
de Sitter space with generalized Poincaré lens
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de Sitter space is an important maximally symmetric vacuum solution of Einstein’s field equation,
located in a central place in cosmology in explaining the accelerated expansion of the Universe. Here in the
view of optics, we propose the de Sitter space with a generalized Poincaré lens based on the equivalence
between the static curved space-time and the isotropic optical medium. The correspondence of familiar de
Sitter space and the Poincaré disk can be regarded as a special case therein. We also discover that the
generalized de Sitter space has a topological cosmic string kernel in the center which can deflect light in
different ways. This feature can be evidenced and visualized in its equivalent generalized Poincaré lens
with a tunable horizon. To gain more intrinsic understanding, we further introduce its one-dimensional lens.
Finally, for a possible application, we implement a multiple source illusion effect in the generalized
Poincaré lens and find that the energy flow obeys the topological Poincaré-Hopf theorem. Our work is an
attempt in the fruitful interplay between optics and general relativity and may enlighten other interesting
relevant explorations.

DOI: 10.1103/PhysRevD.106.023507

I. INTRODUCTION

The past decades have witnessed great efforts to simulate
the gravitational phenomena in diverse physical systems
[1,2]. This strategy has made progress; for instance, the
predicted Hawking radiation has been observed under
existing laboratory conditions although it has yet to be
evidenced by the real black holes [3–6]. In optics, the
transformation optics theory [7–9] has been widely used in
the analogy of general relativity. Elaborated electromag-
netic materials are designed to play the role of “curved,”
and the effects are visualized by the evolution of electro-
magnetic fields [10]. For instance, the Schwarzschild black
hole with the equivalent permittivity tensor was theoreti-
cally derived and simulated [11]. The Minkowski space-
time and the metric signature transition were studied in the
hyperbolic metamaterials by regarding the direction of
negative permittivity as the time coordinate [12]. The
cosmic string of one-dimensional (1D) topological defect
with robust deflection angle was constructed by multilay-
ered rotational metasurfaces [13]. The interactions between
dark matter and black hole in three typical cases were
considered in both ray and wave simulations [14]. Other
interesting topics, such as time travel [15], Milne universe

[16], and wormhole [17], were also investigated. To be fair,
most of them require complicated anisotropic materials,
which may hinder the experimental testing and realization.
Remarkably, several methods that transform the curved
space-time into an isotropic refractive index profile were
reported [18,19], which have been successfully used to
mimic the Einstein’s ring [20], Kerr-Newman black hole
[21] and Schwarzschild precession [22]. More intriguingly,
it has been proven that the Poincaré disk of hyperbolic
geometry and Maxwell’s fisheye lens of spherical geometry
can mimic the de Sitter and anti–de Sitter space, respec-
tively [23], which vividly evidences some opposite features
in these two space-times from the perspective of optics. It
should be noted that the importance of de Sitter and anti–de
Sitter space in contemporary physics is gradually increas-
ing, for example the de Sitter model is consistent with the
observed accelerated expansion of the Universe in cosmol-
ogy, and the so-called AdS=CFT correspondence also
indicates the vital role for anti–de Sitter space in theoretical
physics [24]. As Maxwell’s fisheye lens for the anti–de
Sitter space has been widely studied and contributes a
broad range of optical applications [25–28], the Poincaré
disk for the de Sitter space ought to receive more attention
in optics.
The Poincaré disk is known as an important mathemati-

cal model of hyperbolic geometry with a constant negative
Gaussian curvature [29,30]. In fact, it attracts a lot of
attention going beyond mathematics. The cosmological
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alpha-attractor models in supergravity are based on the
hyperbolic geometry of the Poincaré disk [31,32]. The
quantum dynamics on the Poincaré disk has also been a
long theoretical interest, for example the Aharonov-Bohm
effect [33], the scattering problem [34], and point corre-
lation [35]. Moreover, the motions in the Poincaré disk are
used to study the optical multilayer dielectric transmission
as an aspect of geometrical interpretation [36,37].
Currently, the Bloch band theory is also introduced into
the Poincaré disk in which the neighboring lattices are
embedded with an equal hyperbolic distance [38,39].
In this work, we propose the generalized Poincaré lens as

a general version of the Poincaré disk. This is inspired from
the relationship between the Maxwell fisheye lens and the
generalized Maxwell’s fisheye lens [40]. Based on the
inverse transformation between the static curved space-time
and the isotropic optical medium, we propose the corre-
sponding generalized de Sitter space of the generalized
Poincaré lens. We find that the generalized de Sitter space
has a cosmic string in the center, meaning that light will be
deflected due to the central conical space structure. The
deflection angle depends on the topological defect of the
central string, which can be vividly visualized in its
equivalent generalized Poincaré lens. Light in that planar
lens is observed to be repelled/attracted by the central
negative/positive topological defect, where the repelled
light creates a prohibited light region while the attracted
light forms a self-interference light region. Furthermore,
using exponential mapping ω ¼ expðzÞ, we obtain the 1D
form of the generalized Poincaré lens. The ahead phenomena
can be well understood in this 1D lens due to the cosmo-
logical event horizon scaling. As an application, we imple-
ment a multiple source illusion effect in the generalized
Poincaré lens. The distribution of Poynting vector field in
that effect obeys the Poincaré-Hopf theorem [41], revealing
the topology nature in the unit disk. Our findings enlarge the
vision of the Poincaré lens with hyperbolic geometry from
mathematics and astronomy to optics, and may enlighten
other interesting relevant optical applications.

II. RESULTS AND DISCUSSION

In Ref. [23], it is pointed out that the isotropic refractive
indices of the Poincaré disk nðrÞ ¼ 2

1−r2 and Maxwell’s
fisheye lens nðrÞ ¼ 2

1þr2 are equivalent to the static de Sitter
and anti–de Sitter space. This is consistent with their optical
metrics, indicating that the optical reference geometry of de
Sitter space is of hyperbolic geometry with negative
constant Gaussian curvature, while the anti–de Sitter space
is of spherical geometry with positive curvature. On the
other hand, in optics, the Maxwell’s fisheye lens derives its
general form, i.e. the generalized Maxwell’s fisheye lens
nðrÞ ¼ 2

r1−mþr1þm. The spherical surface is known as the
geodesic lens of Maxwell’s fisheye lens which can be
deduced by conformal coordinate transformation [42] or

stereographic projection [43], while the shape of the
geodesic lens of the generalized Maxwell fisheye lens is
more common [44]. It is homeomorphic to the sphere, but
also has the positive constant Gaussian curvature. Both of
them have been extensively studied in optics and have
brought about a series of applications in imaging, antenna,
waveguide crossing. Inspired from these, we propose the
“generalized Poincaré lens” with the profile nðrÞ ¼

2
r1−m−r1þm (m ∈ Q and m > 0) to be the general version of
the Poincaré disk, which differs from the generalized
Maxwell fisheye lens by a minus sign in the mathematical
form. Obviously, like the Poincaré disk, the generalized
Poincaré lens also belongs to the hyperbolic geometry, but
its physics should be much richer. Here we will focus on the
optical properties of the generalized Poincaré lens.
Nevertheless, we hope to explore it from the perspective
of the combination of astronomy and optics. Since the
Poincaré disk can be derived from the de Sitter space, it is
natural to wonder what kind of curved space-time corre-
sponds to the generalized Poincaré lens. To find such space-
time, we execute the inverse calculation of Refs. [18,23].
First, we write down the general static metric with

ds2 ¼ −fðRÞdt2 þ 1

fðRÞ dR
2 þ R2dΩ2: ð1Þ

This metric is spatially anisotropic since the extension of
radial coordinate R is different from solid angle coordinate
Ω (dΩ2 ¼ dθ2 þ sin2θdφ2) due to the factor 1

fðRÞ. By

performing a radial mapping R ¼ RðrÞ, and following

the prerequisite dR2=dr2

fðRðrÞÞ ¼ R2

r2 , the metric will be converted

into a spatially isotropic one:

ds2 ¼ −fðrÞdt2 þ fðrÞnðrÞ2ðdr2 þ r2dΩ2Þ; ð2Þ

where nðrÞ ¼ RðrÞ
r

ffiffiffiffiffiffiffiffiffiffiffi

fðRðrÞÞ
p . This nðrÞ is exactly the equivalent

refractive index profile of the metric in Eq. (1). Now we
have the generalized Poincaré lens nðrÞ ¼ 2

r1−m−r1þm, hence
the above RðrÞ and fðRÞ can be inversely derived as

RðrÞ ¼ 2mrm

1þ r2m
; fðRÞ ¼ m2 − R2: ð3Þ

Consequently, the corresponded curved space-time of
generalized Poincaré lens is

ds2 ¼ −ðm2 − R2Þdt2 þ 1

ðm2 − R2Þ dR
2 þ R2dΩ2: ð4Þ

We call Eq. (4) the generalized de Sitter space. Its
cosmological event horizon lies at R ¼ m. When m ¼ 1,
it goes back to the de Sitter space with the horizon of
R ¼ 1, and the equivalent lens is the familiar Poincaré disk
[23]. Notably, after the radial mapping RðrÞ in Eq. (3), the

XIAO, ZHAO, GE, TAO, ZENG, XU, and CHEN PHYS. REV. D 106, 023507 (2022)

023507-2



cosmological event horizon of the generalized de Sitter space
is transformed into r ¼ 1, which is independent of m. In
addition, the static metric of de Sitter space is often used to
describe the universe within the horizon, and so is the
generalized de Sitter space. Therefore, in all the equivalent
generalized Poincaré lenses, we only pay attention to the
region within the unit disk of r ¼ 1. Outside the unit disk it
can be seen that the refractive indices become negative.
When inspecting the central space-time of the generalized de
Sitter space, i.e., when r → 0, we find that the metric
becomes

ds2 ¼ −m2dt2 þ 1

m2
dR2 þ R2dΩ2: ð5Þ

Let R0 ¼ 1
mR, Eq. (5) further transforms to ds2 ¼

−m2dt2 þ dR02 þm2R02dΩ2. Then, following a cylindrical
coordinate transformation z ¼ R0 cos θ, ρ ¼ R0 sin θ, and
without loss of generality, we set θ ¼ π

2
, the metric will

eventually settle down in the form of

ds2 ¼ −m2dt2 þ dρ2 þm2ρ2dφ2 þ dz2: ð6Þ

By adjusting the scale of time variable t, Eq. (6) is the metric
of 1D cylindrically symmetric gauge cosmic string regarding
the topological defect parameterm [45,46]. It means that the
generalized de Sitter space has a kernel of cosmic string with
a conical space structure in the center. In a pure cosmic string,
light is deflected by the central topological defect, and the
behaviors can be divided into three cases [13,47–49]: when
m > 1, light is repelled by the negative topological defect;
when 0 < m < 1, it is attracted by the positive topological
defect; and when m ¼ 1, it goes straightly with an absent
defect. Hence, in the generalized de Sitter space, the light is
supposed to be affected by the cosmic string especially when
passing by the center. The equivalent generalized Poincaré
lens will inherit this feature, thus the effect in the curved
space-time can be visualized via light evolution in the unit
disk of the generalized Poincaré lens. As a rotationally
symmetrical refractive index distribution, the exact light ray
solution in the generalized Poincaré lens can be solved by the
Luneburg problem [43]; it is

rm þ r−m ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4L2
p

L
sinðmθÞ; ð7Þ

FIG. 1. Light rays and wave patterns in the unit disk of a generalized Poincaré lens with variousm (m ≥ 1). Background colormaps in
the rays are refractive index profiles of lnðnðrÞÞ. (a),(d) m ¼ 1, the familiar Poincaré disk. The refractive index equals to 2 at the origin
with absent topological defect. (b),(e) m ¼ 6

5
; and (c),(f) m ¼ 2. There is a zero singularity at the origin with the negative topological

defect in the latter two cases. Rays and waves near the defect are repelled by the central cosmic string, resulting in a prohibited region.
Range of that region: (a),(d) Δθ ¼ 0; (b),(e) Δθ ¼ π

3
; (c),(f) Δθ ¼ π, respectively. The sources are all located at (0.5, 0). Rays are

satisfied with Eq. (7). The operating frequency in wave simulation of the Ez field is set as 3 GHz.
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whereL is the angularmomentumof the ray (L ¼ n0r0 sinφ,
φ is the tangential angle to the path). It will help us to
evidence the ahead mentions.
First, we show the light propagations in the generalized

Poincaré lens with variousm (m ≥ 1) in Fig. 1. The familiar
Poincaré disk (ofm ¼ 1) is presented in Figs. 1(a) and 1(d).
According to Eq. (7), the rays are all circular arcs and will
be perpendicular to the transformed horizon (the disk
boundary of r ¼ 1). By simply checking the refractive
index, it can be found that nðrÞ at the origin is equal to a
constant value of 2, which is indeed dovetailed with the
absent topological defect whenm ¼ 1. Thus, the ray which
passes the origin in the Poincaré disk will go straightly, as
shown in Fig. 1(a). This also can be understood by the static
metric in Eq. (5). When m ¼ 1, the metric is the flat
Minkowski space-time where the geodesic ray is always
straight. The wave simulations carried by the commercial
finite element software COMSOL Multiphysics agree with
the geometrical rays in Fig. 1(d). Moreover, it also can be
seen that since the refractive index nðrÞ increases mono-
tonically with radius r, the effective wavelength at the
Poincare disk becomes smaller away from the center. As for
m ¼ 6

5
in Figs. 1(b) and 1(e), as well as m ¼ 2 in Figs. 1(c)

and 1(f), light behaves quite differently. The refractive
index nðrÞ has zero singularity at the origin when m > 1,
which indicates the negative topological defect. At present,
light will undergo a repulsive force when passing through
the origin. In Figs. 1(b) and 1(c), the rays near the origin are
repelled away in two opposite directions, then finally create
an empty region that prevents light from entering. Clearly,
the prohibited region edges are formed by two severely
deflected rays, which are the closest to the origin and are
completely governed by the central cosmic string described
in Eq. (6). Although the space structure of the cosmic string
is conical, despite the topological defect in the origin, it is
flat with zero Gaussian curvature. Therefore, these two
closest rays are nearly straight after deflection. The ranges
of prohibited region can be analytically calculated through
the deflection angle of the two rays (the deflection angle of

cosmic string [13]), i.e., Δθ ¼ 2πðm−1Þ
m . In Fig. 1(b), the

region is Δθ ¼ π
3
; and in Fig. 1(c), the region is Δθ ¼ π.

The other rays that are far away from central cosmic string
will not be hugely affected since the approximation is valid
only when r → 0. It is noted that all rays cannot reach the
transformed event horizon r ¼ 1 since nðrÞ is infinite there
for all the m. Because of the prohibited areas of light, the
horizon ranges in the unit disk of the cases m ¼ 6

5
and

m ¼ 2 are no longer the whole circles with the full range of
2π. For example, in Figs. 1(b) and 1(c), the ranges of
horizons are 5

3
π and π at r ¼ 1. The wave patterns in

Figs. 1(e) and 1(f) are well accorded with the rays’ results.
The wave fronts of a line current source initially evolve
several periods, then are diminished at the edges. However,
the edges do not cause reflection as if the light seems to be

“topological protected.” The ability that can confine light in
a certain area is expected to be useful in the beam steering
system. For example, when m ¼ 2 in Fig. 1(c), light
occupies half of the disk, which means that light can only
radiate toward the right if we well truncate the lens to let the
nðrÞ match with the air or other dielectrics. This is more
evident when m is larger, where light is only allowed to
spread in a particular direction with a very small volume,
for instance, π

2
ofm ¼ 4, π

3
ofm ¼ 6, π

4
ofm ¼ 8 (not shown

here), however carries all the energy of the source.
Let us now turn to investigate light in the generalized

Poincaré lens with the positive-topological-defect cosmic
string kernel 0 < m < 1. We enumerate two cases ofm ¼ 2

3

and m ¼ 3
4
in Fig. 2. At this time, the refractive index nðrÞ

has the infinite singularity at the origin and attracts light,
which distinguishes from the zero singularity in the
previous case. In Figs. 2(a) and 2(b), it can be seen that
the rays near the center are attracted and then deflected,
where the upper rays deflect downward while the lower
ones deflect upward relative to the origin. Actually, this
portion of attracted light implies the double imaging effect
of cosmic string. When a cosmic string is in the middle of
the observer and a star, there are two images of the star as
the light from the star passes by both sides of the string and
reaches the observer [45]. However, the other far away rays

FIG. 2. Light rays and wave patterns in the unit disk of the
generalized Poincaré lens with central positive topological
defects (0 < m < 1). Background colormaps in the rays indicate
a refractive index profile of 1

lnðnðrÞÞ. (a),(c) m ¼ 2
3
. (b),(d) m ¼ 3

4
.

The refractive index nðrÞ has the infinite singularity at the origin.
Rays and waves near the defect are attracted by the cosmic string
core in the generalized Poincaré lens, creating a self-interference
region. Range of that region: (a),(c) Δθ ¼ π and (b),(d) Δθ ¼ 2

3
π,

respectively. The sources are in (0.5, 0), and the operating
frequency is set as 1.5 GHz.
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in the generalized Poincaré lens are keeping their path, not
affected by the string. Finally, all the rays generate an
obvious interlaced but not a prohibited area, where two rays
closest to the origin build the edges. The interlaced rays
indicate the self-interference effect in the wave patterns as
shown in Figs. 2(c) and 2(d). Similarly, following the
cosmic string theory, the interference region is [13]:

Δθ ¼ 2πð1−mÞ
m . Thus, when m ¼ 2

3
in Fig. 2(a), Δθ ¼ π

and when m ¼ 3
4
in Fig. 2(b), Δθ ¼ 2

3
π. In the wave

evolution of Figs. 2(c) and 2(d), the wave fronts outside
the self-interference region are keeping cylindrically; once
arriving in that region, they are redistributed, producing
alternately dark and bright strips. This self-interference
region can be customized by changing the m, and such a
unique pattern in the generlaized Poincaré lens with 0 <
m < 1may find applications in sensing and detection, since
any additional scatter will destroy the field distribution. In

addition, comparing Figs. 2 and 1, we can find that the
undeflected light rays behave similarly, just like those in the
Poincaré disk. In other words, in terms of the radial
direction, the light obeys the same rule of the de Sitter
space. A similar treatment has been applied to analyze the
Nariai solution of Einstein’s field equation [50]. It is said
that the propagation of light of the Nariai metric presents
the same results with the de Sitter space when only
considering the purely radial case dΩ2 ¼ 0 [50]. In our
generalized de Sitter space, the central cosmic string can
change the angular direction of light but will not have a
significant impact on the radial part especially when the
light is far away from the center.
The metric of the generalized de Sitter space implies the

location of the event horizon and the deflection of light;
however, it does not tell that the range of the horizon will
also be changed. To better understand the tunable horizon
in the generalized Poincaré lens, we introduce the 1D form

FIG. 3. Light rays and wave patterns in the 1D lens nðxÞ ¼ − 1
sinh mx. The background colormaps in the rays show the refractive index

profile lnðnðrÞÞ. (a),(d) m ¼ 3
4
with horizon range 8

3
π. (b),(e) m ¼ 1 with horizon range 2π. (c),(f) m ¼ 6

5
with horizon range 5

3
π. The

sources of the rays and waves are all located at (ln(0.5),0). The operating frequency is set as 3 GHz.
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with a profile of nðxÞ ¼ − 1
sinh mx through the conformal

mapping ω ¼ expðzÞ. Previous studies have shown that the
1D lens is more instinct than its two-dimensional (2D) form
[40,51]. After mapping, the unit disk is transformed into the
area of x ∈ ½−∞; 0�, and we plot the rays and waves with
several typical m in Fig. 3. It can be seen that all the rays
emitted from the point source are eventually running towards
the wall of x ¼ 0. That wall is the transformed event horizon
from the disk boundary, where the 1D distributed refractive
index nðxÞ is also infinite. Furthermore, in the 1D lens, the
light covers a different range in the horizon wall due to
differentm. They aremeasured as 8

3
π ofm ¼ 3

4
in Fig. 3(a),2π

of m ¼ 1 in Fig. 3(b), and 5
3
π of m ¼ 6

5
in Fig. 3(c).

Interesting, the horizon ranges of the latter two cases
are actually equal to those in the 2D lenses [see Figs. 1(a)
and 1(c)]. These various horizon ranges can be attributed to
them, namely, they can be regarded as rescaled in the formof
2π
m . Whenm > 1, the horizon is less than 2π, and therefore in
the 2D generalized Poincaré lens there is an empty range of
2πð1 − 1

mÞ which avoids light arriving. Accordingly, the
horizonwill be larger than 2πwhenm < 1. As themaximum
range of the unit disk is only 2π, the extra range will get
folded, resulting the interlaced rays and the self-interference
wave pattern. However, the self-interferencewill not occur in
the 1D lens since the light range can be freely tuned along the
longitudinal direction. In addition, it is already known that
the rays are perpendicular to the circular horizon in the
Poincaré disk, hence in its corresponded 1D lens of m ¼ 1,
the rays are also perpendicular to the horizon wall. Since
rescaling only changes the horizon range, therefore, in the 1D
case, the rays will be perpendicular to the horizon wall. This
also indicates that in the generalized Poincaré lens, nomatter
what m is, all the rays are eventually perpendicular to the
circle of r ¼ 1 too.Meanwhile, it further verifies theprevious
discussion that if only considering the propagation of light in
the radial direction, the generalized de Sitter space and the
conventional de Sitter space will give the same results.
Figures 3(d)–3(f) are the wave simulations in the 1D lenses;
their patterns are consistent with the rays. Although there is a
finite horizon range in vertical direction, waves are not very
sharply cut off, and its boundaries form the caustics. Such a
property that light can be bound to a specific 1D range free of
the source location and wavelength is useful in the lighting
design. Imagine that light sources of different frequencies
can work in it at the same time, showing different colors in
different locations, as long as the geometrical optics approxi-
mation is satisfied. It is worth noting that the 1D lens is also
hyperbolic since conformal mapping will not change the
inherent topology; thus this lens may also serve as a
complementary platform for studying hyperbolic geometry.
Based on the above optical properties, here we imple-

ment a multiple source illusion effect in the generalized
Poincaré lens. In Fig. 2, it is noticed that the double images
of source can be observed in some area of the generalized
Poincaré lens, due to the attraction of the central cosmic

string with positive topological effect. Now, we turn to find
the application of the repulsive case when m > 1. For an
integerm, a light source can only illuminate the certain area
of the unit disk, i.e., 2πm . The other area is prohibited. If we
carefully place m sources into the generalized Poincaré
lens, the entire disk will be uniformly illuminated. Such a
scene looks like only one light source (the intensity times
m) is placed in the center of the disk. Therefore, the result
of multiple sources illusion is to create a virtual light source
in the origin. Figure 4 demonstrates the two sources and
three sources illusion effect. When m ¼ 2 in Fig. 4(a), the
field radiated from one source Að−0.2; 0Þ or Bð0.2; 0Þ can
only account for half disk, while two sources working
together will form a full cylindrical wave front. A similar
trick can be done in the case ofm ¼ 3 in Fig. 4(b), where the
sources are located in the vertices of an equilateral triangle.
We inspect their energy flow and discover that the distribu-
tion of Poynting vector field obeys the Poincaré-Hopf
theorem [41], which is to say, the index of the singularities
in the Poynting vector field sumover the lens is always 1 (the
Euler characteristic of the unit disk). The extracted vector
distributions are shown in the Figs. 4(c) and 4(d) for m ¼ 2
and m ¼ 3 respectively. The index for every real isolate
source like A, B or C is marked with þ1. However, in the

FIG. 4. Illusion effect in the generalized Poincaré lens, operat-
ing frequency is set as 3 GHz. (a) Illusion with two sources when
m ¼ 2. The source positions are at Að−0.2; 0Þ and Bð0.2; 0Þ.
(b) Illusion with three sources when m ¼ 3. The sources are at
Að−0.1;−0.1 ffiffiffi

3
p Þ, Bð0.2; 0Þ, and Cð−0.1; 0.1 ffiffiffi

3
p Þ. (c),(d) The

Poynting vector distribution extracted from the white box in (a)
and (b). A, B or C is the isolate source in the vector field with
index þ1 respectively. The origins are the saddle points. In (c),
the origin is a simple cross saddle with index −1 and in (d) it is a
double cross saddle with index −2. The sum of the indices in
(c) or (d) is 1, the Euler characteristic of the unit disk.
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origin, the virtual source is equipped with saddle-shaped
singularitywith the negative index. In Fig. 4(c) the saddle is a
simple cross point marked with index−1, while in Fig. 4(d),
it is a double cross point with index −2. Hence for all cases,
the sum of singularity index over the generalized Poincaré
lens always remains 1. The topological Poincaré-Hopf
theorem has been studied in optics to explain some important
optical phenomena, for instance, the electromagnetic multi-
poles and the formation of bound states in the continuum
[52]. Here we utilize the theorem to deal with the energy
distribution in the real space, and it also can be applied to
explain other optical illusion effects [49,53].

III. CONCLUSION

In summary, we propose the generalized de Sitter space
and generalized Poincaré lens as the general version of de
Sitter space and Poincaré disk. By analyzing the metric, we
find that the generalized de Sitter space has a kernel of 1D
cosmic string, which implies that light will be deflected by
the topological defect in such curved space-time. However,
when considering the purely radial case, the generalized de
Sitter space will give the same results as the de Sitter space.
The same radial analysis was also used in the Nariai
solution of Einstein’s field [50]. These inferences of
generalized de Sitter space are evidenced and visualized
in the equivalent generalized Poincaré lens. For the
negative topological defect, light creates a prohibited
region and confines itself to a finite area with a tunable
horizon. For the positive topological defect, light can
propagate throughout the entire lens, and generates a
specific self-interference region. All the light rays will
be perpendicular to the horizon no matter what the
topological defect is. To gain an instinctive view, the 1D
type of the generalized Poincaré lens is introduced and the
phenomena can be interpreted by the horizon rescaling. The
unique properties of the generalized Poincaré lens and its

1D lens can be used in beam steering, detection and
lighting design. We also implement an interesting multiple
source illusion effect of the lens, where the Poynting vector
naturally obeys the Poincaré-Hopf theorem. Although there
are extreme values of zero and infinite singularities in the
refractive index distribution of the generalized Poincaré
lens, it can be well solved by transmuting singularity [54]
and truncating lens [55], or utilizing its geodesic lens [56].
Moreover, all the new optical lenses proposed here belong
to the category of hyperbolic geometry, demonstrating the
great potentials of manipulating light in non-Euclidean
manifolds, which is essentially different from the
dispersion engineering with artificial or natural hyperbolic
materials [57]. Besides, the hyperbolic band theory is
attracting growing attention recently [58], and the new
lattice distance metric in the generalized Poincaré lens may
offer a new platform to study the band property with
inherent topological defects. Indeed, optics is a powerful
and fertile soil for visualizing astronomy, and it is believed
that the product, the generalized Poincaré lens combining
these two fields, will inspire other interesting works in
the future.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grants No. 92050102 and
No. 11904006), the National Key Research and Develop-
ment Program of China (Grant No. 2020YFA0710100),
Shenzhen Science and Technology Program (Grant
No. JCYJ20210324121610028), Fundamental Research
Funds for the Central Universities (Grants
No. 20720220033 and No. 20720200074), and the
National Science Foundation of Anhui Province of China
(Grant No. 1908085QA20). W. X. acknowledges China
Scholarship Council for financial support.

[1] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Relativity 14, 3 (2011).

[2] Analogue Gravity Phenomenology: Analogue Spacetimes
and Horizons, from Theory to Experiment, edited by D.
Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati,
and U. Moschella (Springer, Cham, 2013).

[3] W. G. Unruh, Experimental Black-Hole Evaporation?, Phys.
Rev. Lett. 46, 1351 (1981).

[4] P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks,
Analogue Hawking Radiation in a dc-SQUID Array Trans-
mission Line, Phys. Rev. Lett. 103, 087004 (2009).

[5] J. Steinhauer, Observation of quantum Hawking radiation
and its entanglement in an analogue black hole, Nat. Phys.
12, 959 (2016).

[6] J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U.
Leonhardt, Observation of Stimulated Hawking Radiation in
an Optical Analogue, Phys. Rev. Lett. 122, 010404 (2019).

[7] U. Leonhardt, Optical conformal mapping, Science 312,
1777 (2006).

[8] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling
electromagnetic fields, Science 312, 1780 (2006).

[9] H. Chen, C. T. Chan, and P. Sheng, Transformation optics
and metamaterials, Nat. Mater. 9, 387 (2010).

[10] U. Leonhardt and T. G. Philbin, General relativity in
electrical engineering, New J. Phys. 8, 247 (2006).

[11] H. Chen, R.-X. Miao, and M. Li, Transformation optics that
mimics the system outside a Schwarzschild black hole, Opt.
Express 18, 15183 (2010).

DE SITTER SPACE WITH GENERALIZED POINCARÉ LENS PHYS. REV. D 106, 023507 (2022)

023507-7

https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.103.087004
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1125907
https://doi.org/10.1038/nmat2743
https://doi.org/10.1088/1367-2630/8/10/247
https://doi.org/10.1364/OE.18.015183
https://doi.org/10.1364/OE.18.015183


[12] I. I. Smolyaninov and E. E. Narimanov, Metric Signature
Transitions in Optical Metamaterials, Phys. Rev. Lett. 105,
067402 (2010).

[13] C. Sheng, H. Liu, H. Chen, and S. Zhu, Definite photon
deflections of topological defects in metasurfaces and
symmetry-breaking phase transitions with material loss,
Nat. Commun. 9, 4271 (2018).

[14] S. Tao, W. Xiao, and H. Chen, Light behaviors outside a
black hole surrounded by dark matter, Europhys. Lett. 136,
14002 (2021).

[15] S. R. Boston, Time travel in transformation optics: Meta-
materials with closed null geodesics, Phys. Rev. D 91,
124035 (2015).

[16] D. Figueiredo, F. Moraes, S. Fumeron, and B. Berche,
Cosmology in the laboratory: An analogy between hyper-
bolic metamaterials and the Milne universe, Phys. Rev. D
96, 105012 (2017).

[17] R. Q. He, G. H. Liang, S. N. Zhu, and H. Liu, Simulation of
giant tidal force of wormhole using curved optical spaces,
Phys. Rev. Research 2, 013237 (2020).

[18] D. A. Genov, S. Zhang, and X. Zhang, Mimicking
celestial mechanics in metamaterials, Nat. Phys. 5, 687
(2009).

[19] U. Leonhardt and T. Philbin, Geometry and Light:
The Science of Invisibility (Dover, New York, 2010),
pp. 20–27.

[20] C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov,
Trapping light by mimicking gravitational lensing, Nat.
Photonics 7, 902 (2013).

[21] R. A. Tinguely and A. P. Turner, Optical analogues to the
equatorial Kerr-Newman black hole, Commun. Phys. 3, 120
(2020).

[22] W. Xiao, S. Tao, and H. Chen, Mimicking the gravitational
effect with gradient index lenses in geometrical optics,
Photonics Res. 9, 1197 (2021).

[23] H. Chen, S. Tao, J. Bělín, J. Courtial, and R.-X. Miao,
Transformation cosmology, Phys.Rev.A102, 023528 (2020).

[24] U. Moschella, The de Sitter and anti-de Sitter sightseeing
tour in Einstein, 1905–2005, edited by T. Damour, O.
Darrigol, B. Duplantier, and V. Rivasseau, Progress in
Mathematical Physics Vol. 47 (Birkhäuser Verlag, Basel,
2006), pp. 120–133.

[25] U. Leonhardt, Perfect imaging without negative refraction,
New J. Phys. 11, 093040 (2009).

[26] S. Li, Y. Zhou, J. Dong, X. Zhang, E. Cassan, J. Hou, C.
Yang, S. Chen, D. Gao, and H. Chen, Universal multimode
waveguide crossing based on transformation optics, Optica
5, 1549 (2018).

[27] S. H. Badri and M.M. Gilarlue, Maxwell’s fisheye lens as
efficient power coupler between dissimilar photonic crystal
waveguides, Optik (Stuttgart) 185, 566 (2019).

[28] Y. Zhou, Z. Hao, P. Zhao, and H. Chen, Solid Immersion
Maxwell’s Fish-Eye Lens Without Drain, Phys. Rev. Ap-
plied 17, 034039 (2022).

[29] T. Needham, Visual Complex Analysis (Oxford University
Press, New York, 1998), pp. 293–322.
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