
Dark matter production in Weyl R2 inflation

Qing-Yang Wang ,1 Yong Tang ,1,2,3,4,* and Yue-Liang Wu1,2,3,5
1University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

2School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study,
UCAS, Hangzhou 310024, China

3International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
4National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

5Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 6 April 2022; accepted 23 June 2022; published 6 July 2022)

Dark matter and inflation are two key elements to understand the origin of cosmic structures in modern
cosmology, and yet their exact physical models remain largely uncertain. The Weyl scaling invariant theory
of gravity may provide a feasible scheme to solve these two puzzles jointly, which contains a massive gauge
boson playing the role of dark matter candidate and allows the quadratic scalar curvature term, namely R2,
to realize a viable inflationary mechanism in agreement with current observations. We ponder on the
production of dark matter in the Weyl R2 model, including the contribution from the nonperturbative
production due to the quantum fluctuations from inflationary vacuum and perturbative ones from
scattering. We demonstrate that there are generally three parameter regions for viable dark matter
production: (1) If the reheating temperature is larger than 103 GeV, then the Weyl gauge boson as dark
matter can be produced abundantly with mass larger than the inflation scale ∼1013 GeV. (2) Small mass
region with 3 × 10−13 GeV for a higher reheating temperature. (3) Annihilation channel becomes
important in the case of higher reheating temperature, which enables the Weyl gauge boson with a mass
up to 4 × 1016 GeV to be produced through freeze-in.

DOI: 10.1103/PhysRevD.106.023502

I. INTRODUCTION

Dark matter is an effective paradigm to explain the various
observations in galactic rotation curve, cosmic large scale
structures, and the gravitational lensing of clusters [1–4].
Studies of the primordial nucleosynthesis [5] and the power
spectrum of cosmic microwave background (CMB) [6] also
provide strong evidence that there is abundant missing
matter whose present total amount is about five times that
of visible matter described by the standard model (SM) of
particle physics. As for the physical essence of dark matter,
however, it still remains obscure. All experiments so far have
not identified whether dark matter interacts with SM
particles except gravity [7–9].
In this paper, we ponder on a new kind of vector dark

matter [10,11] from the Weyl scaling invariant theory of
gravity [12,13]. Weyl symmetry with various forms has wide

applications in cosmological physics [14–18]. It can natu-
rally introduce a local scaling symmetry associated with a
gauge boson (called a Weyl gauge boson or WGB), which
acquires a mass from the symmetry breaking. The consid-
eration of Weyl gravity is also motivated by the reason-
ableness of introducing a quadratic scalar curvature term R2

into theory [19–21]. It can provide a successful inflationary
mechanism with observational conformity, albeit it has a
different form under the Weyl geometry [22–25]. Our
previous study has discussed Weyl R2 inflation [21] and
briefly the production of dark matter. However, the intrinsic
connection between the inflaton and WGBs has not been
fully explored. The purposes of this paper are twofold. First,
we use the latest cosmological observations to update the
preferred parameter space for Weyl R2 inflation. Second, we
identify the viable dark matter mass range by considering all
the production channels.
There are several contributions for the production of

WGBs. If dark matter is already massive during inflation,
there will be an important nonperturbative production
mechanism [26–37] that is due to the quantum fluctuations
in rapidly expanding background [38–45]. Other important
contributions are also present after inflation, such as pro-
ducing from inflaton decay or the annihilation from particles
in thermal bath after reheating [46–59]. The previous study
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[21] has only estimated the annihilation channel through
scalars, but not taken into account the gravitational annihi-
lation, nonperturbative production and the decay process.
Our goal here is to figure out how these production
mechanisms determine the relic abundance of WGBs as
dark matter, and identify the possible mass ranges.
The paper is organized as follows. In Sec. II, we

introduce the formalism of Weyl R2 gravity with inflaton
and massive WGBs. Then in Sec. III, we discuss the
constraints on the Weyl R2 inflation from the latest
observations. Later in Sec. IV, we focus on the WGB as
dark matter. We first discuss the equation of motion and
quantization of the Weyl gauge field in a cosmological
background, and elaborate the method to calculate the
energy density of WGBs produced from the inflationary
fluctuations. Then based on the inflation and reheating
process, we compute the production rate and final relic
abundance of WGBs from all possible channels, and show
the constraints on the mass and reheating temperature in
detail. Finally, we summarize and give our conclusion.

II. FORMALISM AND MODEL

We use the following conventions in this paper: the
metric ημν¼ð−1;þ1;þ1;þ1Þ, and natural unit ℏ¼c¼1,

MP ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV ¼ 1.
The complete Lagrangian that is motivated by gauge

theory of gravity can be found in Refs. [12,13,60,61]. For
the interest of dark matter production and inflation, we can
use the metric formalism and illustrate by starting with the
following simplest global scaling-invariant Lagrangian L
with linear and quadratic scalar curvature

Lffiffiffiffiffiffi−gp ¼ 1

2
ϕ2Rþ β

12
R2 −

λ

2
∂
μϕ∂μϕ; ð1Þ

where g is the determinant of metric tensor gμν, Ricci scalar
R are defined as usual and λ is a nonzero real number. A
scalar field ϕ is introduced here to maintain the global
scaling symmetry with the following transformation rules:

metric∶ gμν → g0μν ¼ f2gμν;

scalar∶ ϕ → ϕ0 ¼ f−1ϕ;

Ricci scalar∶ R → R0 ¼ f−2R; ð2Þ

where f is a constant scale factor. Note that one can
introduce a scalar potential ϕ4 without spoiling the sym-
metry, but for our purpose in this paper, such a term is not
necessary and we neglect here.
For the global scaling transformation, the Christoffel

connection

Γρ
μν ¼ 1

2
gρσð∂μgσν þ ∂νgμσ − ∂σgμνÞ; ð3Þ

is invariant. When we extend the global symmetry into the
local one, namely f → fðxÞ, the connection and L would
not be invariant. To make the theory locally scaling
invariant, we construct the following connection

Γ̂ρ
μν ¼ Γρ

μν þ ðWμg
ρ
ν þWνg

ρ
μ −WρgμνÞ; ð4Þ

by introducing a vector Wμ ≡ gWwμ, called Weyl gauge
field (gW is the gauge coupling), with the following
transformation rule:

Wμ → W0
μ ¼ Wμ − ∂μ ln fðxÞ: ð5Þ

Γ̂ρ
μν can be also obtained by replacing ∂μgρσ→ ð∂μþ2WμÞgρσ

in Eq. (3). Then the corresponding Ricci scalar R̂ should
be defined through Γ̂ρ

μν and Lagrangian in Eq. (1) is modified
to a new form

Lffiffiffiffiffiffi−gp ¼ 1

2
ϕ2R̂þ β

12
R̂2 −

λ

2
DμϕDμϕ −

1

4g2W
FμνFμν; ð6Þ

where the derivative in the kinetic termofϕ has been replaced
to the covariant form, Dμ ¼ ∂μ −Wμ, and the invariant field
strength ofWμ is defined asFμν ≡ ∂μWν − ∂νWμ. Thismodel
is also discussed in [19–21].
To make the theoretical formalism more transparent for

analyzing inflation and dark matter, we shall utilize the
equivalence between fðRÞ theory and the scalar-tensor
theory [62,63]. We define

FðR̂Þ ¼ 1

2
ϕ2R̂þ β

12
R̂2; ð7Þ

and introduce an auxiliary scalar field χ. Then Eq. (6) can
be written as an equivalent form

Lffiffiffiffiffiffi−gp ¼ 1

2
½F0ðχ2ÞðR̂ − χ2Þ þ Fðχ2Þ�

−
λ

2
DμϕDμϕ −

1

4g2W
FμνFμν;

¼ 1

2

�
ϕ2 þ β

3
χ2
�
R̂ −

1

12
βχ4

−
λ

2
DμϕDμϕ −

1

4g2W
FμνFμν; ð8Þ

where F0ðχ2Þ≡ j ∂FðR̂Þ
∂R̂

j
R̂¼χ2

. The equivalence relation

χ2 ¼ R̂ can be easily derived by using the equation of
motion from δL=δχ ¼ 0.
Note that the local scaling symmetry of Eq. (8) allows us

to choose convenient fðxÞ in Eqs. (2) and (5) to fix the
gauge and simplify the Lagrangian. To compare with the
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Einstein gravity, we adopt fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ β

3
χ2

q
and get

1
2
ðϕ2 þ β

3
χ2ÞR̂ ¼ 1

2
R̂, or, equivalently, ϕ2 þ β

3
χ2 ¼ 1.

Putting things together, we can obtain the following
Lagrangian

Lffiffiffiffiffiffi−gp ¼ 1

2
R−

λ

2
DμϕDμϕ−

3

4β
ð1−ϕ2Þ2

−
1

4g2W
FμνFμν − 3WμWμ;

¼ 1

2
R−

3λ

6þ λϕ2
∂
μϕ∂μϕ−

3

4β
ð1−ϕ2Þ2 − 1

4g2W
FμνFμν

−
1

2
ð6þ λϕ2Þ

�
Wμ −

1

2
∂μ ln j6þ λϕ2j

�
2

: ð9Þ

where we have used the relation between R̂ and R,

R̂ ¼ R − 6WμWμ −
6ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
WμÞ; ð10Þ

and neglect the surface term at infinite due to the total
derivative term above.
We define a new field variable Φ,

Φ≡�

8>>><
>>>:

ffiffiffi
6

p
ln

� ffiffiffiffiffiffiffiffi
þλϕ2

6

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
þλϕ2þ6

6

q �
for λ > 0

ffiffiffi
6

p
ln

� ffiffiffiffiffiffiffiffi
−λϕ2

6

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
−λϕ2−6

6

q �
for λ < 0

; ð11Þ

to get the canonical kinetic term, and make a transformation
for the Weyl gauge field

W̃μ ≡Wμ −
1

2
∂μ ln j6þ λϕ2j≡ gWw̃μ: ð12Þ

Then the Lagrangian of Weyl R2 model can be rewritten in
a simple form as

Lffiffiffiffiffiffi−gp ¼ 1

2
R −

1

2
∂
μΦ∂μΦ −

1

4g2W
F̃μνF̃μν

−
1

2
m2ðΦÞW̃μW̃μ − VðΦÞ; ð13Þ

where we have defined the mass term

m2ðΦÞ ¼
8<
:

þ6cosh2
�

Φffiffi
6

p
�

for λ > 0

−6sinh2
�

Φffiffi
6

p
�

for λ < 0
ð14Þ

and scalar potential

VðΦÞ ¼

8>><
>>:

3
4β

h
1 − 6

λ sinh
2
�

Φffiffi
6

p
�i

2
for λ > 0

3
4β

h
1þ 6

λ cosh
2
�

Φffiffi
6

p
�i

2
for λ < 0

: ð15Þ

Now it is clear that this theory can be reformulated as
the Einstein gravity with a massive WGB W̃μ and a self-
interacting scalar Φ. In the following sections, we shall
show that Φ can be the inflaton field while W̃μ is a dark
matter candidate due to the Z2 symmetry, W̃μ → −W̃μ.

III. INFLATION IN WEYL R2 GRAVITY

Now we concentrate on the inflationary mechanism in
this model. The physics of R2 term has been extensively
studied as the well-known Starobinsky model [64–71]. It
was proposed originally to solve the cosmological initial
singularity problem, and later demonstrated to be an
elegant mechanism to give rise to an inflationary universe.
In this section, we shall show the predictions in our model
are different from those in Starobinsky model.
The potential VðΦÞ in Fig. 1 for a hilltoplike shape

regardless of the sign of λ. The parameter β decides the
height of the hilltop, and λ determines the position of valley.
Figure 1 shows the potentials with β ¼ 1.56 × 1010 in
Planck units and several values of λ > 0 (λ < 0 is similar
because cosh2 x ¼ 1þ sinh2 x).
At the potential minimumΦ can outstrip the Planck scale

when jλj is not too small. It is a general picture that for large
jλj the potential can be flat and lead to an inflationary
universe when Φ slow rolls on the hilltop, until it falls into
the valley.
To compare with the latest observational constraints by

BICEP/Keck collaboration [72], we calculate the spectral

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
10-10

  = 102

  = 103

  = 104

FIG. 1. The inflationary potentials of the Weyl R2 model with
λ ¼ 102; 103; 104. It is a hilltoplike potential whose typical
vacuum expectation value is larger than the Planck scale.
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index ns and tensor-to-scalar ratio r for the primordial
perturbations. These values are related to the slow-roll
parameters ϵ and η through

ϵ¼ 1

2

�
V 0ðΦÞ
V

�
2

; η¼V 00ðΦÞ
V

; ns ¼ 1−6ϵþ2η; r¼ 16ϵ:

ð16Þ

We numerically compute ns and r for this model with λ
from 300 to 3000, and show the results in Fig. 2, whereN is
defined as the e-folding number of the inflationary multi-
ples from the horizon scale as large as the present one to the
end of inflation [73], N ≡ lnðae=aiÞ ∼ ð50; 60Þ. The figure
indicates that as λ increases, ns and r will approach fixed
values predicted in Starobinsky model for every e-folds
number N. The physical reasons has been explained in
detail in Ref. [21] in which the authors show the equiv-
alence between this model and Starobinsky inflation as
jλj → þ∞. There is another noteworthy point in Fig. 2, the
typical tensor-to-scalar ratio in this model is greater than
Oð10−3Þ, which implies that the Weyl R2 model may be
tested by the next generation experiment of CMB B-mode
polarization [74]. Current observation can give constraints
on λ≳ 500 for N ¼ 50 and λ≳ 250 for N ¼ 60.
On the other hand, the observation of CMB perturbation

also provide a constraint on the Hubble parameter during
inflation (denoted by Hinf ) and the mass of inflaton mΦ in
this model. It is known that the amplitude of scalar spectra
Δ2

s ∼ V=24π2ϵ, and the observation of CMB has confirmed
that Δ2

s ∼ 2.1 × 10−9. Thus this result constrains the
parameter β in Eq. (15), which determines the height of
the potential V at the hilltop. In this way, we find the
Hubble parameter during inflation can be limited to
Hinf ∼

ffiffiffiffiffiffiffiffiffi
V=3

p
∼ 1013 GeV. Similarly, the mass of inflaton

is also constrained to mΦ ∼ 2 × 1013 GeV defined at the
minimum of the scalar potential.

IV. WEYL GAUGE BOSON AS DARK MATTER

Now we discuss the physics of Weyl gauge boson. As we
have shown, the Lagrangian has Z2 symmetry, W̃μ → −W̃μ,
which enables the stability of W̃μ. The mass term
− 1

2
m2W̃μW̃μ in Eq. (13), however, shows that the negative

sign would appear for λ < 0. This does not necessarily
mean an inconsistent theory because one could introduce
another scalar field ψ with DμψDμψ that can contribute to
the mass of W̃μ when ψ ≠ 0 at its potential minimum.
For illustration, we shall only focus on the λ > 0 case in the
rest of this paper.
Since the magnitude of Φ is evolving in the inflation and

subsequent reheating process, the mass term in Eq. (14)
is also changing in this period, until Φ completely stops at
its potential minimum Φ0. We can expand the mass term
at Φ ¼ Φ0 as

m2 ¼ 6cosh2
�
φþΦ0ffiffiffi

6
p

�
;

¼ 6cosh2
�
Φ0ffiffiffi
6

p
�
þ

ffiffiffi
6

p
sinh

�
2Φ0ffiffiffi
6

p
�
φ

þ cosh2
�
Φ0ffiffiffi
6

p
�
φ2 þOðφ3Þ: ð17Þ

It implies that the term − 1
2
m2W̃μW̃μ not only describes the

mass of WGBs, but also φ − W̃ interactions that may lead
to the decay or annihilation of inflaton into WGBs after
inflation. The eventual mass of a WGB is determined by the
parameters λ and gW

mW ¼
ffiffiffi
6

p
jgW j cosh½Φ0ðλÞ=

ffiffiffi
6

p
�: ð18Þ

The couplings between φ and WGBs also depend on these
two parameters and can be read from above. In the rest of
this section, we shall discuss the production mechanism for
the WGB as a dark matter candidate in detail by including
all of the above couplings and interactions.

A. Weyl gauge field in a cosmological background

The production of vector dark matter includes both
contributions from perturbative scattering and nonpertur-
bative mechanism from vacuum fluctuations due to the
quantum effect in curved background [32–35]. Let us
concentrate on the part of WGBs in Eq. (13)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

4g2W
F̃μνF̃μν −

1

2
m2W̃μW̃μ

�
: ð19Þ

FIG. 2. The predictions of spectral index ns and tensor-to-scalar
ratio r for the Weyl R2 model with λ from 300 to 3000, and
e-folding number N ¼ 50, 60, in comparison with the recent
constraints shown by the BICEP/Keck collaboration [72].
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The metric is set to the Friedmann-Lemaitre-Robertson-
Walker form

gμνdxμdxμ ¼ a2ðτÞð−dτ2 þ dx⃗2Þ; ð20Þ

where a is the scale factor of the Universe, and τ is the
conformal time, which has the following relation with
the physical time dτ ¼ dt=a. We can rewrite Eq. (19) in
components

S ¼
Z

d3xdτ
1

2
ðj ⃗w̃0 −∇w̃0j2 − j∇ × ⃗w̃j2

þ a2m̃2w̃2
0 − a2m̃2j ⃗w̃j2Þ; ð21Þ

where 0≡ ∂

∂τ, m̃≡ jgW jmðΦÞ and ⃗w̃ denotes the spatial
components.
It is obvious that w̃0 in Eq. (21) has no kinetic term,

which is commonly known as that only three of the four
components of massive vectors are independent and physi-
cal modes. Hence, we can decouple the part of W0 from
Eq. (21) with a Fourier transform and only retain the
physical modes, including two transverse modes and a
longitudinal mode

⃗w̃ðτ; k⃗Þ≡ X
j¼�;L

ϵ⃗jðk⃗ÞWjðτ; k⃗Þ; ð22Þ

where ϵ⃗jðk⃗Þ is the orthonormal polarization vector. Their
actions are derived as follows

S� ¼
Z

d3kdτ
ð2πÞ3

1

2
ðjW0

�j2 − ðk2 þ a2m̃2ÞjW�j2Þ; ð23Þ

SL ¼
Z

d3kdτ
ð2πÞ3

1

2

�
a2m̃2

k2 þ a2m̃2
jW0

Lj2 − a2m̃2jWLj2
�
; ð24Þ

where k is the magnitude of comoving momentum k⃗, and
k⃗ · ⃗w̃ ¼ kWL is used in the derivation.
For the sake of simplicity, we redefine a new field WL

for the longitudinal mode

WL ≡ am̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m̃2

p WL: ð25Þ

Then the equation of motion for each physical mode can be
written as oscillator equations

W00
� þ ω2

�W� ¼ 0; ð26Þ

W 00
L þ ω2

LWL ¼ 0; ð27Þ

with frequency variables

ω2
� ¼ k2 þ a2m̃2; ð28Þ

ω2
L ¼ k2 þ a2m̃2 −

k2

k2 þ a2m̃2

a00

a
þ 3

k2m̃2a02

ðk2 þ a2m̃2Þ2

−
k2

k2 þ a2m̃2

m̃00

m̃
þ 3

k2a2m̃02

ðk2 þ a2m̃2Þ2

−
a0

a
m̃0

m̃
2k2ðk2 − 2a2m̃2Þ
ðk2 þ a2m̃2Þ2 : ð29Þ

The mode functions of WGBs can be determined by
solving Eqs. (26) and (27).
Next, we show the relation between the energy density

and the mode functions. The energy-momentum tensor of
field in a curved background is

Tμν ¼
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

SÞ
δgμν

; ð30Þ

and the energy density is defined as the vacuum expectation
of T00

ρ ¼ h0jT00j0i: ð31Þ

Therefore, to calculate the energy density of Weyl gauge
field, we need to define the vacuum state j0i of the theory.
In other words, a quantized theory is required. The first step
of quantization is to give the Heisenberg representation for
Weyl gauge field

Ŵ�ðτ; x⃗Þ ¼
Z

d3k

ð2πÞ3=2 ½âk⃗ϵ⃗�ðk⃗ÞW�ðτ; k⃗Þeik⃗·x⃗

þ â†
k⃗
ϵ⃗��ðk⃗ÞW�

�ðτ; k⃗Þe−ik⃗·x⃗�;

ŴLðτ; x⃗Þ ¼
Z

d3k

ð2πÞ3=2 ½b̂k⃗ϵ⃗Lðk⃗ÞWLðτ; k⃗Þeik⃗·x⃗

þ b̂†
k⃗
ϵ⃗�Lðk⃗ÞW�

Lðτ; k⃗Þe−ik⃗·x⃗�: ð32Þ

Then the quantization demands that the ladder operators
should satisfy the following commutative relations

½âk⃗; â†k⃗� ¼ δjj0δðk⃗ − k⃗0Þ; ½b̂k⃗; b̂†k⃗� ¼ δðk⃗ − k⃗0Þ; ð33Þ

where j is the index that refers to the two components of
transverse mode. The commutative relations can also be
represented as a canonical form

½Ŵ�ðτ; x⃗Þ; Ŵ0
�ðτ; y⃗Þ� ¼ iδðx⃗ − y⃗Þ;

½ŴLðτ; x⃗Þ; ŴL
0ðτ; y⃗Þ� ¼ iδðx⃗ − y⃗Þ; ð34Þ

which imply the following normalization condition:

W�W�
�0 −W�

�W
0
� ¼ WLW 0

L
� −W�

LW
0
L ¼ i: ð35Þ
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Now we can define the vacuum j0i as a state that
complies with âk⃗j0i ¼ b̂k⃗j0i ¼ 0. Then the nonperturba-
tive production of particles from vacuum can be calculated
by ρ ¼ h0jT00j0i, described by the time-dependent mode
functions. Finally, with Eqs. (23), (24), and (30)–(33), the
energy density of Weyl gauge field in a cosmological
background is obtained as

ρ� ¼
Z

k2dk
4π2a4

½jW0
�j2 þ ðk2 þ a2m̃2ÞjW�j2 − ω��; ð36Þ

ρL ¼
Z

k2dk
4π2a4

�
jW 0

Lj2 þ ðk2 þ a2m̃2ÞjWLj2

þ
�ða0a þ m̃0

m̃Þk2
k2 þ a2m̃2

�
2

jWLj2

−
ða0a þ m̃0

m̃Þk2
k2 þ a2m̃2

ðW 0
LW

�
L þW 0�

LWLÞ − ωL

�
; ð37Þ

where the zero-point energy at flat spacetime has been
subtracted by the term −ω. The total energy density is the
sum of two transverse modes and one longitudinal mode,
ρtot ¼ 2ρ� þ ρL.
Next we numerically solve the equations of motion (26),

(27) in the inflationary background and calculate the energy
density of theWGB. Directly solving these equations might
be inaccurate in some cases. For instance, when ρ is many
orders of magnitude smaller than the zero-point energy,
the numerical calculation of ρ will meet the situation that
subtracting two very close numbers, which will make the
numerical result unstable. Fortunately, this intractable case
usually has an adiabatic vacuum, which means the vacuum
evolves slowly. Then, a strategy called adiabatic approxi-
mation can be used to deal with the problems [75]. In the
adiabatic approximation, the mode functions can be written
as the following form

W�ðτÞ ¼ Ak
�ðτÞvk�ðτÞ þ Bk

�ðτÞvk�� ðτÞ;
WLðτÞ ¼ Ak

LðτÞvkLðτÞ þ Bk
LðτÞvk�L ðτÞ;

vk�ðLÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω�ðLÞ
p exp

�
−i

Z
τ
ω�ðLÞdτ

�
; ð38Þ

where AkðτÞ and BkðτÞ are some functions for the k mode
and satisfy the normalization condition

jAkj2 − jBkj2 ¼ 1: ð39Þ

Substituting Eq. (38) into Eq. (32), we can redefine a new
set of ladder operators by the Bogolyubov transformation

ãk⃗ ¼ âk⃗A
k þ â†

k⃗
Bk�; b̃k⃗ ¼ b̂k⃗A

k þ b̂†
k⃗
Bk�; ð40Þ

which satisfy the similar commutative relations as Eq. (33)

½ãk⃗; ã†k⃗� ¼ δjj0δðk⃗ − k⃗0Þ; ½b̃k⃗; b̃†k⃗� ¼ δðk⃗ − k⃗0Þ: ð41Þ

Then the energy density of the Weyl gauge field can be
written as

ρ�=L ¼
Z

k2dk
2π2a4

jBk
�=Lj2ω�=L: ð42Þ

Comparing to Eqs. (36) and (37), it can be seen the zero-
point energy has disappeared in this expression, which
means the aforementioned numerical problem is alleviated
with the adiabatic approximation. In addition, the function
Bk obeys

A0v ¼ ω0
k

2ωk
v�B; B0v� ¼ ω0

k

2ωk
vA; ð43Þ

which are identical to Eqs. (26) and (27).
Finally, it is essential to note that the adiabatic approxi-

mation can only be used to the case with positive ω2. This is
the prerequisite for the existence of adiabatic vacuum. For
the transverse mode Eq. (28), this condition is completely
satisfied. But for the longitudinal mode Eq. (29), the
tachyonic situation (ω2

L < 0) is possible, and it is common
in the case of m̃ ≪ Hinf . Consequently, if the tachyonic
situation appears in the longitudinal mode, it would violate
the adiabatic condition. Then the mode functions and
energy density can only be solved with original formulas
[Eqs. (27) and (37)].

B. Production of Weyl gauge boson

Now we are in a position to apply the above formalism in
the cosmological background of inflation. It can be seen
from Eqs. (26)–(29) that to solve the mode functions we
also need the evolution of scale factor a over conformal
time τ, which is determined by the inflation and reheating
in our model.

1. Inflation and reheating

The evolution of cosmic scale a is described by the
Friedmann equation

H2 ≡
�
a0

a

�
2

¼ a2ρ
3M2

P
; ð44Þ

where 0≡ ∂

∂τ. To solve this equation, we need to discuss
how the matter energy density evolves in our model. To
be more specific, we need reheating process to transfer
the energy of the inflaton Φ into other relativistic
particles, for example through decay into SM particles
[75–79]. Here, instead we first consider a new scalar ψ
that couples to the inflaton and SM particles simulta-
neously. Then in this way, the inflaton can first decay into
ψ before eventually transferring its energy to the SM
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particles. To maintain the scaling symmetry, we illustrate
with the following toy model:

Lreh ¼ −g2ψϕ2ψ2 −
1

2
DμψDμψ þ Lðψ ; SMÞ;

¼ −
6g2ψ
λ

sinh2
�

Φffiffiffi
6

p
�
ψ2 −

1

2
DμψDμψ þ Lðψ ; SMÞ;

∼ −
g2ψ
λ
Φ2ψ2 −

1

2
DμψDμψ þ Lðψ ; SMÞ; ð45Þ

where Lðψ ; SMÞ denotes the coupling between ψ and SM
particles, which we do not specify here. Here we have
neglected higher order interactions in the last step. We
reiterate that the definition Φ≡ φþΦ0 has been intro-
duced in the previous section. Then the first term in
Eq. (45) can be expanded as

−
g2ψ
λ
Φ2ψ2 ¼ −

g2ψ
λ
ðφþΦ0Þ2ψ2;

¼ −
g2ψ
λ
Φ2

0ψ
2 − 2

g2ψ
λ
Φ0φψ

2 −
g2ψ
λ
φ2ψ2: ð46Þ

From the left are the mass term of ψ , the three-scalar
vertex, and the four-scalar vertex. The feasibility of φ’s
decay into ψ requires that the mass of ψ must be less
than the half of φ. Note that the mass of inflaton is
limited to mΦ ∼ 2 × 1013 GeV in our model, thus it is
clear that mψ ≡ gψΦ0=

ffiffiffi
λ

p
< 1013 GeV. With a typical

vacuum expectation value Φ0 ∼ 10MP, the coupling is
limited to gψ=

ffiffiffi
λ

p ≲ 4 × 10−7, which gives an upper limit
to the reheating temperature Tr. Note that the major factor
determining Tr is the φ → ψψ decay process caused by
the three-scalar vertex in Eq. (46), then the probability of
inflaton decay is easily derived as

Γðφ → ψψÞ ¼ 4g4ψΦ2
0

8πλ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΦ=2Þ2 −m2

ψ

q
m2

Φ

¼ g2ψm2
ψ

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΦ=2Þ2 −m2

ψ

q
m2

Φ
≲ 10−20MP: ð47Þ

As a consequence, the reheating temperature is estimated
as Tr ∼ 0.4

ffiffiffiffiffiffiffiffiffiffi
ΓMP

p ≲ 108 GeV, which is far less than the
inflation energy scale.
With a specific reheating mechanism, the evolution of

inflaton field obeys the following equation

Φ00 þ 2HΦ0 þ a2
∂V
∂Φ

þ aΓΦ0 ¼ 0: ð48Þ

Then we can write down the energy density of the inflaton

ρΦ ¼ Φ02

2a2
þ VðΦÞ; ð49Þ

and the evolving equation for ψ and SM particles as
radiation

ρ0r þ 4Hρr −
ΓΦ02

a
¼ 0: ð50Þ

Note that the total energy density in the Friedmann equation
is the sum of ρΦ and ρr. So combining Eq. (44) with
(48)–(50) and (15), we can obtain a numerical solution of
aðτÞ, which describes the evolution of cosmic scale within
the period of inflation, reheating, and the ensuing radiation-
dominated epoch.

2. Nonperturbative production

We take Γðφ → ψψÞ ¼ 10−20MP as an example in this
subsection, which is the maximum rate allowed in the toy
model we constructed above. We shall keep in mind that
generally the reheating temperature is free as long as it
satisfies the bound from Big Bang Nucleosynthesis and
energy density limit after inflation.
We solve the numerical result of aðτÞ, and substitute it

into Eqs. (26)–(29), the mode functions for each eventual
mass mW [defined as Eq. (18) or m̃jΦ¼Φ0

] and comoving
momentum k can be derived with an initial condition.
Because all the k modes we are interested in once had the
wavelength much smaller than the horizon scale in the far
past of the inflation, it is then expected that the term k2 is
dominant in Eqs. (28) and (29) under the limit of τ → −∞.
Therefore, the solution to the equation of harmonic
oscillator is suggested to be an initial condition for both
the transverse mode and the longitudinal mode, which is
the well-known Bunch-Davies vacuum state [80]

lim
τ→−∞

W�ðor WLÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ: ð51Þ

With this initial condition, we illustrate with the eventual
mass mW ¼ 1010 GeV in Fig. 3, where fk is defined as a
function that is proportional to the energy density Eqs. (36)
and (37)

fk;�≡ ½jW0
�j2þðk2þa2m̃2ÞjW�j2�=2ω�−

1

2
¼jBk

�j2;

fk;L≡ ½jW 0
Lj2þðk2þa2m̃2ÞjWLj2þ

�ða0aþ m̃0
m̃Þk2

k2þa2m̃2

�
2

jWLj2

−
ða0aþ m̃0

m̃Þk2
k2þa2m̃2

ðW 0
LW

�
LþW 0�

LWLÞ�=2ωL−
1

2
¼jBk

Lj2;
ð52Þ

and aend denotes the scale factor when the inflation ends
(defined as the moment that the slow-roll parameter ϵ ¼ 1).
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Moreover, ks denotes the dominate mode of production,
which is approximately equal to the product of mW and
the scale factor a for the moment that the Hubble parameter
H ¼ mW (if mW > Hinf , the dominant mode is about
k ∼ aendHinf ).
There are two interesting aspects in Fig. 3. First, the

production of the longitudinal mode is more abundantly
than the transverse one, which has been shown by [32,34].
This behavior can be understood as follows. When
a ≪ aend ≲ k=mW , the frequency ω� of the transverse
mode is almost constant, which leads to a nonincreasing
mode function as plane wave. However, for the longitudinal
mode, we can show that ω2

L ∼ k2 − a00=a with a ≪ aend ≲
k=mW , here we ignore the impact of changing mass
for convenience. Since the Universe is approximately
regarded as the de Sitter space during the inflationary
epoch, that is a ∼ −1=Hinfτ, we have ω2

L ∼ k2 − 2a2H2
inf ,

which decreases as the Universe expands. Substituting
it into Eq. (27), then we obtain an increasing mode
function

WLja≪k=mW
∼
e−ikτffiffiffiffiffi
2k

p
�
1þ iaHinf

k

�
: ð53Þ

It indicates that when a ≪ k=Hinf , the mode function of the
longitudinal mode is also a plane wave like the transverse
one. But once the scale factor becomes large enough to

make the negative ω2
L emerge, the imaginary part of

Eq. (53) will surge exponentially. This situation is usually
called the tachyonic enhancement, which leads to the high
yield of the longitudinal mode compared to the trans-
verse one.
The second noticeable aspect is that the function fk for

the dominant mode ks gradually approaches a stationary
value after the Hubble parameter H becoming smaller
than mW . This is because the term a2m2

W in Eqs. (28) and
(29) turns into a leading term after that moment, which
leads to a steady solution with fk ∝ ρa3 ∼ constant (see
[35]). And the particles become nonrelativistic due to the
expansion of the Universe. We can choose an arbitrary
moment that satisfies H ≪ mW to evaluate the spectrum
of fkðkÞ around the dominant mode ks, and calculate the
integral (36), (37), or (42) to obtain the energy density ρ
of a WGB at that moment. In practice, we consider a
moment that is later than the end of reheating as the
conserved quantity ρ=s can be defined for the WGB,
where s ¼ 2π2

45
g�SðTÞT3 is the total entropy density for the

reheated particles, and g�SðTÞ denotes the effective
number of degrees of freedom in entropy with temper-
ature T. This quantity measures the relic abundance of
nonperturbative produced particles.
Figure 4 shows how relic abundance varies with mW

and decay constant Γ, where mW is determined by
the parameters λ and gW , and the parameter β has been
fixed according to the constraint of observation on Hinf
discussed in Sec. II. We can see that there are three cases
in the relationship between ρ=s and mW , which are
summarized as

10-10 10-5 100 105 1010

10-28

10-26

10-24

10-22

10-3010-2510-20

FIG. 4. Left: the relation between the relic abundance and the
mass of nonperturbative produced WGBs. The feasible mass
of WGBs should be restricted to the range that ρ=s ≤ ρ0=s0.
Right: the maximal abundance decreases proportionately with the
total decay rate of inflaton. It shows that if Γ < 10−30MP or
Tr < 103 GeV, then the nonperturbative produced WGBs would
only be part of dark matter.

10-10

100

1010

10-2 100 102 104

-1000

0

1000

 Transverse mode
 Longitudinal mode

FIG. 3. Evolution of jfkj and ω2 for the transverse mode (red
line, solved by the adiabatic approximation) and longitudinal mode
[blue line, solved directly in Eq. (27)] with mW ¼ 1010 GeV,
Γ ¼ 10−20MP, and k ¼ 0.5; 1; 2ks (ks denotes the dominate mode
of production). It depicts an increasing abundance of dark matters
in the comoving volume until the Hubble parameter becomes
lower than the mass of WGBs. Moreover, the existence of
tachyonic enhancement makes the creation of the longitudinal
mode far more productive than the transverse mode.
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ρ=s ∝

8<
:

ffiffiffiffiffiffiffi
mW

p
; for mW < Hreh

almost constant; for Hreh < mW < Hinf

exponential decrease; for mW > Hinf

;

ð54Þ

where Hreh is the Hubble parameter at the end of reheating.
For the current Universe, T0 ¼ 2.73 K ¼ 9.65 × 10−32MP,
g�S0 ¼ 3.91, and the present energy density for the dark
matters is ρ0 ¼ 2.73 × 10−121M4

P, then we can derive
ρ0=s0 ¼ 1.8 × 10−28MP. This observational result gives a
constraint to the mass of WGBs. It can be clearly identified
in Fig. 4 that the relic abundance for the WGBs produced in
a nonperturbative pattern will be larger than that of dark
matters in the current Universe if the mass of WGBs is in the
interval of 3 × 10−13 GeV to ∼5 × 1013 GeV (the upper
limit is in the range of 1013–1014 GeV, which is slightly
dependent on the decay rate Γ). Therefore, the observation
constrains two possible ranges of mass,mW≲3×10−13GeV
or mW ≳ 5 × 1013 GeV, such that the relic density is not
larger than the observation value.
When mW < 3 × 10−13 GeV, according to the φ − W̃

interaction discussed in Sec. II, there will be other pro-
duction channels for WGBs through the perturbative decay
φ → W̃ W̃ and the annihilation φφ → W̃ W̃. Since the
contribution of decay is much larger than that of annihi-
lation in our case, we only consider the decay. Based on
Eqs. (17) and (18), the decay rate of φ → W̃ W̃ can be
easily calculated as

Γðφ → W̃ W̃Þ ¼ 3sinh2ð2Φ0=
ffiffiffi
6

p Þg4W
π

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmΦ=2Þ2 −m2

W

p
m2

Φ

�
3þ m4

Φ
4m4

W
−
m2

Φ
m2

W

�
;

∼
3m3

Φ
288π

sinh2ð2Φ0=
ffiffiffi
6

p Þ
cosh4ðΦ0=

ffiffiffi
6

p Þ ; when mW ≪ mΦ:

ð55Þ

Note that the mass of inflaton is around mΦ ∼ 2 ×
1013 GeV ∼ 10−5MP in this model, and the typical field
value Φ0 ∼ 10MP, thus the decay rate can be estimated
as Γðφ → W̃ W̃Þ ∼ 10−17MP. Comparing to Eq. (47), the
decay rate of φ → W̃ W̃ is far larger than that of φ → ψψ .
This situation will lead to an inadequate reheating to SM,
and result in additional dark radiation in our Universe. In
such a case, we would need other reheating mechanisms
that can transfer most of energy in inflaton field into other
particles, and subsequently SM particles.
For the large mass range mW ≳ 5 × 1013 GeV, there

is a −ψ2WμWμ term due to the covariant derivative Dμ ¼
∂μ −Wμ in Eq. (45). This implies that the annihilation
ψψ → W̃ W̃ is allowed in the large mass case. However, if

the reheating temperature is too low, then the annihilation
rate will be negligible, because the number density n of ψ
with enough energy to participate in the production of
WGBs is exponentially reduced with decreasing temper-
ature T, n ∝ expð−E=TÞ. Therefore, with a low-temper-
ature reheating mechanism, the nonperturbative production
can reasonably provide enough abundance for WGBs as
dark matter with the mass mW ∼ 5 × 1013 GeV.
Another visible aspect in Fig. 4 is that the decay rate Γ

strongly affects the nonperturbative production. Note that Γ
denotes the total rate of all decay channels of inflaton,
including decay to SM particles and to dark matters. Hence
ifmW < mΦ=2, then the φ → W̃ W̃ channel is open, and the
total decay rate is never lower than Γðφ → W̃ W̃Þ. Then
if mW > mΦ=2, the total decay rate is equivalent to
Γðφ → ψψÞ as the reheating rate. It is apparent on the
right of Fig. 4 that the maximal abundance of nonpertur-
bative produced WGBs decreases proportionately with Γ,
and if Γ < 10−30MP, then the nonperturbative pattern is
unable to produce sufficient WGBs as dark matter. Since
we have shown Γðφ → W̃ W̃Þ ∼ 10−17MP in this model (for
mW < mΦ=2), the Γ < 10−30MP case only appears when
mW > mΦ=2, which corresponds to the reheating temper-
ature Tr ∼ 0.4

ffiffiffiffiffiffiffiffiffiffi
ΓMP

p
< 103 GeV. As a result, for this

range of Tr, only heavy WGBs can be a dark matter
candidate but with insufficient abundance.

3. High-temperature reheating

The preceding discussions consider a low-temperature
reheating mechanism that is constructed for simplicity. In
this section, we investigate the production of WGBs with a
high temperature of reheating.
Let us focus on the small mass range first. The

perturbative pattern of production is primarily the decay
of inflaton φ → W̃ W̃. The annihilation ψψ → W̃ W̃ is also
present (ψ denotes an arbitrary scalar in the thermal
equilibrium after reheating), but it is negligible, because
the coupling of this process is too small according to the
relation gW ∝ mW under our definition. Hence we only
need to consider the decay. In previous sections, we have
derived that the decay rate of φ → W̃ W̃ is ΓW ∼ 10−17MP.
If this decay rate is far larger than that to the SM particles,
ΓW ≫ ΓSM, WGBs can contribute as dark radiation.
Therefore, the upper limit of abundance of dark radiation
constrains the lower limit of ΓSM or Tr. Substituting
Γ ¼ ΓW þ ΓSM into Eq. (48), and combining it with the
equation

ρ0SM=W þ 4HρSM=W −
ΓSM=WΦ02

a
¼ 0; ð56Þ

we can derive the energy density of dark radiation ρW
after reheating. Then the amount of dark radiation at
present (denoted as ΩDR) can be estimated. The result is,
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if ΩDR < ΩSM is expected at matter-radiation equality, then
the magnitude of ΓSM cannot be lower than the level
of ΓW , which restricts the reheating temperature to be
Tr > 4 × 109 GeV. In conclusion, under this constraint,
the small mass WGBs can be the dark matter candidate,
which embodies a tiny amount of dark radiation produced
in the inflaton decay and the majority of cold component
originates from the vacuum fluctuation during inflation.
Meanwhile, if it contributes to the whole abundance
of dark matters, then the mass should be around
mW ∼ 3 × 10−13 GeV.
For the heavy WGB case, the decay process is forbidden

kinematically. However, the annihilation channel becomes
significant, which is a kind of “freeze-in” mechanism of
production [81–83]. There are two main channels for
annihilation, direct annihilation owing to the ψ2WμWμ

coupling and the other by gravitational interaction [46–49].
The amplitude A≡P jMj2 of them can be calculated as
follows

Aðψψ → W̃ W̃Þ ¼ 16g4W

�
3þ s̄ðs̄=4 −m2

WÞ
m4

W

�
; ð57Þ

Aðψψ!grav W̃ W̃Þ ¼ κ4
�
101m4

Wm
4
ψ

60s̄2
−
m2

Wm
2
ψ

20s̄
ð11m2

ψ þm2
WÞ

þ 1

240
ð19m4

ψ þ 76m2
Wm

2
ψÞ

−
7s̄
240

ðm2
W þm2

ψÞ þ
s̄2

160

�
; ð58Þ

where s̄≡ ðpψ1 þ pψ2Þ2, κ ≡
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p ¼ 2. Then the total
cross section can be easily derived as

σtot ¼
1

16πs̄tg2i

jp⃗fj
jp⃗ij

Atot; ð59Þ

where t ¼ 2 is the symmetric factor for the identical final
states and gi is the degree of freedom for initial state.
Finally, the relic abundance of dark matters produced in the
annihilation process can be calculated with the following
formula (see also in [48]):

Y ¼
Z

∼Tr

∼0

dT
HTs

�
Tg2i
32π4

Z
ds̄σtot

ffiffī
s

p ðs̄ − 4m2
ψ ÞK1

� ffiffī
s

p

T

��
;

ð60Þ

where H is the Hubble parameter, s is the total entropy
density mentioned earlier, and K1 is the modified Bessel
function of the second kind with order one. It is seen that,
for heavy particles, larger relic abundance of dark matter
would result from higher reheating temperature.
With supposing mψ ≪ mW , we can calculate the relic

abundance Y for each set of Tr and mW . Then comparing it

with present abundance of dark matter Y0 ∼ 5 × 10−9=mW,
we can get the relation between mW and Tr for Y ¼ Y0, as
shown in Fig. 5. It shows that WGBs in the large mass
range is feasible to be the dark matter candidate with an
abundance that is consistent with observation as long as the
reheating temperature Tr > 1013 GeV, and the mW corre-
sponding to the proper abundance is approximately linear
with Tr. Moreover, since the instantaneous reheating limit
is estimated as Tmax ∼ ð3H2

inf=g�SðTrÞÞ1=4 ∼ 2 × 1015 GeV,
the WGB can reach an enormous mass of up to
4 × 1016 GeV.
Now we can summarize the main results we have

demonstrated in the preceding discussions. First, if the
reheating temperature is too small, Tr < 103 GeV, then
the WGB can only serve as part of dark matter with
insufficient abundance. Because the nonperturbative pro-
duction is inefficient for all mass ranges and the perturbative
contribution is also not productive or forbidden by the
observations, then, for 103 GeV < Tr ≲ 4 × 109 GeV, only
the nonperturbative production can reasonably provide
enough abundance for WGBs as dark matter, and only
the large mass is allowed,mW ∼ 1013–1014 GeV. Moreover,
for 4 × 109 GeV≲ Tr < 1013 GeV, there are two feasible
values of mass for WGBs, the small mass mW ∼ 3 ×
10−13 GeV and the large mass mW ∼ 1014 GeV. The pro-
duction channel is also mainly the nonperturbative pattern.
Finally, for 1013 GeV < Tr < Tmax, the small mass case is
similar to the foregoing one, which is restricted to
mW ∼ 3 × 10−13 GeV, and produced mainly in the non-
perturbative channel. But the permissible large mass case is
different from the above, because the perturbative

FIG. 5. The proper mass mW for the “freeze-in” production
(annihilation channel) that derives an observation-consistent
relic abundance is approximately linear with the reheating
temperature Tr, where the mW < 1014 GeV range is overpro-
duced due to nonperturbative production. Under the instanta-
neous reheating limit, the WGB can possess an enormous mass
of up to 4 × 1016 GeV.
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annihilation becomes dominant under extremely high Tr,
which enables WGBs with mass from 1014 to 4 × 1016 GeV
to be a dark matter candidate.

V. CONCLUSIONS

We work on a scaling invariant theory of gravity with a
quadratic scalar curvature, namely the Weyl R2 gravity. The
model contains a viable inflationary scenario that is differ-
ent with the conventional Starobinsky R2 model. We
calculate the spectral index and tensor-to-scalar ratio,
and confront them with the latest cosmological observa-
tions. Our results indicate that this model’s predictions
agree with the observations and its differences from
Starobinsky model can be tested with future CMB
experiment.
The model also contains a stable gauge boson, WGB,

which can serve as a dark matter candidate. The breaking of
local scaling symmetry makes WGBs massive in the
inflationary period, which causes an inevitable nonpertur-
bative production for WGBs, namely emerging from the
inflationary quantum fluctuations. Our investigations dem-
onstrate that the relic abundance of nonperturbatively
produced WGBs is related to the mass of WGB mW and
the decay rate Γ of inflaton. By comparing with the
observation, we give the possible viable mass range of
WGBs,mW ∼ 3 × 10−13 GeV ormW > Hinf. Moreover, we
also give the lower limit of decay width of the inflaton Γ in

this model, which corresponds to the reheating temper-
ature Tr > 103 GeV.
We also demonstrate that there is a specific coupling

between a WGB and inflaton Φ, which can lead to
inflaton’s decay into WGBs if mW < mΦ=2. This provides
a stringent constraint on the allowable reheating temper-
ature in the case of small mW . Finally, for the case of
extremely high reheating temperature Tr, the perturbative
freeze-in channel becomes important and the dominant
contribution, namely the annihilation of particles in the
thermal bath into WGBs through direct coupling or
gravitational interaction. It opens new mass range of
WGBs up to 4 × 1016 GeV as dark matter candidate.
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