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Gravitational dark matter (DM) is the simplest possible scenario that has recently gained interest in the
early Universe cosmology. In this scenario, DM is assumed to be produced from the scattering of inflatons
through the gravitational interaction during reheating. Gravitational production from the radiation bath will
be ignored as our analysis shows it to be suppressed for a wide range of reheating temperatures ðTreÞ.
Ignoring any other internal parameters except the DMmass ðmYÞ and spin, a particular inflation model such
as α attractor, with a specific scalar spectral index ðnsÞ has been shown to uniquely fix the DM mass of the
present Universe. For fermion type DM, we found the mass mf should be within ð104–1013Þ GeV, and for
boson/vector type DM, the mass ms=mX turned out to be within ð1.2 × 10−14=9.6 × 10−14–1013Þ GeV.
Interestingly, if the inflaton equation of state ωϕ → 1=3, the DM mass also approaches towards unique

value,mf ∼ 1010 GeV andmsðmXÞ ∼ 103ð8 × 103Þ GeV. We further analyzed the phase space distribution
fY and free streaming length λfs of these gravitationally produced DM. fY , which is believed to encode
important information about DM, contains a characteristic primary peak at the initial time where the
gravitational production is maximum for both fermionic and bosonic DM. Apart from this fermionic phase
space, the distribution function contains an additional peak near the inflaton and fermion mass equality
(mY ∼mϕ) arising for ωϕ > 5=9. Furthermore, the height of this additional peak turned out to be increasing
with decreasing Tre and at some point, dominates over the primary one. Since reheating is a causal process
and DM is produced during this phase, gravitational instability forming small-scale DM structures during
this period will encode those phase space information and be observed at present. The crucial condition of
forming such a small-scale DM structure during reheating suggests that the λfs must be less than the length
scale associated with the mode reentering the Hubble radius at the end of reheating λre, which has been
analyzed in detail. We further estimate in detail the range of scales within which the above condition will be
satisfied for different masses of scalar, fermionic, and vector DM. Finally, we end by stating the fact that all
our results are observed to be insensitive on the parameter α of the inflaton potential within the allowed
range set by the latest Planck and BICEP/Keck results.

DOI: 10.1103/PhysRevD.106.023506

I. INTRODUCTION

Cosmological observation over more than half a century
made us believe that the observable Universe is made of
visible and invisible components [1–8].Regarding thevisible
components, we have acquired and inculcated a great deal of
knowledge about its very existence and fundamental proper-
ties. However, apart from the existential evidences through
multiple observations such as galaxy rotation curve, large
scale structure, and cosmic microwave background (CMB)
[1,9–13], the invisible components are far from our present

understanding. Gravitational dark matter (DM) is one of the
invisible components that attracts lot of attention due to its
seemingly unavoidable entente with the visible components
in quantum field theoretic framework [14–35]. Even though
very few effective field theory parameters such as the mass
and cross section are sufficient to explain the very existence
of DM, ignorance/nondetection [36–40] of its fundamental
characters may seem indicative to suffering of going beyond
the present framework of experimental and theoretical
approaches [41–44]. A list of conventional particle physics
approaches towardsDMproduction being nearly exhaustive,
ideas of the gravitational mechanism of DM [45–56] seem to
suggest that the simplest possibilities going beyond the
convention still have a lot of unexplored provisions.
Gravity so far plays an extremely passive role in under-
standing the physical properties of standard model particles.
However, difficulties in incorporating gravity in the quantum
field theory framework are the fundamental reason behind
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this. Nevertheless, based on our present understanding, the
physical laws depend on the energy scale of interest. At low
energy (≲1 TeV), the SM particles may have effectively
isolated themselves fromgravity as long as their fundamental
properties are concerned. At high energy, however, this must
not be true; rather, particles and gravity may not have
independent identities on their own. String theory is an
elegant example that subscribes to such an idea. The
gravitational production of DM may fall along this line of
thought. At the classical level, Einstein’s equivalence prin-
ciple suggests that gravity universally couples with particles
irrespective of their intrinsic properties except for mass.
However, if we tend to apply this at the quantum level, where
two different particle sectors are coupled through gravitons,
the production cross section does depend on the intrinsic
properties such as spin and charge, hence violating the
equivalence principle. In this paper, we study one of such
scenarios where DM is produced through inflaton annihilat-
ing into fermion/bosonic through s-channel graviton
exchange. Given an inflationary model, our focus will be
on the reheating phase of the Universe. Considering the
reheating phase with matter domination, such a scenario has
already been studied [48,49]. We generalize such a study for
an arbitrary reheating equation of state. We also include the
effect of production from the radiation bath for completeness.
Hence, the produced DM will have thermal and nonthermal
components that are generically noncold in nature. These
different production mechanisms of noncold DM lead us to
further study in detail their phase-space distribution and free
streaming length depending upon the reheating equation of
state. We will see how depending upon the type of DM, the
distribution function contains distinct features and its
dependence on the reheating equation of state. Those proper-
ties play a significant role in the clustering of matter on
galactic and subgalactic scales [57–59]. Observing those
small scale matter power spectra by mapping the Lyman-α
[60–67] forest of absorption lines of light from low redshift
ðz ¼ 2–4Þ quasars can differentiate different noncold DM
production mechanism and their intrinsic properties.

II. BOLTZMANN FRAMEWORK

After the period of exponential expansion, the inflaton
field begins to oscillate around its minima with a decaying
amplitude. In the framework of quantum field theory, the
time-dependent inflaton field can naturally decay into
various daughter fields such as radiation, DM particles,
etc. However, the decay process nontrivially depends on the
inflaton coupling with those daughter fields. In order to
have successful reheating, the inflaton is generically
assumed to have direct coupling with the radiation field,
which will be the dominating component after the end of
reheating. However, due to its subdominant nature, the
probability of the solely gravitational production of DM
can survive in some region of parameter space, which has
already been observed in [48]. In this section, we first

describe the framework of such a scenario. For complete-
ness, DM is assumed to be produced from the radiation
bath with a thermal-averaged cross section hσvi as a free
parameter and annihilation of inflatons through gravita-
tional interaction. However, still, there is an assumption in
our DM production framework that the inflaton sector
coupled with the DM sector through only gravitational
interaction; therefore, we ignore any nongravitational
interaction between inflaton and DM. The gravitational
production of DM has been proved to be dominated by the
annihilation of inflaton zero modes through the s-channel
graviton exchange process; namely, ϕϕ → SS=ff=XX,
where ϕ is the inflaton and S, f, and X indicate scalar,
fermionic, and vector DM, respectively [51–53]. The
interaction Lagrangian for s-channel gravitational produc-
tion of DM can be universally described by the coupling of
the DM energy-momentum tensor Tμν with the tensor
metric perturbation hμν as [45–47]

L ¼ 1

2Mp
ðhμνTμν

ϕ þ hμνT
μν
S=f=XÞ: ð1Þ

With this action, the associated production rate of DM can
be calculated from the scattering or annihilation rate
identified as [48,50]

Γϕϕ→SS ¼
ρϕmϕ

1024πM4
p

�
1þ m2

s

2m2
ϕ
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; ð2Þ
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�
;

ð4Þ

wherems=f=X is the mass of the scalar, fermionic, and vector
DM, respectively, and the effective mass of the inflaton is
symbolized as mϕ. At this point, we would like to point out
that gravitational production of DM from radiation is also
possible, and the production rate per unit time per unit
volume is followed by Eq. (30). Such production is strongly
suppressed compared to the production from inflaton, which
we have shown in Sec. V. However, for a high reheating
temperature 1015 ≳ Tre ⪆1013 GeV, fermion type DM
gravitationally produced from the radiation bath has been
observed to satisfy the correct abundance in a certain range
of fermion mass. We have numerically checked the results
(see section-V for details).Wewill not include this possibility
in detail in our subsequent mathematical discussions.
However, we will describe the numerical results of such a
scenario as we go along.
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We investigate the detailed dynamics of reheating by
solving the following Boltzmann equations with three
density components for inflaton ρϕ, radiation ρr, and the

total DM number density nY ¼ ðnrY þ nϕYÞ as [68–70]
_ρϕ þ 3Hð1þ ωϕÞρϕ þ ðΓϕ þ Γϕϕ→YYÞρϕð1þ ωϕÞ ¼ 0;

ð5Þ
_ρr þ 4Hρr − Γϕρϕð1þ ωϕÞ

− 2hσvihEYir½ðnrYÞ2 − ðneqY Þ2� ¼ 0; ð6Þ
_nrY þ 3HnrY þ hσvi½ðnrYÞ2 − ðneqY Þ2� ¼ 0; ð7Þ

_nϕY þ 3HnϕY −
ρϕð1þ ωϕÞ

hEYiϕ
Γϕϕ→YY ¼ 0; ð8Þ

where the inflaton energy density is transferred into the
radiation with a constant decay width Γϕ. Furthermore, nrY
and nϕY are the DM number density associated with the
production from the thermal bath [68] and the scattering of
the inflaton field through gravitational interaction, respec-

tively. hEYir ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Y þ ð3TradÞ2
p

and hEYiϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Y þm2
ϕ

q
are the average energy per DM particle produced from the
thermal bath [68] and the scattering of inflatons, respec-
tively. The equilibrium number density of the DM particles
can be expressed by the modified Bessel function of the
second kind as

neqY ¼ egYT3
rad

2π2

�
mY

Trad

�
K2

�
mY

Trad

�
: ð9Þ

Additionally, the energy associated with each gravita-
tionally produced DM particle can be calculated from
the energy and momentum conservation of the annihilation-
like ϕϕ → SS=ff=XX process as

0 ¼ p1 þ p2; 2mϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

Y

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þm2

Y

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

Y

q
: ð10Þ

Here, p1 and p2 are the momenta of two gravitationally
produced DM particles. The above equations assume the
fact that the homogeneous background inflaton is at rest,
and hence, the energy stored in each gravitationally
produced DM particle will be of the order of mϕ. In order
to solve the above set of Boltzmann equations, we define
the following dimensionless variables corresponding to
different energy components:

Φ¼ρϕA3ð1þωϕÞ

ðmend
ϕ Þ4 ; R¼ ρrA4

ðmend
ϕ Þ4 ; Y

r¼ nrYA
3

ðmend
ϕ Þ3 ; Y

ϕ¼ nϕYA
3

ðmend
ϕ Þ3 ;

ð11Þ

where A ¼ a=aend and mend
ϕ are the normalized scalar

factor and the effective mass of the inflaton field at the
end of the inflation, respectively. mend

ϕ ¼ ∂
2
ϕVðϕendÞ. This

modification factor mend
ϕ increases the stability of the

numerical solution. In terms of new dimensionless varia-
bles, Eqs. (5)–(8) can be written as

Φ0 ¼ −c1ðΓϕ þ Γϕϕ→YYÞ
A1=2Φ
H

;

R0 ¼ c1Γϕ
A

3ð1−2ωϕÞ
2 Φ
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þ 2
ffiffiffi
3

p A−3=2hσvihEYirMp

H
× ½ðYrÞ2 − Y2

eq�;

ðYrÞ0 ¼ −
ffiffiffi
3

p A−5=2hσviMpmend
ϕ

H
½ðYrÞ2 − Y2

eq�;

ðYϕÞ0 ¼ c1Γϕϕ→YY
A

1
2
−3ωϕΦ
H

�
mend

ϕ

hEYiϕ
�
; ð12Þ

where

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ

A3ωϕ
þ R
A
þ YrhEYir

mend
ϕ

þ YϕhEYiϕ
mend

ϕ

s
;

c1 ¼
ffiffiffi
3

p
Mpð1þ ωϕÞ
ðmend

ϕ Þ2 : ð13Þ

A. Model of inflation

We will focus on a class of models called the α-attractor
model [71,72], which unifies the large class of inflationary
models parametrized by α and n. Here, we would like to
mention that the canonical property of this class of models
predicts inflationary observables (ns; r) in favor of Planck
observation [1,73]. The α-attractor E model has the defin-
ing inflaton potential,

VðϕÞ ¼ Λ4
h
1 − e−

ffiffiffi
2
3α

p
ϕ
Mp

i2n
; ð14Þ

where Λ is the mass scale that can be fixed by the CMB
power spectrum, which is of the order of ∼8 × 1015 GeV.
Moreover, for n ¼ 1, α ¼ 1, the α-attractor model turns out
as the Higgs-Starobinsky model [74,75]. To this end, we
would also like to point out that the recent Planck and
BICEP/Keck combined result has put a constraint on
the α to be ∼ð1–12Þ [76] within 1σ of the ns value [77].
Throughout our study, we set α ¼ 1 and vary n.
Importantly, we have checked that changing α within the
aforementioned range does not significantly change our
results. Let us first try to establish the relationship between
the potential parameters with inflationary parameters. For
the potential (14), the inflationary e-folding numberNk and
tensor to scalar ratio r can be expressed as [78]
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Nk ¼
3α

4n

�
e
ffiffiffi
2
3α

p
ϕk
Mp − e

ffiffiffi
2
3α

p
ϕend
Mp −

ffiffiffiffiffiffi
2

3α

r
ðϕk − ϕendÞ

Mp

�
;

r ¼ 64n2

3α
�
e
ffiffiffi
2
3α

p
ϕk
Mp − 1

�2 : ð15Þ

Here, ϕk and ϕend denote the values of the scalar field ϕ at
the Hubble crossing of a particular mode k and the end of
the inflation, respectively. From the condition of the end of
the inflation ϵvðϕendÞ ¼ 1

2M2
p
ðV 0ðϕendÞ=VðϕendÞÞ2 ¼ 1, the

value of the field and the potential at the end of the inflation
are

ϕend ¼
ffiffiffiffiffiffi
3α

2

r
Mp ln

�
2nffiffiffiffiffiffi
3α

p þ1

�
; Vend ¼Λ4

�
2n

2nþ ffiffiffiffiffiffi
3α

p
�

2n
:

ð16Þ

For a given canonical inflaton potential VðϕÞ, the infla-
tionary observables can be related to the slow-roll param-
eters and the Hubble parameter at the point when the mode
with wave number k crosses the horizon,

ns ¼ 1 − 6ϵvðϕkÞ þ 2ηvðϕkÞ; r ¼ 16ϵvðϕkÞ;

Hk ¼
πMp

ffiffiffiffiffiffiffi
rAs

pffiffiffi
2

p ≃
VðϕkÞ
3M2

p
; ð17Þ

where the slow-roll parameters can be expressed as

ϵv ¼
M2

p

2

�
V 0ðϕÞ
VðϕÞ

�
2

; jηvj ¼ M2
p
jV 00ðϕÞj
VðϕÞ : ð18Þ

As is the amplitude of the inflaton fluctuation, which is
measured from the CMB observation. The above Eq. (17)
can be inverted to give the field value ϕk as

ϕk¼
ffiffiffiffiffiffi
3α

2

r
Mp ln

�
1þ4nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16n2þ24αnð1þnÞð1−nsÞ

p
3αð1−nsÞ

�
:

ð19Þ

Plugging the above expression of ϕk into theHk expression
of (17), one can determine the mass scale Λ as

Λ¼Mp

�
3π2rAs

2

�
×

�
2nð1þ 2nÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2þ 6αð1þnÞð1−nsÞ

p
4nð1þnÞ

�n
2

: ð20Þ

In order to solve the Boltzmann equations (12), one needs
to replace the inflaton field variable in terms of its
oscillation average, which can be further expressed in
terms of the energy density of the inflaton. Such an average
over oscillation period provides the following relation:
VðϕðtÞÞ ¼ ρϕðtÞ [79]. By using this, the effective mass mϕ

of the inflaton can be expressed in terms of inflaton energy
density during reheating as

m2
ϕ ¼ −

4nρϕðf1 − ðρϕΛ4Þ 1
2ng−1 − 2nÞ

3αðf1 − ðρϕΛ4Þ 1
2ng−1 − 1Þ2M2

p

≃ 2nð2n − 1Þλ1
nρ

n−1
n
ϕ ;

ð21Þ
under the assumption that the near the minima, the potential
of the form of the α-attractor potential be VðϕÞ ≃ λϕ2n.

Where λ ¼ Λ4ð
ffiffiffiffi
2
3α

q
1
Mp
Þ2n. For n ¼ 1 model, the inflaton

mass turns out to be mϕ ≃ ð2Λ2Þ=ð ffiffiffiffiffiffi
3α

p
MpÞ. After iden-

tifying all of the required parameters during inflation, one
can set initial conditions for subsequent reheating dynam-
ics, which in turn provide important relationships among
the reheating parameters, namely the reheating temperature
Tre and e-folding number Nre in terms of ðns; rÞ. Therefore,
we can establish the relations between the CMB anisotropy
and reheating era via inflation.

B. Reheating parameters and observable constraints

In order to solve Boltzmann equations numerically, the
initial conditions for the dimensionless comoving densities
are set at the end of inflation,

ΦðA ¼ 1Þ ¼ 3

2

Vend

ðmend
ϕ Þ4 ;

RðA ¼ 1Þ ¼ YrðA ¼ 1Þ ¼ YϕðA ¼ 1Þ ¼ 0: ð22Þ
Combining Eqs. (16), (20), and (22), we can clearly see that
the initial condition of the reheating dynamics strictly
depends on the CMB parameters such as ns, r, As, and
the exponent of the potential n that, in turn, is related to the
inflaton equation of state ωϕ following the relation ωϕ ¼
ðn − 1Þ=ðnþ 1Þ [80] (for the potential of the form ∼ϕ2n).
Throughout our analysis, we consider a fixed value of As,
which is the central value of As ¼ 2.1 × 109 from Planck
[81]. Furthermore, ns and r can be related through Eq. (17).
Therefore, reheating parameters such as the reheating
temperature turns out to be a function of ns, ωϕ, and the
decay term Γϕ. Once we solve the Boltzmann equations
numerically during reheating, the reheating temperature
can be identified at the point where the total interaction rate
ΓT ¼ Γϕ þ Γϕϕ→YY satisfies the following condition:

HðAreÞ2 ¼
�
_Are

Are

�2

¼ ρϕðΓϕ; Are; nsÞ þ ρrðΓϕ; Are; nsÞ þ ρYðΓϕ; Are; nsÞÞ
3M2

p
¼ Γ2

T; ð23Þ
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where Are ¼ are=aend is the normalized scale factor at the
end of reheating. To this end, let us point out that the above
condition may not necessarily always be satisfied. For
those situations, ρϕ ¼ ρR, can be used. Such a situation
may arise when the dilution of radiation due to expansion
is faster than the production, which may happen for
ωϕ > 1=3. We will discuss such scenarios in detail in
our subsequent paper. Since the gravitational interaction
rate is Planck suppressed [see, for instance, Eqs. (2)–(4)], at
the point of reheating end, the gravitational production rate
of the DM from inflaton is subdominant compared to the
decay rate of the inflaton, Γϕϕ→YY jA¼Are

≪ Γϕ. Therefore,
we can safely approximate the total interaction rate at the
end point of reheating as ΓT ≃ Γϕ. This will be useful for
our analytic computation of the reheating parameters.
Furthermore, the reheating temperature can be expressed
in terms of radiation temperature as

Tre ¼ Tend
rad ¼

�
30

π2gre

�
1=4

ρrðΓϕ; Are; nsÞ1=4: ð24Þ

We can also relate the reheating temperature to the
present CMB temperature under the assumption that after
reheating, entropy is preserved in the CMB and neutrino
background today; that leads to the following constraint
relation:

Tre ¼
�

43

11gs;re

�1
3

�
a0T0

k

�
Hke−Nke−Nre ¼ Ge−Nre ; ð25Þ

where G ¼
�

43

11gs;re

�1
3

�
a0T0

k

�
Hke−Nk: ð26Þ

At the present CMB temperature, T0 ¼ 2.725k, the CMB
pivot scale of Planck k=a0 ¼ 0.05 Mpc−1, a0 is the
cosmological scale factor at present, and gs;re is the degrees
of freedom associated with entropy at reheating. Utilizing
Eqs. (23), (24), and (25), we can fix Γϕ in terms of Tre.
Since Tre is a function of ns, there must be a one-to-one
correspondence between the parameters ns, Tre, and Γϕ

once we fixed ωϕ. Furthermore, cosmological observation
on the DM abundance ΩYh2 provides a second constraint
relation as [81,82]

ΩYh2 ¼ mY
ðYrðAFÞ þ YϕðAFÞÞ

RðAFÞ
TFAF

Tnowmend
ϕ

Ωrh2 ¼ 0.12;

ð27Þ

where the present day radiation abundance ΩRh2 ¼ 4.3 ×
10−5 and TF is the radiation temperature determined at a
very late time AF, when both comoving radiation and DM
energy density became constant. Solving Boltzmann equa-
tions and utilizing the conditions mentioned in Eqs. (25)

and (27), we can constrain the DM parameters ðhσvi; mYÞ
in terms of ðTre; nsÞ. The DM particles produced from a
radiation bath populated the early Universe with two
possible mechanisms: 1) The produced DM particles reach
thermal equilibrium, and as the temperature falls below
the DM mass, the number density of DM freezes out. This
mechanism is referred to as the freeze-out mechanism
[83–90]. 2) The interaction of the DM particles with the
radiation bath could be too weak to attain thermal equi-
librium before it freezes out. This mechanism is referred to
as the freeze-in [91] mechanism, and the produced DM
particles are generally known as feebly interacting DM
(FIMP) [17–26]. For gravitationally produced DM, the
freeze-in mechanism will be effective, and DM produced
from the radiation bath will have both possibilities of
freeze-in and freeze-out production. However, we will
consider the freeze-in mechanism for both the DM sector.

III. CONSTRAINING THE DARK SECTOR

As already emphasized in the beginning, the production
of gravitational DM is an interesting, physically motivated
scenario that needs detailed exploration. Following the
references on gravitational DM [45–48,50], in this paper,
we explore the observationally viable DM scenarios in
terms of different inflationary models. Important reheating
parameters, such as the equation of state ωϕ associated with
the inflaton potential and reheating temperature Tre, will
play an important role in constraining the parameters such
as the maximum possible mass of the DM. Moreover, since
we consider the DM production from the radiation bath, we
also place constraints on the average cross section times
velocity hσvi. The dark sector may have different possibil-
ities in terms of the nature of the DM and the number of
components.

A. Single component DM

In our present framework, we have two different
underlying production mechanisms. To understand the
construction from each, one examines the evolution of
different density components during reheating, as shown in
Fig. 3. The production of DM components due to gravity
mediation will naturally occur at the very beginning of the
reheating phase when the inflation energy density is
maximum, and this is depicted by the green curve. On
the other hand, the DM production from the radiation bath
will follow the evolution of radiation itself, which is
depicted by a solid red curve. Therefore, maximum
production will naturally occur near the end of reheating,
as depicted by the solid black line. Finally, combining both
the gravitational production and production from the
radiation bath will contribute to the current DM abundance.
An interesting aspect of such products of the same type of
DM from two different mechanisms is that it will lead to a
mixture of components with different velocity distribution,
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whose density perturbation may grow differently and
provide distinct signatures in the small scale structure,
which will be studied in our future publication.
Anyway, for the case of a purely gravity-mediated

scenario, the mass of the DM is the only parameter.
Therefore, in this scenario, reheating dynamics are con-
trolled by two parameters ðΓϕ; mYÞ and two constraints
relations Eqs. (25) and (27). Hence, the dynamics are
determined completely by the inflation model under con-
sideration instead of the nongravitational DM production
scenario, which contains an annihilation cross section as an
additional parameter. A large class of inflationary models
such as α-attractor endows with a degenerate prediction of
large scale observables, namely, scalar spectral index ðnsÞ
and tensor to scalar ratio (r) but with distinguishing
properties in terms of their effective inflaton equation of
state ωϕ during reheating. Such degeneracy can be lifted
during reheating, considering various other observables.
For example, primordial gravitational waves encode dis-
tinct signatures depending on the reheating equation of
state [92,93]. In our present analysis, also for a given
equation of state ωϕ, solely gravitationally produced DM
will assume a distinct value of its mass mmax

Y compatible
with the DM abundance as can be seen in the Figs. 1 and 2,
and the shaded yellow regions are the only allowed
parameter plane that are either bounded by the value of

ωϕ ∼ ð0; 1Þ or by the minimum Tmin
re ≃ 10−2 GeV set by the

Big Bang nucleosynthesis (BBN) and maximum Tmax
re ≃

1015 GeV set by the instantaneous reheating. Therefore,
simple DM mass produced gravitationally during reheating
can give valuable information about inflaton potential. An
important point we should remember is that the condition
H ¼ Γϕ leads to a unique reheating temperature Tre for a
given ns, and this is precisely the reason the present DM
abundance is satisfied for a fixed DM mass. However, the
suffix “max” in mmax

Y is due to the reason that this is the
maximum possible DMmass in the (hσviVsmY) plane that
satisfies the abundance ΩYh2 ¼ 0.12, when finite DM
coupling with the radiation bath is included in the process;
and it is in the limit hσvi → 0, when mY → mmax

Y as shown
in Figs. 4 and 5. The generic expression of mmax

Y is derived
as

mmax
Y ¼ GβTnow

nreY A
3
re

�
ΩYh2

Ωrh2

�
now

;

where Are ¼
�
12M2

pH2
endð1þ ωϕÞ2

G4βð5 − 3ωϕÞ2
� −1

ð1−3ωϕÞ
: ð28Þ

The number density nreY is calculated at the end of reheating
with normalized scale factor Are and associated expressions
for each component are

FIG. 1. Upper panel: The variation of the maximum allowed values of the DM mass (mmax
Y ) as a function of the scalar spectral index

(ns) corresponding to the fixed value of the DM abundance ΩYh2 ≃ 0.12 for the cases wherein ωϕ ¼ ð0; 0.2; 0.29; 0.39; 0.5; 0.67; 0.99Þ
(in green, red, black, orange, blue, magenta, and purple). We have considered the scenario where the α-attractor model describes the
inflationary dynamics. We have indicated the 1-σ range of spectral index ns (as the violet band) associated with the constraints from the
Planck [1]. Further, the sky blue band corresponds to the DMmasses lighter than 10 KeV, indicating the Lyman-α bound [67,94]. Lower
panel: We have illustrated the variation of the reheating temperature as a function of the maximum allowed DM mass for seven different
values of ωϕ covering the entire possible range of ωϕð0; 1Þ. Further, the yellow region shows the allowed parameters space, whereas the
light green indicates the forbidden region.
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nreX ≈
3

4096π

ð1þ ωϕÞ
ð1þ 3ωϕÞ

�
Hend

Are

�
3

;

nres ≈
3

512π

ð1þ ωϕÞ
ð1þ 3ωϕÞ

�
Hend

Are

�
3

;

nref ≈
m2

fλ
ωϕ−1
ωϕþ1νðωϕÞ

4096πð1þ 3ωϕÞðH2
endM

2
pÞ

2ωϕ
1þωϕ

�
Hend

Are

�
3

¼ 3

2048π

1þ ωϕ

1 − ωϕ

�
mf

mend
ϕ

�
2
�
Hend

Are

�
3

: ð29Þ

We should emphasize at this point that the above expres-
sion for the DM mass is sensitive to ðHend;ωϕÞ. Detailed
derivation and the associated symbols of the above expres-
sions are given in the Appendix A. Any value of the DM
mass above mmax

Y is excluded because of overabundance.
In Fig. 1, we have shown the allowed DM masses mmax

Y
as a function of the spectral index and reheating temper-
ature for different inflaton equations of state ωϕ ¼
ð0; 0.2; 0.29; 0.39; 0.50; 0.67; 0.99Þ and assumed different
single component DM species namely, scalar, fermion, and
vector. Therefore, we cover the whole possible range of
inflaton equation of states ωϕ ¼ ð0; 1Þ, and the allowed
parameter space is shown by the shaded yellow region in
the ðTre −mmax

Y Þ plane. It suggests that for the entire range

of inflaton equations of state between (0, 1), the allowed
mass of the scalar/vector DM must lie between
ð1.2 × 10−14=9.6 × 10−14; 1013Þ GeV. And for the fer-
mionic DM, the possible range turns out to be
ð104; 1013Þ GeV. Here, one should notice the distinct mass
range allowed for the DM for boson and fermion. Bosonic
DM mass can be as low as in the eV range, which can be
identified as an axionlike particle. It would be interesting
to study in detail along this direction. Anyway, as has
already been pointed out, there is a one to one corres-
pondence between the DM mass and the reheating temper-
ature; we provide possible constraints on the value of
(ns; Tre; mmax

Y ) in terms of different inflaton equations of
states in Table I. To determine the possible bound on the
minimum value of the DM mass, we use the additional
constraints arising from the Lyman-α forest dataset, which
in turn imposes further restrictions on the inflationary and
reheating parameters (ns; Tre). Additionally, in Fig. 2, we
have shown the allowed DM mass as a function of the
inflaton equation of state for different sets of reheating
temperature. Interestingly, depending upon the inflaton
equation of state, the allowed DM mass range changes
and shrank to the same point corresponding to the maxi-
mum reheating temperature Tmax

re ∼ 1015 GeV. This point
also indicates the result for ωϕ → 1=3 because for ωϕ ¼
1=3, reheating happens instantaneously with reheating

FIG. 2. The variation of the maximum allowed DM mass mmax
Y over a range of inflaton equation of state ωϕ ¼ ð0; 1Þ for five different

values of the reheating temperature Tre ¼ ð10−2; 103; 106; 1010; 1015Þ GeV (showed in magenta, black, blue, green, and red). The
sky blue band indicates restriction from Lyman-α observations, and the yellow shaded region indicates the allowed parameters in
mmax

Y − ωϕ plane.

TABLE I. Different inflaton equation of state, associated bound on scalar spectral index (ns), reheating temperature Tre (measured in
units of GeV), and DM mass mY (measured in units of GeV), considering purely gravitational production of DM.

Parameters

ωϕ ¼ 0 ωϕ ¼ 0.5 ωϕ ¼ 0.99

ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX

nmin
s 0.9596 0.9604 0.9601 0.9648 0.9648 0.9648 0.9645 0.9645 0.9645

nmax
s 0.9656 0.9656 0.9656 0.9672 0.9672 0.9672 0.9676 0.9700 0.9680

Tmin
re 1.8 × 104 3.5 × 105 1.1 × 105 10−2 10−2 10−2 1.4 × 107 10−2 1.5 × 106

Tmax
re 1015 1015 1015 1015 1015 1015 1015 1015 1015

mmax
Y ðminÞ 960 8.0 × 109 7.7 × 103 1.1 × 10−3 6.1 × 107 9.0 × 10−3 10−5 1.4 × 104 10−5

mmax
Y ðmaxÞ mend

ϕ mend
ϕ mend

ϕ 600 5.0 × 109 5.0 × 103 640 6.0 × 109 7.0 × 103
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temperature Tre ∼ 1015 GeV. The analytic expression of
that specific mass [cf. Eqs. (28) and (29)] turned out to be
dependent on the two factors, inflation energy scale Hend
and inflaton equation of state ωϕ. Moreover, the possible
bound on the inflaton equation of state and the mass of the
DM for different sample values of reheating temperatures
are shown in Table II.
When DM production from a radiation bath is included

in the reheating process, Figs. 4 and 5 depict the region of
the allowed cross section hσvi in terms of ns for two distinct
values of the inflaton equations of state ωϕ ¼ ð0; 0.5Þ,
respectively. It is clear from the figures that for finite cross
sections with mY < mmax

Y , the production from a radiation
bath is always dominating compared to that of gravitational
production. However, as one approach towards mmax

Y ,

gravity mediated DM production is increasingly dominated
considering the fixed value of ΩYh2 ≃ 0.12. This fact
entails the value of hσvi approaching towards zero for
not to overproduce the DM. Another important point is to
note that for mY > Tre, there always exists a maximum
cross section for a given temperature once we fixed ωϕ. In
the in-set of all the figures, we show how the cross section
is approaching zero and gravitational DM contributes to the
abundance. The last three plots of Figs. 4 and 5 also show
the similar behavior in the hσvi vs mY) plane near the
maximum possible DM mass.
Due to the entropy conservation constraint, we generally

observe that the reheating temperature is sensitive to the
inflationary scalar spectral index ns. The spectral index ns
is observationally bounded with a central value [1,77].
Because of this bounded region, one naturally obtains a
limit on the reheating temperature. Furthermore, we get
a different bound on this reheating temperature for dif-
ferent DM masses as all are intertwined through the
reheating dynamics and inflationary dynamics. For exam-
ple, from Fig. 4, for ωϕ ¼ 0 (ωϕ < ωr), the upper bound on
the reheating temperature turns out as Tmax

re ≃ ð4.9 ×
1011; 4.0 × 1012Þ GeV for scalar and vector DM, respec-
tively, with ms=X ¼ 106 GeV, and Tmax

re ≃ 1.4 × 1013 GeV
for fermionic DM with mf ¼ 5 × 1010 GeV. However, for
ωϕ ¼ 0.5 > 1=3, one obtains Tmin

re ≃ ð1.6 × 107; 2.8 ×
104Þ GeV for scalar and vector DM with ms=X ¼ 1 GeV
and Tmin

re ≃ 3 × 106 GeV for fermionic DM with mf ¼
5 × 108 GeV. In addition to that, the lower limit on the
scalar spectral index is set by the BBN temperature for those
models where ωϕ < 1=3 and instantaneous reheating for
ωϕ > 1=3. In the allowed range of ns, the cross section can
not be arbitrarily large due to unitarity limit on the cross
section hσvimax ¼ 8π=m2

Y . This will further constraint ns
and Tre. For the n ¼ 1 model, the lower limit on the
scalar spectral index is modified due to the perturbative
unitarity limit on the cross section. Moreover, the modifi-
cation on the lower limit of ns changes the minimum
allowed value of the reheating temperature, such as for
ωϕ ¼ 0, Tmin

re ≃ ð180; 6.4 × 106Þ GeV for scalar/vector
(ms=X ¼ 106 GeV) and fermionic DM (mf ¼ 5 × 1010),
respectively.

TABLE II. Different reheating temperatures, associated bound on inflaton equation state ωϕ, and DM mass mY (measured in units of
GeV), considering only gravitationally produced DM.

Parameters

Tre ¼ 10−2 GeV Tre ¼ 103 GeV Tre ¼ 1010 GeV

ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX

ωmin
ϕ 0.11 0.15 0.13 0.05 0.09 0.07 0.0 0.0 0.0

ωmax
ϕ 0.56 1.0 0.60 0.71 1.0 0.77 1.0 1.0 1.0

mmax
Y (min) 10−5 1.4 × 104 10−5 10−5 8.7 × 105 10−5 9.2 × 10−3 1.4 × 108 7.0 × 10−2

mmax
Y (max) mend

ϕ mend
ϕ mend

ϕ mend
ϕ mend

ϕ mend
ϕ 3.5 × 107 5.2 × 1011 2.8 × 108

FIG. 3. We have plotted the evolution of the different energy
components (inflaton, radiation) and the number density of DM
as a function of the normalized scale factor (alternatively, the
e-folding number is counting after the inflation) for the
α-attractor model with α ¼ 1. The blue and red curve indicates
the variation of the comoving densities of inflaton and radiation,
respectively. Further, the black and green curve shows the
evolution of the comoving number densities ðYr; YϕÞ in arbitrary
units produced from the radiation bath and the inflaton (mediated
by gravity), accordingly. Moreover, the dotted black curve shows
the evolution of the total comoving DM number density
ðYr þ YϕÞ, where we are taking into account both possibilities
of the DM production.
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FIG. 4. Upper panel: hσvi vs ns plotted for three different gravitationally produced DM scenarios: ϕϕ → SS (scalar DM), ϕϕ → ff
(fermionic DM), and ϕϕ → XX (vector DM) considering the α-attractor model with α ¼ 1, n ¼ 1 (Higgs-Starobinsky model). The
yellow shaded region corresponds to the DM abundance ΩYh2 ≤ 0.12. The dashed green line implied the results when we took into
account one possibility: DM production from a radiation bath with cross section hσvi, and the solid green line corresponds to both
possibilities—DM can be produced from the scattering of inflatons gravitationally and from the radiation bath. The lower limit on the
spectral index is given by the perturbative unitarity limit of the cross section hσvimax ¼ 8π

m2
Y
(shown by the red dashed line), whereas the

upper limit is associated with that particular value of the spectral index or reheating temperature when only gravitational production of
the DM is sufficient to produce the correct relic of the DM. So any value of ns above this is excluded because this leads to an
overabundance. Lower panel: Variation of hσvi as a function of DM mass mY . The upper limit on DM mass is associated with that
particular value of the DM mass mmax

Y when only the gravitational production of the DM is sufficient to produce the correct relic.

FIG. 5. Upper panel: hσvi vs ns, the description of this figure is the same as previous Fig. 4; the main difference is that here we have
plotted for α-attractor model with α ¼ 1 and n ¼ 3. In addition to that, the lower limit on the spectral index corresponds to instantaneous
reheating (Nre → 0). Lower panel: hσvi vs mY , the description of this figure is the same as previous Fig. 4. The sky blue band indicates
restriction from Lyman-α observations.
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IV. TWO-COMPONENT DM

For the sake of completeness, in this section, we will
briefly discuss the two-component DM scenario and the
constraints on the parameter space. We explore possible
allowed mass ranges when it is produced gravitationally.
Since the behavior of scalar and vector DM is qualitatively
the same, we assume the present-day abundance of total
DM is composed of scalar and fermionic type particles.
The dynamical equation will be the same as previously
discussed in Eqs. (5)–(8), with no production from the
radiation bath. From Fig. 6, it is clear that not all the range
of the mass is allowed, and as expected, it is explicitly
dependent upon the reheating equation of state or rather
types of the inflaton potential near its minimum. For each
plot, the yellow shaded region is the allowed parameter
space if we include all possibilities of reheating temper-
ature. The region is either bounded by the maximum
reheating temperature ∼1015 GeV, and the BBN bound
10−2 GeV, or by mmax

Y discussed in the previous section.
An interesting observation of this analysis is that

there exists a one-to-one correspondence between scalar
and fermionic DM masses. For a fixed combination of
(Tre;ωϕ), we can uniquely determine the mass of one
component once another component is fixed. The maxi-
mum allowed mass for any one component is associated
with the single component DM scenario, which we already
discussed earlier. However, the minimum value of the mass
approaches zero as the system starts dominating by only
one component, either scalar or fermionic DM.

V. COMPARISON ON GRAVITATIONAL DM
PRODUCTION FROM INFLATON AND

RADIATION BATH

In our discussions so far, we considered gravitational
DM production purely from the inflaton annihilation.
However, in principle, gravitational production from the
radiation bath will contribute, which we mentioned before,
to be subleading compared to the production from inflaton.

This section will show through an explicit calculation that
this is indeed the case. For the case of s-channel gravita-
tional DM production from inflaton we have production
rates in Eqs. (2)–(4). The production of gravitational DM
from the radiation bath during reheating has already been
studied [26,54–56], and the interaction rate per unit
physical volume is expressed as

RðTÞ ¼ γ
T8

M4
p
; ð30Þ

where γ ¼ 1.9 × 10−4 for scalar DM, γ ¼ 1.1 × 10−3 for
fermionic DM, or γ ¼ 2.3 × 10−3 for vector DM. In addition
to usual inflaton and the DM component from inflation, we
have modified radiation dynamics and an additional DM
production channel from radiation bath as follows:

_ρr þ 4Hρr − Γϕρϕð1þ ωϕÞ þ RðTÞhEYir ¼ 0; ð31Þ

_nYðRÞ þ 3HnYðRÞ − RðTÞ ¼ 0; ð32Þ

where nYðRÞ is the DM number density produced from the
radiation bath due to gravitational interaction.
Now let us compare the results for DM production from a

radiation bath mediated by gravity with the production
from inflaton. The associated expressions for comoving
DM number density in terms of reheating temperature
calculated at the end of reheating for different types of DM,
produced from either inflaton or radiation bath are (see
Appendixes A and C)

nres A3
re ≈ 8nreXA

3
re ≈

3

512π

ð1þ ωϕÞ
ð1þ 3ωϕÞ

β2T8
ree6Nreð1þωϕÞ

9M4
pHend

;

nref A
3
re ≈

3

2048π

1þ ωϕ

1 − ωϕ

�
mf

mend
ϕ

�
2 β2T8

ree6Nreð1þωϕÞ

9M4
pHend

;

nreYðRÞA
3
re ≈

2γ

3ð1 − ωϕÞ
e
3
2
Nreð3þωϕÞT8

re

M4
pHend

: ð33Þ

FIG. 6. Two-component DM scenario: mf vs ms were plotted for three different values of inflaton equations of state ωϕ ¼
ð0; 0.5; 2=3Þ considering different reheating temperatures (shown by different colored lines). Those lines corresponds to the fixed value
of the present DM abundance ΩXðsþfÞh2 ≃ 0.12. For all the cases, we consider purely gravitationally produced DM. The DM sector
consists of two sectors, one for scalar and another one for fermionic DM. Here, the α-attractor model with α ¼ 1 describes the
inflationary dynamics, and the yellow shaded region shows the allowed DM masses.
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To derive the above equation, we use the following
approximate relation: H2

re ¼ ρreR=3M
2
p ¼ βT8

re=ð3M2
pÞ ¼

H2
endA

−3ð1þωϕÞ
re , which indicates that at the end of rehea-

ting the Universe is dominated by radiation. The DM
production from a radiation bath is maximum when the
radiation temperature is maximum, which is approximately
equivalent to taking Nre ¼ 0. Therefore, it would be
sufficient to compare the above comoving densities for a
different production channel at the point of instantaneous
reheating,

nsR ¼ nres A3
re

nreYðRÞA
3
re
¼
�

3

512π

ð1þ ωϕÞ
ð1þ 3ωϕÞ

β2

9

�
×

�
3ð1 − ωϕÞ

2γ

�
ð34Þ

nfR ¼ nref A
3
re

nreYðRÞA
3
re
¼
�

3

2048π

ð1þ ωϕÞ
ð1 − ωϕÞ

β2

9

�
mf

mend
ϕ

�
2
�

×

�
3ð1 − ωϕÞ

2γ

�
: ð35Þ

From the above two equations, it can be checked that for
any ωϕ, nsR ≫ 1 [cf. Eq. (33)]. Hence, comoving DM
number density for scalar/vector produced from inflaton
always dominates over the production from the radiation
bath. However, a fermionic DM dominating production
channel is crucially dependent on ðmf=mend

ϕ Þ. For example,
if the reheating is instantaneous and the value of the
fermionic DM mass produced from inflaton assumes
mf ≃ 10−3mend

ϕ , then nfR ≪ 1, which makes nref subdomi-
nant compared to nreYðRÞ. If we convert this into reheating
temperatures, it can be easily shown that above
Tre ⪆ 1013 GeV, the production of fermionic DM from
radiation bath will always dominate over the production
from inflaton field, and it is less sensitive to the inflaton
equation of state (see Fig. 7). In Fig. 7, solid lines
correspond to gravitational DM production from inflaton
scattering, and dotted lines correspond to DM production
from both inflaton as well as a radiation bath. The light red
shaded region within 1015 ≳ Tre ≳ 1013 GeV clearly shows
that the production from the inflaton field is subleading
compared to that from the radiation bath. Depending upon
the reheating equation of state, the mass range of the
fermionic dark matter is observed to be slightly different.
So far, we have discussed DM production and its

intimate connection with the inflationary and reheating
phase. However, DM abundance does not contain much
information about the nature of DM and its underlying
production mechanism. In the subsequent discussions, we
will focus more on the microscopic properties of DM, such
as its phase-space distribution, free streaming lengths, etc.
These properties play a significant role in the subsequent

cosmological evolution of DM perturbation, which is
deeply connected with the large-scale structure formation.

VI. PHASE SPACE DISTRIBUTION OF
GRAVITATIONALLY PRODUCED DM

In this section, we study the evolution of phase space
distribution of DM, which will be observed to encode not
only the underlying production mechanism but also the
very nature of the DM itself. The DM production is purely
gravitational and produced from inflaton through the
process ϕϕ → SS=XX=ff for scalar (S), vector (X), and
fermion (f), mediated by gravity. Gravitational production
from a radiation bath will not be considered unless
otherwise stated. The phase-space distribution ðfYÞ of
DM is evolved by the Boltzmann transport equation as

∂fY
∂t

−HjpY j
∂fY
∂jpY j

¼ c½fYðjpY j; tÞ�; ð36Þ

where c½fYðjpj; tÞ� symbolizes the collision term, deter-
mined through an inflaton-DM interaction. Let us first
calculate the collision term for this process. To calculate
collision term, one of the important quantities is the phase
space distribution of inflaton. The inflaton field is homo-
geneous in nature, and the phase space distribution of the
inflaton field can be effectively written as fϕðk; tÞ ¼
ð2πÞ3nϕðtÞδð3ÞðkÞ, where, nϕ is the number density of the
zero momentum inflaton particles. The required collision
term for the transport equation is given by

FIG. 7. Variation of reheating temperature as a function of
DM mass for two different gravitationally produced DM scenar-
ios: (1) DM generated only from inflaton scattering (shown in
solid line) (2) We took the contribution from inflaton as well as
SM scattering (shown in dashed line). These results are for
fermionic DM with three different inflaton equations of state
ωϕ ¼ ð0; 0.5; 0.99Þ. Furthermore, the light red band indicates the
dominating contribution in the DM relic from the thermal bath
over inflaton scattering.
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c½fYðjpY j; tÞ� ¼
1

2pY0

Z
d3k

ð2πÞ32k0
d3k0

ð2πÞ32k00
gY 0d3pY 0

ð2πÞ32pY 0
0

ð2πÞ4δð4Þðkþ k0 −pY −pY 0 Þ

jMj2ϕϕ→YY 0fϕðkÞfϕðk0Þ½1�fYðpYÞ�fY 0 ðpY 0 Þ� ¼ πnϕðtÞ2
pY0

Z
1

4m2
ϕ

gY 0d3pY 0

2pY 0
0

δð2mϕ −pY0
−pY 0

0
Þδð3ÞðpY 0 þpYÞ

jMj2ϕϕ→YY 0 ½1�fYðpYÞ�fY 0 ðpY 0 Þ� ¼ πnϕðtÞ2
8gYpY0

pY 0
0

gYgY 0 jMj2ϕϕ→YY 0

m2
ϕ

δð2mϕ−pY0
−pY 0

0
Þ½1� fYðpYÞ� fY 0 ðpY 0 Þ�;

ð37Þ

where (þ) and (−) sign, in the third bracket, are for bosonic
and fermionic DM, respectively. gy, gY 0 represents the
number of internal degrees of freedom for Y and Y 0.
Moreover, in the absence of Bose condensation or fer-
mionic degeneracy, one may approximate the blocking and
stimulated emission factor as ½1� fYðpYÞ � fY 0 ðpY 0 Þ� ≃ 1.
Furthermore, the corresponding gravitational DM produc-
tion rate for the process ϕϕ → YY can be related with spin-
averaged squared amplitude jMj2ϕϕ→YY → jMj2ϕϕ→YY ¼P

avg over initial pol

P
sumover final polMj2ϕϕ→YY [sum over the

polarizations (spins) of the final particles and average over
the polarizations (spins) of the initial ones] as

Γϕϕ→YY ¼ nϕ
g2Y jMj2ϕϕ→YY

32πm2
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
Y

m2
ϕ

s
≃ nϕ

g2Y jMj2ϕϕ→YY

32πm2
ϕ

;

ð38Þ

where we use the approximation mY < mϕ. Therefore,
combining Eqs. (37) and (38) and acknowledging the
approximations mentioned above, the collision term takes
the form,

c½fYðpY; tÞ� ≃
2π2nϕðtÞ
gYp2

Y0

Γϕϕ→YYδðmϕ − pY0
Þ

¼ 2π2nϕðtÞ
gYp3

Y0
H

Γϕϕ→YYδðt − t0Þ; ð39Þ

where t0 is the cosmic time when pY is equal to the inflaton
mass which satisfies the relation pYaðtÞ ¼ aðt0Þmϕ. The
energy associated with each DM particle is pY0

¼ mϕ.
Upon substituting the above collision term into the trans-
port equation (36), one obtains the DM phase space
distribution as

fYðpY; tÞ ¼
2π2nϕðt0Þ
gYm3

ϕHðt0ÞΓϕϕ→YYðt0Þθðt − t0Þ: ð40Þ

Inflaton energy density during reheating can be evalu-
ated by integrating Eq. (5), which leads to

ρϕðt0Þ ¼ ρendϕ Aðt0Þ−3ð1þωϕÞe−Γϕðt0−tendÞ: ð41Þ

Here, we ignore the effect of DM production on the inflaton
energy density as it is negligible compared to the produc-
tion of radiation. The subscript “end” indicates the end of
the inflation. We can write the above equation (41) for the
inflaton energy density in terms of the inflaton energy
density at the end of the reheating (ρreϕ ) as

ρϕðt0Þ ¼ ρreϕ

�
Aðt0Þ
Are

�
−3ð1þωϕÞ

e−Γϕðt0−treÞ: ð42Þ

As most of the region during reheating is dominated by the
inflaton equation of state (EoS), we can approximate the

scale factor as a ∝ t2=3ð1þωϕÞ and t0 ¼ treðAðt
0Þ

Are
Þ3ð1þωϕÞ=2.

Further, at the end of the reheating, when tre ¼ Γ−1
ϕ , the

Hubble parameter Hre ≃ Γϕ and the inflaton energy density
approximately equals to the radiation energy density
ρϕ ≃ ρr ¼ π2

30
greT4

re. Under these approximations, ρϕðt0Þ
assumes following form:

ρϕðt0Þ ¼
π2

30
greT4

re

�
Aðt0Þ
Are

�
−3ð1þωϕÞ

e1−ð
Aðt0Þ
Are

Þ3ð1þωϕÞ=2
: ð43Þ

In the same way, Hubble parameter during reheating phase
turns out as

Hðt0Þ ≃Hre

�
Aðt0Þ
Are

�
−3
2
ð1þωϕÞ

≃ Γϕ

�
Aðt0Þ
Are

�
−3
2
ð1þωϕÞ

: ð44Þ

Substituting Eqs. (43) and (44) into the phase-space
distribution equation (40), one obtains the following
form of the DM phase space distribution during reheating
phase as

fYðpY; tÞ ¼
π4gre

15gYΓϕ

�
Tre

mend
ϕ

�
4
�

mend
ϕ

mϕðt0Þ
�4�Aðt0Þ

Are

�
−3
2
ð1þωϕÞ

× e1−ð
Aðt0Þ
Are

Þ
3
2
ð1þωϕÞ

Γϕϕ→YYðt0Þθðt − t0Þ: ð45Þ

Instead of symbolizing the inflaton’s mass by mϕ, we use
mϕðtÞ as the effective mass of the inflaton being a function

MD RIAJUL HAQUE and DEBAPRASAD MAITY PHYS. REV. D 106, 023506 (2022)

023506-12



of time, and its evolution is followed by Eq. (21). To get a
better approximation for the momentum distribution func-
tion fYðpY; tÞ, we have to calculate Eq. (40) by solving the
sets of Boltzmann equations (5)–(8) numerically. The
numerical solution of the rescaled momentum distribution
function fðqÞ is shown in Fig. 8; the form of fðqÞ is defined
in the following manner:

fYðpY; tÞd3p ¼ π4gre
15gY

�
Tre

mend
ϕ

�
4
�
T�
a

�
3

fðqÞd3q; ð46Þ

where q is the rescaled comoving momentum of the DM,
which is defined as

q ¼ paðtÞ
T�

¼ Aðt0Þ
Are

mϕðt0Þ
mϕðtreÞ

¼ q̄
mϕðt0Þ
mϕðtreÞ

: ð47Þ

Here, T� is the time-independent quantity, defined as
T� ¼ mϕðtreÞare. As can be observed from the Fig. 8,
the phase space distribution function of DM naturally

contains peaks at the initial time of reheating when most
of the DM particles are produced gravitationally via scatter-
ing of inflatons, and the momentum of those produced
particles should be around the mass of the inflaton. The
characteristics of the peak and location will certainly
be dependent on the background dynamics determined by
the inflaton equation of state ωϕ and reheating temperature
Tre as one can imagine that this characteristic peak will
naturally be imprinted on the subsequent evolution of DM
structures. In addition, the free streaming properties of
DMwill help understand the formation of the DM structure,
and we will discuss this in detail in the following section.
Furthermore, it can be observed that there exists a secondary
peak in the fermionic distribution function at an even higher
momentum, which arises due to nontrivial mass dependence
in the fermionic annihilation rate Γϕϕ→ff ∝ ρϕ=mϕ and
consequently, the phase space distribution q2ffðq; tÞ ∝
ða2ρ2ϕÞ=ðm3

ϕHÞ ∝ a
1
2
ð5−9ωϕÞ, as opposed to the bosonic

phase-space distribution function q2fsðq; tÞ ∝ ða2ρ2ϕÞ=
ðmϕHÞ ∝ a−

1
2
ð5þ3ωϕÞ. Therefore, in the case of fermionic

FIG. 8. The rescaled momentum distribution function of DM as a function of q, defined in Eq. (47), indicates rescaled comoving
momentum for time-independent inflaton mass [VðϕÞ ∼ ϕ2] with a few different inflaton equations of state ωϕ ¼ ð0; 0.2; 0.5; 0.82; 0.99Þ
(shown in different color) with two specific values of the reheating temperature Tre ¼ ð1010; 5Þ GeV. On the left, we have plotted results
for gravitationally produced scalar ðϕϕ → SSÞ or vector DM (ϕϕ → XX) and on the right for gravitationally produced fermionic
DM (ϕϕ → ff).
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DM, for ωϕ > 5=9, the phase space distribution function
increases till the pointwhen inflatonmass is equal to themass
of the DM (mY ¼ mϕ), and after that point, the distribu-
tion function approaches zero as the DM production is
kinematically forbidden (Γϕϕ→YY → 0) in the region where
mϕ < mY . The important point is to note that the peak value
associated with the secondary peak increases as we Tre
decreases, which increases the time elapsed to reach the point
mϕ ¼ mY . However, for bosonicDM, such a secondary peak
does not arise as q2fsðq; tÞ drops with a scale factor during
reheating for a viable range of ωϕ, 0 ≤ ωϕ ≤ 1. It would be
interesting to look into this secondary peak and its physical
significance in detail.

VII. MOMENTUM, FREE STREAMING
LENGTH, AND CONSTRAINTS

We have already observed that the DM phase-space
distribution peak occurs near the beginning of reheating,
where the gravitational production of DM from inflaton is
maximum. The momentum around that peak will also be
maximum, which is ∼mend

ϕ , which naturally depends on the
inflaton equation of state. The obvious physical effect of
this large initial momentum of the DM would be on their
free streaming properties, which will have a significant
impact on the perturbation evolution at a small scale. Large
initial momentum will naturally suppress the structure
formation at small scales. In this section, we will study
this in detail and evaluate the possible constraints on the
present DM velocity from the well-known Lyman-α bound
on the DM mass for warm dark matter (WDM) [60–66]. If
DM has no interaction with itself or with the SM particles,
the momentum of the DM particles is redshifted by the
expansion of the Universe. Therefore, we can relate the pre-
sent momentum of the DM with the mean initial momen-
tum at the time of its production as, pnow ¼ ðain=anowÞpin.
For example, if the DM particles produced from the thermal
bath, the mean initial momentum would assume pin ∼ 3Tre
at a scale factor ain ¼ are, and assuming the entropy being
conserved between the end of reheating to today, the
momentum at present would be calculated as

pnow ¼
�

387

11gs;re

�
1=3

T0; ð48Þ

where the present CMB temperature T0 ¼ 2.725k ¼ 2.3 ×
10−13 GeV and the gs;re is the effective number of degrees
of freedom for entropy at reheating temperature. Now, by
using the various experimental constraints on the WDM,
such as the MCMC analysis of the XQ-100 and HIRES/
MIKE Lyman-α forest datasets constraints, the mass of
the WDM particle mwdm > 5.3 keV at 2σ range [64]. In
Refs. [60,95], using the same Lyman-α forest dataset, the
authors obtained the bound on mwdm > 3.3 keV using
HIRES/MIKE and > 3.95 keV using SDSSIII/BOSS.

Considering the overall conservative estimate of mwdm >
3.9 keV and gs;re ∼ 100, using Eq. (48), one gets the lower
bound on the present DM velocity vdm < 4.1 × 10−8. Now
using the above bounds on the WDM mass, we will first
estimate the DM velocity for different production scenarios
described so far.
Production from inflaton: For the gravitational DM

produced from the inflaton, the initial momentum at
production can be approximately taken to be pin ∼mϕ,
and the radiation temperature correspond to the scale
factor a ¼ ain can be taken as the maximum radiation
temperature Tmax

rad . The radiation energy density will evolve

as ρr ∝ T4
rad ∝ a−

3ð1þωϕÞ
2 [96]. Accumulating all the above

expressions, one can find the present value of the DM
momentum as

pnow ¼ ain
are

are
anow

mϕ

¼
�

43

11gsðTreÞ
�

1=3 Tnow

Tre

�
Tre

Tmax
rad

� 8
3ð1þωϕÞmϕ: ð49Þ

Moreover, in the perturbative reheating scenario, the
approximated analytical expression of the maximum radi-
ation temperature Tmax

rad can be written as [96,97]

Tmax
rad ¼

�
60

ffiffiffi
3

p
MpΓϕ

greπ2
1þ ωϕ

5 − 3ωϕ

�1
4

× ð3M2
pH2

endÞ
1
8fy−

3ð1þωϕÞ
5−3ωϕ − y

− 8
5−3ωϕg; ð50Þ

where y ¼ 8=ð3þ 3ωϕÞ.
Production from inflaton and radiation bath: In this

scenario, the fraction of the DM (say ξ) is produced from
the inflaton through gravitational interaction with an initial
momentum p ∼mϕ at the beginning of reheating, and the
remaining fraction, (1 − ξ), is produced from the radiation
bath because of a nonzero cross section hσvi near the end of
reheating with momentum around p ∼ 3Tre. Detailed study
of the evolution of DM perturbation will be interesting in
such a scenario which we will study later. For the present
study, let us define an average momentum of the DM
particles at the reheating end as

hpire ¼ ξp1ðareÞ þ ð1 − ξÞp2ðareÞ;

ξ ¼ n1ðareÞ
n1ðareÞ þ n2ðareÞ

; ð51Þ

where n1ðareÞ and p1ðareÞ represent number density and
momentum, respectively, for the gravitationally produced
DM at reheating end, whereas n2ðareÞ and p2ðareÞ represent
corresponding number density and momentum at the end of
reheating for the particles produced from radiation bath. As
described before, the DM particles produced gravitationally
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from inflaton redshifts due to expansion from ain ¼ amax
(corresponding to the maximum radiation temperature) till
the reheating end are hence,

p1ðareÞ ¼
ain
are

pin ¼
�

Tre

Tmax
rad

� 8
3ð1þωϕÞmϕ: ð52Þ

Upon substituting the above equation into Eq. (51), the
average momentum of the DM particles at the end of the
reheating is estimated as

hpire ¼ ξ

�
Tre

Tmax
rad

� 8
3ð1þωϕÞmϕ þ 3ð1 − ξÞTre; ð53Þ

where ξ can be determined by solving Eqs. (33) and (B5).
For a fixed reheating, parameters Tre and ωϕ to acquire

a specific value of ξ with present DM abundance
ΩXh2 ¼ 0.12, we need to choose a suitable value of the
DM mass and cross section hσvi. Since the production rate
of gravitationally produced DM is different for various
types of DM, to achieve a particular value of ξ together with
ΩXh2 ¼ 0.12, the mass of the DM must be different for a
different type of DM. In Fig. 10, we have shown the DM
parameter space ðmY; hσviÞ for a fixed value of ξ ¼ 0.5 and
ωϕ ¼ ð0; 0.5Þ for various types of DM. Since the momen-
tum is redshifted by the expansion from the end of
reheating till the present day, the value of the average
momentum at present is

hpinow ¼ are
anow

hpire ¼
�

43

11gsðTreÞ
�

1=3 Tnow

Tre
hpire: ð54Þ

Now that we have calculated the approximate expres-
sion for the average momentum of the DM particle at
the present epoch, we can put constraints on the WDM
velocity depending upon the reheating equation state.
Using the WDM bound, we further estimate the upper
bound of the velocity of DM particles at present. The
detailed constraints on the upper limit of DM velocity for
two different scenarios: production from inflaton and
combined production from both inflaton and radiation
bath, are depicted in Fig. 9. For the case of production
from inflaton, the maximum value of this upper bound
turns out to be ∼10−4 associated with ωϕ ∼ 1. From Fig. 9,
we can clearly see that for ωϕ ¼ 0, vmax

dm for the combined
case is dominated by the production from the radiation bath
and turns out to be independent of reheating temper-
ature, vmax

dm ∼ 3.1 × 10−8.

A. Free streaming of DM

Understanding the free streaming behavior of the DM is
important, as it plays crucial role in the process of structure
formation. The larger the free streaming length, the less
probable it will be to form the structure of around that

FIG. 9. We have plotted the upper bound on the present DM
velocity vmax

dm as a function of reheating temperature for three
distinct values of ωϕ ¼ ð0; 0.5; 0.99Þ. Here, solid lines indicate
results for DM production from inflaton, whereas the dashed line
is for production from both the inflaton and radiation bath. In the
case of production from both the inflaton and thermal bath, we
choose ξ ¼ 0.5. These bounds are estimated in the choice
of mwdm > 3.9 keV.

FIG. 10. hσvi vs DM mass for ξ ¼ 0.5 and ωϕ ¼ ð0; 0.5Þ. Here, for two different values of ωϕ, to plot DM parameters (mY; hσvi), we
vary reheating the temperature from minimum to the maximum allowed value.
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length scale. If the DM particles have large initial momen-
tum, their free-streaming effect can erase the structure
on scales smaller than the free-streaming horizon λfs. The
free-streaming horizon strictly depends on the position
where the DM particles decouple in the early Universe. In
this section, we calculate the free-streaming horizon for
different DM production scenarios during reheating. The
free-streaming horizon is naturally related to the average
momentum of the DM particles and can be approximately
calculated by integrating from the time of decoupling tkd to
the present t0 as [98–102]

λfs ¼ k−1fs ¼
Z

t0

tkd

v
a
dt¼

Z
a0

akd

p
E

da
a2H

¼
Z

a0

akd

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

x

p da
a2H

;

ð55Þ

where akd represents scale factor associated with the
decoupled time tkd. Therefore, the Hubble parameter after
reheating can be related with the current Hubble rate as

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωra−4 þΩma−3

q
¼ a−2H0

ffiffiffiffiffiffi
Ωr

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a=aeq

q
;

ð56Þ

where the scale factor at the matter-radiation equality is
identified as aeq ¼ Ωr=Ωm. We ignore dark energy con-
tribution to the expansion. Standard Freeze-in from ther-
mal bath: For comparison, we consider this scenario first.
Evaluation can be divided into two regimes, the produced
DM particles are relativistic after reheating ends pre ≫ mY ,
and as the Universe expanses, it becomes nonrelativistic in
nature p ≪ mY . Therefore, the free-streaming length can be
expressed as

k−1fs ¼
Z

anr

are

da
a2H

þ
Z

a0

anr

p
mY

da
a2H

: ð57Þ

Here, anr indicates the scale factor at the transition between
two regimes where pnr ¼ mY . In the regime where DM
particles are relativistic, the contribution to the free-
streaming length turns out asZ

anr

are

da
a2H

¼ 1

H0

ffiffiffiffiffiffi
Ωr

p
Z

anr

are

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a=aeq

p
≃

are
H0

ffiffiffiffiffiffi
Ωr

p
�
anr
are

− 1

�
≃

1

kre

pre

mY
: ð58Þ

To determine the above equation, we use the relation
anr=are ¼ pre=pnr ¼ pre=mY , as after reheating the
momentum associated with DM particles redshifts due to
expansion. Further, considering are ≤ a ≤ anr, 1þ a=aeq ≃
1 ða ≪ aeqÞ, the contribution to k−1fs during the period when
DM particles are nonrelativistic (p ≪ mY) becomes

Z
a0

anr

p
mY

da
a2H

¼ preare
mYH0

ffiffiffiffiffiffi
Ωr

p
Z

1

anr

da

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa=aeq

p
¼ 2pre

kremY

�
sinh−1

ffiffiffiffiffiffi
aeq
anr

r
−sinh−1

ffiffiffiffiffiffi
aeq

p �
: ð59Þ

In deriving the above equation, we used the relation
kreare ¼ HðareÞa2re ¼ H0

ffiffiffiffiffiffi
Ωr

p
[derived from Eq. (56)].

Upon substituting Eqs. (58) and (59) into Eq. (57), the
expression for free-streaming length becomes

λfs ¼ k−1fs ≃
1

kre

pre

mY

�
1þ 2

	
sin h−1

ffiffiffiffiffiffi
aeq
anr

r
− sinh−1 ffiffiffiffiffiffi

aeq
p 
�

:

ð60Þ

kre ∼ 1=λre is associated with the typical length scale that
will be entering during the end of reheating. Since, our
starting assumption is pre ≫ mY , Eq. (60) indicates that
λfs=λre > 1, which implies that the free-streaming effect
may erases the growth of the DM perturbations produced
during the reheating phase [103–105].
Interestingly, if the DM particles produced from the

radiation bath is nonrelativistic pre ≪ mY ,

λfs ≃
2pre

kremY

"
sinh−1

ffiffiffiffiffiffi
aeq
are

r
− sinh−1 ffiffiffiffiffiffi

aeq
p

#

≃
2λrepre

mY
sinh−1

ffiffiffiffiffiffiffi
Tre

Teq

s
≃

2pre

kremx
ln

 
2

ffiffiffiffiffiffiffi
Tre

Teq

s !
: ð61Þ

To derive the expression above, uses have been made
of the relation aeq=are ¼ Tre=Teq, the approximation
sinh−1x as logeð2xÞ in the limit of x ≫ 1 and
sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aeq=are

p
> sinh−1 ffiffiffiffiffiffiaeq

p . The condition for small
scale structures of length scales λre being formed are if
one satisfies

λre > λfs ⇒
Tre

Teq
<

1

4
e

mY
3Tre ; ð62Þ

where Teq ≃ 0.8 eV at the radiation-matter equality. In
addition, above the constraint can be converted into the
constraint on the velocity of the DM particle during the end
of reheating as vre < 1

4 lnðTreTeq
Þ. As an example, for reheating

temperatures Tre ¼ ð10−2; 102; 106Þ GeV, the upper bound
on vre turns out as vre < ð6 × 10−2; 10−2; 7 × 10−3Þ
accordingly.
Gravitational DM from inflaton: As has been discussed

earlier, the gravitationally produced DM from the inflaton
mostly occurred at the beginning of the reheating when the
temperature is approximately taken as maximum radiation
temperature, T in ¼ Tmax

rad . And the initial momentum of the
DM particle would be the same as inflaton mass pin ¼ mϕ.
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As the DM has no interaction with the radiation bath, the
momentum of the DM particles decreases as 1=a after
a ¼ amax. Therefore, the free streaming will have nontrivial
dependence on the reheating equation of state for this
scenario. Considering DM particles are relativistic until the
end end of the reheating, λfs can be expressed as

λfs ¼ k−1fs ¼
Z

are

ainðamaxÞ

da
a2H

þ
Z

anr

are

da
a2H

þ
Z

a0

anr

p
mx

da
a2H

:

ð63Þ

In the reheating regime, the contribution to the free-
streaming length is given by

Z
are

amax

da
a2H

¼ 1

Hrea
3
2
ð1þωϕÞ
re

Z
are

amax

a
1
2
ð3ωϕ−1Þda

¼ 2

ð1þ 3ωϕÞkre

�
1 −

�
amax

are

�1
2
ð3ωϕþ1Þ�

; ð64Þ

where Hre represents Hubble parameter at the end of the
reheating. To determine the above equation, we assume
the variation of the Hubble parameter during reheating
phase as HðaÞ ¼ Hreðarea Þ

3
2
ð1þωϕÞ, under the assumption that

the reheating phase is dominated by the inflaton equation of
state ωϕ. In addition to that, for the perturbative reheating
scenario, the scale factor at the point of maximum radiation
temperature is calculated as

amax ¼ aend

�
8

5 − 3ωϕ

� 2
5−3ωϕ ; aend ¼

eNkk
Hk

; ð65Þ

where the scale factor at the end of the inflation symbolizes
by aend. Combining Eqs. (58), (59), (63), and (64), we
obtain the expression of the free-streaming length for
gravitationally produced DM as follows:

λfs ≃
1

kre

�
2

1þ 3ωϕ

	
1−
�
amax

are

�1
2
ð3ωϕþ1Þ


þpre

mx

	
1þ 2

�
sinh−1

ffiffiffiffiffiffi
aeq
anr

r
− sinh−1 ffiffiffiffiffiffi

aeq
p �
�

: ð66Þ

In this scenario, when gravitationally produced DM par-
ticles are relativistic at the time of production as well as at
the end of the reheating, Eq. (66) indicates that λfs=λre > 1.
On the other hand, if the gravitationally produced DM
particles are relativistic at the time of production but
become nonrelativistic at the time of reheating end
ðpre ¼ mYÞ, one obtains

λfs
λre

≃
2

1þ 3ωϕ

	
1 −

�amax

are

�1
2
ð3ωϕþ1Þ




þ 2pre

mx

 
sinh−1

ffiffiffiffiffiffi
aeq
are

r
− sinh−1 ffiffiffiffiffiffi

aeq
p

!
: ð67Þ

Since amax=are ≪ 1, and with the help of Eq. (61), the ratio
λfs=λre can be approximately expressed as

λfs
λre

≃
2

1þ 3ωϕ
þ 2 ln

 
2

ffiffiffiffiffiffiffi
Tre

Teq

s !
: ð68Þ

For λfs < λre, constraints on the reheating temperature Tre
will be

Tre <
1

4
Teqe

3ωϕ−1
3ωϕþ1: ð69Þ

From the above equation, we can clearly notice that
the bound on reheating temperature turns out as Tre ≪
10−2 GeV, which violates the BBN constraints. Therefore,
we can conclude that if the DM particles are relativistic
until the reheating end, the free streaming length will be
large enough to suppress the small-scale structure naturally.
Similar to the previous case, if gravitationally produced

DM particles become nonrelativistic any time during the
reheating,

λfs ¼
Z

anr

ainðamaxÞ

da
a2H

þ
Z

are

anr

p
mx

da
a2H

þ
Z

a0

are

p
mx

da
a2H

: ð70Þ

The first term on the right-hand side of the above equation
evaluated asZ

anr

amax

da
a2H

≃
2

ð1þ 3ωϕÞkre

×

��
anr
are

�1
2
ð3ωϕþ1Þ

−
�
amax

are

�1
2
ð3ωϕþ1Þ�

; ð71Þ

where

anr
are

¼ pre

pnr
¼ pre

mx
;

amax

are
¼ pre

pin
¼ pre

mx

mx

mϕ
: ð72Þ

Upon substitution of Eq. (72) into Eq. (71) and further
considering mϕ ≫ mY , one finds

Z
anr

amax

da
a2H

≃
2

ð1þ 3ωϕÞkre

�
pre

mx

�1
2
ð3ωϕþ1Þ

: ð73Þ

Accordingly, the second term on the right-hand side of
Eq. (70) estimated as
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Z
are

anr

p
mx

da
a2H

≃
preare

mxHrea
3
2
ð1þωϕÞ
re

Z
are

anr

a
3
2
ðωϕ−1Þda

¼ 2

ð3ωϕ − 1Þ
pre

kremx

�
1 −

�
pre

mx

�1
2
ð3ωϕ−1Þ�

:

ð74Þ

Therefore, connecting Eqs. (70), (73), (74), and (61), one
can find the following expression of free-streaming length:

λfs ≃ λre

"
4

1 − 9ω2
ϕ

�
pre

mx

�1
2
ð1þ3ωϕÞ

þ pre

mx

(
2

3ωϕ − 1
þ 2 ln

 
2

ffiffiffiffiffiffiffi
Tre

Teq

s !)#
: ð75Þ

For this case, the condition λfs=λre < 1, will lead to
following constraint relation among the inflaton equation
of state, DM mass, and reheating temperature:

�
Tre

Tmax
rad

� 8
3ð1þωϕÞ

"
4

1 − 9ω2
ϕ

�
Tre

Tmax
rad

�4ð3ωϕ−1Þ
3ð1þωϕÞ

�
mϕ

mx

�3ωϕ−1
2

þ 2

3ωϕ − 1
þ 2 ln

 
2

ffiffiffiffiffiffiffi
Tre

Teq

s !#
<

mx

mϕ
: ð76Þ

The above constraint can be further transformed into
constraint on the velocity of DM particles as

4

1 − 9ω2
ϕ

v
1þ3ωϕ

2
re þ vre

(
2

3ωϕ − 1
þ 2 ln

 
2

ffiffiffiffiffiffiffi
Tre

Teq

s !)
< 1:

ð77Þ

We now have all the necessary analytical along with the
numerical results to understand the region in the parameter
space of reheating temperature and DM mass and inflaton
equation of state. The condition λfs=λre < 1 is expected to
play important role in the formation of small-scale structures.
As one would expect, the effect of free-streaming on the
DM structures of length scale above the free-streaming
horizon should be negligible. The numerical value of scales
around which free streaming may have an effect can be
estimated from Fig. 12 (shaded region) as a function of DM
mass (upper panel) and reheating temperature (lower panel)
for different kinds of DM particles with three distinct values
of the inflaton equation of state ωϕ ¼ ð0; 0.2; 0.5Þ. As an
example, the permitted range of scales to sustain small scale
structure lies in between fð5 × 1011; 5 × 1018Þ; ð5 × 105;
2 × 1016Þg Mpc−1 for scalar DM, fð3 × 1012; 8 × 1018Þ;
ð5 × 105; 1017Þg Mpc−1 for vector DM and fð1013; 1019Þ;
ð5 × 105; 1019Þg Mpc−1 for fermionic DM with EoS ωϕ ¼
ð0; 0.2Þ accordingly. Moreover, for ωϕ ¼ 0.5, there is no
allowed range of scales above the free-streaming horizon
for scalar and vector DM, whereas for fermionic DM,
the permitted range lies within ð5 × 105; 1014Þ Mpc−1. We
should mention at this point that the detailed effects of
free-streaming can be understood from the dynamics of
the DM perturbation, which we will study in the future.

FIG. 11. Upper panel : We have shown the region (indicated by orange color) in the Tre, mmax
Y plane, where the free-streaming effect

does not hamper the small-scale structures formed during the reheating phase. The red circle corresponding to that point where
λfs=λre ≃ 1. The other description of these figures is the same as Fig. 1. Lower panel: We have shown the parameters compatible with the
condition λfs=λre < 1 through the solid line and dotted line for λfs=λre > 1 with different sets of reheating temperatures. The additional
description of these last three figures is given in Fig. 2.
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Anyway, free-streaming effects also impose constraints on
the reheating and DM parameters Tre;ωϕ, and mmax

Y , shown
in Fig. 11. In the upper three plots of Fig. 11, the brown
shaded region corresponds to λre > λfs. Therefore, any
observation of small-scale DM halos will discard the
yellow shaded regions and put constraints on the upper
boundon reheating temperature. For example, theupper limit
on the reheating temperature will be brought down from
1015 GeV→ ð3.7× 109;1012;1.0× 1010Þ GeV for ϕϕ →
SS=ff=XX for inflaton EoS ωϕ ¼ 0. Gravitational produc-
tion has a one-to-one correspondence between reheating
temperature and DM mass. Hence, the upper limit on
reheating temperature leads to lower limit on the maximum
possible DMmassmmax

Y as ð9.0×102;1010;7×103ÞGeV→
ð108;1011;3.0×108ÞGeV for ϕϕ → SS=ff=XX, respec-
tively. The details of the constraints on the Tre and mmax

Y
for different sets of the inflaton equation of state can be read
off from the Fig. 11 (first three plots). In the last three plots
of Fig. 11, we observe the possible constraints on the
inflaton equation of state ωϕ and mmax

Y due to the free-
streaming effect for different sets of Tre. The numerical
values of thepossible limitationonωϕ,mmax

Y for three distinct
reheating temperatures Tre ¼ ð10−2; 103; 106Þ GeV are pro-
vided in Table IV. In addition to that, in Table III, we have
shown the possible constraints on themaximumDMvelocity
at the end of reheating for different sets of ðTre;ωϕÞ.
At the end, we would like to point out that during

the reheating phase, there is a growth in DM density
perturbation due to gravitational instability. The early
DM microhalos can be formed from that enhanced pertur-
bation if the free-steaming length is smaller than the
horizon. This growth in perturbation modified the DM
annihilation rate by several orders [105] and strictly
depended on the microhalos’ formation time. Our eventual
plan in the future is to study the growth of the DM
perturbation in the present context.

VIII. CONCLUSIONS

In this paper, our focus is on the two main topics of DM
phenomenology. In the first half, we studied the production
of DM matter from the scattering of inflatons mediated by
gravitons. For completeness, we also include the production
from radiation bath. This is the reason in the (hσvi vs mY)
parameter space, the gravitationally produced DM appeared
to have unique mass valuemmax

Y (see Figs. 5, 4) for which the
present DM abundance is satisfied. The value of mmax

Y is
uniquely determined by the inflationary energy scale Hend,
and inflaton effective equation of state during reheating ωϕ

(see Figs. 1, 2), which are expressed in Eq. (29). We studied
the constraint on theDMmass considering vector, scalar, and
fermion type DM considering both CMB power spectrum
and theDMabundance. For bosonicDM, the observationally
viablemass range turned out to bewithin ð1013–10−14Þ GeV.
Therefore, gravitationally produced DM of mass in the eV
range can be identified as axion field. However, in order to
obtain such a low bosonic DM mass through gravitational
production, we found that reheating equation of state needs
to be closed to unity, which is equivalent to kination
domination. We will study this fact in detail in the future.
For fermionic DM, the mass range turned out to be
mmax

f ¼ ð1013–104Þ GeV. Importantly, it is observed that
allowed DMmass range shrinks to a point as ωϕ approaches
towards 1=3, which is clearly observed in Fig. 2. We have
discussed single component and two-component DM sce-
narios and discussed the constraints on the DM parameters
consistent with both CMB and DM abundance.
In the second half of the paper, we discussed the phase

space distribution and the free streaming properties. These
are the properties that are believed to capture the micro-
scopic properties of DM. The formation of structure at all
scales is crucially dependent on these intrinsic properties
of the DM, which has gained interest in the recent past.
The phase-space distribution has been shown to be crucially

TABLE IV. Different reheating temperature (measured in units of GeV), associated limits on the inflaton equation of state and DM
mass mY (measured in units of GeV), emerging from the free-streaming effect.

Parameters

Tre ¼ 10−2 Tre ¼ 103 Tre ¼ 106

ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX ϕϕ → SS ϕϕ → ff ϕϕ → XX

ωmax
ϕ 0.45 1.00 0.47 0.33 0.87 0.35 0.24 0.71 0.27

mmax
Y ðminÞ 10−2 1.4 × 104 2.0 × 10−2 650 2.5 × 106 103 2.0 × 104 6.0 × 107 4.0 × 104

TABLE III. Different inflaton equation of state and reheating temperature (measured in GeV), associated bound on vre, considering
purely gravitational production of DM.

Parameter

ωϕ ¼ 0 ωϕ ¼ 0.2 ωϕ ¼ 0.5

Tre ¼ 10−2 Tre ¼ 103 Tre ¼ 106 Tre ¼ 10−2 Tre ¼ 103 Tre ¼ 106 Tre ¼ 10−2 Tre ¼ 103 Tre ¼ 106

vmax
re 0.024 0.017 0.015 0.040 0.027 0.022 0.049 0.031 0.026
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dependent on the productionmechanism and the background
dynamics (see Fig. 8). The bosonic DM phase-space dis-
tribution function contains the equation of state-dependent
peak at the initial moment of DM production, and the
associated momentum of the particle is of the order of
inflaton mass with which DM particles will subsequently
start to free stream. Interestingly the fermionic phase-space
distribution function contains an additional peak in the later
time, which arises due to the fermionic annihilation rate
Γϕϕ→ff nontrivially depending upon the decaying inflaton
mass. This secondary peak height is naturally dependent
upon the reheating temperature; as the reheating temperature
reduces, the peak height increases, which can be observed in
Fig. 8. Considering free streaming horizon, we have divided
the allowed range of DM mass in terms of Tre and ωϕ (see
Fig. 11) into two subranges for λre > λfs depicted by the
brown shaded region in the upper panel and solid lines in the
lower panel and for λre < λfs depicted by the yellow shaded
region in the upper panel and dotted lines in the lower panel.
Finally, in Fig. 12, we plotted allowed ranges of scales
associated with the free-streaming horizon around which
smallDMhalos canbe formed. Shaded regions correspond to
λfs < λre, which indicate that due to gravitational pull, small
scale DM halos can be formed associated with those scales
during reheating. If those small-scale structures are detected,
DMmatter mass parameter space, inflaton equation of state,
and reheating temperature will be significantly constrained.
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APPENDIX A: ANALYTIC EXPRESSION OF
MAXIMUM DM MASS mmax

Y

The expression for the relic abundance Eq. (27) indicates
that the DM abundance increases with increasing the DM
mass. Consequently, there should exist a maximum allowed
DM mass mmax

Y associated with each viable value of the
spectral index or reheating temperature. The evolution of
the gravitationally produce DM number density follows
form the equation,

dðnYa3Þ ¼
Γϕϕ→YY

mϕ

ρϕð1þ ωϕÞ
H

a2da: ðA1Þ

Comoving number density of scalar DM: The comoving
number density at the end of the reheating era is followed
by the Eqs. (2), (A1) and found to be

nres A3
re ¼

Z
Are

1

ρ2ϕð1þ ωϕÞ
1024πM4

p

�
1þ m2

s

2m2
ϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
s

m2
ϕ

s
A2dA
H

≈
Z

Are

1

ρ2ϕð1þ ωϕÞ
1024πM4

p

A2dA
H

: ðA2Þ

Ignoring the subdominated effect of the DM produc-
tion into the evolution of the inflaton energy density,

FIG. 12. We have plotted the variation of kfs and kre as a function of DM mass mY and reheating temperature Tre for three different
gravitationally produced DM scenarios: ϕϕ → SS (scalar DM), ϕϕ → ff (fermionic DM), and ϕϕ → XX (vector DM) with three
different inflaton equations of state ωϕ ¼ ð0; 0.2; 0.5Þ (in green, red and blue). The shaded region indicates the parameter space in the
k −mY and k − Tre plane, where the free-streaming length of DM particles does not erase structures on small scales formed during
reheating era.
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the inflaton energy density shall follow the following
equation:

ρϕ ¼ ρendϕ A−3ð1þωϕÞe−Γϕð1þωϕÞðt−tendÞ ≈ ρendϕ A−3ð1þωϕÞ; ðA3Þ

where ρendϕ is the inflaton energy density at the end of
the inflation. As the initial stage of the perturbative
reheating is dominated by the inflaton energy density,
the main contribution in the gravitationally produced DM
sector is coming at the initial stage. Therefore, we can
ignore the effect of the decay constant Γϕ in determining
the gravitationally produced DM number density. The
Hubble parameter during perturbative reheating can be
approximated as

H ¼ HendA−3
2
ð1þωϕÞ; ðA4Þ

where Hend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρendϕ =3M2

p

q
is the Hubble parameter at the

end of the inflation. Upon substituting the Eqs. (A3) and
(A4) in the expression of the comoving gravitationally
produced DM number density [Eqs. (A2)], we obtain

nres A3
re ≈

ðρendϕ Þ2ð1þ ωϕÞ
1024πM4

pHend

Z
Are

1

A−1
2
ð5þ3ωϕÞdA

¼ 3

512π

ð1þ ωϕÞ
ð1þ 3ωϕÞ

H3
end½1 − A

−3
2
ð1þ3ωϕÞ

re �: ðA5Þ

Comoving number density of fermionic DM: The relic
abundance of the DM is obtained from the comoving DM
number density, calculated at the end of the reheating.
Inserting the expression for the annihilation rate Eq. (4) into
the Eq. (A1), the corresponding number density of the DM
for this present scenario turns out to be

nref A
3
re ¼

Z
Are

1

ρ2ϕm
2
fð1þ ωϕÞ

4096πM4
pm2

ϕ

�
1 −

m2
f

m2
ϕ

�
A2dA
H

≈
Z

Are

1

ρ2ϕm
2
fð1þ ωϕÞ

4096πM4
pm2

ϕ

A2dA
H

: ðA6Þ

The inflaton mass m2
ϕ can be calculated from the second

derivative of the inflaton potential. Since reheating happens
near the minimum of the potential, we first expand the
inflaton potential in the limit of ϕ ≪ Mp as

VðϕÞ ≃ λϕ2n; ðA7Þ

where λ ¼ Λ4ð
ffiffiffiffi
2
3α

q
1
Mp
Þ2n. Therefore,

m2
ϕ ¼ V 00ðϕ0ðtÞÞ ≃ 2nð2n − 1Þλ1

nρ
n−1
n
ϕ : ðA8Þ

Upon substituting the Eqs. (A8), (A4), and (A3) into the
expression (A6), one can find the gravitationally produced

comoving fermionic DM number density at the end of
reheating as

nref A
3
re ¼

H3
endm

2
fλ

ωϕ−1
ωϕþ1νðωϕÞ

4096πð1þ 3ωϕÞðH2
endM

2
pÞ

2ωϕ
1þωϕ

½1 − A
−3
2
ð1−ωϕÞ

re �

≃
3

2048π

1þ ωϕ

1 − ωϕ
H3

end

�
mf

mend
ϕ

�
2

; ðA9Þ

where νðωϕÞ ¼ 3
1−ωϕ
1þωϕð1 − ωϕÞ and mend

ϕ indicates effective
mass calculated at the end of the inflation. We use the
relation ωϕ ¼ ðn − 1Þ=ðnþ 1Þ to find the above relation of
comoving DM number density in terms of ωϕ.
Comoving number density of vector DM: For vector DM,

the comoving number density can be written as [combining
Eqs. (4) and (A1)]

nreXA
3
re ¼

Z
Are

1

ρ2ϕð1þ ωϕÞ
32768πM4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
X

m2
ϕ

s �
4þ 4

m2
X

m2
ϕ

þ 19
m4

X

m4
ϕ

�

×
A2dA
H

≈
Z

Are

1

ρ2ϕð1þ ωϕÞ
8192πM4

p

A2dA
H

: ðA10Þ

We can see that in the limit of mX ≪ mϕ, the above
expression can be related with the comoving number
density for the scalar DM [Eq. (A2)] through a 1=8 factor.
Therefore,

nreXA
3
re¼

1

8
nres A3

re¼−
3

4096π

ð1þωϕÞ
ð1þ3ωϕÞ

H3
end½A

−3
2
ð1þ3ωϕÞ

re −1�:

ðA11Þ
Expression for mmax

Y : As we mentioned earlier, the DM
relic ΩYh2 could be expressed in terms of present radiation
abundance ΩRh2 as

ΩYh2¼
ρYðAreÞ
ρRðAreÞ

Tre

Tnow
Ωrh2¼

mYA−3
re ðnreY A3

reÞ
βT3

reTnow
Ωrh2; ðA12Þ

where β ¼ π2gre=30. In the context of the perturbative
reheating dynamics, one can obtain the approximate
analytical expression for the reheating temperature Tre
and the normalized scale factor Are at the end of the
reheating to be (in this context, see Ref. [96])

Tre ¼ GAre−1; G ¼
�

43

11gs;re

�1
3

�
a0T0

k

�
Hke−Nk;

Are ¼
�
12M2

pH2
endð1þ ωϕÞ2

G4βð5 − 3ωϕÞ2
� −1

ð1−3ωϕÞ
: ðA13Þ

Inserting the expression of the reheating temperature into
the expression of the present-day DM relic (admitting only
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gravitationally produced DM), the maximum allowed DM
mass can be written as

mmax
Y ¼ GβTnow

nreY A
3
re

ΩYh2

Ωrh2
: ðA14Þ

By utilizing the above equations with the expression of the
comoving number density for gravitationally produced DM
[Eqs. (A5), (A9), and (A11)], we can easily fix mmax

Y .

APPENDIX B: AN ANALYTICAL EXPRESSION
FOR THE DM NUMBER DENSITY: PRODUCED

FROM RADIATION BATH

The relevant Boltzmann equation for the DM particles
produced from the radiation bath during perturbative
reheating can be expressed as

dðnxa3Þ ¼ −a3hσvi½n2x − ðneqx Þ2�dt

¼ −a2hσvi½n2x − ðneqx Þ2� dtH : ðB1Þ

Let us assume that the DM particles are relativistic
(mx ≪ T) and never reach chemical equilibrium
(nx ≪ neqx ) during reheating. Therefore Eq. (B1) can be
approximated as

dðnxa3Þ ¼
a3hσviðneqx Þ2

aH
da ≃

g2

π4
a2hσviT6

H
da; ðB2Þ

where we use equilibrium distribution of the DM in the
relativistic limit,

neqx ¼ gT3

π2
: ðB3Þ

Here, g counts the number of degrees of freedom associated
with the DM particles. In the perturbative reheating
scenario, the analytical expression for the radiation temper-
ature during reheating can be obtained as

T ¼ γ1=43 A−3
2
ð1þωϕÞ; γ3 ¼

6

5 − 3ωϕ

M2
pHend

β
Γϕð1þ ωϕÞ:

ðB4Þ

Connecting Eqs. (B2), (B4), and (A4), the comoving DM
number density is found to be

nxA3
re ¼

g2

π4
γ3=23 hσvi
Hend

Z
Are

1

A
1
4
ð5−3ωϕÞdA

¼ γ4hσviðA3
4
ð3−ωϕÞ − 1Þ; ðB5Þ

where γ4 ¼ 4
3ð3−ωϕÞ

g2

π4
γ3=2
3

Hend
.

APPENDIX C: COMOVING NUMBER DENSITY
OF THE GRAVITATIONALLY PRODUCED DM

FROM SM SCATTERING

The evolution of the gravitational produced DM
number density from the radiation bath is followed by
the Eq. (32) as

dðnYðRÞA3Þ ¼ γ
T8

M4
p

A2dA
H

: ðC1Þ

In the perturbative reheating scenario, the analytical
expression for the radiation temperature during reheating
can be obtained as

T ¼ γ1=43 A−3
8
ð1þωϕÞ; γ3 ¼

6

5 − 3ωϕ

M2
pHend

β
Γϕð1þ ωϕÞ:

ðC2Þ

Upon substitution of the Eq. (C2) along with Eq. (A4) in
Eq. (C1), the comoving number density turns out to be

nreYðRÞA
3
re ¼

γγ23
M4

pHend

Z
Are

1

A
1
2
ð1−3ωϕÞdA

¼ 2

3ð1 − ωϕÞ
γγ23

M4
pHend

½A3
2
ð1−ωϕÞ
re − 1�: ðC3Þ

As the normalized scale factor at the end of the reheating
Are ≫ 1 (except for the temperature associated with the
instantaneous reheating), the above equation simplified as

nreYðRÞA
3
re ¼

2

3ð1 − ωϕÞ
γγ23

M4
pHend

A
3
2
ð1−ωϕÞ
re

≃
2γ

3ð1 − ωϕÞ
e
3
2
Nreð3þωϕÞT8

re

M4
pHend

: ðC4Þ

To find the above-simplified form, we use the approximate

analytic expression for reheating temperature Tre ¼
γ1=43 A

−3
8
ð1þωϕÞ

re [96,97].
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