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We study the properties of pasta structures and their influence on the neutron star observables employing
the effective relativistic mean-field (E-RMF) model. The compressible liquid drop model is used to
incorporate the finite size effects, considering the possibility of nonspherical structures in the inner crust.
The unified equation of state are constructed for several E-RMF parameters to study various properties such
as pasta mass and thickness in the neutron star’s crust. The majority of the pasta properties are sensitive to
the symmetry energy in the subsaturation density region. Using the results from Monte Carlo simulations,
we estimate the shear modulus of the crust in context of quasiperiodic oscillations from soft gamma-ray
repeaters and calculate the frequency of fundamental torsional oscillation mode in the inner crust. Global
properties of the neutron star such as mass-radius profile, the moment of inertia, crustal mass, crustal
thickness and fractional crustal moment of inertia are worked out. The results are consistent with various
observational and theoretical constraints.
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I. INTRODUCTION

In recent years, the origin, structure and dynamics of
neutron stars have played a central role in multimessenger
and gravitational-wave astronomy [1,2]. It has provided us
with the opportunity to understand the behavior of funda-
mental forces in extreme environmental situations. With the
available multifaceted data from various astrophysical
observations, we now can better constrain the neutron star
observables such as mass, radius, tidal deformity etc., and
the behavior of the equation of state (EoS) over a wide
density range [3–5]. The “crust” has drawn particular
attention among various layers of its internal structure
because of its complexity and importance in multiple
astrophysical phenomena. This layer of the neutron star
has a thickness ≈10% of the radius and mass ≈1% of the
star’s mass [6]. Since neutron star’s crust contains nuclear
matter at subsaturation density, it acts as the most advanced
cosmic laboratory where theory can be confronted with
neutron star observations.

The crust is divided into two parts; the outer crust, which
contains the ions arranged in a periodic lattice embedded in
an strongly degenerate electron gas, and the inner crust,
which has clusters of neutrons and protons. These clusters
are surrounded by neutron gas along with the electron gas
and is for the most part, an elastic solid [7] and body-
centered cubic (BCC) type crystal [8]. The composition of
outer crust can be estimated accurately up to some extent
based on experimental atomic mass evaluations [9] along
with the mass table from accurately calibrated models such
as finite-range liquid-drop model (FRDM) [10], Hartree-
Fock-Bogoliubov (HFB) [11,12] etc., using the Baym,
Pethick and Sutherland technique (BPS) [13]. In contrast,
the estimation of the composition of the inner crust is limited
by the inevitability of using an empirical mass model
because of our inability to measure the mass excess of
highly neutron-rich nuclei in a neutron gas background. At
low densities, the clusters are at a sufficient distance from
each other and are expected to be spherical in shape [14].
However, at high densities, i.e., near the crust-core transition
density, the system becomes “frustrated” as a result of
competition between the nuclear and Coulomb interactions
[15,16]. The frustration leads to the system arranging itself
into various exotic geometries commonly known as “nuclear
pasta” [17–19]. These configurations of nuclear pasta are
related to the terrestrial complex fluids such as glassy system
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[20] rather than a solid and have a variety of responses
towards the mechanical stimuli [21,22].
Although there exists no direct and robust observational

evidence of nuclear pasta, various tantalizing observations
indicate its existence [23–25]. Numerous theoretical
attempts based on molecular dynamics simulations
[22,26,27], compressible liquid-drop models [28,29],
Thomas-Fermi method [6,30,31] and nuclear density func-
tional theory [32] point towards the possibility of the pasta
structures near the crust-core transition density. The amount
of these structures in the inner crust plays pivotal role in the
explanation of various neutron star mechanisms such as
crust cooling [25,33], spin period [24], quasiperiodic
oscillation in giant flares [34], transport [35], shattering
of the crust [36] etc. The discovery of quasiperiodic
oscillations (QPOs) in soft gamma repeaters (SGRs), which
are related to the torsional vibrations of the neutron star
crust, enables us to put constraints on the thickness and
mass of the pasta structure and quadrupole ellipticity
sustainable by the crust [7]. Theoretically, this is achieved
by new approaches of nuclear models in the form of
Bayesian inference [28,29,37] and establishing possible
correlations between parameters and crust properties
through systematic surveys of models [38–41]. These
approaches of nuclear models are essential to account
for the constantly updating data on the nuclear matter
and neutron star observables with improved quantity
and fidelity. However, one must take a simplistic energy
density functional to account for the computational
requirements.
In Ref. [42], we calculated three unified EoSs using the

effective field theory motivated relativistic mean-field (E-
RMF) model employing the widely used compressible
liquid drop model (CLDM). We considered only spherical
symmetric shapes in the inner crust to estimate various
crustal properties of the neutron star. Since nonspherical
configurations influence the microscopic properties of the
neutron star, it is essential to have a unified treatment of
EoS (same EoS from surface to the core) considering all the
possible pasta structures. Therefore, to comprehensively
understand the impact of pasta structure, we extend our
calculations of [42] for the case of non-spherical shapes.
We consider 13 well-known parameter sets, namely,
BKA24 [43], FSU2 [44], FSUGarnet [45], G1 [46], G2
[46], G3 [47], GL97 [48], IUFSU [49], IUFSU� [49],
IOPB-I [50], SINPA [51], SINPB [51] and TM1 [52].
Using these parameter sets, we construct the neutron star
model by evaluating the unified EoS considering the
existence of nonspherical shapes in the inner crust. In
view of the recent Bayesian inference of crust properties,
we calculate the mass and thickness of the pasta structures
and investigate their dependency on model used. The
related properties such as shear modulus of the crust and
the frequency of fundamental torsional oscillation mode in
context to the SGRs are also investigated. Finally, we

calculate the global properties of the neutron star from the
unified EoSs such as mass-radius (M − R) profile, total
crust mass (Mcrust) and thickness (lcrust), moment of inertia
(I), fractional moment of inertia (Icrust=I) etc.
The paper is organized as follows: In Sec. II, we briefly

describe the numerical procedure for calculating the com-
position of the outer and inner crust. We discuss the main
ingredient of the CLDM and E-RMF formalism in Secs. II
A and II B, emphasizing the inclusion of nonspherical
structure or “nuclear pasta”. The amount and thickness of
various pasta structures are discussed in Sec. II C, shear
modulus and velocity in Sec. II D and accurate description
of neutron star observables in Sec. II E. The results are
discussed in Sec. III, and finally, we summarize our results
in Sec. IV.

II. FORMALISM

We begin our calculations by using the pioneering
variational formalism originally proposed by Baym et al.
(BPS) [13] to find the composition of the outer crust of the
neutron star. We minimize the Gibbs free energy at fixed
pressure [28,42] where the atomic mass table serves as an
input. We use the most recent AME2020 data [9] along
with the recently measured mass excess of 77−79Cu taken
from [53], 82Zn from [54] and 151−157Yb [55] for the known
masses and extrapolated them using the microscopic
Hartree-Fock-Bogoliubov (HFB-26) data which is based
on the accurately calibrated Brussels-Montreal functional
[12]. To model the inner crust we employ the famous
CLDM used extensively in recent times for various
problems of neutron star crust. We here discuss the model’s
main ingredient, emphasizing the inclusion of nonspherical
structure or “nuclear pasta”.

A. CLDM for nuclear pasta

The CLDM formulation originally proposed by Baym
et al. (BBP) [56] assumes a repeating unit cell of volume
VWS in which clustered structure “pasta” resides, immersed
in a uniform neutron gas of density ρg. The system is
neutralized by a homogeneous ultrarelativistic electron gas
of denisty ρe. Using the Wigner-Seitz (WS) approximation,
the energy of the system in the inner crust of neutron star
can then be written as [38]

Eðrc; yp; ρ; ρnÞ ¼ fðuÞ½Ebulkðρb; ypÞ�
þ Ebulkðρg; 0Þ½1 − fðuÞ�
þ Esurf þ Ecurv þ Ecoul þ Ee: ð1Þ

Here rc is the radius (half-width in the case of planar
geometry) of WS cell, yp the proton fraction and ρ and ρn
are the baryon density of charged nuclear component and
density of neutron gas respectively. The cluster is charac-
terized by density ρi and volume fraction u as [14,57]
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u ¼
� ðρ − ρgÞ=ðρi − ρgÞ for clusters;

ðρi − ρÞ=ðρi − ρgÞ for holes:
ð2Þ

The function fðuÞ is defined as

fðuÞ ¼
�
u for clusters;

1 − u for holes:
ð3Þ

Pasta structure only affects the finite size effects which can
be expressed analytically as a function of the dimension of
the pasta structure. We consider the three canonical
geometries namely spherical, cylindrical, and planar,
defined by a dimensionality parameter d ¼ 3, 2, 1, respec-
tively. We then define the finite size corrections along the
same lines as in [14,38]. The surface and curvature energies
are written as [14,38]

Esurf þ Ecurv ¼
ud
rN

�
σs þ

ðd − 1Þσc
rN

�
; ð4Þ

where rN is the radius/half-width of the cluster/hole and σs
and σc are the dimension independent surface and curvature
tension based on the Thomas-Fermi calculations and are
defined as [17]

σs ¼ σ0
2pþ1 þ bs

y−pp þ bs þ ð1 − ypÞ−p
; ð5Þ

σc ¼ ασs
σ0;c
σ0

ðβ − ypÞ: ð6Þ

Here the parameters (σ0, σc, bs, α, β, p) are optimised for a
given equation of state on the atomic mass evaluation 2020
data [9]. The Coulomb energy reads as [14]

Ecoul ¼ 2πðeypnirNÞ2uηdðuÞ; ð7Þ

where e is the elementary charge and ηdðuÞ is associated
with the pasta structure as [14,38]

ηdðuÞ ¼
1

dþ 2

�
2

d − 2

�
1 −

du1−
2
d

2

�
þ u

�
; ð8Þ

for d ¼ 1 and 3 whereas for d ¼ 2 it reads as

ηdðuÞ ¼
1

4

�
log

�
1

u

�
þ u − 1

�
: ð9Þ

For a given baryon density, the equilibrium composition of
a WS cell is obtained by minimizing the energy per unit
volume using the variational method where the auxiliary
function to be minimized reads as [28,42]

F ¼ EWS

VWS
− μbρ: ð10Þ

Here, μb is the baryonic chemical potential. This results in a
set of four differential equations corresponding to mechani-
cal, dynamical, β-equilibrium and the nuclear virial theo-
rem [28,58]. The viral relation is used to numerically solve
the value of rN . To obtain the most stable pasta structure at a
given baryon density, we first calculate the composition of
a spherical nucleus. Then keeping this composition fixed,
we calculate the radius or half-width of five different pasta
structure namely, sphere, rod, plate, tube, and bubble. The
equilibrium phase is then the one that minimizes the total
energy of the system.

B. Effective relativistic mean-field theory

The E-RMF formalism is based on effective field theory
motivated relativistic mean field model. This framework is
consistent with the underlying quantum chromodynamics
symmetries and takes care of the renormalization problem
in RMF theory. This formalism has been applied in a wide
range of nuclear physics problems in the past few years
[59–64]. The E-RMF effective Lagrangian which include
the interaction between different mesons, such as, σ, ω, ρ, δ
and photon is written as [50,65–69]

EðrÞ ¼ ψ†ðrÞ
�
iα ·∇þ β½M −ΦðrÞ− τ3DðrÞ� þWðrÞ þ 1

2
τ3RðrÞ þ

1þ τ3
2

AðrÞ− iβα
2M

�
fω∇WðrÞ þ 1

2
fρτ3∇RðrÞ

��
ψðrÞ

þ
�
1

2
þ k3ΦðrÞ

3!M
þ k4
4!

Φ2ðrÞ
M2

�
m2

s

g2s
ΦðrÞ2 þ 1

2g2s

�
1þ α1

ΦðrÞ
M

�
ð∇ΦðrÞÞ2 − 1

2g2ω

�
1þ α2

ΦðrÞ
M

�
ð∇WðrÞÞ2

−
1

2

�
1þ η1

ΦðrÞ
M

þ η2
2

Φ2ðrÞ
M2

�
m2

ω

g2ω
W2ðrÞ− 1

2e2
ð∇A2ðrÞÞ2 − 1

2g2ρ
ð∇RðrÞÞ2 − 1

2

�
1þ ηρ

ΦðrÞ
M

�
m2

ρ

g2ρ
R2ðrÞ

−
ζ0
4!

1

g2ω
WðrÞ4 −ΛωðR2ðrÞW2ðrÞÞ þ 1

2g2δ
ð∇DðrÞÞ2 þ 1

2

m2
δ

g2δ
ðDðrÞÞ2: ð11Þ
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Here ΦðrÞ, WðrÞ, RðrÞ, DðrÞ and AðrÞ are the fields
corresponding to σ, ω, ρ and δ mesons and photon
respectively. The gs, gω, gρ, gδ and e2

4π are the corresponding
coupling constants and ms, mω, mρ and mδ are the
corresponding masses. The zeroth component T00 ¼ H
and the third component Tii of energy-momentum tensor,

Tμν ¼ ∂
νϕðxÞÞ ∂E

∂∂μϕðxÞ
− ηνμE; ð12Þ

yields the energy and pressure density. The details regard-
ing the equation of motion, chemical potential, and
effective mass can be found in [50,70,71].

C. Relative pasta layer thickness and mass

It is shown in Refs. [72,73] that the relative thickness and
mass of the crust are correlated with mass, radius and a
single parameter of the core-crust interface, which depends
on the EoS. In the same line, Newton et al. [29] derived the
relative thickness and mass of a single layer of pasta
structure as

ΔRp

ΔRc
≈
μc − μp
μc − μ0

; ð13Þ

ΔMp

ΔMc
≈ 1 −

Pp

Pc
: ð14Þ

Here, μc, μp, μ0 are the baryon chemical potential at crust-
core (CC) transition, location at which the pasta structure
starts and at the surface of star. Pp and Pc are the pressure at
the bottom of pasta layer and at the CC transition. Further,
since the moment of inertia of the crust is directly propor-
tional to the mass of the crust to a first order of approxi-
mation [18]; therefore,

ΔMp

ΔMc
≈
ΔIp
ΔIc

: ð15Þ

D. Shear modulus and velocity

The shear modulus (μ) of a BCC Coulomb lattice in a
uniform electronic background (using the low-temperature
limit) and including electron screening effects as per within
the Monte Carlo simulation [74] can be written as [75,76]

μ ¼ 0.1194ð1 − 0.010Z2=3Þ ρiðZeÞ
2

a
: ð16Þ

Here, ρi is the density of nuclei, Ze the charge and
a ¼ RWS. Equation (16) is applicable for the case of
spherical nuclei whereas, near the crust-core boundary,
there is a possibility of stable pasta structures. Although the
exact elastic nature of these “exotic structures ” is still

unknown, one expects a decrease in the rigidity of the crust.
To model this behavior, i.e., between the density region
ρph ≤ ρb ≤ ρc, where ρph and ρc are the density at which
nonspherical shapes appear and crust core transition den-
sity respectively, we use a function which join these regions
smoothly as [7,77,78]

μ̄ ¼ c1ðρb − ρcÞðρ − c2Þ; ð17Þ

where c1 and c2 are the constants determined from the
boundary condition that μ̄ should connect with Eq. (16)
smoothly at ρb ¼ ρph and become zero smoothly at crust-
core boundary. The latter condition arises from the fact that
shear speed become zero at crust-core boundary. We then
define the shear speed as [75]

Vs ¼
ffiffiffiffiffi
μ

ρd

r
; ð18Þ

with ρd being the dynamical mass density. Neglecting the
effects of neutron superfluidity, the dynamical mass density
equals the total mass density (i.e., ρd ¼ ρm) [34]. The
frequency of the fundamental torsional oscillation mode
can be estimated from the plane wave analysis of the crustal
shear perturbation equation [79] and is written as [7,80]

ω2
0 ≈

e2νV2
sðl − 1Þðlþ 2Þ
2RRc

; ð19Þ

where e2ν ¼ 1–2M=R, R is the radius of the star, Rc is the
radius of the crust and l is the angular “quantum” number.

E. Neutron star observables

For static star, the macroscopic properties such asM and
R of the neutron star, can be found by solving the Tolmann-
Oppenheimer-Volkoff (TOV) equations as follows [81,82]:

dPðrÞ
dr

¼ −
½PðrÞ þ EðrÞ�½mðrÞ þ 4πr3PðrÞ�

r½r − 2mðrÞ� ; ð20Þ

and

dmðrÞ
dr

¼ 4πr2EðrÞ: ð21Þ

The M and R of the star can be calculated with boundary
conditions r ¼ 0, P ¼ Pc and r ¼ R, P ¼ P0 at certain
central density.
The moment of inertia (MI) of the neutron star is

calculated in the Refs. [83–89]. The expression of I of
uniformly rotating neutron star with angular frequency ω is
given as [90–92]

I ≈
8π

3

Z
R

0

drðE þ PÞe−ϕðrÞ
�
1 −

2mðrÞ
r

�
−1 ω̄

Ω
r4; ð22Þ
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where ω̄ is the dragging angular velocity for a uniformly
rotating star. The ω̄ satisfying the boundary conditions are

ω̄ðr ¼ RÞ ¼ 1 −
2I
R3

;
dω̄
dr

				
r¼0

¼ 0: ð23Þ

In order to calculate the accurate core/crust thickness or
mass, one needs to integrate the TOV Eqs. (20) and (21)
from R ¼ 0 to R ¼ Rcore, which depends on pressure as
PðR ¼ RcoreÞ ¼ Pt. We calculate the crustal MI by using
the Eq. (22) from transition radius (Rc) to the surface of the
star (R) which is given by [49,93]

Icrust ≈
8π

3

Z
R

Rc

drðE þ PÞe−ϕðrÞ
�
1 −

2mðrÞ
r

�
−1 ω̄

Ω
r4: ð24Þ

III. RESULTS AND DISCUSSIONS

In this work, we use the CLDM to calculate the finite-
size effects such as surface, curvature, Coulomb, etc. This
method has been widely used to calculate the structure of
the crust and other crustal properties such as pairing,
thermal, entrainment properties, etc., [94–96]. In literature,
the structure of neutron star crust has also been calculated
using the well-known self-consistent Thomas-Fermi model,
where energy is a functional of density. The Thomas-Fermi
calculations are carried out using either the WS approxi-
mation [15,97] where only typical pasta structures such as
the sphere, rod, tube slab, and bubble are considered or
using periodic boundary condition assuming no geometri-
cal symmetry [98]. In these calculations, the surface and
Coulomb effects are calculated in a self-consistent manner
and therefore are expected to give a better description of
neutron star crust observables, considering the sensitivity to

the very small energy difference between various pasta
structures [99]. However, the solution of the self-consistent
coupled equations in the Thomas-Fermi method is quite
complicated and suffers from various technical difficulties
such as boundary value problems [15]. Such calculations,
especially those considering no general geometrical shapes,
are computationally expensive. On the other hand, the
CLDM approach has the advantage that a proper descrip-
tion of surface and curvature effects estimates the crust
properties at par with the Thomas-Fermi calculation [38]
and Hartree-Fockþ BCS calculations [20]. The CLDM
approach is computationally fast and thus works as a useful
tool in the much-needed Bayesian inference study of
neutron star crust observables [29,37]. This method also
gives a good treatment of the warm nuclear matter below
subsaturation density [100]. The CLDMmethod however is
limited by the fact that the WS cell is considered BCC type.
At the same time, some Thomas-Fermi calculations predict
the appearance of face-centered cubic (fcc) lattice of
droplets [98,101] in the inner crust of the neutron star.
For EoS, we use thirteen effective relativistic mean-field

parameter sets to investigate the influence of pasta struc-
tures on the neutron star properties. We show the saturation
properties of the parameter sets in Table I along with the
available empirical/experimental values. The motivation of
taking these parameter sets lies in the fact that these sets are
the only few among hundreds of relativistic parameters
[71], that reasonably satisfy the observational constraints
from different massive pulsars such as PSR J0348þ 0432
(M ¼ 2.01� 0.04 M⊙) [4], PSR J0740þ 6620 (M ¼
2.14þ0.10

−0.09 M⊙) [3] and the radius constraints given by
Miller et al. [102], Riley et al. [103] and PSR J0030þ
0451 with X-ray Multi-Mirror Newton for canonical star
with R1.4 ¼ 12.35� 0.75 km [104]. In addition these sets

TABLE I. Saturation properties of nuclear matter such as saturation density (ρsat), binding energy (B=A), effective mass (M�=M),
incompressibility (K), symmetry energy (J, J0.05), slope parameter (L, L0.05) at saturation density and at ρ ¼ 0.05 fm−3, curvature of
symmetry energy (Ksym) of nuclear matter for 13 relativistic parameter sets.

Parameter sets ρsat B=A M�=M K J L Ksym J0.05 L0.05 Δr
208Pb
np

BKA24 [43] 0.147 −15.95 0.600 227.06 34.19 84.80 −14.95 14.53 33.88 0.240
FSU2 [44] 0.150 −16.28 0.593 238.00 37.62 112.80 −24.25 13.16 35.72 0.287
FSUGarnet [45] 0.153 −16.23 0.578 229.50 30.95 51.04 59.36 18.07 32.11 0.162
G1 [46] 0.153 −16.14 0.634 215.00 38.50 123.19 96.87 12.96 35.51 0.281
G2 [46] 0.154 −16.07 0.664 215.00 36.40 100.67 −7.28 13.3 34.81 0.256
G3 [47] 0.148 −16.02 0.699 243.96 31.84 49.31 −106.07 15.66 36.78 0.180
GL97 [48] 0.153 −16.30 0.780 240.00 32.50 89.40 −6.37 11.95 31.00 � � �
IUFSU [49] 0.155 −16.40 0.670 231.33 31.30 47.21 28.53 17.80 33.85 0.160
IUFSU* [49] 0.150 −16.10 0.589 236.00 29.85 51.508 7.87 15.73 32.26 0.164
IOPB-I [50] 0.149 −16.10 0.650 222.65 33.30 63.58 −37.09 15.60 37.2 0.221
SINPA [51] 0.151 −16.00 0.580 203.00 31.20 53.86 −26.75 17.02 33.59 0.183
SINPB [51] 0.150 −16.04 0.634 206.00 33.95 71.55 −50.57 14.98 36.70 0.241
TM1 [52] 0.145 −16.30 0.634 281.00 36.94 111.00 34.00 13.45 36.47 0.271

EMP=EXP 0.148=0.185 −15.0= − 17.0 0.55=0.6 220=260 30.0=33.70 35.0=70.0 −174.0=31.0 � � � � � � 0.212=0.354
[106] [106] [107] [108] [109] [109] [110] [111]
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also reproduce the finite nuclear properties at par with the
experimental values and abide by the relevant nuclear
matter constraints on EoS such as flow and kaon data,
isoscalar giant monopole resonance etc., [105]. These sets
are differentiated from each other by a wide range of
saturation properties and various mesons self and cross-
couplings.
Among the parameter sets, GL97 [48] contains only the

nonlinear self couplings (k3 and k4) of σ mesons, which
reduces the incompressibility at par with the excepted range
[109]. TM1 [52] set takes into account the self-coupling of
ω-meson (ζ0) to soften the EoS at higher density. Parameter
sets FSU2 [44], IUFSU [49], IUFSU� [49], SINPA [51],
SINPB [51] incorporate the cross-coupling (Λω) between
ρ − ω meson which helps in better agreement with the
skin thickness (rn − rp) and the symmetry energy data
[112,113]. The parameter sets based on E-RMF such as G1
and G2 [46] consider the cross-couplings η1, η2 and ηρ
while excluding Λω. These sets give a soft EoS consistent
with the koan and flow data [114]. In the line of E-RMF,
recent forces FSUGarnet [45], IOPB-I [50] and G3 [47] are
designed for the calculation of finite nuclei and neutron star
properties. G3 set contains all the couplings present in
Eq. (11) and has an additional δ meson which is an
important ingredient in the high-density regime [115].
All these forces are extensively used in the literature to
estimate various nuclear matter properties ranging from
nuclear reaction to nuclear structure and neutron star
properties. In this work, we use these relativistic models
to comprehensively study the crust properties of a neutron
star and influence of pasta structures on it.
We begin our calculations from the surface of the neutron

star using the formalism given in Sec. II and calculate the
outer crust EoS. Then for every model, as shown in Table I,
we calculate the inner crust EoS using the CLDM formal-
ism considering all the available pasta structures. We
discuss them in the following section.

A. Pasta phase within CLDM approximation

We present the result of our calculations for the pasta
phase in the inner crust of the neutron star using various
relativistic parameters in Fig. 1 using the CLDM approxi-
mation. Different colors represent the density regions
where different pasta structures dominate. The edge in
each bar represents the transition density of inhomo-
geneous crust to liquid homogeneous core. It is seen that
the spherical geometry dominates for the majority of the
inner crust extending up to ρ ≈ 0.05 fm−3 from the outer
crust boundary which is in agreement with various semi
classical and microscopic calculations [99,116,117]. There
are two categories of the parameter sets: one (FSU2, G1,
G2, GL97, IOPB-I, SINPB, TM1) that estimate the pasta
structure sequence as spheres → rods → slabs and second
(BKA24, FSUGarnet, G3, IUFSU, IUFSU�, SINPA) that
follow spheres → rods → slabs → tubes → bubbles. The

parameter sets in the latter category are the one that seem
to give higher density (ρc) at which the crust-core transition
takes place. As one can see that the appearance of different
pasta structures is sensitive to the applied model, one needs
to investigate the model dependence.
The sensitivity of pasta phase appearance can be attrib-

uted to two main factors: a) the parametrization of surface
and curvature energy and b) the EoS for the bulk and
neutron gas surrounding the clusters. Since pasta phase
appearance takes place in the region where matter is highly
neutron-rich, the correct parametrization of surface and
curvature tension Eqs. (5) and (6) becomes important. For
this we fit the surface and curvature parameters in Eqs. (5)
and (6) i.e., parameter space S ¼ fσ0; bs; σ0;c; β; α; pg with
the experimental atomic mass evaluation of AME2020 [9]
using a suitable penalty function [28,42,118]. The surface
energy plays a seminal role in determining the crustal
properties of neutron star and therefore, fitting of this
parameter space for individual EoS is essential to appro-
priately estimate the surface energy rather than using the
same value for all the models. Additionally, there exists a
minor energy difference between various pasta structures
[99] and hence, the finite size corrections in terms of
surface and curvature term becomes crucial. The value of p,
which takes care of the isospin asymmetry dependence of
surface energy, is taken to be 3. This is a favorable choice in
various calculations of surface energy [16,16,28,119], A
lower/higher value of the surface parameter p results in a
larger/smaller value of the surface tension. A smaller
surface tension consequently predict larger crust-core
transition density and pressure (see Fig. 6 of [42]). This
further impact the sequence of pasta configuration in Fig. 1.
In our calculations, we vary the value of p from 2.5 to 3.5

FIG. 1. Comparison of the sequence of ground state pasta phase
appearance for various functional.
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and observe that the number of pasta structure does not
change, but the density at which they occur increases
slightly for higher value of p. We take the value of α to be
5.5 as per Ref. [38]. Values of rest of the parameter space S
is given in Table II for all the models considered in Table I.
It is evident that the surface parameter bs has the largest
deviation among fσ0; bs; σ0;c; βg. The bs characterizes the
change in the surface and curvature tensions for small
deviations from isospin symmetry. Furthermore, our choice
of the simplified mass formula, Eq. (1), is conceptually
limited by the fact that mere knowledge of the nuclear mass
is not sufficient to derive the surface and curvature
contribution because of the partial compensation between
nuclear bulk and the surface. Although we have not
explicitly considered the shell energy contribution in the
nuclear mass, they are bound to implicitly accounted for in
the fitting procedure by optimizing the values of surface
parameter space S.
Calculation of the inner crust composition is a problem

of two-phase equilibrium, which is solved using suitable
mechanical and dynamical equations [28,42,68]. In such a
system, the symmetry energy plays a deciding role [68,120]
and is known to influence the inner crust EoS [99].
Furthermore, with ever-improving astrophysical data,
establishing available correlations among various nuclear
matter and neutron star observables is highly desirable to
constrain the equation of state. For this, nuclear matter
properties such as symmetry energy, slope parameter, etc.,
are calculated at saturation density. These correlations are
crucial to fine-tune the theoretical models. Since the
relevant density range for crust properties of neutron stars
lies below subsaturation density, i.e., below 0.1 fm−3, one
should not merely compare the crust properties of neutron
stars with the saturation value of nuclear matter observ-
ables. To access the role of symmetry energy on crust EoS,

we show in Fig. 2 the density dependence of symmetry
energy (J) for the parameter sets and the corresponding
behavior of equilibrium value of WS cell energy of the
inner crust in Fig. 3. The density dependence of symmetry
energy in the subsaturation density region seems to impact
the WS cell energy directly. The parameter sets such as
FSUGarnet, G3, IOPB-I, IUFSU, and IUFSU* show higher
symmetry energy in the subsaturation density and hence
higher crust-core transition density. These forces predict all
five pasta phases. The parameter set BKA24 however
estimate a lower symmetry energy yet predict all the five
pasta phases. The remaining forces, which estimate lower
symmetry energy, estimate the possibility of only three
pasta phases i.e., sphere, cylinder, and slab, and lesser WS
energy as shown in Fig. 3. It is relevant to mentioned that
the behavior of symmetry energy is different at below and
above subsaturation density region i.e., half the value of
saturation density. Therefore, one must be cautious while
analyzing the impact of symmetry energy on low density
EoS. We provide the values of J and L at saturation density
and ρ ¼ 0.05 fm−3 in Table I. Since the relative behavior of
symmetry energy among the considered force parameter
somewhat remains the same below 0.075 fm−3, therefore,
the value of 0.05 fm−3 is taken as a reference.
As the density grows in the inner crust, the clusters’

surface tension increases and the system favors the homo-
geneous phase energetically. We calculate the transition
from the heterogeneous crust to a homogeneous core where
the energy of the WS cell becomes equal to the energy of
the core, EWSðρcÞ ¼ EnpeμðρcÞ. However, it is not the
transition density (ρc) that determines the location of the
crust–core boundary but the transition pressure and chemi-
cal potential [37]. The transition pressure controls the mass
and moment of inertia of the crust [see Eqs. (14) and (24)]
while the transition chemical potential determines the
thickness of the crust and the pasta structures. In Fig. 4,

FIG. 2. Symmetry energy of the models considered in Fig. 1.

TABLE II. The fitted value of surface and curvature energy
parameters for various force parameters. The value of α and p is
taken to be 5.5 and 3 respectively. Experimental binding energy is
taken from AME2020 table [9].

Parameter σ0 (MeV fm−2) bs σ0;c (MeV fm−1) β

BKA24 0.99339 14.3342 0.07965 0.7711
FSU2 0.96665 8.77776 0.09014 0.88746
FSUGarnet 1.13964 29.3893 0.07844 0.44268
G1 0.93641 5.55101 0.09977 0.97866
G2 0.99538 8.81859 0.09672 0.85788
G3 0.88424 26.5837 0.09921 0.93635
GL97 0.73897 17.1523 0.12018 1.19306
IOPB-I 0.97594 16.3546 0.09064 0.81485
IUFSU 1.19953 30.2177 0.07691 0.31875
IUFSU* 1.04205 34.2857 0.08197 0.62258
SINPA 1.02767 24.5575 0.08667 0.69476
SINPB 1.03574 15.2161 0.08332 0.70222
TM1 0.79998 7.35242 0.10278 1.14013
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we compare the transition pressure Pc, chemical potential
μc and density ρc as a function of symmetry energy J and
its higher order derivatives, slope parameter L and curva-
ture Ksym at the saturation density for various forces, with
the constraints obtained from the Bayesian inference
analysis from the two separate studies of Newton et al.
[29] and Balliet et al. [37] which use an extended Skyrme
energy density functional within CLDM.
The E-RMFmodels that satisfy the Newton et al. prior þ

PREX data are the one that have a lower value of J and L in
accordance with the isobaric analog states data [121].
However, only parameter sets SINPA, FSUGarnet,
IUFSU, IUFSU� and TM1 satisfy a more stringent con-
straints on Pc based on Skinsþ PNM data which results in
Pc ¼ 0.38þ0.08

−0.09 . In contrast, all these model satisfy the
prior þ PNM constraint of Balliet et al. [37] which predict
it to be Pc ¼ 0.49þ0.27

−0.28 MeV fm−3 on 95% credible range.
All the parameter sets estimate the transition chemical
potential μc in agreement with the Newton et al. [29]. At the
same time, the models with lower symmetry energy do not
obey the range of μc ¼ 14.7þ4.7

−5.0 given by Balliet et al. [37].
For the transition density, only models IUFSU, IUFSU*,
SINPA, G3, FSUGarnet satisfy the available constraint
from Balliet et al. [37]. Furthermore, Pc, μc, and ρc seem to
decrease with higher values of J, L andKsym advocating the
role of symmetry energy on the crust parameters. The
relationship of Ksym with Pc, μc and ρc appears to have a
large variance compared to the J and L. It should be
mentioned here that the transition density is almost half the
value of saturation density where the respective values
of J, L and Ksym are calculated. Therefore, the above
relationships should accompany with the knowledge of
symmetry energy in subsaturation region [37].

B. Relative pasta layer thickness and mass

Various theoretical calculations predict that the pasta
structures accounts for more than 50% of the mass of crust
and 15% of its thickness [14,29,37,123]. In view of this,
following Ref. [72], we calculate the mass and thickness of
the nonspherical shapes using the E-RMF models and
compare them with the available theoretical range. The
main ingredients are the chemical potential and pressure as
defined in Sec. II C. In Fig. 5, we show the relative mass
and the thickness of the nonspherical shapes as a function
of J, L, and Ksym. All the models except G1, G2, and
FSU2, which estimate relatively larger value of symmetry
energy and slope parameter, predict the nonspherical
pasta mass and thickness within the range calculated by
Newton et al. from PREX constraints. These are also
consistent with the Skinsþ PNM constraints of the Newton

et al. [29] (ΔMp

ΔMc
¼ 0.49þ0.06

−0.11 ,
ΔRp

ΔRc
¼ 0.132þ0.023

−0.041 ), posterior

estimations of Thi et al. [14] (ΔMp

ΔMc
¼ 0.485� 0.138,

ΔRp

ΔRc
¼ 0.128� 0.047) using metamodel formalism [28]

and with the prior þ PNM range of Balliet et al. [37]

(ΔMp

ΔMc
¼ 0.62þ0.03

−0.04 and ΔRp

ΔRc
¼ 0.29þ0.04

−0.09 ). Since the fraction
of mass is directly proportional to the amount of moment of
inertia [18], the behavior of pasta mass also holds good for
its moment of inertia content. Furthermore, the parameter
sets with smaller J, L and Ksym seem to give larger mass
and thickness of the pasta structure. A linear relationship
between mass and thickness of pasta with J, L and Ksym is
also evident.
In Fig. 6, we show relative mass and thickness of

different layer of pasta in the inner crust using the same
method as for the total pasta content [Eqs. (13) and (14)]. In

FIG. 3. The equilibriumvalue ofWS cell energy for various parameter sets considered in Fig. 1with the range of different pasta structures.
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our calculations of pasta phases, we see that all the models
at least predict two nonspherical phases, namely, rods and
slabs. The rod pasta phase has mass ≈15% of the mass of
the crust except for the TM1 set, which estimates its mass
≈25%. The thickness of this phase is ≈4% of the crust
thickness. The parameter sets that predict the existence of
only two nonspherical pasta phases before transiting into
the homogeneous core have the mass and thickness of the
slab phase lesser than the rod phase. The IOPB-I has an
exception among these sets. It may be noted that we do get
a third nonspherical tube phase for the IOPB-I set but
within a small density range, and hence we do not consider
the rod phase for IOPB-I (see Fig. 1). Once again, the
symmetry energy seems to impact the relative amount of
pasta structures. The parameter sets such as TM1, FSU2,
G1, and G2 that have lower symmetry energy in the
subsaturation density region predict the larger contribution
of the rod phase compared to the slab phase. The remaining
parameter sets predict the largest mass and thickness
fraction for the slab phase. It accounts for ≈20% of the
crust mass and 5% of the crust thickness. The G3 and

IOPB-I set estimate them as large as 30% and 9%,
respectively. The tube and bubble phase has the smallest
content in the inner crust. They account for about 5% of the
crust mass and 1% of the thickness, subject to their
occurrence.
It is apparent that the existence of pasta structures in the

inner crust is greatly influenced by the nuclear EoS. The
density dependence of symmetry energy have a prominent
role to determine their mass and thickness. To quantify the
relationships discussed above, we carry out a Pearson
correlation analysis of various crust properties. Figure 7
shows the Pearson correlation matrix between the bulk
properties, effective mass (M�=M), incompressibility (K),
symmetry energy (J), slope parameter (L) and curvature of
symmetry energy (Ksym) with crustal properties namely

relative thickness (ΔRp

ΔRc
) and mass of the pasta (ΔMp

ΔMc
) along

with the transition pressure (Pc), chemical potential (μc)
and density (ρc). The color shows the strength of the
correlation while the values represents the statistical
significance in form of p-value or probability value
[124]. A p-value signifies the statistical significance of

FIG. 4. The crust-core transition pressure Pc, chemical potential μc, and density ρc as a function of symmetry energy J, slope
parameter L and Ksym. The orange band represent the median range obtained in Newton et al. [29] for the uniform Prior þ PREX [111]
data while the purple band represent the uniform Prior þ PNM band from the Balliet et al. [37] for 95% credible range. The verticals
cyan band for the empirical/experimental range of symmetry energy and its slope parameter constraints given By Danielwicz et al.
[121]. The olive vertical band represents the Ksym constraints by Zimmerman et al. [122].
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the used statistics (here Pearson correlation) and value less
than 0.05=0.01 is generally considered statistically signifi-
cant for 95=99% interval. It is seen that the bulk properties
M�=M and K do not correlate with the crustal properties.
On the other hand, symmetry energy and slope parameter

show strong negative correlation with pasta mass and
thickness along with the transition pressure, chemical
potential and density within 95% confidence interval.
These relations are consistent to those obtained in previous

FIG. 5. The mass/moment of inertia and thickness fractions of pasta as a function of symmetry energy J, slope parameter L and Ksym.

FIG. 6. Upper panel show the relative mass of the different
layer of pasta structures and lower panel shows the relative
thickness as compared to the total crust.

FIG. 7. Correlation heat map of the bulk properties with the
crustal properties and surface parameters. The color map signify
the strength of the correlation while the values represent the
associated p-values.
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studies [41,57]. The Ksym shows some negative correlation
with the relative thickness of the pasta.
Additionally, the pasta mass and thickness is strongly

correlated with the transition pressure, chemical potential
and density. All of these relations which are obtained within
E-RMF framework along with the CLDM formalism are
consistent with the recent work based on Bayesian infer-
ence of the neutron star crust [14,37,57]. Although, these
works are based on the relatively simpler nuclear inter-
action models as per the requirement of Bayesian analysis,
they provide us with relevant estimation about various crust
properties. The E-RMF model considered in this work are
all within reasonable agreement with the theoretical con-
straints and therefore are suitable for further structural
calculations of numerous neutron star properties such as
superfluidity, conductivity etc.

C. Shear modulus and torsional oscillation mode

A magnetar, which is an exotic type of neutron star, is
characterized by the extremely high magnetic field of the
order of 1015 G which results in the powerful x-ray
emission powered by the reconfiguration of the decaying
field. The rapidly evolving field when strike the solid crust
results in an associated starquake, detectable as quasiperi-
odic oscillations (QPOs) [34,125] in the tails of light curves
of giant flares from soft gamma-ray repeaters (SGR)
[126,127]. In this context, it becomes essential to under-
stand the shear property of the crust. The shear modulus,
which describes the crust’s elastic response under the shear
stress, leads to the shear oscillations. The shear oscillations
travel through the star’s crust with shear velocity (Vs).
These shear modulus and shear velocity are the character-
istics of the crust composition which consequently depends
on the nuclear EoS and surface energy parametrization. We
use the Monte Carlo simulation results in the form of
Eq. (16) for the spherical portion of the inner crust. The
elastic response of the nonspherical phase is not yet fully
understood, but the crust’s rigidity is expected to decrease
and vanish at the crust-core boundary [7,78]. To model the
shear modulus in this region, we use Eq. (17).
The complete behavior of the shear modulus of the inner

crust is shown in Fig. 8. As one moves deeper into the crust,
the shearmodulus increasesmonotonically until one reaches
the density where the pasta phase appears. It then starts
decreasing smoothly until crust-core boundary and then
vanishes. This behavior directly results from our approxi-
mation of the shear modulus in the pasta phase region. There
is a significant uncertainty among different models, which is
the consequence of the inner crust composition predicted by
these models. Since the density dependence of symmetry
energy and slope parameter predominantly control the inner
crust [42], we see its effect on the shear modulus as well. In
the subsaturation region, forces such as IUFSU, G3,
BKA24, and FSUGarnet, which have a higher value of
symmetry energy, estimate a larger shear stress value.

The shear velocity in the crust directly follows from the
shear modulus and can be calculated using Eq. (18). In
principle, the neutron superfluidity in the neutron star crust
plays a crucial role in its dynamics [128]. The superfluid
neutrons are unlocked from the lattice moment and do not
influence the shear modulus. However, Chamel [129]
found that ≈90% of the superfluid neutrons can be
entrained to the lattice due to the Bragg scattering. In this
work, however, we consider the dynamical mass in Eq. (18)
equal to its total mass density [34] neglecting the effect of
the superfluidity and entrainment effects. The calculated
shear speed will then underestimate its value, but the
qualitative nature will remain unaffected. We show the
behavior of shear speed in Fig. 9 for the corresponding
shear modulus in Fig. 8. We do not show the shear speed in
the outer crust, which is well established [75] and increases
with the increase in density. However, in the inner crust, it
drops initially and then increases until the onset of the pasta
structures. It decreases smoothly afterward and vanishes at
the crust-core boundary. One can see that there is ≈3 fold
difference between lowest and highest value of shear speed
among the parameter sets considered in this work. The
dependence of shear velocity on the density also varies in a
different way indicating the role of crust composition.
To approximately infer the fundamental torsional oscil-

lation mode, we set the pasta shear modulus to be zero
considering the pasta as a liquid [7]. This means that the
shear modulus and shear velocity in the solution of crustal
shear perturbation equations [Eq. (19)] are calculated at the
boundary between the phase of spherical nuclei and the
pasta phases, i.e., ρ ¼ ρph. We show the calculated
frequencies of fundamental oscillation mode (l ¼ 2) for
the maximum mass as a function of J and L for the various
E-RMF models in Fig. 10 along with the possible candidate
of frequencies for the fundamental modes of QPOs: 18 Hz

FIG. 8. Shear modulus (μ) of the inner crust for various E-RMF
sets.
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and 26 Hz [7,126]. The fundamental frequency decreases
with the symmetry energy and the slope parameter, which
is consistent with the Refs. [7,76]. We see that considering
the pasta phase to be liquid and ignoring superfluid and
entrainment effects; the fundamental mode frequency
agrees with the observed QPOs from SGRs at low

symmetry energy and slope parameter. Only FSUGarnet
and IUFSU parameter sets match with the 18 Hz observed
frequency. The frequencies also do not match with higher
possible candidate frequencies of 28 Hz, and 30 Hz
[126,130]. It may be noted that considering pasta to be
liquid and neglecting entrainment effects reduces the
frequency by a factor of ≈3 [7]. Therefore, the frequencies
calculated in this work make the lower bound of funda-
mental frequency. It is also clear that the pasta structures
play a significant role on crustal torsional mode. Moreover,
the frequency modes in QPOs can be used as one of the
asteroseismological source to constrain the amount of pasta
along with the nuclear matter observables such as sym-
metry energy and slope parameter etc.

D. Neutron star observables

Wemodel a complete neutron star by calculating the core
EoS under the condition of charge neutrality [42] and
β-equilibrium for each parameter set in Table I and make
unified EoS by combining it with the inner crust EoS using
the same parameter set along with the outer crust EoS
discussed in Sec. II. The unified EoSs are available publicly
in GitHub page.1 The unified treatment of each EoS ensures
that the neutron star properties such as crust mass, thick-
ness, moment of inertia etc., can be estimated and analyzed
quite precisely. To calculate the neutron star observables,
we solve the TOV Eqs. (20) and (21) for a fixed central
density to obtain the M − R profile, second Love number,
and dimensionless tidal deformability. The moment of
inertia is calculated under the slow rotation approximation
using Eq. (22). We determine the total crust mass and
thickness by integrating the TOV Eqs. (20) and (21) from
R ¼ 0 to R ¼ Rcore, which depends on pressure as
PðR ¼ RcoreÞ ¼ Pt. Finally, the crustal moment of inertia
is worked out using Eq. (24). The detailed formalism of
these quantities is provided in Refs. [42,91]. The mass and
thickness of the crust for IOPB-I EoS are 0.013 M⊙ and
0.490 km respectively without considering the pasta phase
inside the crust (see Table 7 in Ref. [42]). However, they are
estimated to be 0.014 M⊙ and 0.507 km respectively
including the pasta structures. Hence, we notice that the
crustal mass does not change but the crustal thickness
increases slightly when we consider pasta phases inside
the crust.
We give the tabulated data for neutron star properties

such as maximummass (Mmax), radius corresponding to the
maximum mass (Rmax), canonical radius (R1.4), normalized
maximum MI (Imax), normalized canonical MI (I1.4), mass
of the crust (Mcrust), thickness of the crust (lcrust), second
Love number (k2) and dimensionless tidal deformability
(Λ) for canonical and maximum mass for 13 considered
EoSs in Table III. The maximum mass of all the sets
reasonably satisfy the observational constraint of massive

FIG. 9. The shear velocity (Vs) as a function of the mass density
for the various E-RMF models.

FIG. 10. Frequency of fundamental torsional oscillation
mode (l ¼ 2) in the crust for the maximum mass with J and
L. The two horizontal lines corresponds to the observed value of
18 and 26 Hz. 1https://github.com/hcdas/Unfied_pasta_eos.
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pulsars such as PSR J0348þ 0432 (M ¼ 2.01� 0.04 M⊙)
[4] and PSR J0740þ 6620 (M ¼ 2.14þ0.10

−0.09 M⊙) [3]. They
are also in accordance with the radius constraints given by
Miller et al. [102], Riley et al. [103] and PSR J0030þ
0451 with X-ray Multi-Mirror Newton for canonical star
with R1.4 ¼ 12.35� 0.75 km [104].
The normalized moment of inertia for slowly rotating NS

is calculated for 13 EoSs. The numerical values are given in
Table III both for canonical and maximum mass star. There
exists a universal relation between the MI and the compact-
ness of the star [131–133]. We compare the numerical
values of I with and without pasta phases as done in our
earlier work [42]. The value of Imax and I1.4 for IOPB-I EoS
was found to be 0.429 and 0.346 respectively (see Table 7
in Ref. [42]) without pasta phases. By including pasta
phase, the values are slightly lesser and found to be 0.428
and 0.344 respectively. The similar cases are seen both for
FSUGarnet and G3 EoSs. Hence, we observe that the pasta
phases does not significantly influence the moment of
inertia of the star. However, the crustal moment of inertia
(Icrust=I) for maximum mass estimated from these EoSs are
consistent with the fractional moment of inertia (FMI)
observed from the 581 pulsar glitches catalogue [42,134].
One can also see that the mass of the crust (Mcrust) is
equivalent to the crustal moment of inertia, advocating the
importance of unified treatment of crust and core equation
of state.
The Love number and dimensionless tidal deformability

for only quadrupole case (l ¼ 2) are calculated as described
in Ref. [135]. The numerical values are given in Table III
for considered EoSs. For a realistic star, the value of k2 is
0.05–0.1 [136]. Our calculated results are well within this
range. The constraint on Λ1.4 given by LIGO/Virgo [1,2]
from the binary neutron star merger event GW170817 with,
Λ1.4 ¼ 190þ390

−70 . Only G3, IUFSU, and IUFSU* are within
GW170817 limit. We also observed that the effects of pasta

on both k2 and Λ are not significant as compared with only
spherical shape considered inside the crust.
The relativistic nuclear models considered in this work

suggest that ≈50% of the crust mass and ≈15% of the crust
thickness is contained in the pasta structures. Since the
entire crust itself comprises only 0.5%–1% of the neutron
star mass and 5%–10% of the radius, the pasta structures do
not significantly impact the global properties of a neutron
star such as maximum mass, the moment of inertia, Love
number, dimensionless tidal deformability, etc. However,
the pasta structure affects the microscopic properties of the
neutron star, which essentially depend on the crust struc-
ture. The shear modulus, which determines the torsional
oscillation mode of QPOs is greatly influenced by the
presence of pasta structures. The fractional crustal moment
of inertia or mass is an important property to explain the
pulsar glitches. The pasta content in the crust influences
these properties by controlling the surface thickness. These
structures also influence the magnetic field’s decay rate,
which explains the observed population of isolated x-ray
pulsars [137] and limits the maximum spin period of
rotating neutron stars [24]. The properties such as viscosity,
conductivity, neutrino cooling, etc., are also influenced by
the nature of the structure present in the inner crust [137].

IV. CONCLUSION

In summary, we investigate the existence of pasta struc-
tures in the inner crust of a neutron star employing the
compressible liquid drop model along with the effective
relativistic mean-field theory. We consider three geometries:
spherical, cylindrical, and planar, resulting in five configu-
rations namely sphere, rod, slab, tube, and bubble. The
equilibrium configuration at a given baryon density is
obtained by minimizing the energy of the five pasta struc-
tures. Themain ingredient in calculating the inner crust is the
proper treatment of the surface energy parametrization. In

TABLE III. The neutron star properties such as maximum mass (Mmax), radius corresponding to the maximum mass (Rmax), canonical
radius (R1.4), normalized maximum MI (Imax), normalized canonical MI (I1.4), mass of the crust (Mcrust), thickness of the crust (lcrust),
second Love number and dimensionless tidal deformability for canonical and maximum mass for 13 considered EoSs.

Parameter sets Mmax (M⊙) Rmax (km) R1.4 (km) Imax I1.4 Icrust=I Mcrust (M⊙) lcrust (km) k2;1.4 Λ1.4 k2;max Λmax

BKA24 1.963 11.61 13.42 0.401 0.339 0.0100 0.008 0.455 0.0888 681.25 0.0307 21.02
FSU2 2.071 12.12 14.02 0.405 0.335 0.0087 0.008 0.418 0.0943 899.64 0.0302 19.54
FSUGarnet 2.065 11.79 13.19 0.418 0.343 0.0100 0.009 0.542 0.0889 629.13 0.0306 17.54
G1 2.159 12.30 14.15 0.415 0.331 0.0084 0.008 0.413 0.0922 922.41 0.0287 16.34
G2 1.937 11.17 13.27 0.403 0.333 0.0069 0.006 0.378 0.0819 593.53 0.0266 16.11
G3 1.996 10.95 12.63 0.425 0.345 0.0129 0.011 0.479 0.0813 460.42 0.0254 11.98
GL97 2.002 10.81 13.10 0.423 0.343 0.0048 0.004 0.296 0.0876 596.43 0.0221 09.64
IOPB-I 2.148 11.96 13.33 0.428 0.344 0.0147 0.014 0.507 0.0925 686.49 0.0292 14.75
IUFSU 1.939 11.23 12.61 0.414 0.351 0.0110 0.009 0.510 0.0871 489.20 0.0313 19.10
IUFSU* 1.959 11.45 12.92 0.409 0.347 0.0114 0.010 0.526 0.0880 563.08 0.0319 20.66
SINPA 2.000 11.55 12.93 0.416 0.349 0.0136 0.012 0.515 0.0908 580.39 0.0318 19.36
SINPB 1.993 11.62 13.16 0.409 0.342 0.0128 0.011 0.486 0.0881 612.94 0.0313 19.98
TM1 2.175 12.36 14.31 0.415 0.335 0.0101 0.009 0.444 0.0979 1037.5 0.0285 15.97
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view of this, we optimize the surface and curvature tension
based on Thomas-Fermi calculations for a given equation of
state on recent atomic mass evaluation [9].
In our calculations, we have used 13 well-known

parameter sets that satisfy the recent observational con-
straints on the maximum mass and radius of the neutron
star. We construct unified EoS for each of these sets to
obtain the pasta and crustal properties consistently. The
appearance of different pasta layers is model-dependent.
The model dependency is attributed to the behavior of
symmetry energy in the subsaturation density region and
the surface energy parametrization. A thicker crust favors
the existence of more number of pasta layers in it. We
calculate the pressure (Pc), chemical potential (μc), and
density (ρc) of the crust-core transition from the crust side
and compare the results with recent constraint proposed
using Bayesian inference analyses [29,37]. The parameter
set with lower values of J, L, and Ksym seem to agree better
with these theoretical constraints.
It is seen that the (Pc) and (μc) play a more critical role in

determining the crust structure instead of (ρc). We have
calculated the mass and thickness of the total pasta layers in
the inner crust using all the models considered in this work.
The parameter sets with larger/smaller symmetry energy
and slope parameter estimate thinner/thicker crust and
thickness of the pasta structures. Alternatively, a larger
negative/positive Ksym value corresponds to the thicker/
thinner crust and pasta mass and thickness. The pasta mass
and thickness are also in agreement with various theoretical
constraints. Additionally, rod and slab configuration
occupy the largest mass and thickness in the inner crust.

The E-RMF models that predict the existence of only two
nonspherical pasta phases before transiting into the homo-
geneous core have the mass and thickness of the slab phase
lesser than the rod phase.
Quasiperiodic oscillations in soft gamma-ray repeaters are

one of the observational means to constraint the inner crust
structure and amount of pasta structures in it. In view of this,
we calculate the shear modulus and shear speed in the inner
crust of a neutron star by using different methods for the
spherical and pasta layers. These quantities are also model-
dependent and considerable uncertainty exists between them.
We then consider the pasta layers to have zero shearmodulus
and neglect the superfluid and entrainment effects to
approximate the frequency of fundamental torsional oscil-
lation mode in the crust for the maximum mass. The pasta
structure significantly impact the fundamental frequency
mode. Out of 13 EoSs, only two parameter sets, FSUGarnet
and IUFSU, agree with the 18 Hz observational frequency.
Finally, we calculate various neutron star properties for the
constructed unified equation of states. The pasta phases do
not impact the star’s moment of inertia significantly. The
fractional crustal moment of inertia (Icrust=I) for maximum
mass estimated from these EoSs are consistent with the
pulsar glitch catalog.
In conclusion, we provide a comprehensive treatment of

nuclear pasta properties using the simplistic treatment and
their implication on neutron star properties is analyzed. The
unified EoSs constructed in this work stands various
theoretical and observational tests and are found suitable
for in-depth investigation of different crust mechanisms.
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