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The dynamics of both the preinflationary and the preheating epochs for a model consisting of a Higgs
inflaton plus an additional auxiliary field are studied in full General Relativity. The minimally coupled
auxiliary field allows for parametric-type resonances that successfully transfer energy from the inflaton
condensate to particle excitations in both fields. Depending on the interaction strengths of the fields, the
broad resonance periods lead to structure formation consisting of large under/overdensities, and possibly
the formation of compact objects. Moreover, when confronting the same model to multifield inhomo-
geneous preinflation, the onset of inflation is shown to be a robust outcome. At relatively large Higgs
values, the nonminimal coupling acts as a stabilizer, protecting the dynamics of the inflaton, and
significantly reducing the impact of perturbations in other fields and matter sectors. These investigations
further confirm the robustness of Higgs inflation to multifield inhomogeneous initial conditions, while
putting in evidence the formation of complex structures during the reheating.
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I. INTRODUCTION

Cosmic inflation [1-4] is the current paradigm of the early
Universe. It postulates an early phase where the Universe
underwent over a large period of accelerated expansion.
Such a period provides an explanation for today’s large-scale
homogeneity and flatness of the Universe. During inflation,
quantum fluctuations became red shifted, exiting the Hubble
horizon at the time, and leading to a scale-invariant power
spectrum of cosmological perturbations which can be
matched to current observations [5,6]. At later times, they
provide the seeds needed for structure formation.

In a universe governed by the Einstein’s field equations,
the accelerated expansion of the universe is obtained when
the effective equation of state is strictly smaller than
@ < —1/3. In the slow-roll inflationary paradigm, this is
typically achieved by postulating a universe dominated by a
scalar field (slowly) rolling down its potential. Assuming
homogeneity and isotropy, from the shape of the potential,
the slow-roll conditions can be derived. When these
conditions are satisfied, the energy budget is dominated
by the potential energy (i.e., it keeps an w =~ —1), and a
sustained period of slow-roll inflation occurs. Surely,
assuming homogeneity and isotropy for the initial con-
ditions of the universe is one of the main problem inflation
is supposed to solve, so the initial conditions required for
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inflation have often been a topic of controversy, e.g., in
Refs. [7-11] and more recently in Refs. [12—17]. Thus, the
remaining question is; Can generic (inhomogeneous) pre-
inflationary scenarios successfully lead to enough cosmic
inflation (~60 e-folds)?

The issue of initial conditions for inflation has been
studied extensively using analytical, semianalytical, and
numerical approaches (for a review see Ref. [18]). Full
numerical relativity simulations have also been used to
explore the dynamics of the preinflationary era beyond the
perturbative regime. These have consisted of scenarios with
a highly inhomogeneous scalar field [19,20] and large
tensor perturbations [21]. The effects of concave and
convex potential shapes were also studied in Ref. [22].

In our previous paper [23], the case of (single field) Higgs/
Starobinsky preinflation was considered, containing large
field gradients and inhomogeneous kinetic energies across
Hubble scales. We have shown that for this model, gravi-
tational shear, and tensor modes can potentially delay the
onset of inflation, but never prevent it. The question of the
implications of adding extra fields is, however, still open.

The (p)reheating epoch is a necessary phase occurring
after the end of inflation. It starts once the slow-roll
conditions are violated and the inflaton condensate begins
to oscillate around the minimum of its potential. These
oscillations transfer energy to the matter sector, through
parametric resonances, originating in the hot big bang
plasma [24,25]. Usually, in the literature, the phase when
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particles are produced is known as “preheating”, while the
term “reheating” is left for when the inflaton has effectively
decayed and the thermalization phase begins. The reheating
process has direct implications on the cosmic microwave
background (CMB), and current measurements are sensi-
tive to it [26-28]. For a more elaborate review on the topic,
see Refs. [29,30].

The dynamics of the initial stages of preheating have
been extensively studied throughout the last decade.
Perturbative approaches [24,25,31-34] and numerical lat-
tice simulations [35-42] have been used extensively while
assuming linearized Einstein gravity. Reheating involving
nonminimally coupled scalar fields has also been of large
interest [33,34,43-52], and includes studies of Higgs
inflation [41,47,49,53]. While lattice simulations have been
capable to preserve the nonperturbative dynamics associ-
ated with inhomogeneous scalar fields, they do not consider
the fully nonlinear gravitational counterparts [54], whose
effects on the structure formation might lead to the early
formation of black holes [55-57]. In 2019, Giblin and
Tishue (Ref. [58]) presented the first preheating simulations
in full general relativity for the canonical m?¢? inflationary
model. While their results disfavor the formation of
compact structures, for that particular model, it shows
the potential of numerical relativity to clarify the role of
gravitational backreactions in the early Universe, comple-
mentary to the standard cosmological perturbation theory.
In 2020, Kou et al. (Refs. [59,60]) presented numerical
relativity simulations for an alternative inflationary model
which allowed the formation of oscillons during the
preheating potentially collapsing into black holes.

In this paper, a set of full general relativity simulations
concerning both the preinflationary and preheating epochs
is presented. The nonminimally coupled Higgs inflation
model has been considered in the presence of an auxiliary
scalar field. With the help of these simulations, we first ask
ourselves how a full general relativistic treatment affects
the resonant dynamics of preheating, and how the coupling
strength of the fields affect the formation of structures
during the broad resonance phase. Then, we check whether
similar dynamics can be present during the preinflationary
phase and, importantly, if these can undermine the begin-
ning of inflation in the first place. It is shown that, in the
presence of additional fields, the nonminimal coupling to
gravity of the Higgs field allows for an efficient preheating
process; a large amount of particles are produced and the
formation of complex structures occurs. However, during
preinflation, at large enough Higgs field values, the non-
minimal coupling always acts as a stabilizer that protects
the dynamics of the inflaton from inhomogeneities in other
fields, ensuring the success of starting cosmic inflation.

The organization of the manuscript is as follows: In
Sec. II the generalized covariant formalism is introduced
while in Sec. III the focus is on the Higgs model. Section IV
explains the numerical strategy of the simulations.

The results for preheating and preinflation are presented
in Secs. V and VI, respectively. Additional information on
the notation, code performance, initial data sets and
supplementary figures are available in the appendixes.

II. COVARIANT FORMALISM

In this section, we consider a universe containing an
arbitrary number of scalar fields ¢/, labeled by Latin capital
letters I,J, K = 1,2, ..., N. We consider a metric tensor g**
in 3 4+ 1 dimensions where Greek letters are used to label
spacetime indices y, v = 0, 1, 2, 3, using the “mostly plus
metric” sign convention (— + ++). The variables with an
upper bar or “hat” are being described in the Jordan frame.
In these kind of models, the action in the Jordan frame is
given by

_ 4 = I\ D Mgl vA 31y 5 Tl
S—/dx\/—_g F@R =287 0,400’ - U,
(1)

where M, is the reduced Planck mass, g is the determinant
of the metric, R is the Ricci scalar, U(¢') is the scalar
field potential, and f(¢') contains the fields nonminimal
coupling gravity &, so that
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The dynamical analysis of such systems is easier to deal
with in the Einstein frame. This is done by rescaling the
metric tensor, under the Weyl transformation

%mﬁ%m—éﬂ%%m. 3)
p

Thus, now in the Einstein frame, the action reads

M? _ o _
S = / d4x\/:§{ - ng1j(¢K)gﬂbaﬂ¢lau¢J - V(¢1):| )
(4)

where G;;(¢%) is a field-space metric containing the
mixing with the nonminimal coupling,

_ M 3 of of
) = 7 b o+ o] (9
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and the field potential has been redefined as
4
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Varying the action of Eq. (4) with respect to ¢/,
one can find the stress tensor and the field’s equations
of motion,

_ _ 1 _ _ _
T/lv = gIJaﬂ¢Iav¢J - g/w Egljaa¢laa¢J + V(¢1) ’ (7)

9
o’

where [J is the d’Alembertian operator, and I} (¢) are
the Christoffel symbols constructed from the field-space
metric G;;.

The canonical Einstein fields denoted by ®' are defined
by solving the following system of equations

O¢' + ¢“Tx 0,4’ ,9% — G — V() = 0. (8)

M2, o
%g’fgﬂyaﬂgblav‘lﬁj = 81,909,990, 9)

This transformation further simplifies the action in Eq. (4).
However, finding the solution to such a system of equations
is not always straightforward.1

Thereafter, in the Einstein frame, the field equations of
motion are reduced to the classical Klein-Gordon equations
of the form

0

III. HIGGS INFLATION

In this work we consider the model of (nonminimally
coupled) Higgs inflation which is one of the most favored
slow-roll inflation models by the latest CMB data from
Planck [12]. We consider a dynamical system consisting of
two scalar fields and gravity. Interaction between the Higgs
field and other Standard Model particles, particularly in the
electroweak sector, have been ignored. The evolution has
been treated classically, therefore radiative loop corrections
have also been neglected. Section IIl A, briefly reviews
the formalism for the single-field paradigm, assuming the
unitary gauge, while the implications of adding extra scalar
fields are discussed in Sec. III B.

A. The single-field case

The Higgs inflation model [61] postulates that the
inflaton is the Higgs field from the Standard Model of
particle physics, with a nonminimal coupling to gravity.
The Standard Model Lagrangian, therefore, includes an

'In fact, finding a global transformation that solves Eq. (9) is
not possible when the field-space manifold G is curved [44].
However, it is often possible to find an approximate local solution
that maps both field spaces in a specific region of the field space
(see Sec. III C).

extra term EHHR, where R is the Ricci scalar, and H is the
Higgs field in the unitary gauge [62],

TR

and &, is the only free parameter of the model. This term is
somehow expected as it is naturally generated by quantum
corrections in curved spacetime [63].

In the Einstein frame, the Higgs potential reads

AR? =)
— A4 pl
V(h) = M}, M5 (12)

the shape of which is illustrated in Fig. 1. For the single
field case, using Eq. (9), one can convert from the Jordan
frame field 4 to the canonical inflaton in the Einstein frame
¢ by solving

1 dp V1 +E(1+68,)R
pan = VO =y )

which leads to the known expression [64]
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FIG. 1. Left panels illustrate the Higgs potential in the Einstein

frame in terms of the ¢-field (top left) and the Higgs field &
(bottom left). Slow-roll inflation runs from right to left as
indicated by the arrow; the red-shaded area indicates the post-
inflationary period, after the first slow-roll parameter becomes
larger than unity. The top-right panel shows the conversion
between & and ¢, and in the bottom-right panel, the field-space
Christoffel symbol I'?, is plotted to illustrate the kinematic factor
felt by /& due to the nonminimal coupling, as seen in the Einstein
frame [see Eq. (8)]. The rapid field accelerations occurring
around & =~ 0 result into the so-called Riemann spikes observed
during the evolution.
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Expanding the above expression and substituting it in the
potential (12), one gets, in terms of the ¢ field,

Vsilo) mA* (1= V2Bl ) (1)
where
A = MY/ (483), (16)

is the overall amplitude of the potential.

The energy scale of inflation is given by the amplitude
of the potential, Hz~A*/(3 M). Assuming that the
observable modes exited the Hubble radius at N, = 55
e-folds before the end of inflation, the scalar and tensor
perturbations of the CMB power spectrum lead to
A=~31x107 M, [12]. Thus, the ratio between the
Higgs self-coupling and the nonminimal coupling must
obey

A
5—225X 10710, (17)
h

Ignoring the running the Higgs self-coupling [65], this is
set to the measured value by collider physics, 4 ~ 0.13 [66].
In such a case, Eq. (17) fixes the value of the Higgs
nonminimal coupling to &, ~ 1.8 x 10*.

At leading order, the firsts two slow-roll parameters read

M2 (0,V\?2
6127p<h7> s (18)
9,V\2 0V
~ 2 h _Zh
62_2Mp][< v> v } (19)

and as long ¢; < 1 (homogeneous) inflation is granted. In
other words, the inflationary trajectory ends when ¢ = 1,
corresponding to an equation of state @ = —1/3. Assuming
that inflation lasted, at least, the minimum amount to
explain the CMB observations, AN ~55 e-folds, this
implies that it should have started at a field value of
@ 2 5.5 My (h, 2 0.1). Once cosmic inflation takes place,
the field slowly rolls down the potential until the kinetic
energy breaks the slow conditions. The end of inflation
occurs approximately at ¢enq % 0.94 M (hepg ~0.008) [64],
signifying the beginning of the reheating epoch.

B. Higgs with an auxiliary field

Let us consider now the addition of an auxiliary field s,
into the Higgs inflation model. To keep within the spirit of
the original single-field model, in this paper, we restrict
ourselves to the case where the auxiliary field is minimally
coupled to gravity (£, = 0). On the other hand, an inter-
action term is added in the action of Eq. (4),

['int = _gh2S2’ (20)

where @ is the field-field coupling constant. This term is
necessary for a parametric-type preheating to occur at the
end of inflation. After this modification, the potential in
Eq. (15) becomes

[ (0 = v?/M)* + gh*s?]

4
V(l’l, S) = M;l (1 + fhh2>2

(21)

It is relevant to note that the effect of the nonminimal
coupling &, on the potential is crucial. While in the Jordan
frame the potential becomes larger U(h,s) — oo at large
Higgs values & — oo, in the Einstein frame the potential
tends to the constant plateau V(h,s) — A%, effectively
suppressing the interaction term and stabilizing the dynam-
ics. This effect applies as well to any other possible
coupling between the inflaton and other matter sources,
including high-energy new physics [67], which remarkably
generalizes the dynamics at large field values and thus,
during preinflation [68,69].

In this extension of the model, the canonically normal-
ized fields in the Einstein frame are denoted by ¢, y. Where
@ represents the inflaton, and y the auxiliary field.

C. Conversion between the fields in the Jordan
and Einstein frame notation

The fact that the s-field is assumed to be minimally
coupled, facilitates the analysis as it simplifies the mixing
between the fields and gravity. Indeed, under this
assumption, the field-space metric becomes diagonal,
Gy = diag(Gyy, Gy ). This is convenient because allows
us to easily infer the momentum of the Einstein framed
fields (IL,,IT,) the Jordan ones (IIj, ILy), by (no index
summation is implied)

nga = ghhn%l’ H)% = gSSH.%' (22)
In principle, the conversion of the field values should be

done by solving Eq. (9). However, at small-field values the
conversion can be well approximated by solving

1 dg = 1 oy r—
~ ’ ~ 5§52 23
My, oh G My, 0s G (23)
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recovering Eq. (14) for the inflaton, while the auxiliary
field in that frame is approximately given by

A~ (&I (24)

Note that, as shown in Appendix C, these approxima-
tions are not valid in some parts of the field space when
s 2 0.1, therefore they cannot be used when large field
excursions are present, such as when considering preinfla-
tionary scenarios (see Sec. IVA).

IV. NUMERICAL STRATEGY

The end goal of this paper is to test if Higgs inflation in
the presence of an auxiliary field can begin from inhomo-
geneous initial conditions, and similarly if it is able to
preheat the universe after the end of inflation via parametric
preheating. To that end, the GRChombo numerical rela-
tivity code [70,71] to simulate the pre and postinflationary
dynamics in full general relativity will be used.

In the 3 4 1 decomposition of General Relativity [72] the
line element is written as

L
ds? = —a2d7? + —;;(dx’ + pidi)(de + pidr),  (25)
x

where it has been used the conformal decomposition of the
metric, y;; = )1(7@ ;- The lapse and shift gauge parameters are
given by a and f#, respectively. In this section, y is the
metric conformal factor which relates to the cosmological
scale factor as y = 1/a*. The extrinsic curvature K;; is
also split into its conformal traceless part Aij and the
trace K,

1/~ 1.

It relates with the Hubble rate H, in the homogeneous
case, as

H=—-——. 27
3 @7)

The energy-momentum tensor can be decomposed into
the scalar fields’” energy density p;, momentum density S;

and anisotropic tensor S; s

pst = n*n"T,,, (28)
Si==rin'T,,. (29)
Sij = y";}/lj{TﬂI/’ (30)

S =78, (31)

where n* = (1/a,—f"/a) is the unit normal vector to the
three-dimensional slices. In analogy to the perfect fluid
case with pressure p = S/3, the effective equation of state
can be defined by

p 1S

-2, 32
Pst 3psf ( )

[0

In the gravity sector, the energy associated with gravi-
tational vector and tensor modes is given by

M?
=22, AV  0,7,,0,7 (33
Pshear — D) ij & lylj 7 )

and the curvature contribution to the energy budged is
written in terms of the Ricci scalar (of the three-
dimensional metric)

2
My

>R (34)

PR =

Then one can write the Hamiltonian and momentum
constraint equations as

M2, My OME L
M=K R =P AGAY = i,
=3 Mlzyle + PR = Pshear — Pst = 0, (35)

From the Arnowitt-Deser-Misner formalism, it can also
be shown that the conditions to have an accelerated
expansion of the universe are given when

3pg (1
Pshear < ’ Pt <_+w> ’ (37)

»==3 1 \3

3

Averaging overall space, we can use these conditions to
determine the beginning of inflation after the preinflationary
era, as well as to set the time of which preheating starts.

In the following analyses, the mean value of variable at a
given time is denoted with (...) brackets. For instance, for a
given variable 6

0) = 112 / odv, (38)

where V is the spatial volume. Similarly, the root mean
square (rms) and the standard deviations (std) are
computed like

ms(6) = 1/ (6%), std(0) = ¢/ (6%) — (0)2.  (39)
These identities are used to assess the level of inhomoge-
neity in variable 0, as well as the scope of local over-
densities. Some example includes the density contrast 6,

and curvature contrast o which are given by
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_ PR — (/)R>
3 Mng2 '

Pst — <psf>

=, 5
Psf 3 Mg]HZ R

(40)

The scalar curvature £, as well as the mean number of
e-folds (N) are computed with

(N) = (In(a)). ¢ =std[ln(a)]. (41)

with a = 1/,/y. Here, y denotes the metric conformal
factor in Eq. (29).

A. Computational details

All simulations are done in a grid composed by (128)? to
(156)* cells with an initial grid-size L which is of the order
of the Hubble size. The topology is of a three-dimensional
torus with periodic boundary conditions in all dimensions.
The initial configurations assume conformal flatness,
(e.g., 7;; = diag(1,1,1) and Aij = 0), where inhomogene-
ities are contained in the form of scalar field gradients,
which are then compensated by the conformal factor
(i.e., gravitational scalar curvature). The valid sets of initial
data have been computed by solving the Hamiltonian
constraint iteratively, as in most of the previous works
[22,23,70,73]. The evolution of the system is computed
in the Einstein frame by numerical integration of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) equations
[74-76] in 3+ 1 dimensions, implemented in the
GRChombo code. A more detailed explanation of the
structure and validation of the code can be found in
the appendixes and in Refs. [70,71].

Two different evolution schemes have been used for
the numerical evolution of the fields. Simulations on the
preheating epoch are evolved using the canonical Einstein
fields ¢, y. Therefore, at each time step, the approximate
conversions of Eq. (23) are used to recover the values
of h, s needed to evaluate the potential, Eq. (21), and its
derivatives. This is done to solve dynamical instabilities
occurring at & =~ 0, where the h-field experience transients
accelerations as a result of the presence of I'#;;, term in the
evolution equations Eq. (8) (see also Fig. 1). Despite that
this issue can be overcome by shortening the time inte-
gration during the coherent linear phase, the code becomes
very unstable during the broad resonance period, when the
h-field inhomogenizes. This issue is solved when the
system is evolved using the Einstein-frame notation, and
it allows us to continue the simulations for a longer time. As
shown in Sec. V, both evolution schemes give numerically
equivalent results. On the other hand, simulations on the
preinflationary era are done using the (exact) formalism
with the Jordan-framed h, and s fields. This does not
represent an issue, as h does not continuously oscillate
around zero and therefore the instability is not present.

V. DYNAMICS OF PREHEATING

At the end of inflation, the inflaton field starts a period
of coherent oscillations around the potential minimum.
The large amplitude of the oscillations justifies a classical
treatment of the inflaton field. The simulations start about
N, ® —1 e-folds before the end of inflation, thus the field
is considered to be initially homogeneous2 in field value at
the edge of the plateau, and is rolling down the potential
with a background kinetic term. The initial values are set to

he1.1x 1072, I, » =8.1 x 107 My, (42)

which is equivalent to

P20 My, ,~-12x107% M?

pl’ (43)

where I1,,, and I1, correspond to the field’s momentum.

On the other hand, the auxiliary field is assumed to be in
its vacuum state due to the redshift caused during inflation,
where fluctuations of the field are of quantum origin. The
initial state of the field is set by

AL A, 2znx
s(X) = (o) + Z?CO 1 +0,
n=1 i=1
with (sp) =0, A, = ’;—" (44)

where 1~ L/10 is the largest perturbation size, 6, is a
random phase, and the number of modes N,, is set between
10 and 50. The momentum of the s field (and IT,) is initially
set to zero.

A. Parametric resonances

In the analysis, the evolution of the gravitational and
scalar field sector are considered, i.e., pgear>» Pr> aNd Pyt
The later one is further decomposed into the inflaton and
auxiliary field parts, p,,, p, by assuming

1
Py ~-I12

1
St Py @510 (45)

2%
where the kinetic energy of the fields is used as a proxy to
estimate their total energy contribution.

Because we can use two evolution schemes for the fields,
namely using the Jordan or the Einstein frame definitions,
let us first compare both schemes and ensure that we
obtain equivalent results. In Fig. 2, this is done by direct
comparison of the evolution of the energy densities shown
in the top panels. The mean energy density is shown with
the orange lines, while the standard deviation of the fields

*Simulations containing initial perturbations in the Higgs field
has also been considered without significant changes in the
resonance dynamics. See Appendix E.
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FIG. 2. Comparison of the two evolution schemes; Left panels use the canonical Einstein field ¢, y during the numerical evolution,
right panels uses the Jordan-frame field /, s. The top panels show the time evolution of the standard deviations for the kinetic inflaton
energy p,, (green line), auxiliary field kinetic energy p, (red line), and the root-mean-square values for the gravitational shear p e, (blue
line), and curvature contributions pr (black line). In both plots the mean-energy densities, (py;) (in orange) and <p,,,) (in dotted green
line) have been added as a reference. The bottom panels show the evolution of scalar curvature ¢ (in black) and the std (in green and red
lines) and mean values (blue and purple lines, respectively) of the scalar fields in the Jordan (left panel) and Einstein (right panel) frame
notation. The fields are represented in units of Planck mass (m,,). Red shaded area indicates the region when dynamical instabilities in
the h-field evolution raises large violations in the constraint equations (35).

kinetic energies p,, and p,, corresponding to the green and
red lines, respectively. Additionally, the densities from the
gravitational curvature (black lines) and shear (blue lines)
are also shown. In the bottom panels, the mean and
standard deviation of the fields and scalar curvature {
are shown. It is interesting to note several differences in the
evolution of the fields. Because the shape of the potential is
different in both representations of the field, this is reflected
in the scaling of mean values of the fields [26]. In particular,
these simulations show that the mean of Higgs field scales
like (h) «a=¥* On the other hand, the canonically
normalized inflaton scales like (@) & a=3/2. The latter is
analogous to a quadratic potential around its minimum
[26,58]. Differences are also noticeable when looking at the
field excitations (standard deviations); in the evolution of
perturbations in A, the Riemann spikes that occur when
h = 0 are clearly visible, while for perturbations in ¢ they
are hidden because of the mixing with R, in the Einstein
frame. In both cases, though, the scalar perturbation ¢
closely follow the fluctuations of the &, ¢ fields. On the
other hand, the auxiliary fields behave very similarly in
both schemes, and we can clearly relate the s and y fields.
This is not surprising as the s field is chosen to be
minimally coupled to gravity and therefore the mixing

after the Weyl transformation is predominantly between
h and R. All in all, we see that, for this particular case,
the broad resonance of the fields occurs within N = 1.5-2.5
e-folds, where the excitations of the fields (in all frames)
grow exponentially.

In a similar way, Fig. 3 shows simulations for different
values in g. During the broad resonance period, we find
that curvature grows strictly following the excitations of
the fields (the std values). The efficiency of resonances is
conditioned by the g coupling, as the interaction term
[Eq. (20)] can be interpreted as the effective mass terms of
the fields. For large couplings, g = 1, fluctuations of the
field are largely suppressed during the last e-folds of
inflation, pushing the field down to zero. This over-
damping, which is partly due to the classical treatment
of the initial gradients, impedes the resonance periods at
later times and preheating fails. Coupling strengths in the
range of 0.1 < g < 1073 does allow preheating. However,
while at larger coupling values the broad resonant phase
earlier, the produced fluctuations saturate at lower ener-
gies resulting in lower energy transfer from the back-
ground field.

For even lower coupling values, g < 1074, the particle
production becomes inefficient (at least during the first
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Same as in the top left panel in Fig. 2 for several simulations with different choices in g. Dashed purple lines denote the

maximum values of the auxiliary field’s kinetic energy. The box size of the simulations at the end of inflation correspond to L ~ 2H"!.

3—4 e-folds postinflation) and the energies associated with
them fail to codominate the dynamics. The preheating of
the universe is therefore presumably delayed to later times,
but we cannot numerically explore this region.

In summary, within the assumptions of the model, a
successful and fast preheating of the Universe occurs for a
range in the field-field strength coupling of 1> g > 1074,
with a peak efficiency of around g ~ 1073, This is a surprising
result because other studies on Higgs inflation [47] found that
self-resonances from the Higgs, alone, effectively preheat the
universe when considering linearized gravity. These simu-
lations show that this is no longer the case when considering
full gravity.

B. Structure formation

Structure formation starts when the energy fluctuations
of the fields grow comparable to the background energy
density. In our simulations, this occurs around N 2 2.5
e-folds after the end of inflation, flagging the highly
nonlinear phase in both matter and gravitational sectors.
As shown in Fig. 4, the structure consists of the region of
space containing both under and overdense energies.
Overdense (underdense) scalar-field regions coexist with
large local positive (negative) Ricci scalar fluctuations of
the order of dp,dpr~1 (dp,0pr ~—1), reaching even
larger values for low-mass particles (i.e., g~ 1073).
The type of structure formed in these simulations resembles
to what was reported in other works as oscillons (or
transfers [42]). Because during the structure formation

the dominant energies are shifted to smaller scales, our
simulations can not accurately run long enough to confirm
the formation of black holes. However, other works have
shown that instabilities on such oscillonlike objects, can
lead to the formation of primordial black holes through
self-collapse [59,77,78]. This will be studied with dedi-
cated simulations in future works.

VI. DYNAMICS OF PREINFLATION

The preinflationary scenario is dependent on the initial
conditions of the universe, and therefore, its properties are
unknown. Arguably, in the classical regime, the primordial
universe can be thought of as an inhomogeneous inflaton
field that successfully leads to inflation when the kinetic
and gradient energies fall below the field’s potential energy.
The necessary conditions to trigger exponential expansion
are a negative effective equation of state that (w) < —1/3,
and a subdominant contribution of gravitational modes, i.e.,
Eq. (37). If these conditions are satisfied quickly enough,
so that the mean field values are still in the flat part of the
potential, then inflation starts.

The particular case of (single field) Higgs inflation
model was considered in our previous paper, Ref. [23].
The model showed to be robust to large inhomogeneities
at sub- and super-Hubble scales. Our simulations showed
that highly dynamical field fluctuations source large
gravitational (shear and tensor) modes that can eventually
dominate the energy budget. The energy density associated
with field fluctuations decays like radiation, py o a*, and
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FIG. 4. Structure formation during reheating. Top panel shows
the evolution of the global density contrasts for py (solid line)
and py (dashed lines). Bottom plots show contours of under/
overdense regions p; = 1.25 (black), pis = 0.8 (blue), and p =
—0.7 (red), as well for negative/positive curvature pp = 1.5 (dark
green), pr = 1.0 (light green), —0.8 (light purple), and pr = —1.0
(dark purple). These 3D representations correspond to the
simulation with g = 0.001 shown above, at N ~ 2.9.

these gravitational modes like pgeor  @~2. In any case,
both scalar-field and gravitational excitations eventually
become subdominant in just a few e-folds and inflation
begins. In the following, these analyses are expanded by
adding an auxiliary field.

The simulations on preinflation initially contain field
gradients in both the inflaton and auxiliary fields, with
perturbation in sub- and super-Hubble configurations. The
initial mean value of the Higgs (inflaton) is always
considered to be beyond (h) > 0.5, ((p)/M > 6), so it
is deeply located in the flat region of the potential. For the
auxiliary field, cases with zero and nonzero mean values
have been considered. The selection of these cases have
been chosen so that the overall mean energy density is a
few orders of magnitude larger than the energy scale of
inflation, i.e., (ps(f9)) > A. Thus, all considered cases
contain inhomogeneities well beyond the linear regime.

Figure 5 shows two example cases, at super-Hubble (left)
and sub-Hubble (right) scales. In both cases, the preinfla-
tionary phase consists of a homogenization period driven
by the (in average) positive expansion of the Universe.
Similarly as shown in Ref. [23], super-Hubble initial
conditions tend to form trapped surfaces, or preinflationary

black holes (PIBHs), after the horizon crossing. Because
these black holes are always (much) smaller than the
Hubble radius, instead of impeding inflation, they tend
to facilitate it by trapping the overdense regions, thereby
fastening the homogenization. On the other hand, at sub-
Hubble scales, perturbation modes transit back and forth
between gradients and kinetic energies, effectively making
the energy density scale like radiation py o a~*. In that
scenario, the optimal conditions for triggering inflation
look like a dynamical attractor, and cosmic inflation starts
within a few e-folds.

Interestingly, in the presence of the auxiliary (spectator)
field, these oscillations also trigger energy transfer bet-
ween the (Jordan-framed) Higgs and the auxiliary field.
However, these dynamics do not originate in enhancement
of structures like in preheating, because now at field values
h > 0.02, the nonminimal coupling of the Higgs has the
effect of significantly reducing the impact of the (minimally
coupled) auxiliary field when seen in the Einstein frame.
This effect can be observed in Fig. 5, where even when
perturbations in the s field are larger than in the 4 field (see
Fig. 5, middle panels), the dynamical term is always orders
of magnitude smaller in the auxiliary field y. The sup-
pression effect comes from the mixing, which is introduced
by the field-space metric lower than unity, i.e., G, =
1/(1 +¢,h*) <1 and becomes orders of magnitude
smaller for large enough # field values (e.g., G, < 1 for
h > 0.02). This suppression factor should apply to all
other possible matter components that are minimally
coupled to gravity.

A. On the initial conditions for inflation

In this paper we have extended previous works on testing
the initial conditions for inflation by including the interplay
of an extra (minimally coupled) scalar field. We have tested
cases when the initial configuration of the inflation is
deeply inhomogeneous but with its mean-field value inside
the slow-roll region of the potential. In the context of Higgs
inflation, this corresponds to a mean value close to the
plateau. Initial states where the mean field is in the
noninflationary region (i.e., in the bottom of the potential)
have not been considered as these cases should not lead to
inflationary regions, as tested in Ref. [23]. This is because
gradients terms make the fields oscillate around the mean
value, thus these inhomogeneities are not capable of driving
the field up to the plateau. One could still consider large
field inhomogeneities which spans the scalar field into the
potential’s plateau, however these perturbations are neces-
sarily super-Hubble (at sub-Planckian gradient energies)
and, thus, these regions can be treated as separate universes.
This is particular to Higgs inflation, as the plateau starts
at ¢ > M.

Our initial settings have also assumed a conformally flat
expanding universe. These scenarios corresponds to the
case with only scalar perturbations in the gravitational part,
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FIG.5. Dynamics of two example simulations initially at super-Hubble (left panels) and sub-Hubble (right panels) perturbations. Top
panels show the evolution of scalar field’s energy density (orange line), and shear (solid blue line). The rms values for the Higgs (green
line), auxiliary field (red line) as well as for the gravitational shear (dotted blue line) and curvature densities (dotted black lines). The
mean field evolution (upper-middle panels) and std values (lower-middle panels) for the Higgs (green line) and auxiliary (red line) fields.
The scalar curvature perturbation ¢ is shown in gray lines. Bottom panels show the evolution of the equation of state (solid black line),
with plus/minus std values in the shaded gray area. The red-dotted line denotes the w < —1/3 threshold necessary for accelerated
expansion of Universe. The initial box size of the simulations correspond to L ~ 5SH~!.

(i.e., without vector and tensor gravitational modes). This is
related to the choice of considering a null kinetic term in the
initial hypersurface, which can be seen as a rather “special”
slicing choice at the instantaneous initial time where scalar-
field kinetic terms have been gauged away, trivially
satisfying the momentum constrain Eq. (36). Because these
initial setting are highly dynamical, this kind of slicing is
not stable and once the system is time evolved both
gravitational modes and scalar field kinetic terms are
quickly generated, leading to a less symmetric inhomo-
geneous system. In particular, one could have chosen an
analogous situation with initially homogeneous field values
but with largely inhomogeneous kinetic terms which would
raise scalar-field inhomogeneities in the immediate time
evolution [23]. Because the minimally-coupled fields are
energetically subdominant at high enough Higgs values, the
previous picture still holds beyond the single-field case.

Nonetheless, there are still several limitations with such
initial settings. The assumption on conformal flatness only
allow for gravitational perturbations risen by the scalar field
evolution, and therefore independent large tensor metric
perturbation are ignored. Studying these cases requires
solving (nontrivially) both the Hamiltonian and momentum
constraints and future works will deal with this challenge.
In addition, this work has assumed that only the Higgs
field has a nonminimal coupling to gravity, serving as a
reference for other more specific models like quintessential
Higgs inflation [79], two Higgs doublet models [80], etc.
Still, systems with two or more nonminimally-coupled
fields can show a much richer dynamical evolution during
(pre)inflation; Exploring complex trajectories in field space
and possibly including multiple inflationary phases at
distinct energy stages. All these considerations are left to
future works.
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Under the previous considerations, in all the considered
cases, we find common dynamical patterns of the Higgs
preinflationary era. This phase can be described as a
homogenization era with a varying inhomogeneous equa-
tion of state, which effectively correspond to a radiation-
dominated universe (w) ~ 1/3. Once the scalar-field falls
below the energy scale of the inflationary potential, the
equation of state tends to a de-Sitter Universe with w =~ —1,
satisfying the first condition for inflation, i.e., Eq. (37).
It has also been shown that strong field dynamics near the
Hubble scales develop large gravitational modes that
potentially influence the expansion of the Universe until
they become subdominant. These modes effectively delay
the beginning of inflation, but do not prevent it. Moreover,
during the preinflationary era, lasting N = 3-7 e-folds,
the variation on the average value of the inflaton ¢ is
negligible, which prevents the “overshooting” problem
seen in other models [22]. All these considerations lead
to the conclusion that, under the considered settings, the
Higgs inflation model is very robust to the inhomogeneous
multifield initial conditions of the preinflationary era.

VII. CONCLUSIONS

In this paper, a fully general relativistic simulations to
investigate the robustness of the Higgs inflation model to
inhomogeneous multifield initial conditions was used.
Specifically, in the presence of additional field couplings,
these being necessary for a parametric-type reheating. It is
shown that, at large enough Higgs values, the nonminimal
coupling of the Higgs protects the dynamics of the inflaton
by diminishing the impact of couplings to other fields and
matter sectors. And, as shown in Ref. [23], the dynamics
from gravitational shear and tensor modes can only delay,
but not prevent, cosmic inflation.

Additionally, simulations on the preheating dynamics
of the two-field system were presented where full gravi-
tational backreactions in the metric have been considered.
As expected, it is shown that the efficiency of the
preheating is conditioned to coupling strength between
the fields. In particular, for such a simple model, the
preheating of the universe within the first 3—4 e-folds
postinflation was found to occur for couplings in the range
of 0.1 £ g < 107*. On the other hand, self-resonance from
the Higgs alone, fails to reheat the universe within the first
3—4 e-folds after inflation.

These simulations have also shown the formation of
complex structures during the preheating, consisting in
large under/overdensities as well as strong positive/
negative (local) curvature regions, suggesting the possibil-
ity of (seeding) later formation of compact structures like
primordial black holes. Nonetheless, these results should be
taken cautiously as further investigations, including dedi-
cated numerical simulations, are necessary to accurately
resolve these highly-nonlinear objects.

Future works are also necessary to study more realistic
preheating scenarios, including the Higgs couplings to the
Standard Model particles. These are important, because
they potentially could shorten the preheating within one
e-fold after inflation [51,52], if metric backreactions allow
it. Other interesting aspects to be studied are the emission
of gravitational waves and possible amplification effects
[42,57,81,82]. Importantly, some of the described phenom-
ena are expected to be in the observable range of future
gravitational-wave experiments.
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APPENDIX A: BSSN FORMALISM OF
NUMERICAL RELATIVITY

In this work we solve the BSSN formulation of the
Einstein equations using GRChombo [70,71], a multipur-
pose numerical relativity code. In the context of the 3 + 1
decomposition of General Relativity, the line element reads

ds? = —a?d? + y;;(dx’ + pide)(dx’ + pidr), (A1)
where y;; is the metric of the three-dimensional hypersur-
face, and the lapse and shift gauge parameters are given
by a(t) and pi(t), respectively. A further conformal
decomposition of the 3-metric follows,

Yij :}(771‘]‘ =w'7; with det(7;) =1, (A2)
where y and y are two different parametrizations of the
metric conformal factor. While the former is used during
the temporal integration, the latter is preferred when
constructing the initial conditions. The extrinsic curvature
is thus split in ;\ij and K, respectively, the conformal
traceless part and its trace,
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1/~ 1.
K;; :)? <Aij +37’in>' (A3)

In addition, the first spatial derivatives of the metric are
considered as dynamical variables

where f}k are the Christoffel symbols associated with the
conformal metric ;.

1. Evolution equations

The evolution equations for the BSSN variables are then
given by

2 2
O = 300K = 350" + o, (AS)
5 it ~ k| o v 2 k kS =
07ij = —20A;; + ¥ud;f* + 70" — g%’jakﬁ + B o¥ij
(A6)
i, IO |
G,K = _},lle,Dja + a<Al’jAU + gKZ)
+ F0.K +dralpg + S), (A7)
0,;1,»]» = [—){DZDJC( —l—)(a(R,] - 87Z'Sij>]TF
+ Q(KAU - 2AHAIJ'> + Aikajﬂk + Ajkaiﬂk
2~ -
- gAijakﬁk + ﬂkakAijv (A8)
i sio e 2 3,0
0" = 2a <ijA/k -37 10K — 5A J j)
- . . o1
—2AY0;a + pro I + ?/kdjakﬁ’ + g?”djakﬂ"
2. . ) >
+ gFlakﬁk —T*0," — 16707 s, (A9)

where the superscript TF denotes the trace-free parts of
tensors, with R;; being the (three-dimensional) Ricci tensor.
The 3 + 1 decomposition of the energy-momentum tensor
TH gives

p=n"n"T,, (A10)
D (A1)
St = 1'7/ T, (A12)

S =yiS,;. (A13)

where n* = (1/a,—p"/a) is the unit normal vector to the
three-dimensional slices.

The Hamiltonian and momentum constraints,

H=R+K*—-K;;K'—167p =0, (A14)

M; = D/(K;; —y;;K) —8zS; =0, (A15)
where R is the Ricci scalar, are only solved explicitly
when constructing initial data. However, they are also
monitored during the time evolution in order to ensure
that there is no significant deviations from General
Relativity.

2. Gauge choice and singularity avoidance

The gauge parameters are initially set to o =1 and
' =0 and then evolved in accordance with the moving
puncture gauge [86,87], for which evolution equations are

da = —nza(K — (K)) + po;a, (A16)
op =B, (A17)

3 .
0,B' = 0" —ngB', (A18)

where the constants 7, and 7 are conveniently chosen to
improve the numerical stability. This way, a and ' are
boosted in the problematic regions with strongly growing
extrinsic curvature and spatial derivatives of the three-
metric 7;;. The goal of this gauge is to prevent the code
from resolving the central singularity of any black hole
that may eventually form, as well as to prevent coordinate
singularities on converging geodesics.

3. Scalar field equations

For the Einstein-frame canonical scalar field (p’ , the
energy-momentum tensor is given by

1
T/u/ = 51] (aﬂ(p[al/@J _2g/4ua/1(/)la/1(pj> - g;wv((pl() (Alg)

The scalar field dynamics is governed by the Klein-
Gordon equation, split into two first-order equations for the
field and its momentum ITf;

0,¢" = ally + /0,9, (A20)

01T, = POTT, + a0’ + dg'd'a (A21)

. d
+ a(KH{VI —7T;00" —d—le(qok)) (A22)
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Still in the Einstein frame, but with the Jordan defined
scalar fields ¢’, the energy momentum is written as

- - 1 - -
Tm/ = g”a”(ﬁlayd)J — 9w Egllaaqslaaqﬁj + V(¢I) ’ (A23)

and then the evolution equations read

0" = allyy + o, (A24)
oJ1L, = BoTIL, + ad,0'p’ + 0;p' d'ax
+a | Ky — 709"
TR +7900,0%) - 65|
(A25)

If instead, the system is evolved using the Einstein-frame
notation for the scalar fields @, the energy tensor sim-
plifies to

1
T =51,0,®'0,8" ~ g, |56,,0,®'0"! +-V(&) |, (A26)

and then, the evolution equations are given by

0,® = alll, + pio,®!, (A27)
o1, = BioTI, + ad,0'® + 0,0'd'ax
y d

+a| KT, — /T0, 0" —— S V(@K) | (A28)

APPENDIX B: FIELD-SPACE METRIC AND
CHRISTOFFEL SYMBOLS
Given f(h,s) = (M + &,h* + &s7)/2 for a two-field

model, with nonminimal couplings &,, &, the field-space
metric in the Einstein frame takes the form

MY\ (2f + 681 68, hs
_ —pl h hSs B1
9 <4 f2> ( 6&5Ehs  2f + 6357 > (B1)
1 _ 2f > (2f+65%52 —6&,,&hs )
’ <M§1C —6&Ehs  2f + 6512 ) (B2)
where C(h, s) is defined as
C(h,s) = 2f + 65,h% + 635>, (B3)

The Christoffel symbols for this field space take the form

E(L+68)h  &h

I, = ,
hh C I
es
l—‘hhS = _ﬁ = F?h?
Fh _ gh(l + 655)11
Ss C ’
= SUHO6E)s s
Ss C f ’
; LI
1'\ sh = — 2f = th,
. _&(1468)s
I, = % (B4)

APPENDIX C: SCALAR FIELDS IN THE JORDAN
AND EINSTEIN FRAME NOTATION

Transforming from the scalar fields in the Jordan
frame notation ¢’ to the Einstein frame once ®' is done
by finding an approximate solution to the following system
of equations

g”gﬂvaﬂqglangf = 51Jgﬂya/4q)lavq)1' (Cl)

Assuming two Jordan scalar fields, the Higgs h with
nonminimal coupling &, and an auxiliary field s with
nonminimal coupling ¢, then we search for a transforma-
tion into the Einstein frame such as ¢(h,s), y(h,s).
Assuming £, = 0, the above mentioned system of equa-
tions simplifies to

0P\ 2 i\
(a) * (%) = O

(C2)

107°

|h|

FIG. 6. Error of the approximation (C1) to convert fields
between the Jordan and Einstein frame.
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(C3)

AN a\?
() (5) o

O I dy Iy
_r-r Z 21 =0
<ah as> + <ah s

By assuming d¢/oh ~ /G, and dy/ds ~ /G, implies
that, in the range of validity of this approximation,

0P\ 2 oy \ 2
— <|\=),
(6s> (0s>

oy \? op\ 2
@) <)

While the first identity is trivially satisfied, the second
one (C6) is not, because the approximation proposes the
solution to be s~ y+/2f(h). Thus, the validity of these
approximation depend on the region in consideration of the
field space, as shown in shown in Fig. 6. In general, the
parameter space when this assumptions are valid is gen-
erally at when |s| < 1072, and when |s| < |k|/100. These
regions corresponds to (%)*/(%%)* < 10°.
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APPENDIX D: CODE VALIDATION AND
CONVERGENCE TESTS

The validation of the code is done by monitoring the
constraint equations. The relative Hamiltonian constraint is
defined as follows:

HREL = TiA (Dl)

M

(D2)

These quantity has been computed for all simulations,
which is shown in Fig. 7. Convergence tests using different
grid-size resolutions are shown in Fig. 8.

APPENDIX E: AUXILIARY FIGURES

In this appendix we include additional figures corre-
sponding to alternative simulations constructed with some
variation in the initial conditions. For the simulations on
preheating, we tested whether the inclusion of initial

107! - ~N g=10"*

- o Y -

10—13 §

10—17

FIG. 9. Evolution of the energy density respect on the expansion history. This simulations corresponds to scenarios of preheating with
g < 1073 from Fig. 3, but including perturbations in the initial state of the Higgs field. The bottom-right panel corresponds to the single-
field case. The box size of the simulations at the end of inflation correspond to L ~ 5H™".
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FIG. 10. Same as in top and bottom panels of Fig. 5. It shows the dynamical evolution of sub-Hubble (left) and super-Hubble (right)
energetically dominated initial conditions corresponding to the preinflationary era until the onset of inflation. The initial box size of the
simulations correspond to L =~ 2H~! for the sub-Hubble case and L ~ 10H~! for the super-Hubble one.

perturbations in the Higgs field induce changes during the
resonance period, in particular in the low g limit as
perturbations in the Higgs field during the last e-fold of
inflation could have been diminished. In addition, a larger
initial box size was also considered. These modifications,
as shown in Fig. 9, do not significantly change the

resonance dynamics of the preheating process. Similarly,
alternative initial conditions for the preinflationary era are
shown in Fig. 10, where larger box sizes where tested,
as well as different patterns in the initial field gradients.
These simulations also lead to the same conclusions
explained in Sec. VI A.
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