial temperature
of the background, the black hole temperature will first
decrease (it will grow by absorption), in accordance with
the usual view. However (if the dynamics is not the
diverging one), after a finite time t�, the temperature will
start to increase again (the black hole will shrink by
evaporation). Once the evaporation dominates, the behavior
will not reverse until the disappearance of the black hole.
The minimum temperature reached by the black hole is

Tmin ¼
1

8π

�
1

Mi
þ kT4

0t
β
i

βtβ−10

�
: ð30Þ

The transition time t� is such that
ffiffiffi
γ

k

r
t2α0

T2
0t

2α�

�
1

Mi
−

kT4
0

ð4αþ 1Þt4α0
ðt4αþ1� − t4αþ1

i Þ
�

ð31Þ

¼ ðM3
i − 3γðt� − tiÞÞ13: ð32Þ

If the dynamics of the background spacetime is, how-
ever, such that the black hole mass should diverge due to

absorption, the situation is quite subtle. For most of the
parameter space, the black hole just grows and the
evaporation does not play any role. But it can be shown
that for highly tuned initial conditions the second time
derivative of the mass can vanish and the evaporation can
overcome the growth. This corresponds to a very particular
case worth being mathematically pointed out but most
probably without any phenomenological consequences.
This shows why black holes in a thermal bath are

unstable. The mass either diverges or vanishes in a finite
amount of time. Figure 2 illustrates the typical behavior in
the case where the absorption initially dominates without
being diverging: the mass first increases quite fast, then
remains close to its asymptotic value for most of the
evolution, and then decreases until it completely vanishes.
The very highly tuned case where the mass would
diverge without evaporation but where the dynamics is
finally overcome by the Hawking effect is exhibited
in Fig. 3.

0 10 20 30 40 50 60 70
0

1

2

3

4
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6

log10(t/ti)

M
(t
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M

(t
i)

FIG. 2. Evolution of the mass of a black hole in a perfect fluid
with w ¼ 0 taking into account Hawking radiation. The blue
curve corresponds to a black hole with an initial mass slightly
lower than the critical mass Mc, whereas the yellow dashed line
corresponds to the time when evaporation starts to dominate.
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FIG. 3. Very special case where the absorption initially domi-
nates in an expanding space—in a regime such that the mass
should diverge without evaporation—but where the Hawking
effects still finally overcome the evolution.

2There are countless arguments and models in quantum or
extended gravity to avoid the naked singularity—see references
in [22]—but this is not the point we wish to make here.

CATASTROPHIC FATE OF SCHWARZSCHILD BLACK HOLES IN … PHYS. REV. D 106, 023509 (2022)

023509-5



Let us summarize:
(i) If the initial black hole temperature is higher than the

background temperature, the black hole simply
evaporates and vanishes.

(ii) If the initial black hole temperature is smaller
than the background temperature and α > −1=4
(or α < −1=4 and M > Mc), the black hole mass
generically diverges (however, there exists a tiny set
of parameters—corresponding to initial conditions
highly tuned close to the critical values—where the
evaporation finally dominates).

(iii) If the initial black hole temperature is smaller than
the background temperature (and α < −1=4 and
M < Mc), the black hole mass vanishes after having
reached a “plateau” where it stayed for the vast
majority of its lifetime.

The important feature is that the infinite or vanishing mass
is always reached in a finite amount of time. Let us
mention, although this is not the point of this study, that
even if some kind of remnant or relic is formed at the end of
the evaporation, they are anyway usually expected to
disappear at some point [23].

V. THE DE SITTER CASE

When the scale factor expands exponentially, the temper-
ature evolution can be written as

T ¼ T0e−κt: ð33Þ

The mass evolution (when the black hole initial mass is
such that the absorption dominates over evaporation) then
reads

1

M
¼ 1

Mi
þ kT4

0

4κ
ðe−4κt − e−4κtiÞ: ð34Þ

As expected, no divergence occurs in this case and the mass
always reaches its asymptotic value,

M∞ ¼
�

1

Mi
−
kT4

0

κ
e−4κti

�−1
: ð35Þ

Once again, the evaporation unavoidably dominates at
some time t� such that

ffiffiffi
γ

k

r
kT−2

0 e2κt�
�

1

Mi
þ kT4

0

4κ
ðe−4κt� − e−4κtiÞ

�
¼ ð36Þ

ðM3
i − 3αðt� − tiÞÞ13: ð37Þ

The de Sitter horizon is endowed with a temperature

TdS ¼
1

2π

ffiffiffiffi
Λ
3

r
; ð38Þ

where Λ is the cosmological constant. This, however, does
not change the picture in any noticeable way as the black
hole temperature always remains higher than the de Sitter
temperature.

VI. THE CONTRACTING
UNIVERSE CATASTROPHE

Quite a lot of theories beyond general relativity predict a
cosmological bounce instead of the big bang singularity
(see e.g., [24–26] for reviews). This is even possible in
general relativity without exotic matter [27,28]. In such
models, the Universe was contracting before entering the
current expanding branch. If space was, before the bounce,
filled with black holes and radiation,3 the catastrophic
growth of black hole masses that we have established in a
constant-temperature bath will even be worsened.
It makes sense to evaluate the time taken by a black hole

to reach its absorption singularity. Contracting spaces are
known to exhibit some paradoxes (see [29,30]), and it is
interesting to compare how long it takes for the black hole
to become unstable when compared to the time required for
the background radiation to reach the Planck density
(triggering quantum gravity effects). If the contracting
branch is filled with relativistic matter, the dynamics of
the black hole reads

1

Mi
−

1

M
¼ kT4

0t
2
0

�
1

ti
−
1

t

�
; ð39Þ

where t is now negative and the conventions are the same as
previously. (Contrary to what is sometimes believed, if a
cosmological variable scales as tq in an expanding uni-
verse, it will not behave as t−q in a contracting one.)
Although this expression is formally the same as in the
expanding universe, it does induce, due to the fact that t is
now negative, a far faster divergence, all the other param-
eters being the same, as it can be seen in Fig. 4. The
background energy density varies as ρ ∝ ð−tÞ−2, and Fig. 4
shows that the black hole mass divergence can (depending
on the initial conditions) be reached before the energy
density becomes Planckian. This means that the singularity
resolution provided by the bounce in quantum gravity
models (see e.g., [31]) might not solve this specific problem
which should be seriously considered. To be more illus-
trative, let us once again consider a prebounce universe
similar to our expanding one, i.e., such that the temperature
was T ∼ 3 × 103 K at time t ∼ −3 × 105 years before the
bounce. Then a stellar mass black hole with an initial
mass M ∼ 10 M⊙ would diverge at time td ∼ −10−5 s

3There are no motivations for this assumption often made in
the framework of bouncing models. This is only justified by the
desire of studying a symmetric situation that might be the less
unjustified guess. It remains hazardous from the causality point
of view.
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when the temperature was TðtdÞ ∼ 1012 K, well before the
Planck era.
This also leads to an important remark. Let us consider

the contracting solution to the Friedmann equation

H ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
8πGρ
3

r
; ð40Þ

whereH is the Hubble parameter. This describes a universe
which reaches a singularity at t ¼ 0. It is, however, clear
from Eq. (39) that the point 1=M ¼ 0 will inevitably be
reached before t ¼ 0, whatever the initial conditions. The
black hole instability precedes the big crunch singularity.
As long as there is a black hole in a contracting universe
filled with radiation, this phenomenon will take place
before the breakdown of the smooth background evolution.
In a contracting space, if the absorption initially domi-

nates, the evaporation obviously never plays any role and
the mass diverges. What, however, happens if the evapo-
ration is dominant at the formation time? One might
naïvely expect that a severe competition takes place
between absorption (which increases at a given mass
due to the increase of the temperature) and evaporation
(which increases due to the decrease of the mass). This,
however, is not the case in general. One can straightfor-
wardly show that the absorption overcomes the evaporation
if the background temperature satisfies

Tback >

�
γ

k

�1
4 1

M
: ð41Þ

The background temperature, however, diverges at t ¼ 0.
This means that—once again except for a tiny and mostly
irrelevant part of the parameter space corresponding to fine-
tuned initial conditions—the Hawking evaporation remains

dominant if the Hawking time is smaller than the time
available before the crunch (or the bounce).

VII. EXTRA DIMENSIONS

Gravity with more than three spatial dimensions is far
richer. This is the case for mathematical reasons: the
rotation group SOðDÞ has Cartan subgroup Uð1ÞN with
N ¼ E½D=2�. This is also the case for physical reasons: the
radial falloff of the Newtonian potential scales as rD−2,
whereas the centrifugal barrier does not depend on D. Let
us consider a spacetime with D spatial dimensions and
define

μ ¼ 16πM
ðD − 1ÞΩD−1

; ð42Þ

where Ωd−1 ¼ 2πD=2=ΓðD
2
Þ is the area of a unit (D − 1)-

sphere. The generalized Schwarzschild metric reads [32,33]

ds2 ¼ −
�
1 −

μ

rD−2

�
dt2 þ dr2

1 − μ
rD−2

þ r2dΩ2
D−1: ð43Þ

It is straightforward to show that, in this framework, the
time evolution of the black hole mass becomes (in a
constant temperature background)

dM
dt

∝ M
D−1
D−2: ð44Þ

This diverges at finite time if ðD − 1Þ=ðD − 2Þ > 1, which
is always true. However, the higher the number of extra
dimensions, the less drastic the divergence becomes. Care
should be taken when using Planck units with D > 3. The
full expression of the radius of the horizon is

RD ¼ 1ffiffiffi
π

p
M�

�
M
M�

� 1
D−2

�
8ΓðD

2
Þ

D − 1

� 1
D−2

: ð45Þ

In this expression M� is the fundamental Planck scale and
not the usual (3þ 1)-dimensional one. The Hawking
temperature of the black hole reads

TBHD
¼ D − 2

4πRD
: ð46Þ

The behavior is qualitatively the same as in the four-
dimensional case. Whatever the number of extra dimen-
sions, the black hole mass diverges at finite time in a static
thermal bath. If, however, the temperature of the bath
decreases with time and the black hole is not too large at the
initial time, the black hole mass will also tend to an
asymptotic value. The dynamics will then, at some point,
be dominated by the evaporation and the mass will vanish.

(t)/ (ti)

M(t)/M(ti) contraction

M(t)/M(ti) expansion

–1.0 –0.5 0.0 0.5 1.0
0

10

20

30

40

50

60

Time t in billion years

FIG. 4. The blue curve in the left panel and the yellow curve in
the right panel represent the time evolution of black holes with the
same initial masses in a radiation-dominated universe which is,
respectively, contracting (left) and expanding (right). The dashed
green curves correspond to the evolution of the background
density.
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VIII. ANALOGIES

The simple approach we have chosen here is obviously
oversimplified. The dynamics of Eq. (3) reads, for the
radius of the black hole,

dR
dt

¼ 72

5
π2T4R2: ð47Þ

This means that dR=dt → ∞ as the critical time is
approached. This is also true in the other backgrounds
considered as far as the instability occurs. Is this physical?
We will come back to this question at a more fundamental
level in the next sections, and we remain here at the level of
the simple consistency of the toy model. Obviously, if a
particle of total energy ϵ falls into a large black hole of
radius R, it does not make sense to assume that the horizon
jumps instantaneously to a perfect sphere whose radius is
simply increased by 2ϵ. The intricate relaxation procedure
through quasinormal modes should, in principle, be con-
sidered to accurately describe the time evolution of the
shape of the horizon. For obvious causality reasons the
horizon cannot globally vary in shape “faster than light” as
a consequence of a local deformation. The situation
considered in this work is, however, different. One deals
with a nearly continuous background of ingoing energy.
The very notion of a event horizon is, in nature, global

and teleological (see e.g., [34]). It is the boundary of future
null infinity. This, however, does not prevent the change of
the horizon shape, at tþ dt, due to an incoming flux of
energy on a black hole preexisting at time t, to be locally
determined. Associated conceptual and technical consid-
erations were studied, e.g., in [35,36], following [37]. The
growth of the horizon is locally driven by the global past
history and the recent local events. There is, then, no reason
to discard a “faster than light” expansion of the horizon.
This is no stranger than a wave crest moving arbitrarily fast:
no matter or information is transported. The region from
which (in the black hole case) light rays can escape to
infinity might, without violating causality, shrink faster
than light. This eventually happens when a black hole is fed
by a continuous and homogeneous flux of energy.
Let us consider for example analog black holes (see

e.g., [38]). The position of the horizon is determined both
by nonlinear effects and by the environment, whereas the
speed of sound is an entirely linear property. The speed of
the first can therefore be higher than the speed of the
second. Concretely, this would clearly be possible with a
two-component Bose-Einstein condensate. The sound
speed for the two species, respectively c1 and c2, are
a priori different. If they do interact, the position of the
horizon for the first will depend on the density of the
second (and the other way around). As there are nonlinear
solutions—such as grey solitons—moving close to sound
speed, there can be, from the viewpoint of the first species,

a horizon moving at a speed close to c2, which can be
greater than c1.
With the obvious limitations of the metric used, the

growth of the horizon at an arbitrary high speed is not
inconsistent in the considered framework. This, by the way,
also happens when considering the Hawking evaporation
where dR=dt → ∞ when M → 0. In this case, one could
argue that the semiclassical formula should be modified by
quantum gravity effects in this regime but the divergence of
the speed is not the reason why a better description should
be searched for. The phenomenon underlined in this work
has no reason not to be possibly real. Although a kind of
“bubble nucleation” (at the speed of light) similar to a
tunneling effect from a false vacuum to the true vacuum
(see e.g., [39]) would also make sense, the considered
process can be faster and even more catastrophic.
Finally, it is important to notice that the phenomenon

exhibited in this article is not unique in physics. One could
first think about the disorder correlator. Functional renorm-
alization shows that its curvature explodes at a finite scale
lc (developing a cusp at the origin). This can be interpreted
through shocks and avalanches [40].
Closer to our situation is probably the case of cubic

autocatalysis (that is, of order n ¼ 2). In such chemical
processes, one of the reaction products is also a catalyst for
the same reaction. This reads 2Aþ B → 3A. If the rate of
the reverse reaction is vanishing (the rate of the forward
reaction being r) and if the concentration xB of the species
B is kept constant, the number of A particles evolves (in the
large N limit) as ∂N=∂t ¼ rxbN2. This is the same formal
equation as the one we have considered in this work for a
constant temperature bath. In a way, the black hole
corresponds to species A.

IX. THE BLACK HOLE AS AN UNDERDENSITY

Among others, a curious aspect of the situation consid-
ered in this article is the following. When it grows by
absorption of the surrounding radiation, a black hole might
end being less dense that the medium in which it is
embedded. Obviously, the Schwarzschild solution, which
is a vacuum solution to Einstein’s equation, is not appro-
priate to handle this situation. The very meaning of the
Arnowitt Deser Misner (ADM) mass defining the families
of solutions is ill-defined. It is nevertheless worth consid-
ering a simple thought experiment to understand whether it
is possible to make sense out of this. An interesting case is
the one of thick shells collapsing toward a preexisting black
hole [41]. The exact solution was first derived using
comoving coordinates,

ds2 ¼ dτ2 − eω̄ðR;τÞdR2 − eωðR;τÞðdθ2 þ sin2 θdϕ2Þ; ð48Þ

where there is only one nonvanishing component in the
stress-energy tensor. Using the machinery developed by
Oppenheimer [42] and appropriate matching conditions,
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the result can be transformed to the usual coordinates and is
easy to interpret. If several shells collapse on the black hole,
one can show that all the incoming matter but the outermost
layer of the last one do cross the horizon [41] (exact
solutions for null fluid collapse were obtained in [43]). This
does not rely on any assumption about the respective
densities of the black hole and of the shells. The latter
can be denser than the former (the mean density of a black
hole is anyway not a physically relevant quantity). It should
be kept in mind that we do not consider here accretion of
dust, which would be severely impacted, but absorption of
radiation whose penetration in the black hole is (mostly)
not driven by gravitational effects.
Obviously, a black hole does not form in a static

homogeneous space without a triggered gravitational insta-
bility. Otherwise, one would be led to the absurd conclusion
that black holes spontaneously appear in any large enough
static space as a region of size R falls inside its own
gravitational radius as long as R >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð8πρÞp

. This is
clearly wrong as this analysis would only be correct for the
vacuum case. However, once the black hole is formed, there
is no reason to discard the possibility that its mean density
becomes smaller than the average one of the surrounding
medium. Although unusual, this situation is not impossible.

X. FULL DYNAMICS

Two crucial dynamical aspects, beyond the scope of this
article, should be accounted for before any reliable con-
clusion can be drawn: the expansion (or contraction) of the
Universe beyond its consequence on the radiation density
and the evolution of the black hole horizon itself.
Many works are devoted to both aspects but it remains

hard to get a clear and noncontroversial picture. Black holes
in a radiation-dominated universe were, in particular,
studied in detail in [44]. The metric obtained is

ds2 ¼
�
1 −

rg
r
−
1

2
þ t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r3

p
�
dt2 ð49Þ

−
��

1 −
rg
r

�
−1

−
1

2
þ t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r3

p
�
dr2; ð50Þ

in curvature coordinates. This line element develops a
curvature singularity at r ¼ rg and is strictly valid only for
rg < r < t, that is, between the black hole horizon and
the cosmological horizon. The basic behavior, building on
the analysis of [45], is, however, in agreement with the
picture drawn in this article. Many situations beyond the
radiation-dominated background were also considered (see
e.g., [46]—pushed further in [47]—which is very useful for
deriving generalized metrics in a nonvacuum environment).
Some interesting hints can already be found with the
Vaidya metric, describing the absorption (or emission) of
null dust. The very meaning of the associated horizons is,

however, still debated [48]. The most promising approach
to deal with dynamical black holes in the framework we
consider is probably the one advocated in [49]. Event
horizons are indeed not well suited for evolving black
holes, and quite a lot can be inferred from the evolution and
the apparent horizon in Painlevé-Gullstrand coordinates
(that are regular at the horizon).
Although the expansion (or contraction) of the Universe

is not the most important aspect for the points we are
making here, it would in principle make sense to generalize
this study by considering metrics found e.g., in [50,51]. In
particular, when the mass depends on time in a flat
Friedmann-Lemaître-Roberston-Walker (FLRW) back-
ground, the line element—generalizing the McVittie
results—reads [52]

ds2 ¼ −
½1 − MðtÞ

2aðtÞr�2

½1þ MðtÞ
2aðtÞr�2

dt2 þ a2ðtÞ
�
1þ MðtÞ

2aðtÞr
�
4

× ðdr2 þ r2dΩ2Þ: ð51Þ

Interesting paths are also suggested in [53,54].
Two specifically interesting situations were recently

considered in the case of evaporating black holes. The
first one relies on the Thakurta metric [55]. The Thakurta
spacetime is a generalized McVittie black hole with
accretion. This solution approximately corresponds (at
distances such that M ≪ R ≪ 1=H) to a Newtonian point
particle with growing mass, the accretion rate being
proportional to the Hubble rate. Important consequences
were e.g., investigated in [56], deeply changing the LIGO
bounds on primordial black holes. Several concerns were
raised: the energy flux required for this specific mass
growth seems nonphysical [57] and neither an event
horizon nor a trapping horizon seems allowed [58].
Answers were provided in [57], adopting the foliation
associated with the Kodama time. Other counterarguments
were exhibited in [59]. Anyway, the peculiar mass evolu-
tion, _M ¼ HM, associated with this spacetime is very
different from the one of our study, as even the asymptotic
behaviors do not coincide [3,17,44,45].
The second one is based on the Sultana-Dyer spacetime

[60]. It is a Petrov type D metric describing a black hole
embedded in a spatially flat FLRW universe with scale
factor aðtÞ ∝ t2=3, generated by mapping the Schwarzschild
timelike Killing field ξa into a conformal Killing field (for
ξa∇aΩ ≠ 0) [61]. In this framework, an exact model for
evaporating primordial black holes in the cosmological
spacetime was developed in [62], showing potentially
important deviations with respect to the usual behavior.
This approach, however, assumes a matter-dominated
universe which not only is different from the one consid-
ered in this study but also is incompatible with the specific
kind of accretion assumed here.
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The situation is not fully clear. The “correct” horizon to
consider highly depends on the physical properties being
investigated. Apparent horizons are usually advocated for
phenomenological purposes but their foliation-dependence
problem remains mostly unsolved [63] (even though argu-
ments in [57] show that a preferred foliation of the Thakurta
spacetime does exist). There is no consensus [63], and the
question of horizons in a dynamical framework is still an
open one (interesting points are made in [64]).
In this work, we do not pretend to give a fully general

exact and analytical solution for growing black holes in a
radiation-dominated dynamical universe. This goal is still
beyond available models.We simply focus on some specific
features of the Schwarzschild metric in a photon back-
ground. This is obviously an oversimplification but it
exhibits intriguing behaviors that deserve future investiga-
tions.As one can guess from the generalizedMcVittiemetric
(whereMðtÞ is the Hawking-Hayward quasilocal mass), it is
probable that, at late times, the rate of growth of the black
hole mass becomes comparable to the Hubble rate and the
black hole becomes comoving [50]. The situation in which
such a result is derived is, however, different from the one
studied in this article and no firm conclusion can be reached.

XI. CONCLUSION

The behavior of black holes in a thermal bath is
counterintuitive when first encountered. This is simply
grounded in the very special mass/radius relation of
black holes. For standard matter, the area scales as
dA ∝ M−1=3dM, whereas for black holes, dA ∝ MdM.
This is the key point. For usual matter, the area variation
induced by an incoming mass dM decreases with the mass
M of the star (or whatever), whereas for black holes, it
increases with M: the larger the black hole, the larger the

area variation induced by the absorption of a quantum of
given energy. This is the straightforward cause of the
supercritical mass behavior. It is, however, mandatory to
underline that all those “strange” features, when taken
literally, might very well be artifacts of the Schwarzschild
metric used beyond its domain of validity more than real
physical effects. More work is needed and the aim of this
article is mostly to invite the interested readers to inves-
tigate in more detail the curious behaviors presented here.
Within those (strong) limitations, we have established

that for very simple reasons, the evolution of a black hole in
a thermal bath is catastrophic. If the bath is at constant
temperature, the black hole mass inevitably diverges at
finite time (ignoring, of course, cosmological horizon
issues). If the temperature of the bath increases—e.g., in
a contracting space—the phenomenon is (obviously) even
faster and the black hole singularity is reached before the
background singularity. If the temperature decreases—e.g.,
in an expanding space—the mass can either diverge or
vanish, in finite time once again. For tuned initial con-
ditions a (questionable) self-similar solution is possible. In
the vanishing case, the black hole spends most of its life on
a long “plateau.”
The popular expression “black hole bomb” [65] is

strengthened and acquires a wider meaning. As a possible
nongravitational development of this work, it would be
interesting to investigate how the studied phenomenon
can be viewed as a phase transition. Analogies with an
appropriate Ising model should be fruitful.
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