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We formulate axion-electrodynamics and magnetohydrodynamics (MHD) in the cosmological
context assuming weak gravity. The two formulations are made for a general scalar field with general
fðϕÞ-coupling, and an axion as a massive scalar field with ϕ2-coupling, with the helical electromagnetic
field. The α-dynamo term appears naturally from the helical coupling in the MHD formulation. In the
presence of the electromagnetic coupling, however, the Schrödinger and hydrodynamic formulations of the
coherently oscillating axion are not available for the conventional ϕ coupling; instead, ϕ2 coupling allows
successful formulations preserving the dark matter nature of the axion to nonlinear order. In the MHD
formulation, direct couplings between the scalar and electromagnetic fields appear only for nonideal MHD.
We study gravitational and magnetic instabilities of the scalar field and axion MHDs.
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I. INTRODUCTION

The axion as a coherently oscillating massive scalar field
is a cold or fuzzy dark matter (DM) candidate [1–5]. The
axion electrodynamics (ED) is a central topic in exper-
imental searches for the DM axion or axionlike particles in
the laboratory [6–8]. The pseudoscalar nature of the axion
allows a natural coupling with the helical electromagnetic
(EM) field. The helical coupling can cause magnetic
helicity generation, which has important implications in
enhancing the large-scale magnetic field via dynamo action
and inverse cascade [9,10]. The origin and evolution of
the magnetic field on the cosmic scale, unknown at the
moment, are tied with the cosmological evolution. Thus,
helically coupled axion is a subject of central importance in
high-energy physics, astrophysics, and cosmology [11–16].
Magnetohydrodynamics (MHD) is a convenient

approximation for handling the EM field interacting with
a conducting fluid. Here, we aim to provide the complete
sets of equations for the ED and the MHD combined with a
general scalar field and an axion as a massive scalar field, in
the presence of additional coupling between the scalar field
and the helical EM field. We consider the weak gravity
limit in the cosmological context.

For a coherently oscillating axion, under the Klein
transformation, we can derive the Schrödinger equation
in the nonrelativistic limit. Further applying the Madelung
transformation, we have the quantum hydrodynamic equa-
tions revealing the nature of axion as the fuzzy (or cold)
DM candidate [17–19]. With the EM coupling, however,
such transformations are not available for the conventional
ϕ-coupling commonly used in direct detection experiments
of axion as the DM [6–8]; for strong coupling, the DM
nature of the axion is lost. Instead, a ϕ2-coupling allows
successful transformations preserving the DM nature with
coherent oscillation even to the nonlinear order.
We consider a scalar field generally coupled with the

helical EM field. The Lagrangian density is

L ¼ c4

16πG
ðR − 2ΛÞ − 1

2
ϕ;cϕ;c − VðϕÞ þ Lm

−
1

16π
FabFab −

gϕγ
4

fðϕÞFabF̃ab þ 1

c
JaeAa; ð1Þ

where Lm is the fluid part, R is the scalar curvature, Λ is the
cosmological constant, ϕ is the scalar field, Fab is the EM
field strength tensor with F̃ab its duel tensor, Jae is the
electric four-current, and Aa is the four-potential; FabF̃ab ¼
−4EaBa is parity-odd and leads to asymmetry between the
two circular polarization states, thus helical.
Here, assuming weak gravity limit (see below) in

cosmological context we will formulate the ED and
MHD for a general scalar field with VðϕÞ and fðϕÞ
without using the transformations, and for an axion with
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massive V and f ¼ 1
2
ϕ2 with the transformations. These

are the scalar field-ED and MHD in Secs. II and III, and
axion-ED and MHD in Secs. IV and V, respectively.
In Sec. VI we investigate the gravitational and magnetic
instabilities of the scalar field and axion MHDs.
Section VII is a discussion.

II. SCALAR FIELD-ED

In this work, we consider a weak gravity limit of
Einstein’s gravity. The metric tensor convention is

g00 ¼ −
�
1þ 2

Φ
c2

�
; g0i ¼ −a

Pi

c3
;

gij ¼ a2
�
1 − 2

Ψ
c2

�
; ð2Þ

where x0 ≡ ct and aðtÞ is the cosmic scale factor. As the
weak gravity limit, we assume

Φ
c2

≪ 1;
Ψ
c2

≪ 1; ð3Þ

thus keep only to linear order in metric perturbation. In the
current cosmological paradigm, we have Φ=c2 ∼ 10−5 or
less in observed cosmological scales, thus indeed suffi-
ciently small. However, we will keep the EM and the scalar
fields fully relativistic and nonlinear, and this is why we
keep two different potentials Φ and Ψ. Furthermore, in the
weak gravity limit, the g0i-component is nonvanishing [20].
A consistent weak gravity limit combined with the rela-
tivistic matter parts is available in the uniform-expansion
gauge, setting the expansion scalar of the normal frame
vector θ≡ na;a (which is minus of the trace of extrinsic
curvature, −Ki

i) uniform in space; this differs from the zero-
shear gauge setting the transverse part of Pi equal to zero as
the temporal gauge condition [20,21]. Later, for simplicity,
we will assume slow-motion (vivi=c2 ≪ 1) limit for the
fluid part; for the fluid conservation equations, we will
further assume a nonrelativistic limit. But, the scalar field
and EM fields are kept relativistic, and the whole formu-
lation is nonlinear.
Maxwell’s equations, in the normal (laboratory) frame of

reference, are modified by the axion-coupling as

∇ ·E ¼ 4πaðϱe þ ϱeϕÞ; ð4Þ

1

c
ða2EÞ· ¼ a∇ ×B −

4πa2

c
ðje þ jeϕÞ; ð5Þ

∇ ·B ¼ 0; ð6Þ

1

c
ða2BÞ· ¼ −a∇ ×E; ð7Þ

with the axion-induced electric charge and current den-
sities, respectively [6,22]

ϱeϕ¼−gϕγ
1

a
B ·∇f; jeϕ ¼ gϕγ

�
B _f−

c
a
E×∇f

�
: ð8Þ

These are Gauss’s law, Ampère’s law, no monopole
condition, and Faraday’s law, respectively, and are valid
in the weak gravity limit. We use the Gaussian unit [23].
The Klein-Gordon equation gives [6]

ϕ̈þ3
_a
a
_ϕ−c2

Δ
a2

ϕþðc2þ2ΦÞV;ϕ¼ c2gϕγf;ϕE ·B: ð9Þ

We kept the gravitational potential Φ in the weak gravity
limit, as the mass term in the scalar field potential V is
already c2 order; for a massive field, V ¼ 1

2
m2c2

ℏ2 ϕ2. We have
FabF̃ab ¼ −4E ·B which is related to the time derivative
of the magnetic helicity,

R
V A · Bd3xwithB≡∇ ×A [24].

For the fluid, for simplicity, we consider only the
continuity and Euler equations in the nonrelativistic limit

_ϱþ 3
_a
a
ϱþ 1

a
∇ · ðϱvÞ ¼ 0; ð10Þ

_v þ _a
a
v þ 1

a
v ·∇v þ 1

a
∇Φþ 1

ϱa
ð∇pþ∇jΠ

j
iÞ

¼ 1

ϱ

�
ϱeEþ 1

c
je ×B

�
; ð11Þ

where ϱ, v, p and Πij are the density, velocity, pressure and
anisotropic stress, respectively. The right-hand side of
Eq. (11) is the Lorentz force. The gϕγ-coupling couples
the EM field with the scalar field only, and does not directly
affect the fluid conservation equations.
For the gravity, we have [21]

Δ
a2

Φ ¼ 4πG
c2

�
μþ 3pþ 2

c2
_ϕ2 − 2V þ E2 þ B2

4π

�

þ 3
ä
a
− Λc2; ð12Þ

Δ
a2

Ψ ¼ 4πG
c2

�
μþ 1

2c2
_ϕ2 þ V þ 1

2a2
ϕ;iϕ;i þ

E2 þ B2

8π

�

−
3

2

_a2

a2
þ Λc2

2
; ð13Þ

thusΨ ≠ Φ in our weak gravity approximation. These were
derived in the uniform-expansion gauge; in the zero-shear
gauge, 3p-term in Eq. (12) is missing, which contradicts
the exact result known in the spherically symmetric system
[20]. We kept fluid variables (energy density μ≡ ϱc2 and
pressure p) to the weak gravity and slow-motion limits; in
the nonrelativistic limit we can further ignore the pressure
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term. We note that the EM and the scalar fields are still fully
relativistic. The gϕγ-coupling term does not directly appear
in gravity because it does not contribute to the energy-
momentum tensor. Notice that only Φ (not Ψ) couples with
the fields and the fluid; this is because we consider the
nonrelativistic order in the fluid. For weak gravity limit
combined with fully relativistic matter and conventional
EM field, see [20,21].
These complete the scalar field-ED in the weak gravity

combined with the nonrelativistic fluid: the complete set is
Eqs. (4)–(12). We considered general VðϕÞ and fðϕÞ in
the cosmological context. In the Friedmann background,
Eqs. (9), (10), (12) and (13) include the background order
equations, and in perturbation analysis we may subtract
the background order, see Sec. VI. The Friedmann back-
ground cannot accommodate the EM field. By setting
a≡ 1 and Λ ¼ 0, we recover equations in the Minkowski
background.
Our basic equations in (4)–(13) are derived from the fully

relativistic formulation by sequentially taking the weak
gravity, slow-motion and nonrelativistic limits; the latter
two limits applied only to the fluid component. A fully
relativistic extension of the present work is currently in
progress [25].

III. SCALAR FIELD-MHD

The MHD approximation considers 4πσT ≫ 1 where σ
is the electrical conductivity and T is the characteristic
timescale of variation of the EM fields [26]. In the
slow-motion limit, MHD (i) adopts a simple form of
Ohm’s law as

je ¼ σ

�
Eþ 1

c
v × B

�
; ð14Þ

(ii) the displacement current term in Ampère’s law is
negligible, (iii) E2 term in Eq. (12) is negligible, and
(iv) in ordinary MHD, ϱeE is negligible compared with
the second Lorentz force term, but not in the presence of
the gϕγ-coupling; using the Ohm’s law, we can show that
only ∇ ·E term coming from ϱeE using Gauss’ law is
negligible compared with the second Lorentz force term
[see Eq. (17)].
In the MHD, the fundamental dynamic variables are

hydrodynamic ones like ϱ, v, and the magnetic field B; in
our case, we have additional scalar field variable ϕ and
gravity Φ. The Ohm’s law determines E, Gauss’ law
determines ϱe, and Ampère’s law determines je; these are
respectively,

E ¼ −
1

c
v ×Bþ je

σ
; ϱe ¼

∇ ·E
4πa

− ϱeϕ;

je ¼
c∇ × B
4πa

− jeϕ: ð15Þ

Notice that in our case with gϕγ-coupling, E and je are
coupled; we may truncate it (using smallness of either 1=σ
or gϕγ) at some point depending on the situation.
Using the Ohm’s law and Ampère’s law in Eq. (15), and

assuming constant σ, the Faraday equation gives

1

a2
ða2BÞ· − 1

a
∇ × ðv ×BÞ − c2ΔB

4πσa2

¼ cgϕγ
σa

∇ ×

�
_fB −

c
a
E ×∇f

�
: ð16Þ

The second term in the left-hand side is the flux conserving
induction term (in the absence of the other terms the
magnetic field is frozen-in with the fluid), and the third
term is the diffusion. The right-hand side can work as the
scalar field source for the magnetic field; especially, the
first term can work as the α-dynamo [27] with α ¼ cgϕγ _f=σ
[28,29]. For an ideal MHD (σ → ∞), the gϕγ-coupling
disappears. One remaining equation is ∇ · B ¼ 0. Linear
solutions with exponential growth due to the α-dynamo
term are given in Eq. (48).
For the fluid, the continuity equation in (10) remains the

same. The Euler equation in (11), using the Gauss’ and
Ampère’s laws in Eq. (15), gives

_v þ _a
a
v þ 1

a
v ·∇v þ 1

a
∇Φþ 1

ϱa
ð∇pþ∇jΠ

j
iÞ

¼ ð∇ × BÞ ×B
4πϱa

þ gϕγ
1

ϱa
E · B∇f: ð17Þ

Notice the presence of gϕγ-coupling contribution in the
scalar field-MHDwhile such a term is absent in the original
scalar field-ED in Eq. (11). Using the Ampère’s and Ohm’s
laws in Eq. (15), we have

E ·B¼ cB · ð∇×BÞ
4πσa

−
gϕγ
σ
½ _fB2−

c
a
B · ðE×∇fÞ�: ð18Þ

For E-term in the right-hand side, we may again use the
Ohm’s law with a truncation, see below Eq. (15). For the
scalar field, Eq. (9) remains the same and we only need
E ·B expressed in the MHD approximation as in Eq. (18).
In the ideal MHD limit, we have E ·B ¼ 0, and the gϕγ-
coupling entirely disappears. Thus, for ideal MHD with
σ → ∞, the scalar field and magnetic field are coupled only
through gravity. For the gravity, Eq. (12) remains the same
except for the absence of E2-term.
These complete the MHD approximation coupled with a

scalar field with general VðϕÞ and fðϕÞ: the complete set is
Eqs. (15)–(18) together with Eqs. (9), (10), and (12) for the
scalar field, fluid and gravity, respectively.
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IV. AXION-ED

A. Klein transformation

From now on, we consider a massive field with f ¼ 1
2
ϕ2

and call it axion. We will use two transformations that lead
to the Schrödinger formulation and Madelung’s hydro-
dynamic formulation. In other forms of f-coupling (includ-
ing the conventional f ¼ ϕ coupling) with sufficiently
large coupling strength gϕγ, it is difficult to apply the two
transformations with time-average. In such cases, we can
use the ED and MHD formulations made for general VðϕÞ
and fðϕÞ in the previous two sections.
The Klein transformation is [30,31]

ϕðx; tÞ≡ ℏffiffiffiffiffiffiffi
2m

p ½ψðx; tÞe−iωct þ ψ�ðx; tÞeþiωct�; ð19Þ

where ϕ is a real scalar field, and ψ is a complex wave
function; ωc ≡mc2=ℏ is the Compton frequency. This
ansatz is valid if the scalar field oscillates with Compton
frequency. On sub-Compton scale, the Laplacian term in
Eq. (9) dominates and the scalar field does not oscillate.
Thus, the Klein transformation works only on super-
Compton scale [19].
Ignoring the rapidly oscillating parts (by taking time

average), we have f ¼ ℏ2jψ j2=ð2mÞ, and Eq. (8) gives

ϱeϕ ¼ −
ℏ2gϕγ
2m

1

a
B ·∇jψ j2;

jeϕ ¼ ℏ2gϕγ
2m

�
Bðjψ j2Þ· − c

a
E ×∇jψ j2

�
: ð20Þ

Equation (9), in the nonrelativistic (c → ∞) limit [19],
gives

iℏ

�
_ψ þ 3

2

_a
a
ψ

�
¼ −

ℏ2

2m
Δ
a2

ψ þmΦψ −
ℏ2gϕγ
2m

E · Bψ ;

ð21Þ

which is the Schrödinger equation in expanding back-
ground, including the gravity and the EM coupling. For the
gravity, from Eq. (12), we have

Δ
a2

Φ ¼ 4πG

�
ϱþmjψ j2 þ E2 þ B2

4πc2

�
þ 3

ä
a
− Λc2; ð22Þ

where we ignored (by time-average) oscillating parts and
took the nonrelativistic limit for the axion; we have not
imposed the nonrelativistic condition in the EM part.

B. Madelung transformation

Assuming the first and second derivatives of u are well
defined, under the Madelung transformation [17]

ψ ≡
ffiffiffiffiffi
ϱϕ
m

r
eimu=ℏ; ð23Þ

Eq. (20) gives

ϱeϕ ¼ −
ℏ2gϕγ
2m2

1

a
B ·∇ϱϕ;

jeϕ ¼ ℏ2gϕγ
2m2

�
B_ϱϕ −

c
a
E ×∇ϱϕ

�
: ð24Þ

Imaginary and real parts, respectively, of Eq. (21)
give [17–19]

_ϱϕ þ 3
_a
a
ϱϕ þ

1

a
∇ · ðϱϕvϕÞ ¼ 0; ð25Þ

_vϕ þ
_a
a
vϕ þ

1

a
vϕ ·∇vϕ þ

1

a
∇Φ

¼ ℏ2

2m2

1

a3
∇
�Δ ffiffiffiffiffi

ϱϕ
p
ffiffiffiffiffi
ϱϕ

p
�
þ ℏ2gϕγ

2m2a
∇ðE ·BÞ; ð26Þ

where we identified vϕ ≡ 1
a∇u, thus ∇ × vϕ ¼ 0. The

potential-flow nature of the axion velocity is an important
characteristic of the axion fluid; the quantized vortices (see
below) appear in the Schrödinger formulation in Eq. (21),
and their cosmological roles are studied in [32–34]. The
first term in the right-hand side of Eq. (26) is the quantum
stress [35]. Notice the difference in the EM parts between
Eqs. (11) and (26).
The nonequivalence between the Schrödinger formu-

lation and the hydrodynamic formulation by Madelung is
recognized in the literature: while the hydrodynamic
formulation has potential flow without vortex, the
Schrödinger formulation has quantized vortices [35,36].
The single valuedness of the wave function demands the
circulation around any closed path to be quantized

Γ ¼
I
C
av · dl ¼

I
C
ð∇uÞ · dl ¼

I
C
du ¼ n

h
m
; ð27Þ

where n is an integer and n ≠ 0 for a path encircling
vanishing wavefunction [37]. Using Stokes’ theorem, the
circulation is related to the vorticity ω⃗≡ 1

a∇ × v as

Γ ¼
ZZ

S
að∇ × vÞ · dS⃗ ¼

ZZ
S
a2ω⃗ · dS⃗: ð28Þ

The hydrodynamic formulation reveals the fuzzy DM
nature of axion preserved for ϕ2-coupling; for ϕ-coupling,
however, these two transformations are not possible, and
for a sufficiently large coupling strength gϕγ the DM nature
is lost to nonlinear order, see later. For the gravity, Eq. (22)
remains the same with ϱϕ ¼ mjψ j2.
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Combining with the fluid equations in (10) and (11) and
Maxwell’s equations in (4)–(8) we have the complete sets
of axion-ED in either the Schrödinger formulation or the
fluid formulation for the axion field.

V. AXION-MHD

Now, we present the axion-MHD approximation for
ϕ2-coupling. The MHD conditions in Eqs. (14) and (15)
remain the same. Using the Ohm’s law and Ampère’s law in
Eq. (15), and assuming constant σ, the Faraday equation
gives

1

a2
ða2BÞ· − 1

a
∇ × ðv ×BÞ − c2ΔB

4πa2σ

¼ cℏ2gϕγ
2m2σa

∇ ×

�
_ϱϕB −

c
a
E ×∇ϱϕ

�
: ð29Þ

The first term in the right-hand side works as the α-effect of

mean field dynamo with α ¼ cℏ2gϕγ
2m2σ

_ϱϕ. In dynamo theory,
the α-term arises from the induction term using the mean
field MHD [27,38,39]; kinetic energy is converted to the
magnetic one by turbulent motion. Here the gϕγ-coupling
directly causes the α-term for a finite σ. Linear solutions
with exponential growth are given in Eq. (48).
For the fluid, the continuity equation in (10) remains the

same. The Euler equation in (11), using the Gauss’ and
Ampère’s laws in Eq. (15), gives

_v þ _a
a
v þ 1

a
v ·∇v þ 1

a
∇Φþ 1

ϱa
ð∇pþ∇jΠ

j
iÞ

¼ ð∇ × BÞ ×B
4πϱa

þ ℏ2gϕγ
2m2ϱa

E ·B∇ϱϕ: ð30Þ

Using the Ampère’s and Ohm’s laws in Eq. (15), we have

E ·B ¼ cB · ð∇ ×BÞ
4πσa

−
ℏ2gϕγ
2m2σ

�
B2 _ϱϕ −

c
a
B · ðE ×∇ϱϕÞ

�
:

ð31Þ

These complete the axion-MHD with ϕ2-coupling: the
complete set is Eqs. (29)–(31) together with Eqs. (15) and
(10) for the EM field and fluid. For the gravity, Eq. (22) is
valid without the E2 term. For the axion, we have either the
Schrödinger formulation in Eq. (21) or the Madelung’s
hydrodynamic formulation in Eqs. (25) and (26), with
E ·B in Eq. (31). In the ideal MHD, the gϕγ-coupling effect
entirely disappears.

VI. INSTABILITIES OF AXION-MHD

A. Gravitational instability

As an application, we consider gravitational instability of
the fluid and axion system caused by the MHD with helical

ϕ2-coupling. We set ϱ → ϱþ δϱ≡ ϱð1þ δÞ, and similarly
for p and ϱϕ. We keep to the linear perturbation orders in
the fluid and the axion but keep nonlinear order in the
magnetic field; this is because EM fields always appear in
quadratic (thus nonlinear) combinations. To be consistent,
we have to expand the fluid and axion field at least to the
second-order as well, but here for simplicity, we ignore
writing these nonlinear terms. To the background order,
Eqs. (10), (25) and (22) give

ða3ϱÞ· ¼ 0¼ða3ϱϕÞ·;
ä
a
¼−

4πG
3

ðϱþϱϕÞþ
Λc2

3
: ð32Þ

For perturbed parts, we subtract the background equations.
For the fluid perturbation, Eqs. (10) and (11) give

_δþ 1

a
∇ · v ¼ 0; ð33Þ

_v þ _a
a
v þ 1

a
∇Φþ 1

ϱa
ð∇δpþ∇jΠ

j
iÞ

¼ ð∇ ×BÞ ×B
4πϱa

þ ℏ2gϕγ
2m2a

ϱϕ
ϱ
E ·B∇δϕ: ð34Þ

Keeping nonlinear order only in EM field, Eq. (18) gives

E ·B ¼ cB · ð∇ ×BÞ
4πσa

−
ℏ2gϕγ
2m2σ

B2 _ϱϕ: ð35Þ

By taking divergence and curl operations, we have

δ̈þ 2
_a
a
_δ −

Δ
a2

Φ −
1

ϱa2
ðΔδpþ∇i∇jΠijÞ

¼ −
∇ · ½ð∇ ×BÞ × B�

4πϱa2
; ð36Þ

1

a2
ða2ω⃗Þ·þ 1

ϱa2
ηijk∇j∇lΠkl ¼∇× ½ð∇×BÞ×B�

4πϱa2
; ð37Þ

where ω⃗≡ 1
a∇ × v; we ignore gϕγ contribution, the last

term in Eq. (34), which already involves perturbed axion
density in a nonlinear context. Thus, the ideal MHD can
source the density and the angular momentum [40,41]. We
note that, although we kept only to the linear order in
perturbed fluid variables (by ignoring writing the nonlinear
terms), what is generated by the magnetic field is nonlinear
order fluid perturbations. The quadratic combinations of
magnetic field source the density and rotational perturba-
tions, and as the magnetic field is already a perturbed order,
the quadratic combinations work as nonlinear source terms.
For the axion perturbation, Eqs. (25) and (26) give

_δϕ þ
1

a
∇ · vϕ ¼ 0; ð38Þ
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_vϕ þ
_a
a
vϕ þ

1

a
∇Φ ¼ ℏ2∇Δδϕ

4m2a3
þ ℏ2gϕγ

2m2a
∇ðE · BÞ; ð39Þ

By taking divergence and curl operations, we have

δ̈ϕ þ 2
_a
a
_δϕ −

Δ
a2

Φþ ℏ2Δ2

4m2a4
δϕ ¼ −

ℏ2gϕγΔ
2m2a2

E · B; ð40Þ

1

a2
ða2ω⃗ϕÞ· ¼ 0; ð41Þ

where ω⃗ϕ ≡ 1
a∇ × vϕ. The gϕγ-coupling sources axion

density perturbation for a finite σ, whereas the vorticity
of the axion is free from the coupling due to the potential
nature of vϕ. In hydrodynamic formulation, we have ω⃗ϕ ¼
0 exactly to nonlinear order, see Eq. (26); as mentioned, to
make the hydrodynamic formulation equivalent to the
Schrödinger formulation we need additional quantized
vortices added by hand [36]. For gravity, Eq. (22) gives

Δ
a2

Φ ¼ 4πG

�
ϱδþ ϱϕδϕ þ

B2

4πc2

�
: ð42Þ

Combining Eqs. (36), (40), and (42), ignoring the
anisotropic stress, we have

δ̈þ 2
_a
a
_δ − 4πG

�
ϱδþ ϱϕδϕ þ

B2

4πc2

�
−

Δ
a2

δp
ϱ

¼ −
∇ · ½ð∇ ×BÞ × B�

4πϱa2
; ð43Þ

δ̈ϕ þ 2
_a
a
_δϕ − 4πG

�
ϱδþ ϱϕδϕ þ

B2

4πc2

�
þ ℏ2Δ2

4m2a4
δϕ

¼ −
ℏ2gϕγΔ
2m2a2

E · B: ð44Þ

Considering pure fluid and pure axion in Eqs. (43) and (44),
respectively, and by comparing the gravity term with the
pressure/stress term, we have the Jeans criterion dividing
the gravity and pressure dominating scales. For fluid and
axion, respectively, we have

kJ
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4πGϱ

p
vs

;
kJϕ
a

¼ ð6ΩϕÞ1=4
ffiffiffiffiffiffiffiffi
mH
ℏ

r
; ð45Þ

where Δ¼−k2, vs≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δp=δϱ

p
, Ωϕ≡ϱϕ=ϱcr, ϱcr≡3H2=

ð8πGÞ, and H ≡ _a
a.

B. Magnetic instability

For magnetic field, to the linear order, Eq. (29) gives

1

a2
ða2BÞ· − c2ΔB

4πa2σ
¼ cℏ2gϕγ

2m2σa
_ϱϕ∇ × B: ð46Þ

In the case of general scalar field, from Eq. (16) we
have ℏ2ϱϕ=ð2m2Þ→f. In Fourier space with Bðk;tÞ¼R
d3xe−ik·xBðx;tÞ, and using the orthonormal helicity

(circular polarization) basis [23] ðêþ; ê−; ê3Þ with ê�≡
ðê1 � iê2Þ=

ffiffiffi
2

p
, ê3 ≡ k=k, and B≡BþêþþB−ê−þB3ê3,

we have

1

a2
ða2B�Þ· ¼

c2

4πσ

�
−
k2

a2
� 2πℏ2gϕγ

m2c
k
a
_ϱϕ

�
B�; ð47Þ

with solutions [28,29,42]

B� ¼ B�i
a2i
a2

exp

�Z
t

ti

c2

4πσ

�
−
k2

a2
� 2πℏ2gϕγ

m2c
k
a
_ϱϕ

�
dt

�
;

ð48Þ

and B3 pure decaying. The first term is diffusion damping.
The second term causes exponential growth of the magnetic
field for small enough k and steady _ϱϕ=ðσaÞ, with maxi-

mum growth rate for k ¼ πℏ2a
m2c jgϕγ _ϱϕj, and the system tends

toward to maximal helicity state [28,29,43,44]. The maxi-
mal helicity state can cause inverse cascade of the magnetic
energy to larger scales [9,10,12].

VII. DISCUSSION

Assuming weak gravity, we formulated ED and MHD
for a scalar field with general potential VðϕÞ and fðϕÞFF̃-
coupling. We also present ED and MHD equations for a
coherently oscillating axion with ϕ2FF̃-coupling. The
latter axion formulations use the Schrödinger and the
hydrodynamic formulations for the axion available for
the ϕ2-coupling. We also presented the gravitational
instability of the fluid and axion caused by the MHD with
helical coupling and the magnetic instability caused by the
scalar field and axion.
For the QCD motivated axion with a mass around μeV

the Jeans scale in Eq. (45) caused by the quantum stress
term is negligible. To the linear perturbation order Eq. (44),
ignoring the MHD contribution and the quantum stress, is
the same as the pressureless matter in Eq. (43). The same is
true for the nonlinear order; compare Eqs. (25) and (26)
with Eqs. (10) and (30). Thus, axion behaves as the cold
DM. The quantum Jeans scale increases as the axion mass
becomes smaller. Such axionlike particles with extremely
low mass can work as a fuzzy (or wave) DM lessening the
small-scale tension in the cold DM scenarios [1–5]. In this
work, we call axion a massive scalar field independently of
the mass and coupling to the EM field.
In the presence of the EM coupling, the Schrödinger and

hydrodynamic formulations are not available for the con-
ventional ϕ-coupling. This conventional ϕ-coupling with
sufficiently large coupling strength gϕγ can cause deviation
in the DM nature of the axion, see Eq. (9). The trouble is
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avoided in the laboratory experiments, by assuming a
sufficiently small coupling of gϕγ, which is indeed con-
sistent with experiments [7]. For example, in the exper-
imental setting at the laboratory, with static strong
aligned B and gϕγ assumed to be sufficiently small, the
generated E is small as well, thus Eqs. (4) and (5) give
E ¼ −gϕγB ·∇ϕ, and right-hand sides of Eqs. (7) and (9)
are negligible.
For the non-negligible gϕγ term with ϕ-coupling in

Eq. (9), however, the coherent oscillation of the axion
cannot be maintained. In a perturbative sense, as the EM
correction in Eq. (9) is already second-order, we can apply
the Klein and Madelung transformations to the linear order,
with consequent Schrödinger and hydrodynamic formula-
tions. But, from the second order, the term in the right-hand
side of Eq. (9) contributes, and the fuzzy (or cold) DM
nature of the axion is threatened.
If the gϕγ term with ϕ-coupling in Eq. (9) can be ignored,

we can proceed the two transformations in Eqs. (19) and
(23), and consequently, Eq. (21) for the Schrödinger
equation and Eqs. (25) and (26) for the axion-fluid
equations are valid without the E · B terms. Still, we have
trouble employing the transformations in the axion-induced
charge and current densities in Eq. (8), and we have to use
the field (ϕ) instead of the wave function (ψ) or the fluid
quantities (ϱϕ and vϕ) in the ED or the MHD equations.
We can estimate the effect of axion-coupling on the

MHD. In a static medium, the right-hand sides of Eqs. (16)
and (29) can be estimated as ðgϕγ _f=σÞc∇ ×B with f ¼
ℏ2ϱϕ=ð2m2Þ for ϕ2-coupling. In our convention, gϕγf, thus

gϕγ _f=σ are dimensionless. For the axion-coupling term to
be important in the Faraday equation, we need the coupling
constant to be gϕγ ∼ σ= _f which becomes 2m2σ=ðℏ2 _ϱϕÞ
for ϕ2-coupling. In nonrelativistic fully ionized plasma,

the conductivity is given as σ∼ðkBTÞ3=2=ðe2m1=2
e Þ∼3×

1014T3=2
eV =sec with TeV the temperature in eV unit [45].

Using _ϱϕ ∼Hϱϕ with H ¼ 100 hkm= sec =Mpc,we

have gϕγ ∼ 4 × 10−7m2
22T

3=2
eV =ðΩϕh3Þ cm=eV where m22 ≡

mc2=ð10−22 eVÞ.
Here we note that in Eq. (16) a curl of misalignment

between the gradient of the scalar field ∇ϕ and the electric
field E (for example, caused by Thomson scattering of
electrons before recombination) can generate the mag-
netic field.
Although the coherent oscillation is preserved, the ϕ2-

coupling is difficult to motivate in high-energy physics, and
calling the case an axion may cause controversy. Despite
lacking physical motivation as an axion, the successful
Schrödinger and hydrodynamic formulations of the ϕ2-
coupling in the MHD, structure formation, and source for
α-dynamo may deserve further study. For other couplings
the Schrödinger and hydrodynamic formulations are not
available, but we still have the ED and MHD formulations
with helical coupling directly using the scalar field; see
Secs. II and III, respectively.
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