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We introduce the cosmological analysis of the Dirac-Born-Infeld dRGT massive gravity theory which is
a new extension of de Rham-Gabadadze-Tolley (dRGT) massive gravity. In this theory, we consider
the Dirac-Born-Infeld (DBI) scalar field which is coupled to the graviton field. Moreover, we perform the
cosmological background equations, and we demonstrate the self-accelerating background solutions. We
show that the theory consists of self-accelerating solutions with an effective cosmological constant. In the
following, we exhibit tensor perturbations analyses and achieve the dispersion relation of gravitational
waves. We analyze the propagation of gravitational perturbation in the Friedmann-Lemaitre-Robertson-
Walker cosmology in the DBI dRGT massive gravity. Finally, we present the vector and scalar
perturbations to show the stability conditions of the theory.
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I. INTRODUCTION

According to a large number of observational evidence
such as baryon acoustic oscillations [1,2], cosmic micro-
wave background (CMB) [3.4], and supernovas I-a [5,6], it
is strongly accepted that the Universe is in the accelerated
expansion phase. To explain the origin of the accelerated
expansion of the Universe and the cosmological constant
problem, there are some different approaches [7-11]. It is
clear that general relativity is a unique theory of a massless
Lorentz-invariant spin-2 particle [12]. However, this theory
cannot explain the late-time acceleration of the Universe
[13,14]. One approach to solving the problems in cosmol-
ogy is a massive gravity theory in which gravity is
propagated by a spin-2 nonzero graviton mass [15-20].

In 1939, Fierz and Pauli introduced the first massive
spin-2 field theory. They presented the unique Lorentz-
invariant linear theory without ghosts in a flat spacetime
[21]. But, there was a discontinuity (van Dam-Veltman-
Zakharov discontinuity) that the theory does not reduce to
general relativity in the limit of m, — 0 [22,23]. While
Vainshtein solved this problem by considering the non-
linear Fierz-Pauli action instead of linear [24], Boulware
and Deser claimed that the nonlinear Fierz-Pauli action has
a ghost which is called the Boulware-Deser ghost [25].
Also, Arkani-Hamed et al. and Creminelli et al. confirmed
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this issue that the nonlinear massive gravity is an unstable
theory [26,27]. However, de Rham, Gabadadze, and Tolley
(dRGT) demonstrated the fully nonlinear massive gravity
without the Boulware-Deser ghost in 2010 [18,19]. They
constructed a theory with nonlinear interactions which can
show the massive spin-2 field in a flat spacetime.

As the dRGT massive gravity theory is only valid for an
open Friedmann-Lemaitre-Robertson-Walker (FLRW) sol-
ution, and there are not any stable solutions for homo-
geneous and isotropic Universe [28], alternative theories
have been proposed [20,29-33]. In addition, in the dRGT
massive gravity theory, there are a strong coupling problem
and a nonlinear ghost instability, which is why the scalar
and vector perturbations vanish [34]. It is noticeable that
considering the extra degree of freedom such as an extra
scalar field is one of the great approaches. This way, the
quasidilaton massive gravity theory is successful to explain
the accelerated expansion of the Universe [35]. However,
because of the perturbations instability in the quasidilaton
massive gravity theory, extensions of this theory have been
presented [36—39]. In this paper, we consider an extra scalar
field whose kinetic term has a Dirac-Born-Infeld (DBI)
form. Actually, we introduce the new extension of the
dRGT massive gravity theory. Also, we will show the
perturbations analyses for this new extension in order to
show this new extension is free of instability.

As there is an attractor solution in the scalar fields with
inverse power-law potentials, there has been a tendency
towards this kind of theory [40]. In other words, the
significance of this issue lies in the fact that the present-
day behavior of the Universe is insensitive to the initial
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conditions [41]. The Dirac-Born-Infeld model has some-
thing to do with inflation and string theory. Recently,
there has been a trend toward finding the connection
between string theory and inflation. It should be mentioned
that the main ideas are that according to the concept of
brans, inflation interprets as the distance between two
branes that move in the extra dimensions along a warped
throat [41-45].

As several attempts have been made for introducing the
new extensions of massive gravity theories [37-39,46-52],
we would like to introduce the new extension of dRGT
massive gravity theory which can explain the accelerated
expansion of the Universe in the FLRW cosmology, and we
also try to show the conditions of stability of the system
using the perturbations analyses. In the vector and scalar
perturbations, we will exhibit the stability conditions of the
system. Moreover, in the tensor perturbation, the dispersion
relation of gravitational waves which can show the mass of
graviton will be obtained.

It should be noted that in order to impose the constraints
on the modified gravity theories, detecting and analyzing
gravitational waves is really essential. Using the mass of
graviton, the speed of gravitational wave propagation can
be determined. So, by comparing the speed of gravitational
waves and their electromagnetic waves, we can find the
constraints on the parameters of the theories. This issue
shows the significance of the investigation of the dispersion
relation of gravitational waves.

The outline of this paper is as follows. In Sec. II, we
present the Dirac-Born-Infeld dRGT massive gravity
theory. Moreover, we demonstrate the background equa-
tions of motion and self-accelerating solutions. In Sec. III,
we present perturbation analysis to determine the
dispersion relations of gravitational waves in this theory.
In addition, we elaborate on the stability condition of the
system in the vector and scalar perturbations. In Sec. IV, we
present the conclusion and discussion.

In this paper, we use M3 =8zG =1, where G is
Newton’s gravitational constant. We will assume natural
units (c =h =1).

II. DIRAC-BORN-INFELD DRGT MASSIVE
GRAVITY

In this section, we begin by introducing a new extension
of the dRGT massive gravity theory. In this new extension,
we consider the DBI scalar field which is the response to
the dark energy scalar field. We review the dRGT massive
gravity theory which is extended by Dirac-Born-Infeld
terms. Meanwhile, we perform the evolution of a cosmo-
logical background.

The action includes the Ricci scalar R, scalar field o,
the tension T(c), the massive gravity term U(K), a
dynamical metric g,,, and its determinant ,/=g. The action
is given by

1

Szi/d“x{\/—_g[R—f—T(a)(l— 1—W>

T(o)
+ 2m§U(IC)] } (1)

It should be pointed out that the mass of graviton m
originates from the potential U(K), which is

9

U(IC) = U2 + a3U3 + a4U4,

1 2 2
U =5 (1P - [K7),
Uy = ¢ (K] = 3] + 20K7))
Uy = 55 (KI* = 6IKPIK?] + ST + 3K

24
- 6[K*). (2)

where @3 and a4 are dimensionless free parameters of the
theory. Here the quantity “[-]”” is interpreted as the trace of
the tensor inside brackets. Moreover, it is necessary to note
that the building block tensor K is defined as

IClvl - 55 —e V gﬂafaw (3)

where f,, is the fiducial metric, which is defined through

fa = aa¢cay¢dncd- (4)

Here ¢* is the physical metric, 7., is the Minkowski metric
with ¢, d =0, 1, 2, 3, and ¢° are the Stueckelberg fields
which are introduced to restore general covariance. In
addition, the theory is invariant under a global dilation
transformation, ¢ — o + 6.

According to our cosmological application purpose, we
choose the FLRW Universe. Therefore, the general expres-
sion of the corresponding dynamical and fiducial metrics
are given as follows:

G = diag[—-N?, a* a*, a?], (5)

fu = diag[=f()2, 1,1, 1. (6)

Notice that N is the lapse function of the dynamical metric,
and it is similar to a gauge function. Furthermore, it is
obvious that the scale factor is represented by a, and a is the
derivative with respect to time. Also, the lapse function has
something to do with the coordinate-time dt and the proper-
time dr via dr = Ndt [53,54]. It is worth noting that the
function f(7) is the Stueckelberg scalar function whereas

¢° = f(r) and %" = f(r) [26].
So, the pointlike Lagrangian of the Dirac-Born-Infeld
dRGT massive gravity in FLRW cosmology is
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_3ai> &SN 52 A. Background equations of motion
L= N 2 T(o) { 1- T(0)N? - 1} We obtain the cosmological background equations for a
) 4 FLRW background. This way, by varying with respect to f,
+mga’ (Y = D{N[B(Y —=2) = (Y = 4)(Y - D)o and paying attention to the unitary gauge, i.e., f(f) =1t, a
— (Y- 1)2(14] +]'€(t)ay(y D[ =3(Y - Doy constraint equation is given by
+ (Y = 1) ay]}, (7) 5L d
—=m;—[a*Y(Y = 1) x (3=3(Y - 1)as
of dt
where
o + (Y =1)%ay)] = 0. (10)
Y=—. (8)
a On the classical level, the unphysical fields should be
To simplify expressions later, we define eliminated from the Lagrangian using gauge transforma-
) tions [55].
g=% (9) In this step, we calculate the equation of motion which is
Na’ related to the lapse function N:
|
5L T 7\2 HN + 1)
—— = 3H? (0) . <HN + —> —T(o)N*| /1 + (AN +y)° Yz) -
a* 6N 2(T(c)N?* + (HN + 1)) Y T(o)N
—mi(Y = 1)[-3(Y =2) + (Y —4)(Y — a3 + (Y — 1)%ay] = 0. (11)
By varying with respect to o, we have
1 oS 1 2

. “OT(c)2N*T' 1
@Noo  4(H2 + T(0)N?)? (@ NT(e) | 1+

2
H?*T(6)N?| 3
+HT(0) T(0)N?

T(c)N?

L 07(6)N = T'(6)) + 4T'(0)

H
14—+ T"(c)

1| + 28| 37(0)N
+ (0) T(c)N?

+m2Y{-=3+r)(3+3a; + ay)

+6(r+ 1)Y(ay +2a3 + 1) =303r + 1)(ay + a3)Y? + dra,Y?} = 0, (12)

where

r

z| s

(13)

Notice that the following equations can be obtained using
Eq. (8):

& Y d Y

+ §=— < + Y> (14)
According to the time reparametrization invariance intro-
duced by the Stueckelberg field f, there is a Bianchi
identity that guarantees that the equation of motion related
to the scale factor a is redundant. The Bianchi identity is

§S. &S, déS .8
—6+—f-N——+a—=0. 1
500 Tl N aron T%a =0 (15)

Therefore, this equation can be ignored.

[
It should be indicated that in the particular condition, all

of the background equations and total Lagrangian reduce to
those in Refs. [35,48].

B. Self-accelerating background solutions

In this subsection, we indicate the analyses of self-
accelerating solutions to explain the accelerated expansion
of the Universe. We now start the discussion of the
solutions by the Stueckelberg constraint in Eq. (10). By
integrating that equation, we have

YY-1)[3=-3Y=Das+ (Y = 1)%ay) xa™. (16)

It is necessary to mention that the constant solutions of Y
lead to the effective energy density and behave similarly to
a cosmological constant. In other words, the massive
gravity term affects the expansion like a cosmological
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constant. As we would like to consider an expanding
universe, and the right-hand side of Eq. (16) will decrease
after a long enough time, Y saturates to a constant value
Ysa, which is a root of the left-hand side of Eq. (16).

According to [35], there are four constant solutions
for Y. To avoid encountering strong coupling, this
solution should be discarded [35]. Thus, we are
left with

(¥ = DB =3(Y = e + (Y = D2aly_y,, =0.  (17)

Furthermore, it is clear that the other solution is Y = 1.
However, this solution leads to inconsistency and vanish-
ing cosmological constant, and this is the reason why it is
unacceptable [35].

|

So, the two remaining solutions of Eq. (16) are

303 + 204 + 90{% — 12ay

YSiA = 2 a,

(18)

Here, we obtain the modified Friedmann equation. The
Friedmann equation (11) could be written in a different form,

T . H?
e |HPN? = TN? | \ [ 1+ =1
2(TN*+ H?>N?) 7

:AécA’ (19)

3H? +

where T is a saturate of T(). We solve Eq. (19) to calculate
the H2, so we have

1

H?> = —
18

{4(A§EA =27) + (2AE, +57)? (9\/ T3(—16AE — 120A2T — 300AE, T2 — 16973) — 2(4AE:

+ 30AGT + T5A5, T2 + 22T3)>‘5 + (—2(4A§3 + 30AET + T5AE 1% + 22773)

+ 9y T3 (=16AE] — 120AZT — 300A%, 72 - 169T3)>5}. (20)

Note that the effective cosmological constant from the
mass term is

Agy =mg(Yg, = D[=3Yg, + 64 (Y55, —4)(Y5s — Das
+ (Ysa — 1)°ay]. (21)

Using Eq. (18), the above equation can be written as

L 3mir, 3 2 2
AL, =28 [9(13 + 303/902 — 120, — 18c2a
20
F dasay/902 — 120, + 6aﬂ . (22)

Therefore, from Eq. (12), we have

~ 2
1 . TN\/1+45
- F+H*|2-
ST 7o ol R m2YE (azY iy —a3—2)

(23)

The above equation interprets the self-accelerating uni-
verse without any strong coupling. Thus, we have shown
that this theory consists of self-accelerating solutions with
an effective cosmological constant.

III. PERTURBATION ANALYSIS

At this stage, we would like to demonstrate the pertur-
bation analyses. These analyses are crucial to indicate the

|
stability of solutions. To reach this goal, we focus on
quadratic perturbations. The physical metric g, can be
expanded in terms of small fluctuations &g, around a

background solution gfg) :

Jpv = 9/(42) + 89,- (24)

Note that the metric perturbations can be divided into
three parts, namely scalar, vector, and tensor perturbations.
Therefore, we have

5900 = —ZNQ(D,
690i = NCl(Bi + al'B),

1

1
+ (aiaj -3 ,a,a’) E} . (25)

All perturbations agree with the spatial rotation transforma-
tions, and they are functions of time and space. Also, there
are these conditions §Vh;; = 0'h;; = 0'E; = 0'B; = 0 for
scalar, vector, and tensor perturbations which means that the
tensor perturbations are transverse and traceless.

We perturb the scalar field o as follows:

o =0 + So. (26)

In the following procedures, all terms should be kept in
quadratic order in &g, . It is crucial to mention that, we have
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not had any problems with the form of gauge-invariant
combinations because we have indicated all analyses in the
unitary gauge. In addition, the expanded actions can be
written in the Fourier domain with plane waves, i.e.,

V? = —k2, &®x — d°k. Note that the spatial indices on
perturbations are raised and lowered by 57 and &;;.

A. Tensor

The significance of tensor perturbation analysis lies in
the fact that it is the only source of gravitational waves in
general relativity. As the dispersion relation of gravitational
waves is different in modified gravity models, the speed of
propagation of the gravitational wave is different from the
speed of light in standard general relativity. In this sub-
section, we obtain the dispersion relation of gravitational
waves in the Dirac-Born-Infeld dRGT massive gravity
theory. We consider tensor perturbations around the back-
ground,

5gi = azh (27)

ijs
where
aihij =0 and gl]hl] =0. (28)

Note that the tensor perturbed action in the second
order can be obtained for each part of the action
separately. The gravity part of the perturbed action in
quadratic order is

@ _ 5| R ,
S —/d3kdtag[ 1]\,2 - <?+4—+6H2)h1h,-]}.

1
gravity — 8 N
(29)

Furthermore, we obtain the Dirac-Born-Infeld part of the
perturbed action in quadratic order:

-2
(2) _1 [0} ii
SD]rg / &kdta®N | T (o) 1—7T (o)Nz_l hiih,;.

(30)

The massive gravity sector of the perturbed action can be
written as

1
Y —/ dkdta* Nmj[(as + as)rY?

massive 8

— (14 2a3 + a4)(1 + 3r)Y?
+ (3433 +ay)(342r)Y
- 2(6 + 4(13 + (l4)]hijhij. (31)

Summing up the second-order pieces of the perturbed
@) s@ and s®

gravity> ~DBI> massive’
action in the second-order for tensor perturbations:

1 hi:h (k2 y
s = < / d3kdta3N{ ]([2 - <a2+Méw> h’fhl-]}.

(32)

actions S we calculate the total

At this stage, using Eq. (18), we calculate a3 and
substitute it. As a result, the dispersion relation of
gravitational waves is obtained as

M%W:4g+6H2—T(a) 1—'.’72—1 —A,
N T(c)N?

(33)
where
m2
A= —T—{YE&[18+8a3 + Y5, Qs YE, + Y,
(Ysa—1)
—rsa(3(az +2) + Y5, (a3Y5, — 4a3 = 3))
— 83 — 10)] — 2(0(3 + 3)}, (34)

where Y£, cannot be equal to 1, because the role of the
massive gravity term vanishes.

It is noticeable that if the mass square of gravitational
waves would be positive, the stability of long-wavelength
gravitational waves would be guaranteed. However, if it
would be negative, it would be tachyonic. So, the instability
can take the age of the Universe to develop if the mass of
the tachyon would be the order of the Hubble scale.

In fact, we exhibit the modified dispersion relation of
gravitational waves. Actually, the propagation of gravita-
tional perturbations in the FLRW cosmology in the Dirac-
Born-Infeld dRGT massive gravity is presented.

B. Vector

Here the vector perturbation analyses are shown for
the Dirac-Born-Infeld dRGT massive gravity theory. This
part’s main goal is to show the conditions in which there
would not be any instabilities.

We consider the vector perturbations,

2 - 1)K E
B, — alr —DE__ o)
RK2(r = 1) + 4T(0) (/22— 1))

As the field B; is nondynamical, it can be entered into the
action as an auxiliary field. So, a single propagating vector
is given:

) | AT
Siebior =3 / d3kdm3N(m|Ei|2—gMéleilz . (36)
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where
ﬁ:k;<1+ k2(r2—212) )_l. (37)
2T (0)( T?’H)"Nz -1)

It can be found that there are two cases, in the first one, if
(=1

27(0)( [Hoe55-1)

we have > 0, we do not need the critical

momentum scale. However, in the second one, if we have
(r-1)

2,2
27(0)(y /£E25-1)

scale k. to avoid a ghost, which is

< 0, we should have a critical momentum

(38)

in other words, to have stability in the system we require the
k in Eq. (37) to be smaller than a critical momentum
scale k..

In the following, we consider the canonically normalized
fields for determining the other instabilities in the vector
modes as below:

(39)

We have substituted Eq. (39) to Eq. (36),

S—1 Bkdta’N GE _ e 40
=3 ta’N{ = = evlGil” ). (40)

The sound speed for vector modes is given by

H>u?(1 + 4u?)

¢l = My (1 +u?) - T

(41)

where the dimensionless quantity is considered as below:

. K (r?—1) ' (42)

27 (o) (/e — 1)

In fact, we evaluate the conditions which can cause
instability in the system. Notice that to avoid tachyonic
instability which can be originated from the first part of
Eq. (41), if we have M%y, <0 and u? > 0, and to avoid
instability the below conditions must be there:

T(o)N

K< ,

C ~ (}"2 _ 1)
2
~1

if Gl >0 and My <0. (43)

ZaZ
2T(0)( (/728 - 1)

If we consider all physical momenta below a critical
momentum scale k., thus, a growth rate of instability
should be lower than the cosmological scale.
Furthermore, if we pay attention to the second part of
Eq. (41), two cases can be considered. In the first case, if we
have u? > 0, there is not any instability faster than the
Hubble expansion. In the second case which is u> < 0, as
we have the no-ghost condition Eq. (38), to avoid insta-
bility we should have |u?| < i—z This way, there is not any

instability in the second part of Eq. (41).

In the end, in order to guarantee the stability for vector
modes, we should consider c%, > (. In addition, for avoid-
ing the instability the mass square of the dispersion relation
of gravitational waves should be positive MZy, > 0, as we
pointed out in Sec. I A.

C. Scalar
In this subsection, we exhibit the scalar perturbations
analyses in the Dirac-Born-Infeld dRGT massive gravity
theory to elaborate on the stability of the system.
We start with the action quadratic in scalar perturbations:
5900 = -2N 2@,

5901’ = NaaiB’
1

o ="+ do. (45)

According to the fact that the perturbation ® and B are free
of time derivatives, they can be used as auxiliary fields
using their equations of motion:

2] 1, .
p—_ (r=la — | OH® — (KE+6%)
3T(g)[1 - T[EIG)QNZ}
3T (o) H?*a?
1 - 86 b, 46
Y He T)N? | (46)
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1 k* 3
O SRR T 0T ST Fe =T L (2 Gy @ Te)

Hd®
3T(c)H?

(T(0) = QP (E+ 350 + 711 [0 = 1)+ 3@ = T(o))]

©

|
~

&

1)
H2E i oi - 1) - B0 (0 - rioss - ot (12:-1) | )
where
o 2a2
o ®

It is worth pointing out that if we substitute these equations into the action, we obtain the action which contains three fields,
E, Y, and d0. Meanwhile, we determine another nondynamical combination to remove the sixth degree of freedom, which is

~ 1
¥ =—=(¥+00). (49)
Moreover, an orthogonal combination can be defined:
So = — (W= 60) (50)
c=——= (¥ —-90).
V212

Note that using above field redefinitions, we write the action in terms of P, 67;, and E, with no time derivatives on P. Using
the following equation the auxiliary of ¥ can be eliminated:

! —3k%r(r — o) —T(0)?
3(r = D[(T(0)’ = 207(0)) + e (4 + (TT(0) - 60)) {[ 3r(r=1)(@20T(e) =T(e))
+ T2H*a*(4k*(r* = 1) + (60 — 7T (0))) — 3H?*a*>(4k*r(r — 1) + K*r(6Q + 6rQ — T(6)(7r = 5))
+24(T(0)? = 20T (6)))]66 — 2V 2H?a*k*r(r — 1)E

‘~P:

+ [18H3a*(4k*(r* = 1) + 6Q — 7T(0)) + 6Ha?*(=2k*r(r — 1)(Q — T(0)) — 3T (6)* + 6QT(0'))]6NO-

+V2Ha*k2r(r — 1)[6H2a? + T(o) - Q] %} (51)

We substitute this solution in the action, and by considering the notation A = (5~a E), the scalar action is given by
1 A A A A

S== | dkdta?’N§—F —+—DA+A'D" — - ATw?A }. 52

2 / “ {N NEtyTATAR AT (52)

Here, we should pay attention that D is a real antisymmetric 2 x 2 matrix, and F and @? are real symmetric 2 x 2 matrices.
This way, we demonstrate the components of the matrix F as below:

Fo 2k4(Q - 1) [ 9H’a® (Q=T(o))(r—=1)—6H*a*r)? } (53)
a H?*a? K(r—1)* [(T(c)? =20Q0T(0)) + H*a*(4k* + (7T(c) — 60Q))](r — 1)?]’
- V2k4(Q — T(0))[2k2(r — 1) = 3r(6H?a® + T(0) — Q)] (54)

3(r=1)[(T(c)* =2T(6)Q) + H*a*(4k* + 7T(0) — 6Q)]
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]:22:

k*(Q —T(0))[2k* — 18H?a®> + 3(Q — T(0))]

18(T(6)* — 20T (o)) + 18H?a*[4k* + 7T (c) — 6Q]

(55)

For determining the sign of the eigenvalues, we elaborate the determinant of the kinetic matrix . Therefore, we have

3k°(T(0) - 0)

dethfl]fzz—]:%zz

2 2a2 .
(r=1*(Q-T(o) —W‘:ﬁr%)

(56)

To avoid the ghosts from appearing in the scalar sector, the following condition should be taken into consideration:

1
k< ——
<2aH

Thus, if the determinant is positive, we do not have a
ghost degree of freedom. In other words, it should be
mentioned that the stability of the scalar sector could be
guaranteed with the use of the determinant of the kinetic
matrix. We have shown the conditions under which the
system can maintain its stability.

IV. CONCLUSION

In conclusion, we should like to point out that intro-
ducing the new extended dRGT massive gravity theory is
so important due to this fact that can give us the opportunity
to understand how the extended theory can behave around
their cosmological backgrounds. In this present work, we
have presented the Dirac-Born-Infeld dRGT massive grav-
ity which is constructed by considering coupled DBI scalar
field to the graviton field.

Initially, we have obtained the details of the new action
and total Lagrangian. We also performed the full set of
equations of motion for a FLRW background. In order to
explain the late-time acceleration of the Universe in the
context of the Dirac-Born-Infeld dRGT massive gravity, we
exhibited the self-accelerating background solutions. In
fact, we have shown that the theory consists of self-
accelerating solutions with an effective cosmological con-
stant which has something to do with massive gravity term.

Finally, we have presented the cosmological perturba-
tions analyses, which consist of tensor, vector, and scalar
perturbations. In tensor perturbation, we have demonstrated

<6H2a2 +T(o) - \/

) e

|

the tensor perturbation calculation to investigate the mass of
graviton for the Dirac-Born-Infeld dRGT massive gravity
theory. In other words, we have presented the modified
dispersion relation of gravitational waves. Furthermore, we
have indicated that to guarantee the stability of long wave-
length, the square of gravitational waves should be positive,
i.e., M&y > 0. Presenting the propagation of gravitational
perturbation in the FLRW cosmology in the Dirac-Born-
Infeld dRGT massive gravity theory is really vital in the era
of gravitational waves. Empirically, the mass of graviton can
be constrained by many means [56], including the propa-
gation of gravitational waves [57,58], the dynamics of the
Solar system [59], the timing of binary pulsars [60-62], and
so on. These methods probe different aspects of massive
gravity theories [56]. At the end, we have evaluated the
vector and tensor perturbations to determine the stability
conditions of the system.
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