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The terminal wall velocity of a first-order phase transition bubble in the early Universe can be calculated
from a set of fluid equations describing the scalar fields and the plasma’s state. We rederive these equations
from the energy-momentum tensor conservation and the Boltzmann equation, without linearizing in the
background temperature and fluid velocity. The resulting equations have a finite solution for any wall
velocity. We propose a spectral method to integrate the Boltzmann equation, which is simple, efficient, and
accurate. As an example, we apply this new methodology to the singlet scalar extension of the standard
model. We find that all solutions are naturally categorized as deflagrations (vw ∼ cs) or ultrarelativistic
detonations (γw ≳ 10). Furthermore, the contributions from out-of-equilibrium effects are, most of the time,
subdominant. Finally, we use these results to propose several approximation schemes with increasing levels
of complexity and accuracy. They can be used to considerably simplify the methodology, while correctly
describing the qualitative behavior of the bubble wall.
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I. INTRODUCTION

First-order phase transitions (FOPTs) can produce strik-
ing cosmological signatures that may provide a window
into high-energy physics and the history of the early
Universe. Recently, the prospect of probing these signals
for the first time through the upcoming space-based
gravitational wave (GW) detector LISA [1–3], DECIGO
[4,5], and BBO [6,7] has stimulated a great interest in
models that predict strong FOPTs [8–19]. Such FOPTs can
also potentially provide the departure from equilibrium
needed for baryogenesis and thereby explain the origin of
the baryon asymmetry of the Universe. One of the popular
scenarios is electroweak baryogenesis [20–23] because of
its testability in collider experiments, in realizations involv-
ing simple or well-motivated extensions of the Standard
Model (SM) [9,24–52].
To accurately predict the cosmological signature of a

FOPT, it is important to understand its dynamics in some
detail. An essential quantity, which is also notoriously
challenging to compute, is the bubble wall terminal velocity
vw. Several methods have been developed to determine it,
as described below, which all essentially consist in requir-
ing that the driving force on the wall be equal to the friction,
or “backreaction,” force from the plasma. The main

differences between the methods is in how the plasma’s
distribution functions are represented and calculated.
A common strategy is to assume that all the species in the

plasma are in local thermal equilibrium at the same
temperature and fluid velocity [53–56]. These two thermo-
dynamic quantities can then be computed from a set of
hydrodynamic equations derived from the conservation of
the energy-momentum tensor (EMT). A more general
approach is to allow the heavy species to be out of
equilibrium, with the remaining degrees of freedom form-
ing a “background” plasma in equilibrium [57–63]. These
distribution functions are usually computed from a set of
Boltzmann equations. The procedure introduced in this
work uses some aspects of both of these methods.1

The standard formalism to solve the Boltzmann equa-
tions consists in using an ansatz for the distribution
function. In the seminal Refs. [57,58], the out-of-
equilibrium species were only allowed to deviate from
the background distribution function by a perturbation of
the temperature, velocity, and chemical potential. The
Boltzmann equation was then linearized in these perturba-
tions and truncated by taking three linearly independent
moments. This procedure yields a set of three moment
equations that can be solved for the perturbations.
Strikingly, these equations suffer from a singularity

when the wall velocity vw reaches the speed of sound cs≈
1=

ffiffiffi
3

p
, which makes the background perturbations diverge.

This prevents an accurate description of fast-moving walls,
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1See also Ref. [64] for a derivation of the bubble wall velocity
from the holographic correspondence.

PHYSICAL REVIEW D 106, 023501 (2022)

2470-0010=2022=106(2)=023501(18) 023501-1 Published by the American Physical Society

https://orcid.org/0000-0002-1306-3620
https://orcid.org/0000-0001-7437-4193
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.023501&domain=pdf&date_stamp=2022-07-01
https://doi.org/10.1103/PhysRevD.106.023501
https://doi.org/10.1103/PhysRevD.106.023501
https://doi.org/10.1103/PhysRevD.106.023501
https://doi.org/10.1103/PhysRevD.106.023501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


which has given rise to two schools of thought. The first
one considers that this singularity of the moment equations
is unphysical and is merely an artifact of an unsuitable
representation of the full Boltzmann equation [61,65].
More specifically, it was argued that the singularity is a
consequence of a bad choice of moments or ansatz and,
instead, a truncation scheme for the moment expansion was
proposed, which yields finite solutions even at vw ¼ cs. On
the other hand, Refs. [62,66] argued that the singularity is
caused by the linearization of the Boltzmann equation,
and they proposed a generalized ansatz for the out-of-
equilibrium distribution functions to more accurately re-
present the full Boltzmann equation, while interpreting that
the singularity has a physical origin: a “sonic boom.”
In this work, we advocate a middle ground by maintaining

that the singularity of the moment expansion is unphysical
and can be induced by an overly restrictive ansatz, while
recognizing that the linearization of the background pertur-
bations is the root of the problem, as was argued in Ref. [62].
(In contrast, the out-of-equilibrium perturbations can be
safely linearized.) Based on this interpretation, we propose
a solution to the problem of supersonic walls by solving
nonlinearly for the background perturbations. Then the only
danger in choosing a particular ansatz is that it may not give a
very accurate representationof the exact solution.Ourmethod
will also avoid this pitfall by expanding the perturbations in a
large enough basis of orthogonal polynomials so that con-
vergence to the exact solution is achieved.
We start in Sec. II by rederiving the fluid equations used

to compute the wall velocity. Our methodology differs from
the standard approach by linearizing only when necessary
to obtain equations that are numerically tractable. This
strategy leads to a set of Boltzmann equations for each
heavy out-of-equilibrium species, in which we only lin-
earize the collision operators, and a set of hydrodynamic
equations that describe the background fluid in local
thermal equilibrium. We do not linearize the latter, which
yields a finite solution for every wall velocity.
Then, we propose in Sec. III a novel spectral method to

solve the Boltzmann equations. It uses a spectral ansatz that
can be as general as needed and yields a high accuracy with
great efficiency. Moreover, we believe it simpler to imple-
ment than the standard moment expansion. In Sec. IV,
we apply this new methodology to a benchmark model: the
Z2-symmetric singlet scalar extension of the SM. We study
its consequences for thewall velocity and shape and reassess
the importance of the out-of-equilibrium contributions. We
use these results in Sec. V tomotivate several approximation
schemes with increasing levels of complexity and accuracy.
They allow to correctly describe the qualitative behavior
of the wall dynamics, while substantially simplifying the
fluid equations. Conclusions are given in Sec. VI. Finally,
details about the calculation of the collision integrals are
presented in Appendix A, and the boundary conditions of
the hydrodynamic equations are computed in Appendix B.

II. FLUID EQUATIONS

The wall terminal velocity and shape can be determined
by solving a set of fluid equations describing the evolution
of the plasma and the scalar fields. These equations consist
of the EMT conservation and a set of Boltzmann equations
describing the plasma’s departure from equilibrium. In
general, a static solution corresponding to the terminal state
of the wall can only be found for discrete values of vw.
In this section, we derive these fluid equations in a

completely Lorentz invariant way. They form a highly
nontrivial nonlinear eigenvalue problem that must be
solved for the wall velocity.

A. Boltzmann equation

The relativistic Boltzmann equation that describes the
evolution of the distribution functions fiðpμ; xμÞ takes the
form

ðpμ
∂μ þmiF

μ
i ∂pμÞfiðpμ; xμÞ ¼ −Ci½fj�; ð1Þ

where miF
μ
i ¼ ∂

μðm2
i Þ=2 is the CP-even force applied

on the particles by the moving wall,2 and C½fj� is a
nonlinear collision integral. To keep Lorentz invariance
manifest, the 4-momenta pμ is set to its on-shell value
(p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jpj2

p
) only after the derivatives of fi are

taken, so that one can assume ∂μpν ¼ 0 and ∂pμpν ¼ δνμ.
If the bubble radius is much larger than its width, the wall

can be approximated to be planar and moving in the þz
direction. In that case, translational invariance in the plane
parallel to the wall implies that none of the quantities in
Eq. (1) depend on the x and y coordinates. Furthermore,
they should only depend on the distance from the wall
ξ≡ −ūμwxμ ¼ γwðz − vwtÞ, where ūμw ¼ γwðvw; 0; 0; 1Þ is
the 4-velocity perpendicular to the wall 4-velocity
uμw ¼ γwð1; 0; 0; vwÞ. This allows us to write the derivative
with respect to the coordinates as

∂
μ ¼ ∂

μξ∂ξ ¼ −ūμw∂ξ: ð2Þ
In general, the distribution functions can be written as the

sum of an equilibrium distribution,

feqi ðpμ; ξÞ ¼ 1

exp½pμu
μ
plðξÞ=TðξÞ� � 1

; ð3Þ

and some function describing the deviation from equilib-
rium δfiðp⃗; ξÞ:

fiðpμ; ξÞ ¼ feqi ðpμ; ξÞ þ δfiðpμ; ξÞ: ð4Þ

In this parametrization, all the species share the same
local temperature TðξÞ and local plasma 4-velocity

2A more general expression would also include a CP-odd
force, which plays an important role in baryogenesis.
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uμplðξÞ≡ γplðξÞð1; 0; 0; vplðξÞÞ, which can both depend on ξ.
We use the convention where vpl ≤ 0 and vw ≥ 0, which
corresponds to the wall moving in the positive z direction.
In previous studies, the position-dependent temperature

was generally written as TðξÞ ¼ T̄ þ δTbgðξÞ [and simi-
larly for vplðξÞ], where T̄ is an arbitrary constant temper-
ature, and δTbg is a small temperature deviation of the
background species (the light species in local thermal
equilibrium). This deviation was found by solving a
Boltzmann equation similar to Eq. (1) and linearized in
δTbg. However, Ref. [62] has argued that this linearization
leads to a singularity of the fluid equations which makes
the fluid temperature and velocity diverge when the wall
velocity approaches the speed of sound. Fortunately for us,
it is not necessary to linearize the Boltzmann in the
background perturbations to make it numerically tractable.
It is sufficient to linearize only the collision operator
Ci½δfj�, in terms of δfj (see Appendix A), which does
not induce any singularity in the equations.3

One might wonder whence this fundamental difference
between the background and out-of-equilibrium perturba-
tions arises, that only the former causes a singularity when
linearized. There are two main reasons for the differing
behaviors: the background perturbations are constrained by
EMT conservation, and they are the only perturbations
undamped by Ci½fj�. The constraints from EMT conserva-
tion lead to a set of hydrodynamic equations derived in the
next subsection. Reference [62] has shown that, when
linearized, these equations are singular at vw ¼ cs, if local
thermal equilibrium is assumed. One could try to solve the
problem by relaxing this last assumption, by allowing the
background fluid to be out of equilibrium. While this might
work close to the wall, it is doomed to fail away from it
since all these out-of-equilibrium perturbations are expo-
nentially damped by Ci½fj�, which ensures that the plasma
is in local thermal equilibrium at infinity.
Therefore, the only way to remove the unphysical singu-

larity is to keep the full nonlinear dependence on TðξÞ and
vplðξÞ. We determine these directly from the hydrodynamic
equations,4 which will be derived in the next subsection.
Substituting Eqs. (2) and (4) into Eq. (1), one obtains

�
Pw∂ξ −

1

2
∂ξðm2

i Þūμw∂pμ

�
δfi ¼ −Clini ½δfj� þ Si; ð5Þ

where we introduce the notation Ea ≡ pμu
μ
a and Pa ≡

−pμū
μ
a with a ∈ fpl; wg, which are Lorentz invariant

quantities corresponding, respectively, to the energy and
z-momentum in the plasma (pl) and wall (w) frames. Note
that Clin½δf� is the linearized collision operator, which can
safely be used instead of C½δf� since δf is not subject to
the same constraint as the background perturbations that
caused the singularity. Moreover, the deviation from
equilibrium is expected to be small, so neglecting the
higher order terms should be a reasonable approximation.
See Appendix A for more details about Clin½δf�. The source
term in Eq. (5) is

Si ¼ −
�
Pw∂ξ −

1

2
∂ξðm2

i Þūμw∂pμ

�
feqi

¼ f0i
Pw

T

�
γ2plPpl∂ξvpl þ Epl

∂ξT
T

�
þ 1

2
∂ξðm2

i Þūw;μuμpl
f0i
T
;

ð6Þ

with

f0i ≡ −
eEpl=T

ðeEpl=T � 1Þ2 : ð7Þ

B. Hydrodynamic equations

The starting point to derive the hydrodynamic equations
and the scalar fields’ equations of motion is the conserva-
tion of stress energy. The EMT of the vacuum contribution
from N scalar fields ϕi is

Tμν
ϕ ¼ ∂

μϕi∂
νϕi − ημν

�
1

2
∂αϕi∂

αϕi − V0ðϕjÞ
�
; ð8Þ

where repeated indices are summed over, and V0ðϕjÞ is the
scalar fields’ vacuum potential, including loop corrections.
One also needs to include the contribution from the
plasma, which can be written in terms of the distribution
functions fi as

Tμν
pl ¼

X
i

Z
d3p

ð2πÞ3Ei
pμpνfiðpμ; ξÞ; ð9Þ

where the sum is over all the plasma’s degrees of freedom.
One can substitute the ansatz (4) to express Tμν

pl as a sum
of equilibrium and out-of-equilibrium contributions:

Tμν
pl ¼ Tμν

eq þ Tμν
out;

Tμν
eq ¼

X
i

Z
d3p

ð2πÞ3Ei
pμpνfeqi ðpμ; ξÞ;

Tμν
out ¼

X
i

Z
d3p

ð2πÞ3Ei
pμpνδfiðpμ; ξÞ: ð10Þ

Using Lorentz covariance, one can write Tμν
eq as

3The failure of linearization in δTbg and δvbg occurs not
because these quantities ever become large, but rather because the
Liouville operator of the Boltzmann equation becomes singular,
unless higher order terms are retained [62].

4This method has already been used in Refs. [55,56] for a
plasma in local thermal equilibrium. We here extend their
derivation to include out-of-equilibrium perturbations.
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Tμν
eq ¼ wuμplu

ν
pl − pημν; ð11Þ

where the thermal pressure p and enthalpy w are

p ¼ �T
X
i

Z
d3p
ð2πÞ3 log ½1� expð−Ei=TÞ�;

w ¼ T
∂p
∂T

; ð12Þ

with Ei defined in the plasma rest frame and the þ=− signs
denoting fermions/bosons.
Similarly to Eq. (11), one can use Lorentz covariance

and the symmetry of the EMT under μ ↔ ν to express Tμν
out

as a linear combination of the tensors ημν, uμplu
ν
pl, ū

μ
plū

ν
pl,

and ðuμplūνpl þ ūμplu
ν
plÞ:

Tμν
out ¼ Tout;ηη

μν þ Tμν
out;u; ð13Þ

with

Tout;η ¼
1

2

X
i

ðm2
iΔi

00 þ Δi
02 − Δi

20Þ;

Tμν
out;u ¼

1

2

X
i

½ð3Δi
20 − Δi

02 −m2
iΔi

00Þuμpluνpl

þ ð3Δi
02 − Δi

20 þm2
iΔi

00Þūμplūνpl
þ 2Δi

11ðuμplūνpl þ ūμplu
ν
plÞ�; ð14Þ

and

Δi
mnðξÞ ¼

Z
d3p

ð2πÞ3E Em
plP

n
plδfiðpμ; ξÞ: ð15Þ

Conservation of the EMT is then given by

0 ¼ ∂μTμν ¼ ∂μðTμν
ϕ þ Tμν

eq þ Tμν
outÞ

¼ ∂
νϕi

�
∂
2ϕi þ

∂VTðϕj; TÞ
∂ϕi

þ ∂Tout;η

∂ϕi

�
− ∂

νT
∂p
∂T

þ ð∂νTout;ηÞϕ þ ∂μðwuμpluνpl þ Tμν
out;uÞ; ð16Þ

where VT ≡ V0 − p, and the subscript ϕ indicates that the
scalar fields ϕi are kept constant. We recognize the quantity
in brackets as the equation of motion for the scalar fields,
which must vanish independently of the rest of Eq. (16):

∂
2ϕi þ

∂VTðϕj; TÞ
∂ϕi

þ
X
j

∂ðm2
jÞ

∂ϕi

Δj
00

2
¼ 0; ð17Þ

where we assume that the only dependence of Tout;η on ϕi

comes from the explicit factor of m2
j multiplying Δj

00.

To derive the last two equations that describe the
evolution of TðξÞ and vplðξÞ, it is convenient to write
Eq. (16) in the frame of the wall, where all the quantities
depend only on the z coordinate. Conservation of the EMT
can then be written as

T30 ¼ wγ2plvpl þ T30
out ¼ c1;

T33 ¼ 1

2
ð∂zϕiÞ2 − VTðϕj; TÞ þ wγ2plv

2
pl þ T33

out ¼ c2; ð18Þ

where c1 and c2 are constants that depend on T− and v−
(or alternatively on Tþ and vþ), which denote the fluid
temperature and velocity at z →∓∞. These can be com-
puted as functions of vw using the method described in
Ref. [67], which is summarized in Appendix B.
In practice, one can directly solve the first line of Eq. (18)

for vpl:

vpl ¼
−wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s21 þ w2

p
2s1

; ð19Þ

with s1 ¼ c1 − T30
out. Substituting vpl into the equation for

T33 yields

1

2
ð∂zϕiÞ2 − VT −

1

2
wþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s21 þ w2

q
− s2 ¼ 0; ð20Þ

where s2 ¼ c2 − T33
out; this can be solved numerically for

the temperature as a function of the scalar fields.
In addition to Eqs. (17) and (20), one must impose

boundary conditions on the scalar fields to insure that they
start and end in the false and true vacua, respectively:

ϕiðz → �∞Þ ¼ ϕ�
i ; ð21Þ

where ϕ�
i satisfy

0 ¼ ∂VT

∂ϕi

����
ϕj¼ϕ�

j ;T¼T�

: ð22Þ

However, the boundary conditions (21) are insufficient for
specifying a unique solution. Effectively, all the hydro-
dynamic equations and boundary conditions derived so far
are invariant under translations along the z axis. This
implies that there exists a continuous family of solutions
related to one another via the substitution z → zþ a,
a ∈ R. To remove this degeneracy, one must give an
additional boundary condition that specifies the position
of the wall. We choose here to impose

ϕ1ðz ¼ 0Þ ¼ ϕ−
1 þ ϕþ

1

2
: ð23Þ
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The resulting system of equations naively appears to be
overconstrained, as there are now more boundary condi-
tions than the number of differential equations. The addi-
tional constraint serves to determine the unknown wall
velocity vw, which plays the role of a nonlinear eigenvalue
for the system of equations (17), (18), (21), and (23).
Formally, this can be handled by promoting vw to an
undetermined function vwðzÞ with the differential equation

∂zvwðzÞ ¼ 0; ð24Þ

which, of course, enforces that vw is a constant.

III. SPECTRAL SOLUTION OF THE
BOLTZMANN EQUATION

The Boltzmann equation (5) is notoriously difficult to
solve, being a partial integrodifferential equation involving
the nonlocal collision operator C½f�, which can be laborious
to compute. We present here a spectral method that can
efficiently deal with such difficulties. The basic idea behind
the spectral method is to expand the unknown functions in
series of orthogonal polynomials. Doing this transforms the
differential equation into an algebraic equation that can be
solved for the series’ coefficients. For smooth functions, the
convergence of the spectral series is exponential, promoting
a high level of accuracy in the solutions.
There is no unique way to define the spectral expansion;

in principle, any set of orthogonal polynomials can be used,
and most of them have similar convergence properties.
The optimal choice ultimately depends on the domain of
integration and the nature of the solution. Fortunately, there
exists a significant body of empirical evidence to help
optimize the choice of basis polynomials. We refer the
reader to Ref. [68] for more details.
For the expansion of the function δfðpμ; ξÞ, the first

thing one must consider is the choice of independent
variables to represent the momentum pμ. The symmetries
of Eq. (5) dictate that δf should be independent of the
azimuthal angle, determined by py=px. Moreover, it greatly
simplifies the equations to choose variables that are
independent of the position, Lorentz invariant, that can
efficiently represent the fluid’s state, and that are defined
on a simple domain. A simple choice that satisfies these
criteria is the component parallel to the wall pk and the z
component in the frame of the fluid at ξ ¼ 0, Ppl0 ≡
−pμū

μ
pl0

with ūμpl0 ≡ ūμpljξ¼0.
For the system of basis functions, we choose the

Chebyshev polynomials with an appropriate change of
variables to map the infinite domain to ½−1; 1�. For the
momenta, we choose the exponential mappings

ρzðPpl0Þ ¼ tanh

�
Ppl0

2T0

�
; ρkðpkÞ ¼ 1 − 2e−pk=T0 ; ð25Þ

with T0 ≡ Tξ¼0,
5 which ensure that δf decays asymptoti-

cally like e−p=T0 for p → ∞. Since the decay length in the ξ
direction is a priori unknown, we prefer to use an algebraic
mapping for this variable, as it offers more flexibility than
the exponential one:

χðξÞ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ L2

ξ

q ; ð26Þ

where Lξ is a constant that should be similar in magnitude
to the decay length of δf in the ξ direction.
Expressed in this set of variables, and omitting the

species index, the spectral expansion of δf is

δfðχ; ρz; ρkÞ ¼
XM
i¼2

XN
j¼2

XN−1

k¼1

aijkT̄iðχÞT̄jðρzÞT̃kðρkÞ; ð27Þ

where T̄ and T̃ are two sets of restricted Chebyshev
polynomials defined by

T̄iðxÞ ¼
�
TiðxÞ − T0ðxÞ; i even

TiðxÞ − T1ðxÞ; i odd;

T̃iðxÞ ¼ TiðxÞ − T0ðxÞ; ð28Þ

which are constructed in such a way that δf automatically
satisfies the boundary conditions

δfðξ → �∞;pÞ ¼ δfðξ; jpj → ∞Þ ¼ 0: ð29Þ

The linearized collision integral Clin½δf� can also be
expressed as a spectral series by using Eq. (27) and the
properties of linear operators:

C½δf� ¼ C
�XM
i¼2

XN
j¼2

XN−1

k¼1

aijkT̄iðχÞT̄jðρzÞT̃kðρkÞ
�

¼
XM
i¼2

XN
j¼2

XN−1

k¼1

aijkT̄iðχÞC½T̄jðρzÞT̃kðρkÞ�: ð30Þ

The functions C½T̄jðρzÞT̃kðρkÞ� depend only on the
momenta and not on δf; hence one need compute them
only once. These functions can be approximated as another
spectral series,

5We use T0 instead of TðξÞ to avoid having ξ dependence in the
momentum mapping. Since TðξÞ varies only slightly across
the wall, this does not significantly affect the convergence of
the spectral method.
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C½T̄jðρzÞT̃kðρkÞ� ≅
XN
l¼2

XN−1

m¼1

cjklmT̄lðρzÞT̃mðρkÞ; ð31Þ

where the coefficients cjklm can be determined using the
method described below. This procedure requires the values
of C½T̄jðρzÞT̃kðρkÞ� with j ¼ 2;…; N and k ¼ 1;…; N − 1,
each on a grid of ðN − 1Þ2 points, for a total of OðN4Þ
terms. These can be computed with the method described in
Appendix A.
The Boltzmann equation (5) can finally be written in

terms of the spectral expansions (27), (30), and (31) as

0 ¼ Sðχ; ρz; ρkÞ −
X
ijk

aijk

�
T̄iðχÞ

X
lm

cjklmT̄lðρzÞT̃mðρkÞ

þ ∂ξχ

�
Pw∂χ −

γw
2
∂χðm2Þð∂pz

ρzÞ∂ρz
�

× T̄iðχÞT̄jðρzÞT̃kðρkÞ
	
: ð32Þ

There exist several methods to determine the coefficients
aijk. All of them aim at minimizing a residue function that
measures the error of Eq. (32) (see Ref. [68] for more
details). The two most common are the Galerkin method,
which consists of taking moments of the differential
equation and setting them to zero, and the collocation
(or pseudospectral) method, which requires the equation to
be exactly satisfied on a discrete grid of well-chosen points.
One can show that both algorithms approximately mini-
mize the residue

Z
1

−1
dχdρzdρkwðχÞwðρzÞwðρkÞ × ½Eq: ð32Þ�2; ð33Þ

where wðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
is the weight function under

which the Chebyshev polynomials are orthogonal. Both
methods have similar convergence properties, but the
collocation method does not require carrying out the
integral (33); hence we choose collocation.
To minimize the residue (33), one can show that the

optimal collocation grid is given by the abscissas of the
Gaussian quadrature associated with the Chebyshev poly-
nomials. In the most common version of Gaussian quad-
rature, these points are the roots of TNþ1. However, it is
more convenient to use, instead, the Gauss-Lobatto points,
which are given by the extrema and endpoints of TNþ1.
The collocation grid is therefore formed by the points

ðχðiÞ; ρðjÞz ; ρðkÞk Þ, with6

χðiÞ ¼ cos

�
πi
M

�
; i ¼ 1;…;M − 1;

ρðjÞz ¼ cos

�
πj
N

�
; j ¼ 1;…; N − 1;

ρðkÞk ¼ cos

�
πk

N − 1

�
; k ¼ 1;…; N − 1: ð34Þ

Requiring Eq. (32) to be satisfied on the grid (34) yields
ðM − 1ÞðN − 1Þ2 linear algebraic equations that can easily
be solved for the ðM − 1ÞðN − 1Þ2 unknown coefficients
aijk by doing a single matrix inversion.
The accuracy of this spectral method is expected to

increase exponentially with M and N. One can generally
obtain an error of less than 1%, which we judge to be
satisfactory, withM ∼ 20 and N ∼ 10. This allows for a fast
and accurate solution of the Boltzmann equation.
It may not be obvious in what ways this spectral method is

superior to the standardmoment expansion of theBoltzmann
equation, used in previous studies. Seemingly, the latter is
closely related to the Galerkin method by a change of weight
functions and a trivial basis transformation. Indeed, if
performed with exact arithmetic, these two methods show
similar convergence properties. The superiority of the
Galerkin or collocation methods manifests itself when
numerical algorithms are used to do the matrix inversion.
For largeN ≳ 5, the high-order terms in the basis functions of
the moment expansion become nearly linearly dependent.
This results in ill-conditionedmatrices that yield large round-
off errors when inverted [68]. The Galerkin and collocation
methods avoid this problem by using orthogonal polyno-
mials, which are, in some way, maximally linearly indepen-
dent. To prevent the round-off error from becoming
prohibitively large when N is large, one should therefore
avoid the moment expansion in favor of one of the spectral
methods presented in this section.
There are further reasons to prefer the collocation

method over the moment expansion. As previously men-
tioned, the former does not require integrating the
Boltzmann equation, which significantly reduces the
numerical overhead. One could argue that this benefit is
offset by the calculation of the collision integrals, which
requires the evaluation of OðN4Þ terms for the collocation
method, compared to OðN2Þ terms for the moment expan-
sion. However, the former consist in four-dimensional
integrals, while the latter are seven dimensional. This
implies that the convergence rate of the Monte Carlo
algorithm used to compute the collision integrals (see
Appendix A) is better for the former, which makes up
for the larger number of terms to evaluate. Finally, several
previous studies used additional approximations to simplify
the moment equations (e.g., neglecting the mass depend-
ence and the terms proportional to ∂ξðm2Þδf). By not
having to perform any integration, these approximations
become unnecessary, and one can easily retain the full

6The collocation grid does not include the boundary points
χ; ρz ¼ �1 or ρk ¼ 1 because our choice of restricted basis
Eq. (28) automatically satisfies the boundary conditions at these
points.

BENOIT LAURENT and JAMES M. CLINE PHYS. REV. D 106, 023501 (2022)

023501-6



Boltzmann equation. This further improves the overall
accuracy of the algorithm.
An example of the results from this procedure is shown

in Fig. 1, for the moments of the top quark perturbation δft
as a function of ξ. The numbers of basis polynomials
N ¼ 11 and M ¼ 22 were found to give a high degree of
convergence, resulting in an average error of only 0.1%.
The solution shown corresponds to values of the model
parameters, to be described in the following section:
ms ¼ 103.8 GeV, λhs ¼ 0.72, and λs ¼ 1. The terminal
wall velocity for this model is vw ¼ 0.57.

IV. BENCHMARK MODEL: Z2-SYMMETRIC
SINGLET SCALAR EXTENSION

To illustrate the methodology discussed earlier, we
consider the Z2-symmetric singlet scalar extension of the
SM. This model can render the electroweak phase tran-
sition, strongly first order, with a modest input of
new physics [26,27,69–76], which makes it attractive for
studying general properties of FOPTs. Moreover, it has
been shown that it can generate gravitational waves
that could potentially be probed by future detectors
[10,14,77–81], and it can provide a successful mechanism
for baryogenesis by coupling it to a simple source of CP
violation [31,36,49,65,82].
The singlet scalar extension consists of augmenting the

SM by a new scalar field s, a singlet under the SM gauge
group, and coupling it to the Higgs boson h. In its
Z2-symmetric version, the tree-level scalar potential of
this model takes the general form

V treeðh;sÞ ¼
μ2h
2
h2þ λh

4
h4þμ2s

2
s2þ λs

4
s4þ λhs

4
h2s2: ð35Þ

To make quantitative predictions, we add to this potential
the one-loop vacuum and thermal corrections, which are
described in the appendix of Ref. [83].
We are interested in the region of parameter space where

the phase transition occurs in a two-step process, which first
breaks the s field’sZ2 symmetry and subsequently that of the
Higgs field. Electroweak symmetry breaking occurs at the
second step, so we only consider the second phase transition
in the following. Electroweak bubbles appear at the nucle-
ation temperature Tn, which is always below the critical
temperature Tc, where the two vacua are degenerate. Further
details about the electroweak phase transition and bubble
nucleation in the singlet scalar extension can be found in
Refs. [49,60,74,75,82–85].

A. Solution of fluid equations for SM-like plasma

To determine the wall velocity vw, one needs to solve
simultaneously a set of equations consisting of the scalar
fields’ equations of motion (EOMs) (17), the conservation
of the EMT (20), and the spectral Boltzmann equation (32).
In practice, the out-of-equilibrium perturbations contribute
only slightly to the EOMs and the EMT. This allows one
to solve the whole system iteratively, by first solving the
EOMs and EMT with δf ¼ 0, then using the resulting
fields, temperature, and velocity profiles to solve the
Boltzmann equation for an updated δf. We iterate this
process with the new δf until convergence is achieved. This
algorithm allows one to separate the problem into solutions
of two subsystems: the spectral Boltzmann equation, which
can be solved with the method described in Sec. III, and the
EOMsþ EMT system. We show how to solve the latter in
this subsection.
To simplify the analysis, we only consider the out-of-

equilibrium contribution from the top quark, which is the
dominant one. In a more complete treatment, the other
massive degrees of freedom including the W and Z bosons
and the scalar fields should also be taken into account. We
defer such improvements to future investigation. With this
simplification, the scalar fields’ EOMs in the wall frame
become

Eh ¼ −∂2zhþ ∂VTðh; s;TÞ
∂h

þ Nt
∂ðm2

t Þ
∂h

Δt
00

2
¼ 0;

Es ¼ −∂2zsþ
∂VTðh; s;TÞ

∂s
¼ 0; ð36Þ

where VT is the effective potential, including the one-loop
vacuum and thermal corrections, and Nt ¼ 12 is the top
quark’s number of degrees of freedom.
A simple approximate solution to these equations is the

tanh ansatz

hðzÞ ¼ h0
2
½1 − tanhðz=LhÞ�;

sðzÞ ¼ s0
2
½1þ tanhðz=Ls þ δsÞ�; ð37Þ

FIG. 1. Exemplary solution of the Boltzmann equation for the
top quark out-of-equilibrium perturbation δft, computed with
the spectral method using N ¼ 11 and M ¼ 22. We show the
moments of δft defined in Eq. (15), which appear in the
hydrodynamic equations. The units of the y axis are GeV4.
The Lorentz-invariant wall coordinate ξ is defined above Eq. (2).
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where h0 and s0 are the scalar field vacuum expectation
values (VEVs) in the true and false vacua, respectively,
given appropriate choices for the coupling constants in the
potential (35). They satisfy

∂V
∂h

ðh0; 0;T−Þ ¼
∂V
∂h

ð0; s0;TþÞ ¼ 0;

∂V
∂s

ðh0; 0;T−Þ ¼
∂V
∂s

ð0; s0;TþÞ ¼ 0:

The VEVs depend on the plasma’s asymptotic temperatures
T� far from the wall, which are themselves a function of the
wall velocity vw.
Once a tentative field profile has been proposed, one can

determine the temperature profile by solving Eq. (20).
Since no derivative of T is involved, it forms a set of
uncoupled algebraic equations for each value of z.
Therefore, it can be solved with a standard root-finding
algorithm, like a Newton or bracketing method.7

To get an accurate estimate of the solution, it is essential
to allow the two scalar fields to have different wall
thicknesses Lh and Ls, and even more so to allow an
offset δs between the twowall positions. One could also use
a more general ansatz than Eq. (37) with more free
parameters. However, we find that the main features of
the fields’ profiles are well approximated by (37), and it is
therefore sufficient for obtaining a good enough initial
estimate of the solution.
The general strategy for determining the optimal values

of vw, Lh, Ls, and δs is to take moments of Eh and Es in
Eq. (36) and algebraically solve for the vanishing of the
moments. The choice of the moments is to some extent
arbitrary, as long as they are sensitive to independent linear
combinations of the unknown parameters. A convenient
choice is [59]

Phðvw; Lh; Ls; δsÞ ¼ −
Z

dzEhh0 ¼ 0;

Ghðvw; Lh; Ls; δsÞ ¼
Z

dzEhð2h=h0 − 1Þh0 ¼ 0; ð38Þ

and similarly for Ps and Gs. These moments have intuitive
physical interpretations that naturally distinguish them as
good predictors of the wall speed and thickness, respec-
tively. Pi is a measure of the net pressure on the wall, so that
Pi ¼ 0 can be interpreted as the requirement that a sta-
tionary wall should have a vanishing total pressure; non-
vanishing Pi would cause it to accelerate. It can also create
an offset between the two walls if Ph ≠ Ps, which can be

used to determine δs. On the other hand, Gi measures the
pressure gradient in the wall. If nonvanishing, then it
would lead to compression or stretching of the wall,
causing Li to change.
The system of moment equations (38) can be solved with

a Newton algorithm. If needed, the resulting approximate
solution can then be improved with a few relaxation steps.
Generally, we find that it only changes the wall velocity by
a few percent, so the tanh ansatz is sufficient for most
applications.

B. Classification of solutions

To better understand how the wall velocity of first-order
phase transition bubbles is determined by the departure
from equilibrium, it is convenient to define the total
pressure,

PtotðvwÞ ¼ Phðvw; L�
h; L

�
s ; δ�sÞ þ Psðvw; L�

h; L
�
s ; δ�sÞ; ð39Þ

where L�
h, L

�
s , and δ�s solve the equations Ph − Ps ¼ Gh ¼

Gs ¼ 0. This quantity measures the total pressure on the
bubble wall as a function of the wall velocity, when the
dependence on the wall shape is eliminated in favor of vw.
The total pressure for two different models is shown in

Fig. 2, illustrating deflagration and detonation transitions,
respectively. A striking nontrivial feature in both curves is
the large pressure peak maximized at the Jouguet velocity
vJ, which is the smallest wall velocity that can yield a
detonation solution. This pressure barrier was predicted in
Ref. [53], and observed in Ref. [49], and is confirmed by
the present analysis. It plays an essential role, being a
general feature of first-order phase transitions, and naturally
dividing the bubbles into two qualitatively distinct catego-
ries: deflagration (which also includes hybrid walls) and
ultrarelativistic detonation solutions.8

A phase transition corresponds to a deflagration solution
if it is too weak to overcome the pressure barrier at vJ. This
is the case for the model shown in Fig. 2(a), which solves
Ptot ¼ 0 at approximately vw ¼ 0.57. It is no coincidence
that the terminal wall velocity in this example ends up
being so close to the sound speed in the plasma. The
pressure peak is a consequence of hydrodynamic effects
that heat the plasma, increasing the pressure on the wall.
These effects become especially important for hybrid walls,
when the shock wave in front of the wall becomes thin. This
causes the pressure to start to rise rapidly only around
vw ∼ cs ∼ 0.58, when the wall becomes a hybrid solution
(a supersonic deflagration which has both a shock and
rarefaction wave). Since the acceleration of most deflagra-
tion solutions is stopped by the pressure peak, it implies
that a large fraction of the walls in that category satis-
fies cs ≲ vw ≤ vJ.

7For some tentative field profiles and wall velocities (mainly
for hybrid walls), Eq. (20) does not have any solution. In this
situation, we choose the value of T that minimizes the error. Of
course, the exact solution of the EOMs (36) must allow a solution
for Eq. (20).

8For more formal definitions of deflagration, hybrid, and
detonation solutions, see Appendix B.
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For stronger phase transitions, the pressure peak is not
high enough to impede the wall’s acceleration since Ptot
remains negative, leading to detonation solutions. This is the
case for themodel shown inFig. 2(b). Since the pressure atvJ
is higher than in the rangevJ < vw ≲ 1 and yet insufficient to
decelerate the wall, it will continue accelerating until it is
stopped by the friction coming from out-of-equilibrium
effects. These become important only at ultrarelativistic
velocities; in general, detonation solutions always satisfy
γw ≳ 10. The asymptotic behavior of this ultrarelativistic
friction force is still being debated [86,87], as Refs. [88,89]
found different scaling relations Ptotðvw → 1Þ ∼ γw; γ2w,
respectively. Nevertheless, they both agree that it will
eventually become high enough to stop thewallwith γw ≫ 1.
One can also appreciate the role played by the deviation

from equilibrium in Fig. 2, as it shows the pressure
computed with or without the out-of-equilibrium contri-
bution [the term proportional toΔ00 in Eq. (36)]. Strikingly,
the out-of-equilibrium pressure is much smaller than the
equilibrium one.9 The latter can accurately reproduce
the most important feature of the pressure curve, namely
the pressure peak at vJ. Therefore, it could be a good
approximation to neglect the deviations from equilibrium
altogether, considerably simplifying the fluid equations
since no Boltzmann equation would have to be solved.
However, there are some situations where the out-of-

equilibrium pressure can be quantitatively important. For
slow walls (vw ≲ 0.5), the error in the wall velocity Δvw
caused by neglecting this contribution can become large,
even if the pressure difference is small. One can show that
Δvw ∼ ðdPtot=dvwÞ−1, which increases at small velocities.

But as previously argued, most deflagration solutions are
stopped by the pressure peak, at which point ðdPtot=dvwÞ−1
is small; thus,Δvw is expected to be unimportant for typical
deflagrations.
One can also see from Fig. 2 that the approximation of

ignoring the out-of-equilibrium pressure contribution
becomes poor when vw > vJ. But, ultimately, this has a
small effect since all detonation walls become ultrarelativ-
istic, irrespective of their pressure profile. Possibly the
most important distinction between the equilibrium and
total pressure is the magnitude of the peak pressure, which
determines the type of solution: deflagration forPtotðvJÞ > 0
and detonation, otherwise. Even if the out-of-equilibrium
contribution is small, it is possible that neglecting it erro-
neously transforms a deflagration into a detonation, resulting
in a large Δvw. We will later estimate how likely this is
to happen and propose a simple fix to approximate the
out-of-equilibrium pressure without solving the Boltzmann
equation.
From Fig. 2, it is apparent that the total pressure is

discontinuous at vw ¼ vJ. However, we now obtain a finite
discontinuity rather than a divergent one, such as was found
in previous studies that were based on a perturbative
treatment of δvbg and δTbg. By virtue of its finiteness,
the pressure discontinuity is no longer conceptually nor
numerically problematic. Unlike in earlier work, we do not
find that it arises from the fluid equations (5), (17),
and (18). Rather, its origin is in the initial conditions T�
and v�, which vary discontinuously when the wall goes
from a hybrid to a detonation solution. Ultimately, this is
caused by the shock wave disappearing for detonations.

C. Scan results

We now turn to a more specific discussion about the
singlet scalar extension. To study the consequences of the

(a) (b)

FIG. 2. Total pressure as a function of the wall velocity for a deflagration wall (a) and a detonation wall (b). The dashed (red) line
only contains the contribution from the equilibrium distribution function, while the solid (blue) line also includes the top quark’s
out-of-equilibrium contribution. The shaded region corresponds to hybrid walls. It is bounded on the right by the Jouguet
velocity vJ.

9However, one should keep in mind that we only include the
out-of-equilibrium contribution of the top quark, which slightly
underestimates the actual total pressure.
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methodology discussed in this paper for the wall velocity
and shape, we performed a random scan over the region in
parameter space constrained by λs ¼ 1 and ms ∈ ½62.5;
160� GeV, where ms ¼ μ2s − λhsμ

2
h=ð2λhÞ is the physical

mass of the s particle at T ¼ 0, and its lower bound is
chosen to avoid collider constraints from Higgs boson
decays h → ss. To ensure a more uniform exploration of
the parameter space, we sampled the points from a Sobol
sequence, which prevents two points from being arbitrarily
close to one another. The result of this scan is shown in
Fig. 3, where vw is indicated in the λhs −ms plane for
models giving a first-order phase transition.
Of the 2860 points sampled, roughly 70% are deflagra-

tion walls. Although this ratio is model dependent, it
suggests that both types of solution should be relatively
common for generic models. The qualitative analysis of the
last subsection is validated: we find that all the detonation
solutions have γw > 10 (hence ultrarelativistic), and a large
fraction of the deflagration walls have a terminal velocity
close to the speed of sound, the slowest being vw ≈ 0.4.
More precisely, 83% of the deflagration walls have a
velocity greater than 0.55, and 97% are greater than 0.5.
The classification of walls is strongly correlated with the

strength of the phase transitions, which we quantify by α,
the ratio of released vacuum energy density to the radiation
energy density. A histogram of α is shown in Fig. 4.
It clearly shows that the phase transition of detonation
solutions is, in general, stronger than for deflagration walls.
There is some overlap between the two groups, but as a
rough rule of thumb, one can say that deflagrations satisfy
αdef ≲ 10−2 and detonations αdet ≳ 10−2.
Wequantify the effect of neglecting the out-of-equilibrium

pressure in Fig. 5,which shows the relative errors induced for
the wall velocity and thickness. The absolute error is defined
asΔvw ¼ veqw − vtotalw , and similarly forLh; thus Fig. 5 shows
that the out-of-equilibrium contributions slow down thewall
while making it thicker. As expected, the error is small for
hybrid walls and becomes larger as vw decreases. Even in the

extreme cases, the relative error never exceeds 15% for vw
and 20% for Lh, and the mean errors are 2% and 5%,
respectively.
The out-of-equilibrium pressure also has an impact on

the classification of the solutions, as 9% of the deflagration
walls would be incorrectly identified as detonations if one
neglected this contribution. This last consequence could
be more problematic since it has a significant qualitative
impact on the behavior of the misidentified solution. The
errors presented here somewhat underestimate the true error
that would be obtained by considering the full out-of-
equilibrium contributions beyond those of the top quark.9

V. APPROXIMATION SCHEMES

For some applications, a qualitative understanding of
the bubble wall’s behavior may be sufficient; for example,
one might be content to know whether the wall speed is

FIG. 3. Scan of the parameter space with λs ¼ 1. Red points are
ultrarelativistic detonation solutions. FIG. 4. Histogram of α (latent heat divided by radiation energy

density) for deflagration (blue) and detonation (orange) solutions.
Overlap region is shown in darker red.

FIG. 5. Scatter plot of relative errors of the wall velocity (blue
points) and thickness (red points) due to neglecting the out-of-
equilibrium pressure contribution, as a function of vw.
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subsonic or ultrarelativistic, without needing its precise
value. With that in mind, in this section we propose several
approximation schemes with increasing levels of complex-
ity and accuracy. Each method can be separated into two
parts: first classifying the wall as a deflagration or deto-
nation solution, and second computing the wall velocity.10

A. Fixed wall velocity

The wall velocity is often needed to study the cosmo-
logical signatures of first-order phase transitions (e.g.,
baryogenesis and gravitational waves). To simplify the
analysis, several past studies have assumed a fixed value for
the wall velocity instead of computing it from the fluid
equations. Unfortunately, the chosen value was often
motivated by the strength of the cosmological signature
studied, instead of the likelihood of having such a velocity,
simply because this likelihood was unknown.
For example, baryogenesis studies frequently adopt a

small wall velocity (vw ≲ 0.1) to maximize the resulting
baryon asymmetry. As we have seen in Sec. IV, it is actually
very unlikely to have vw < 0.5, and the smallest velocity
found out of 2860 models is vw ¼ 0.4. Instead of this
arbitrary (and inaccurate) assumption, we propose here to
use the most likely wall velocity, which is vw ¼ cs ¼ 1=

ffiffiffi
3

p
for deflagrations and vw ¼ 1 for detonations. It is harder to
suggest a fixed wall thickness since this typically depends
rather sensitively on the specific model being studied.
Generally, values between 5=Tn and 20=Tn are realistic.
One can classify the solutions using the α parameter,
with phase transitions satisfying α < 10−2 corresponding
to deflagrations and α > 10−2 as detonations.
Using these approximations, we correctly classify 86%

of the models sampled in the last section. Moreover, the
mean error in the wall velocity of deflagration walls is only
5%. Of course, the main advantage of this approximation is
that it requires almost no calculation. Yet, it is able to
reproduce the correct qualitative behavior most of the time.
For higher accuracy, or an estimation of the wall thickness,
we recommend one of the subsequent approximations.

B. Local thermal equilibrium

The next step towards a better approximation of the fluid
equations is to assume the plasma to be in local thermal
equilibrium (LTE). This strategy has already been studied
in Refs. [54–56], and we showed in Sec. IV that it correctly
reproduces the qualitative features of the pressure curve. To
implement it, one needs to solve Eqs. (17) and (20), while
neglecting all the out-of-equilibrium terms involving the
Δmn functions. The type of solution can be classified by
computing the sign of PtotðvJÞ.

Using a tanh ansatz to solve the equilibrium fluid
equations, one can in this way correctly classify 94% of
the solutions. The mean error on the deflagration wall
velocity is 2%, and the wall thickness estimate has an
accuracy of 13%. This level of accuracy represents a net
improvement compared to the previous approximation,
in addition to providing an estimation of the wall shape.
However, it requires computing vJ, v�, T� and solving a
set of fluid equations, which requires significant additional
computational effort.

C. Numerical fit of out-of-equilibrium pressure

It is possible to substantially improve the last approxi-
mation by estimating the out-of-equilibrium pressure from
a numerical fit. Since the Boltzmann equation does not
depend on the potential VT , these out-of-equilibrium
contributions are, to some extent, model independent.
An excellent representation of out-of-equilibrium con-

tributions to the moments of Eq. (38) can be obtained using
a power-law proportional to h40, v

1.5þ , T−0.5þ , and L−1
h . (Recall

that vþ, Tþ are the fluid velocity and temperature at
z → ∞.) The best fits of the out-of-equilibrium pressure
and pressure gradient are

Pout
h ≡ −

Nt

2

Z
dzh0

∂ðm2
t Þ

∂h
Δt

00

≈ ð1.04 × 10−4 GeV−0.5ÞNty4t h40v
1.5þ

T0.5þ Lh
;

Gout
h ≡ Nt

2

Z
dzð2h=h0 − 1Þh0 ∂ðm

2
t Þ

∂h
Δt

00

≈ ð−3.95 × 10−5 GeV−0.5ÞNty4t h40v
1.5þ

T0.5þ Lh
; ð40Þ

where yt is the top Yukawa coupling. We calibrated these
fits on the deflagration walls found in the scan of Sec. IV, so
they should not be trusted for ultrarelativistic detonation
solutions. They both have a coefficient of determination of
R2 ¼ 0.999, and the fits are shown in Fig. 6.
One can substitute the fits (40) in the moment equa-

tions (38) to obtain an improved set of fluid equations that
include the estimate of the out-of-equilibrium contribu-
tions.11 Using this approximation, we can correctly classify
98% of the walls and the mean errors on vw and Lh are,
respectively, 0.4% and 9.8%.
At this stage, the numerical fits (40) are only valid for the

singlet scalar extension presented in Sec. IV. It is possible
to generalize them by identifying the origin of the h40=Lh

factor, which is model dependent. First, the dzh0∂ðm2Þ=∂h
factor in the definitions of Pout

h and Gout
h scales like h20.

Second, the magnitude of deviation from equilibrium is
10For detonations, the wall velocity is always vw ≈ 1, so this

second part becomes trivial. For estimations of the terminal
Lorentz factor γw and for detonation solutions, see Refs. [88,89].

11Since this approximation is obtained from the moment
equations (38), it requires a tanh ansatz for the fields’ profiles.
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proportional to the amplitude of the Boltzmann equation’s
source term Si, Eq. (6). The dominant contribution to Si is
the term proportional to ∂ξðm2

t Þ, which scales like h20=Lh.
In a more general treatment, one should include the

pressure from all the massive degrees of freedom.
Furthermore, the masses can depend on the VEVs of
several scalar fields. To be as general as possible, we keep
the masses unspecified and replace the h40=Lh factor in
Eq. (40) by the following scaling relations:

Δj
00 ∼ ∂ξðm2

jÞ ∼
X
k

βjk
Lk

;

βij ≡ Δ
�
ϕj

∂ðm2
i Þ

∂ϕj

�
; ð41Þ

and

Pout
i ¼ −

X
j

Nj

2

Z
dzϕ0

i

∂ðm2
jÞ

∂ϕi
Δj

00

∼
X
j

Njβji
X
k

βjk
Lk

; ð42Þ

where the Δ operator denotes the variation of its argument
across the wall, and Lk is the thickness of the ϕk wall
profile. The factors βij can be interpreted as the variation of
m2

i during the phase transition, due to the variation of
ϕj’s VEV.
The v1.5þ =T0.5þ factor appearing in the fits does not depend

on the masses, but rather on the structure of the Boltzmann
equation. Therefore, we expect it to be model independent.
This is a reasonable assumption for SM-like plasmas since
they all share similar collision operators.

Demanding that Eq. (42) reduces to Eq. (40) in the case
where only the contribution from the top quark is included,
the fits for the pressure and pressure gradient become

Pout
i ≈

1.04 × 10−4

GeV0.5

v1.5þ
T0.5þ

X
j;k

Nj

Lk
βjiβjk;

Gout
i ≈

−3.95 × 10−5

GeV0.5

v1.5þ
T0.5þ

X
j;k

Nj

Lk
βjiβjk; ð43Þ

where j is summed over all the massive species and k over
all the scalar fields that have VEVs in the wall.
As an exemplary application, we use the fits (43) to

estimate the out-of-equilibrium contributions from the h
and s scalar fields, and the W and Z bosons, which were
previously neglected.
The contribution from the gauge bosons is the easiest

to estimate since their mass is not affected by the singlet
scalar. Their out-of-equilibrium pressure can simply be
related to the top’s by

Pout
h;W þ Pout

h;Z

Pout
h;t

≈
NWm4

W þ NZm4
Z

Ntm4
t

≈ 0.04; ð44Þ

where Pout
i;j is the out-of-equilibrium pressure of the j

species on the ϕi wall. This shows that it is a reasonable
approximation to neglect the gauge bosons’ contribution.
The scalar fields’ masses depend on h and s, so they

contribute to both Pout
h and Pout

s . Before estimating these
pressures, it is convenient to compute the relevant βij
factors from Eqs. (35) and (41):

βhh ¼ 6λhh20; βhs ¼ λhss20;

βss ¼ 6λss20; βsh ¼ λhsh20: ð45Þ

The fractional contribution from the scalar particles to
the pressure, relative to that of the top quark, can then be
estimated as

Lh

Ntðyth0Þ4
�
1

Lh
ðβ2hh þ β2shÞ þ

1

Ls
ðβhhβhs þ βshβssÞ

�
∼ 0.3;

Lh

Ntðyth0Þ4
�
1

Ls
ðβ2ss þ β2hsÞ þ

1

Lh
ðβhhβhs þ βshβssÞ

�
∼ 0.5

ð46Þ

for the h and s walls, respectively. The numbers on the
right-hand sides are averages over all the deflagrations
found in Sec. IV. Due to the large value of λs ¼ 1 used for
the scan, the magnitude of this out-of-equilibrium pressure
is significantly larger. Incidentally, nearly all the contribu-
tion comes from the s field’s departure from equilibrium.
Therefore, it is still a good approximation to assume the
Higgs to be in LTE (because λh ∼ 0.1 is small), but it seems

FIG. 6. Out-of-equilibrium pressure (blue points) and pressure
gradient (red points) of the deflagration solutions, obtained in the
scan of Sec. IV, and the corresponding best fits Eq. (40) (lines).
The units of the y axis are GeV4.
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harder to justify it for the singlet scalar, as long as λs
is large.
We finally study the effect of these additional sources of

pressure on the wall velocity. Despite the large contribution
from the s field, the average vw for deflagration solutions is
only decreased by 0.5%, compared to the case where only
the top’s pressure is included. This is not surprising since
we already found that vw is mainly determined by the
equilibrium contribution. However, the additional pressure
increases the number of deflagration solutions by 7%,
which could have an important effect on the predicted
terminal velocity if a high accuracy is needed.

D. Discussion

Table I shows a summary of the accuracy of each
approximation scheme. For applications requiring only a
qualitative understanding, we recommend the fixed wall
velocity method, as it requires practically no calculations,
while correctly describing the bubble’s qualitative dynam-
ics. For higher accuracy, we recommend solving the fluid
equations with the numerical fits (43) to estimate the out-
of-equilibrium terms since it is much more precise than the
LTE method, without increasing the complexity of the
equations that must be solved. However, these fits should
only be trusted for a SM-like plasma; the LTE method
should be used for a plasma whose constituents differ
significantly from the SM.
Finally, for the highest level of accuracy, one should

compute the deviation from equilibrium by solving a set
of Boltzmann equations for each massive species in the
plasma. This can be done efficiently with the spectral
method described in Sec. III.
It is worthwhile to keep in mind that the Boltzmann

equation is not an exact predictor of the distribution
functions and is subject to various sources of uncertainty.
It is an approximation to the Kadanoff-Baym equations,
which is obtained by performing a gradient expansion [90],
that is only trustworthy for Li ≳ 2=Tþ [91]. Moreover, the
collision integrals are computed to leading log accuracy,
which has large uncertainties [57,60,61,92]. This can

induce significant errors in the out-of-equilibrium contri-
butions since they are typically inversely proportional to the
collision terms.

VI. SUMMARY AND CONCLUSIONS

In this work we have rederived the fluid equations used to
determine the wall velocity of a first-order phase transition
bubble. Contrary to the standard methodology, we exactly
solved the equations for the background temperature and
fluid velocity, without linearizing in these quantities. This
ensures the existence of nonsingular solutions regardless
of the wall velocity, in particular, for vw ≳ cs. We thereby
overcome an important limitation of the standard formalism
introduced in Ref. [57], which prevented the accurate
description of supersonic walls.
Furthermore, the Lorentz invariant fluid equations are

derived from first principles; EMT conservation is used to
calculate the background temperature, fluid velocity, and
scalar field profiles, and a set of Boltzmann equations
determines the deviation from thermal equilibrium of each
species in the plasma. We proposed a spectral method to
solve the Boltzmann equations, which has the attractive
features of being simple, efficient, rapidly converging, and
accurate. It allows one to approximately solve the
Boltzmann equation directly with arbitrary accuracy,
requiring just a single matrix inversion.
To explore the consequences of this new formalism on the

dynamics of thebubblewall,we applied it to the singlet scalar
extension of the SM.Akey finding is that all bubblewalls fall
into one of two qualitatively distinct groups: either defla-
grations with cs ≲ vw ≤ vJ (the Jouguet velocity), or ultra-
relativistic detonations with γw ≳ 10. Hence, generic
transitions will give bubble walls traveling either near the
speed of sound or that of light. Although the result was
derived in a specificmodel, we expect this classification to be
a general feature of first-order phase transitions; it is a
consequence of general equilibrium hydrodynamic effects.
Since it mainly comes from equilibrium physics, departure
from equilibrium has little impact on the terminal wall
velocity. Rather than making a dominant contribution to
the friction on the wall, as standard lore suggested, we find
that it only gives a small correction, which changes the wall
velocity by 2% on average. However, in some borderline
situations, it can generate a small additional pressure that
transforms awould-be detonation into a deflagration; theout-
of-equilibrium effects are significant in such cases.
Finally, we proposed several approximation schemes with

increasing levels of complexity and accuracy. The simplest
of these can, in most cases, correctly reproduce the quali-
tative behavior of the full treatment, while requiring almost
no calculation. We also performed a numerical fit of the
out-of-equilibrium pressure and pressure gradient from the
present study. This allows future practitioners to quantita-
tively estimate the effects of friction, without having to solve
the Boltzmann equations. They can thereby improve the

TABLE I. Accuracy of the different approximation schemes for
the scan of Sec. IV. All the numbers are percentages and are
compared to the complete solution of the fluid equations,
including the Boltzmann equation of the top quark only. The
numbers in parentheses were computed with a tanh ansatz.

Approximation
Correct

classification (%)
Δvw=vw
(%)

ΔLh=Lh
(%)

Fixed wall velocity 86 4.7 � � �
Local thermal
equilibrium

94 (94) 1.6 (2.2) 4.7 (13)

Numerical fits (98) (0.4) (9.8)
Full Boltzmann
equations

100 (98) 0 (0.5) 0 (9.6)
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(already good) estimates from the local thermal equilibrium
approximation, with modest additional effort, to get accurate
estimates of the wall speed. It should be noted, however, that
the methods discussed here do not address the question of
how large γw is in the case of highly relativistic walls.
A natural next step would be to extend the fluid

equations derived in this work to CP-odd perturbations.
This would be relevant to the study of electroweak baryo-
genesis, which is one of the primary applications of a first-
order electroweak phase transition. Although generalizing
the hydrodynamic and Boltzmann equations is straightfor-
ward, the calculation of the collision integrals presents a
challenge. In particular, some of the processes relevant for
the CP-odd perturbations (such as those involving weak
and strong sphalerons) should properly be calculated using
lattice gauge theory since they require matrix elements that
are not simply related to the total sphaleron rate. This is a
problem we hope to investigate in future work.
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APPENDIX A: COLLISION INTEGRALS

We discuss here the calculation of the collision integrals
by adapting the method used in Ref. [61] to be used with
the spectral method discussed in Sec. III. The collision term
for a given particle species is

C½f� ¼
X
i

1

2Np

Z
d3kd3p0d3k0

ð2πÞ52Ek2Ep02Ek0
jMij2

× δ4ðpþ k − p0 − k0ÞP½f�; ðA1Þ

P½fðpÞ� ¼ fðpÞfðkÞð1� fðp0ÞÞð1� fðk0ÞÞ
− fðp0Þfðk0Þð1� fðpÞÞð1� fðkÞÞ; ðA2Þ

where the sum is over all the relevant processes. Note that p
is the momentum of the incoming particle, whose distri-
bution is being computed, Np is its number of degrees of
freedom, k is the momentum of the other incoming particle,
and p0, k0 are the momenta of the outgoing particles. jMij2
is the squared scattering amplitude, summed over the
helicities and colors of all the external particles. Finally,
the � appearing in population factor P is þ for bosons
and − for fermions.
To make the Boltzmann equation numerically tractable,

P can be simplified by expanding it to linear order in the
perturbations. Using the definition (4) of the distribution
function and conservation of energy, one can show that P
becomes

Plin½f� ¼ fpfkfp0fk0
�
eE

pl
k =T

f2p
δfp þ

eE
pl
p =T

f2k
δfk

−
eE

pl

k0=T

f2p0
δfp0 −

e
Epl
p0=T

f2k0
δfk0

�
; ðA3Þ

where fp ≡ feqðpÞ.
Following the treatment of Ref. [57], the calculation of

the collision rates has been done to leading log accuracy,
where it is justified to neglect the masses of all the external
particles, which implies Ep ¼ p. One can also neglect
s-channel contributions and the interference between dia-
grams because they are not logarithmic. To account for
thermal effects, we use propagators of the form 1=ðt −m2Þ
or 1=ðu −m2Þ, wherem is the exchanged particle’s thermal
mass. It is given by m2

g ¼ 2g2sT2 for gluons and m2
q ¼

g2sT2=6 for quarks [93].
As previously discussed, we only consider the collision

terms of the top quark. They are dominated by their strong
interactions; we include only contributions to jMj2 of order
g4s . There are three relevant processes: top annihilation into
gluons12 t̄t → gg and the two scattering tg → tg and
tq → tq. Their respective amplitudes are [57]

1

Nt
jMtt→ggj2 ¼ −

64

9
g4s

st
ðt −m2

qÞ2
;

1

Nt
jMtg→tgj2 ¼ −

64

9
g4s

su
ðu −m2

qÞ2
þ 16g4s

s2 þ u2

ðt −m2
gÞ2

;

1

Nt
jMtq→tqj2 ¼

80

3
g4s

s2 þ u2

ðt −m2
gÞ2

: ðA4Þ

To evaluate the integrals in (A1), one can first use the
delta function and the symmetry of the integrand to
analytically perform five of the nine integrals. The remain-
ing four integrals can be evaluated numerically with a
Monte Carlo algorithm like VEGAS [95].
To use the spectral method described in Sec. III,

one needs to compute Clin½T̄mðρðjÞz ÞT̃nðρðkÞk Þ� on a grid of
ðN − 1Þ2 points given by Eq. (34), for a total of OðN4Þ
integrals to evaluate. However, the linearity of Clin and the
symmetries of T̄m imply

Clin½T̄mð−ρzÞT̃nðρkÞ� ¼ ð−1ÞmClin½T̄mðρzÞT̃nðρkÞ�;

which reduces by half the number of independent compo-
nents to calculate. Furthermore, one can show that
Clin½T̄mð0ÞT̃nðρkÞ� ¼ 0 if m is odd or if ρk ¼ 0.
The calculation of these OðN4Þ integrals may appear

to be numerically expensive. For example, for N ¼ 20

12As pointed out in Ref. [94], Ref. [57] inadvertently omitted a
1=2 symmetry factor in this amplitude.
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(the highest value used in this paper), there are 65151
independent coefficients. However, the collision integrals
are model independent, which means that they only have
to be computed once. It therefore represents an important
initial calculational cost, but once they are known, they
can be used for any model with the same plasma content
(in this approximation, only the top quark). We still
recommend using an integration algorithm adapted for
these large-scale problems, like the Monte Carlo algo-
rithm VEGAS [95].

APPENDIX B: BOUNDARY CONDITIONS OF
THE HYDRODYNAMIC EQUATIONS

For the convenience of the reader, we here reproduce the
method of Ref. [67] to calculate the boundary conditions of
the hydrodynamic equations (18). The quantities of interest
are the temperatures T� ≡ Tð�∞Þ and the velocities of the
plasma measured in the wall frame v� ≡ vð�∞Þ.
By integrating the conservation equation for the energy-

momentum tensor across the wall, one can show that the
quantities T� and v� are related by the equations

vþv− ¼ 1 − ð1 − 3αþÞr
3 − 3ð1þ αþÞr

;

vþ
v−

¼ 3þ ð1 − 3αþÞr
1þ 3ð1þ αþÞr

; ðB1Þ

where αþ and r are defined as

αþ ≡ ϵþ − ϵ−
aþT4þ

; r≡ aþT4þ
a−T4

−
;

a� ≡ −
3

4T3
�

∂Veff

∂T

����
�
;

ϵ� ≡
�
−
T�
4

∂Veff

∂T
þ Veff

�����
�
: ðB2Þ

These quantities are often approximated by the so-called
bag equation of state, which is given in Ref. [67].
This approximation is expected to hold when the masses
of the plasma’s degrees of freedom are very different
from T, which is not necessarily true in the broken
phase. Therefore, we keep the full relations (B2) in
our calculations.
Subsonic walls always come with a shock wave preced-

ing the phase transition front. Equations (B1) can be used to
relate T� and v� at the wall and the shock wave, but we
need to understand how T and v evolve between these two
regions. Assuming a spherical bubble and a thin wall, one
can derive from the conservation of Tμν the differential
equations

2
v
ξ
¼ γ2ð1 − vξÞ

�
μ2

c2s
− 1

�
∂ξv;

∂ξT ¼ Tγ2μ∂ξv; ðB3Þ

where v is the fluid velocity in the frame of the bubble’s
center, and ξ ¼ r=t is the independent variable [not to be
confused with ξ in Eq. (2)], with r being the distance from
the bubble center and t the time since the bubble nucleation.
In these coordinates, the wall is located at ξ ¼ vw. Note that
μ is the Lorentz-transformed fluid velocity,

μðξ; vÞ ¼ ξ − v
1 − ξv

; ðB4Þ

and cs is the speed of sound in the plasma,

c2s ¼
∂Veff=∂T

T∂2Veff=∂T2
≈
1

3
: ðB5Þ

The last approximation is valid for relativistic fluids, which
is applicable in the unbroken phase. In the broken phase,
some particles get a mass that can be of the same order as
the temperature, somewhat reducing the speed of sound for
those species.
One can find three different types of solutions for the

fluid’s velocity profile: deflagrations (vw < c−s ) have a
shock wave propagating in front of the wall, detonations
(vw > vJ) have a rarefaction wave behind it, and hybrid
transitions (c−s < vw < vJ) have both shock and rarefaction
waves. vJ is the model-dependent Jouguet velocity, which
is defined as the smallest velocity a detonation solution
can have. Each type of wall has different boundary condi-
tions that determine the characteristics of the solution.
Detonation walls are supersonic solutions where the fluid in
front of the wall is unperturbed. Therefore, it satisfies the
boundary conditions vþ ¼ vw and Tþ ¼ Tn. For that type
of solution, Eqs. (B1) can be solved directly for v− and T−.
Subsonic walls always have a deflagration solution with

a shock wave at position ξsh that satisfies v−shξsh ¼ ðcþs Þ2,
where v−sh is the fluid’s velocity just behind the shock wave,
measured in the shock wave’s frame. It also satisfies the
boundary conditions v− ¼ vw and Tþ

sh ¼ Tn. Because these
boundary conditions are given at two different points, the
solution of this system can be somewhat more involved
than for the detonation case. We use a shooting method,
which consists of making a guess for T−, solving Eqs. (B1)
for Tþ and vþ, and integrating Eqs. (B3) with the initial
values TðvwÞ ¼ Tþ and vðvwÞ ¼ μðvw; vþÞ for ξ up to the
point where μðξ; vðξÞÞξ ¼ ðcþs Þ2 is satisfied. This pro-
cedure is iterated with different values of T− until
Eqs. (B1) are satisfied at the shock wave. Hybrid walls
are characterized by vþ < c−s < vw, with boundary con-
ditions v− ¼ c−s and Tþ

sh ¼ Tn, which make them similar to
deflagrations.
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