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The subsequent observing runs of the advanced gravitational-wave detector network will likely provide
us with various gravitational-wave observations of binary neutron star systems. For an accurate
interpretation of these detections, we need reliable gravitational-wave models. To test and to point out
how existing models could be improved, we perform a set of high-resolution numerical relativity
simulations for four different physical setups with mass ratios q ¼ 1.25, 1.50, 1.75, 2.00, and total
gravitational mass M ¼ 2.7 M⊙. Each configuration is simulated with five different resolutions to allow a
proper error assessment. Overall, we find approximately second-order converging results for the dominant
(2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order
reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where
we find generally good agreement between state-of-the-art models and our data, and to prove that scaling
relations for higher modes currently employed for binary black hole waveform modeling also apply for the
tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid
description for high-mass-ratio systems. We hope that our simulation results can be used to further improve
and test waveform models in preparation for the next observing runs.

DOI: 10.1103/PhysRevD.106.023029

I. INTRODUCTION

The detection of GW170817 [1–3] and the connected
electromagnetic counterparts revolutionized astronomy.
This observation of a binary neutron star (BNS) merger
led to a variety of important scientific results—e.g., new
constraints on the nature of matter at supranuclear densities
[4–18], an independent measurement of the Hubble con-
stant [17,19–21], the confirmation that BNSs are a possible
central engine for short gamma-ray bursts (GRBs) [22], and
the proof that BNSs are a production fabric for heavy
elements [23–29]. In contrast to GW170817, the second
BNS detection, GW190425 [30], was not accompanied by
any electromagnetic signature. Likely, this was caused by
the large total mass of GW190425, which was larger than
the masses of BNS systems previously observed in our
Galaxy [31]. Given the unexpected large total mass of
GW190425, it might also seem plausible that upcoming
gravitational-wave (GW) detections will originate from
BNS systems with mass ratios that differ noticeably from
the more common equal mass case.
Theoretically, the expected NS mass ranges within

ð1.0 − 2.3Þ M⊙. Bounds on the minimum mass of NSs

come from the NS formation scenario (gravitational col-
lapse) and from observations of low-mass NSs [32,33],
despite the fact that such measurements typically have large
uncertainties. A lower bound on the maximum NS mass
arises from Shapiro-time-delay measurements of massive
pulsars such as PSR J0348þ 0432 [34], PSR J1614 − 2230

[35], and PSR J0740þ 6620 [36,37]. Contrarily, the
interpretation that the BNS merger GW170817 formed a
black hole (BH) [7,38–40] provides an upper bound on
the maximum NS mass; cf. Ref. [17] for a more complete
assessment of the NSmaximum-mass posterior distribution.
Based on these considerations, the theoretical upper
bound on the mass ratio of a BNS system is about
q ¼ M1=M2 ≲ 2.3.
Comparing this theoretical limit to the observed pop-

ulation of BNSs in our galaxy, one finds that none of the
observed systems has such a large mass ratio. In fact, most
BNS clusters are around the equal mass case [41], but there
are discoveries about compact binary systems with mass
ratios of q ≈ 1.3 (e.g., Refs. [42,43]). Hence, BNSs with
larger mass ratios might exist, and our current sample of
observed BNS systems is simply too limited. Similarly,
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population synthesis studies predict a wider range of
masses and mass ratios up to q ≈ 1.9 (e.g., Ref. [44]).
Given the rising field of GWastronomy and the uncertainty
in the mass ratio of upcoming BNS detections, a careful
investigation of GW signals from high-mass-ratio systems
seems necessary.
Overall, the analysis of GW signals requires accurate

theoretical models that can be cross-correlated with the
observational data. Such models have to be sufficiently fast
to ensure that several million templates for various binary
parameters can be compared to the observational data. For
BNS systems, the existing GW models can be classified
into three categories: analytical post-Newtonian (PN)
models (cf. Ref. [45] and references therein), semianalyt-
ical waveforms based on the effective one-body (EOB)
approach [46–53], and phenomenological approximants
[54–57]; cf. Ref. [58] for a recent review on how to model
GWs from BNS systems. All of these models (PN, EOB,
and phenomenological) have benefits and drawbacks.
While PN models are fast to compute, given that only
an algebraic expression has to be evaluated to obtain the
full waveforms, they become increasingly inaccurate when
the distance between the two compact objects reduces (e.g.,
Refs. [56,59,60], but see also Ref. [61] for recent analysis
of GW170817 and GW190425 with PN models).
Contrarily, the EOB approach [62,63] allows us to over-
come this accuracy issue by remapping the relativistic two-
body system into an effective one-body problem. However,
due to this approach, the pure time-domain EOB models
are typically too slow to be directly used for parameter
estimation, such that one has to either construct reduced-
order models (e.g., Refs. [64,65]), use the adiabatic
approximation (e.g., Refs. [53,66,67]), or employ alter-
native parameter estimation methods (e.g., Ref. [68]).
Finally, phenomenological models focus on providing
algebraic expressions—i.e., they are quick to evaluate,
and they combine PN, EOB, and also NR information in
ways such that unknown higher-order PN parameters are
fitted to EOB and NR data. Numerous studies have
investigated the effect of using different waveform models
on GW parameter estimation (e.g., Refs. [69–75]).
To develop and validate these models, one requires

numerical relativity (NR) simulations for an accurate
description of the merger process based on first principles.
While there have been several studies addressing the effect
of high mass ratios on the dynamics and merger process
(e.g., Refs. [76–80]), there exists only a limited set of
simulations usable for GW model development—i.e.,
simulations using eccentricity-reduced initial data and with
an accurate error estimate for the GW phase based on a
clear convergence. In this article, we will overcome these
limitations and produce a small set of highly accurate
simulations. We have simulated a total of four physical
systems with mass ratios q ¼ 1.25, 1.50, 1.75, and 2.00 and
a fixed total mass ofM ¼ 2.7 M⊙. We will use this new set

of simulations to study the performance of existing GW
models for such large mass ratios and will further inves-
tigate if techniques employed for modeling the higher-order
modes in binary black hole models could also be used for
the tidal contributions of the GW phase.
Throughout this work, we use geometric units, setting

c ¼ G ¼ M⊙ ¼ 1, though we will sometimes include M⊙
explicitly or quote values in CGS units for better
understanding.

II. METHODS

A. Numerical setups

Our numerical simulations are based on SGRID initial
data [81–84]. SGRID is a pseudospectral code that employs
surface fitting coordinates to solve the Einstein constraint
equations using the extended conformal thin sandwich
formulation [85], and it employs the constant rotational
velocity approach to describe the NSs with arbitrary rota-
tional profiles [82,86].
The dynamical evolutions are performed with the BAM

code [87–91]. BAM uses the Z4c formulation [92,93] of the
Einstein equations alongwith1þ log andgamma-driver shift
conditions [94–96] for the gauge evolution. Matter variables
are evolved using the 3þ 1-conservative Eulerian formu-
lation of general relativistic hydrodynamics (GRHD). The
system of equations is closed by an equation of state (EOS)
that is a piecewise polytropic fit for the SLy [97] EOS, which
is in broad agreementwith recentmultimessenger constraints,
with an additional thermal contribution to the pressure given
by pth ¼ ðΓth − 1Þρ, where we set Γth ¼ 1.75 [98].
BAM’s numerical domain is divided into a hierarchy of

cell-centered nested Cartesian grids consisting of L levels
labeled by l ¼ 0;…; L − 1. Each level l contains one or
more Cartesian boxes with constant grid spacing hl and n
(or nmv) number of points per direction. The resolution in
each level is given as hl ¼ h0=2l. Higher levels l ≥ lmv
move dynamically according to the technique of “moving
boxes” and follow the motion of the neutron stars. An
overview about the grid configuration for different reso-
lutions is given in Table I, where the outer boundary of the
computational domain is set at the radius R0 ≈ 1020 M⊙.

B. Configurations

For this work, we prepare a set of four different physical
BNS systems. Each setup has the same total gravitational
mass in isolation but different mass ratios (see Table II). In
order to eliminate eccentric contributions of the orbit to the
gravitational wave during the inspiral, we perform between
three and four steps of the eccentricity reduction procedure
[83,99], obtaining values lower than 3.5 × 10−4. All con-
figurations start at the same initial frequency, and the
number of orbits before merger is approximately 16. See
Table III for important parameters characterizing the initial
properties of the binaries.
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III. RESULTS

A. Gravitational waves

We extract GWs from our simulations using the
Newman-Penrose formalism [100] based on the curvature
scalar Ψ4. The GW strain is then computed from Ψ4 ¼ ḧ,
where we use the frequency domain integration outlined in
Ref. [101]. For our purpose, it is convenient to decompose
Ψ4 as well as h into individual modes by employing
spherical harmonics with spin weight −2—i.e.,

h ¼
Xlmax

l¼2

Xm≤l

m¼−l

−2Yl;mhl;m: ð1Þ

In Fig. 1, we show the dominant (2,2) mode of the GW
signal in the top panel and the subdominant (2,1), (3,3), and
(4,4) modes in the following rows. For completeness, we
want to summarize some of the main findings that,
however, have already been found by previous studies
and also analytical computations (e.g., Ref. [45]).

(i) The (2,2) mode is dominant and has the largest
amplitude.

(ii) The amplitudes of all the ðl; mÞ modes with odd m
values increase with increasing mass ratio. In the
equal-mass case, due to the symmetry of the system,
these modes are zero (during the inspiral).

(iii) The frequencies of the individual modes depend
on the value of jmj and scale roughly according to
ω2;2 · jm=2j.

(iv) For nonprecessing systems, them and−mmodes are
identical (not shown in Fig. 1).

B. Convergence properties

To investigate the convergence properties of our simu-
lations, we write the GWs as

TABLE I. Grid configurations. The columns refer to the
resolution name, the number of levels L, the number of moving
box levels Lmv, the number of points in the nonmoving boxes n,
the number of points in the moving boxes nmv, the grid spacing in
the finest level h6 covering the neutron star, and the grid spacing
in the coarsest level h0. The grid spacing is given in units of M⊙.

Name L Lmv n nmv h6 h0

R1 7 4 128 64 0.249 15.936
R2 7 4 192 96 0.166 10.624
R3 7 4 256 128 0.1245 7.968
R4 7 4 384 192 0.083 5.312
R5 7 4 512 256 0.06225 3.984

TABLE II. Properties of the individual stars used for our BNS
simulations. The first columngives the configuration name, and the
second column gives the employed mass ratio q ¼ MA=MB ≥ 1,
while the next four columns give the gravitational masses of the
individual stars MA;B and the baryonic masses of the individual
stars MA;B

b .

Name q MA MB MA
b MB

b

S1.25 1.25 1.5001 1.2001 1.6834 1.3117
S1.50 1.50 1.6201 1.0801 1.8388 1.1688
S1.75 1.75 1.7183 0.9819 1.9695 1.0542
S2.00 2.00 1.8002 0.9001 2.0813 0.9601

TABLE III. Properties of our BNS simulations. The columns
give the configuration name, the residual eccentricity e, the initial
GW frequency Mω0

2;2 of the (2,2) mode, the Arnowitt-Deser-
Misner (ADM) mass MADM, and the angular momentum JADM.
All configurations were evolved with the resolutions of Table I.

Name e [10−4] Mω0
2;2 [10−2] MADM JADM

S1.25 1.6413 3.2241 2.6804 7.9252
S1.50 3.0940 3.2231 2.6809 7.7035
S1.75 3.1148 3.2220 2.6816 7.4280
S2.00 3.4273 3.2213 2.6824 7.1353

FIG. 1. Real part for different modes of the GW rh as a function
of the retarded time u=M, where r is the coordinate radius. As
expected, the (2,2) mode is the dominant mode, and the
amplitudes of the (2,1) mode and (3,3) mode increase with
increasing mass ratio. The vertical lines in the plot indicate the
merger time for resolution R5, from which we note that systems
with higher mass ratios starting at the same frequency merge later.
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hl;m ¼ Al;me−iϕl;m ; ð2Þ

with the amplitude Al;m and the phase ϕl;m. Given that GW
astronomy relies mainly on a proper estimate of the GW
phase, we will focus our discussion on the convergence
properties for the GW phase. For this purpose, we show the
convergence of all modes (for all setups and resolutions) in
Fig. 2. Based on our previous studies [90,102], we expect to
obtain second-order convergence for our numerical simu-
lations with respect to the (2,2) mode.
In this work, we tested that this convergence order is also

present in the higher-order modes. For this purpose, we
scale the phase difference between two different resolutions
under the assumption of second-order convergence and find
good agreement for the high-resolution simulations. Let us
outline key features of the plot:

(i) Phase differences with respect to the lowest resolution
R1 indicate that for such a resolution, the simulations
do not reach the convergent regime. Hence, a smaller
grid spacing—i.e., a higher resolution—is required.

(ii) Independent of the mode that we consider, an
increasing mass ratio leads to a slight reduction of
the convergence order.

(iii) Due to thevery small amplitude, the assessment of the
convergence properties for the (2,1) mode is prob-
lematic for mass ratios below q ¼ 1.75 (cf. Fig. 1).

In addition to the phase difference between individual
resolutions, we also show the difference between the GW
phase for the highest resolution andRichardson-extrapolated
waveforms for which we assumed second-order conver-
gence during the extrapolation; see Refs. [90,102] for more
details about this procedure.

C. Tidal contribution in higher modes

Several GW models that model higher-order modes start
from a description of the dominant (2,2) mode and then
rescale this mode to obtain subdominant mode predictions
(e.g., Refs. [103–105]). The scaling relations are

ϕl;m ¼ mϕorbital þ Δϕl;m ð3Þ

FIG. 2. Convergence for all important modes. We show the phase differences between different resolutions (solid lines) and the
rescaled phase differences assuming second-order convergence (dashed lines). Individual rows refer to the (2,2), (2,1), (3,3), and (4,4)
modes (from top to bottom), and the individual columns refer to the setups with increasing mass ratio. The vertical lines in the plot
indicate the merger time.
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with the orbital phase ϕorbital and

Δϕ2;2→0; Δϕ2;1→π=2; Δϕ3;3→−π=2; Δϕ4;4→π:

ð4Þ

Under the assumption of 2ϕorbital ≈ ϕ2;2, this allows us
to use information from the dominant (2,2) mode to
predict the evolution of the subdominant modes. As
expected, this scaling relation also clearly applies for our
NR simulations using the highest-resolution data. This
becomes visible in Fig. 3, where we rescale the (2,2)-mode
contribution according to Eqs. (3) and (4) and find overall
perfect agreement between our data and the analytical
predictions.
In addition to the investigation of the entire mode

content, we also want to investigate if the rescaling can
be applied to the individual contributions—see Eq. (5).
Overall, also for the individual contributions, our NR
simulations can serve as a validation set, and they prove
that BNS simulations can reach an accuracy level where
the reliable modeling of subdominant modes becomes
possible.
An approach that is intensively used during the modeling

of BNS and BHNS systems is the assumption that the GW
phase can be decomposed into different components.
Keeping for simplicity the (2,2) mode, we get

ϕ2;2 ¼ ϕBBH
2;2 þ ϕSO

2;2 þ ϕSS
2;2 þ ϕTidal

2;2 þ � � � ; ð5Þ

with the nonspinning BBH contribution ϕBBH
2;2 , the spin-

orbit contributions ϕSO
2;2, the spin-spin contribution ϕSS

2;2,
and the tidal contributions ϕTidal

2;2 . In this article, we will

particularly focus on ϕTidal
2;2 , as well as higher-order

contributions ϕTidal
2;1 , ϕTidal

3;3 , and ϕTidal
4;4 ; the spin contributions

are zero in our spinless configurations. For this purpose, we
subtract from our BNS NR waveforms the BBH contribu-
tions computed with the SEOBNRv4T [47] model (in its form
currently implemented in LALSuite [106]).
Figure 4 summarizes our findings: The scaling relations

of Eq. (3) also apply for the tidal contribution. This is of
special importance for the possibility to extend existing
BNS or BHNS models that currently purely model the
dominant (2,2) mode (e.g., Refs. [56,57,107,108]), to
model the tidal contributions present in higher modes.

IV. COMPARISON WITH EXISTING
GW MODELS

A. Model validation

An important application for our new NR simulations
is the possibility to quantify the performance of GWmodels
currently employed in GW analysis. For this purpose, we
compare our simulation results with five different state-of-
the-art GW models—namely, SEOBNRv4T [47], TEOBResumS
[49,50], SEOBNRv4_ROM_NRTidalv2 [57], IMRPhenomPv2_NRTidal

[56], and IMRPhenomPv2_NRTidalv2 [57]. For completeness, we
summarize key features of each model in the Appendix.
In Fig. 5, we show the phase difference between the GWs

obtained from different GW models and the Richardson-
extrapolated signal. Before subtracting, we first align the
model waveformwith respect to the Richardson-extrapolated
data by minimizing their phase difference on an early stage
of the inspiral, where Mω2;2 ∈ ½0.035; 0.040�. For compari-
son, we also show in the figure two different error bands. The
conservative light gray error band (�ϵ) is estimated using
two terms—i.e., ϵ2 ¼ ϵ2Ric þ ϵ2Ext. The first term is obtained
through the difference between the Richardson-extrapolated
value and theNR simulationwith the highest resolution—i.e.,

FIG. 3. Accumulated phase of our simulations for the q ¼ 2.00
setup, where we show the individual modes with different colors
and rescale the dominant (2,2) mode according to the description
given in the text to mirror the evolution of the subdominant
modes. The scaling of the accumulated phase is verified for all
mass ratios.

FIG. 4. Rescaling of the tidal contribution ϕTidal
l;m for different

modes similar to Fig. 3 for the entire phase contribution of each
mode. We verify that the scaling of the tidal contribution is valid
for all mass ratios.
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ϵRic ¼ ΔðRic − R5Þ. The second term, ϵExt, is obtained by
calculating the phase difference between two different extrac-
tion radii. In our case, we consider the radii 700 M⊙ and
900 M⊙ in the highest resolution available. This last term is
almost constant and is the dominant error in ϵ until approx-
imately 2000 M⊙. The dark gray error band (�ϵΔ) is an error
for the third-order Richardson extrapolation itself, and it is
given by ϵ2Δ ¼ max½ϵ2ΔRic þ ϵ2Ext�, where “max” indicates that
we are keeping the highest value as time passes by, to ensure a
monotonically increasing uncertainty. The first term, ϵΔRic, is
the difference between two different Richardson extrapola-
tions. One extrapolation is done with resolutions R3 and R4,
Ric34, and the other one with resolutions R4 and R5, Ric45.
Thus, this term can be written as ϵΔRic ¼ ΔðRic45 − Ric34Þ.
The second term is the same present in ϵ. In this case, ϵΔRic
becomes larger than ϵExt only in the final stage of the inspiral.
Independent of the mass ratio, we find that the phase

differences between our Richardson-extrapolated wave-
forms and the waveform approximants are in good agree-
ment. All models fall within our more conservative error
measure ϵ and therefore can not be clearly discarded/
disfavored in any way. Nevertheless, we do find interesting
patterns in our analysis. Noticeably, the IMRPhenomPv2_NRTidal

model shows the largest difference from our NR-based data.
The two NRTidalv2 models IMRPhenomPv2_NRTidalv2 and
SEOBNRv4_ROM_NRTidalv2 perform slightly better. However,
all models fall shortly before merger out of our tighter error
band ϵΔ (cf. the dark gray region). The two time-domain
EOB models SEOBNRv4T and TEOBResumS perform best with,
in particular, TEOBResumS always staying within our tight

error band. Interestingly, in general, we find that the phase
difference between our prediction and the GW model
predictions is negative—i.e., Richardson-extrapolated values
(third order) minus Model. The only exception to this
“rule” is the simulation for the highest mass ratio, where
TEOBResumS shows a positive phase differencewith respect to
our NR data close to merger. While one could speculate that
this is caused by an overestimation of tidal effects for
TEOBResumS for large mass ratios, it is more likely that this
is caused by the fact that theRichardson-extrapolated result is

FIG. 5. Phase difference of the (2,2) mode between the Richardson-extrapolated data and the different GW models for all values of q.
The alignments of their phases have been performed on an early stage in the inspiral before subtracting. All GW models fall within our
more conservative light gray error band.

FIG. 6. Tidal contributions of the (2,2) mode of our NR
simulations and the Richardson-extrapolated data for the case
q ¼ 1.25. For comparison, we align them with the NRTidalv2 tidal
model. To show the effect of the filtering procedure on the results,
we present the R4 configuration with (dark green) and without
(light green) the Savitzky-Golay filtering.
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less accurate, since the convergence order reduces slightly
before the merger, as seen in Fig. 2.

B. Outlooks to improve the NRTidal model

In addition to the general model comparison presented in
the previous subsection, we want to focus on the potential
to further improve (and test) the NRTidal description [54]. In
general, the NRTidal phase contribution, used to augment
existing BBH models, is based on the possibility to extract
ϕðωÞ. So far, only the (2,2) mode has been used for any
NRTidal-based model, but based on Fig. 4, higher modes
could also be modeled. Hereafter for simplicity, we use ω to
refer to ω2;2.
Another important point is that, while the NRTidalv2 model

incorporated next-to-leading-order mass-ratio effects, the
model has been calibrated purely to equal-mass simulations;
see Ref. [57]. To check the robustness of this approach, we
first extract the tidal contribution to ϕ2;2ðωÞ from our
simulations.
To obtain the tidal contribution ϕTidal

2;2 ðωÞ from the NR
simulation, we need to subtract the BBH contribution
ϕBBH
2;2 ðωÞ from ϕ2;2ðωÞ. As a first step, we again use

SEOBNRv4T to model ϕðtÞ for a BBH system with the same
component masses. Then, we can calculate ω ¼ ∂tϕ and
obtain ϕðωÞ. Afterwards, we align the BBH phase and
the BNS phase at a given frequency, where we use here
Mω ¼ 0.036 as the reference frequency for alignment.
Finally, after obtaining the tidal contribution, we perform a
further alignment with the NRTidalv2 model using the same
reference frequency. The tidal contributions ϕTidal

2;2 ðωÞ
found in this way have an oscillatory behavior for low
frequencies. To reduce these oscillations, we employ
the Savitzky-Golay filtering. In Fig. 6, we present, for
the q ¼ 1.25 case, the tidal contributions ϕTidal

2;2 ðωÞ for
different NR resolutions and for the Richardson-extrapo-
lated waveform. In dark and light green we show an
example of the use of the Savitzky-Golay filtering—the
original tidal contribution for resolution R4 (light green)
has an oscillatory behavior near Mω ¼ 0.04, which is

corrected after using the filtering (dark green). For reso-
lutions R5 and Ric, we plot only the filtered version.
In Fig. 7, we compare the tidal contribution of the

Richardson-extrapolated waveform, ϕTidal
2;2 RicðωÞ, with the

NRTidalv2 model for different mass ratios. Each tidal con-
tribution is obtained following the procedure described in
the above paragraph. The error band in these plots is
calculated using the difference between the Richardson-
extrapolated value and the highest NR resolution—i.e.,
ϵTidal ¼ �Δ½ϕTidal

2;2 RicðωÞ − ϕTidal
2;2 R5ðωÞ�. Taking into account

this conservative error, we see that in general, the NRTidalv2

model behaves correctly for all mass ratios and falls within
our error band during most of the frequency interval.
However, there are deviations. These are most noticeable
for q ¼ 1.25 (at the frequency Mω ≈ 0.08) and for
q ¼ 2.00 (at frequencies Mω > 0.08). Because of this,
we still see room for improvement of the NRTidal phase
description, and we hope that our new set of NR data will
be helpful towards future development.

V. CONCLUSION AND OUTLOOK

In this article, we have performed simulations of four
different BNS systems for mass ratios q ¼ 1.25, 1.50, 1.75,
and 2.00. All physical configurations have been simulated
with five different resolutions to allow for a proper error
assessment. We find that the (2,2), (2,1), (3,3), and (4,4)
modes show second-order convergence, where for larger
mass ratios the convergence order drops slightly around the
moment of merger. We use our simulations to compute
Richardson-extrapolated GW data that we compare against
existing, state-of-the-art GW models. We find overall good
agreement (within our estimated error bands), but a
preference for the models TEOBResumS and SEOBNRv4T.
Our simulations allow us also to verify that the estimated

tidal contribution to the dominant (2,2) mode can be
rescaled to mimic tidal contributions for the subdominant
modes. This is of special interest for the development of
future BNS and BHNS models that will be required for the
upcoming observing runs of the advanced GW detector
networks.

FIG. 7. Comparison of the NRTidalv2 model (orange) with the tidal contribution of the (2,2) mode of the Richardson-extrapolated data
(brown) for all values of q. In general, the model has some deviations but behaves correctly for all mass ratios and falls within our error
band during most of the frequency interval.
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Finally, we verify that despite the calibration to
equal-mass systems, the existing NRTidalv2 model is able
to describe also high-mass-ratio systems as presented here.
Nevertheless, we expect that based on this set of simulations
and upcoming simulations that are ongoing, therewill be the
possibility to further improve the NRTidal model to ensure a
more reliable interpretation of future GW signals.
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APPENDIX: SUMMARY OF EMPLOYED
GW MODELS

IMRPhenomPv2_NRTidal is based on the precessing BBH
model IMRPhenomPv2 [109,110] and uses the original NRTidal

correction [54,56] to account for tidal contributions.
In addition, 2PN and 3PN EOS-dependent spin-spin effects
are employed to augment the existing BBH baseline model.
No further tidal amplitude corrections are employed.

IMRPhenomPv2_NRTidalv2 is an update of IMRPhenomPv2_

NRTidal. In addition to IMRPhenomPv2_NRTidal, this model
uses the updated NRTidalv2 [56] description for the tidal
contribution. It also employs a tidal amplitude correction,
and it includes up to 3.5 PN EOS-dependent effects in the
spin-spin and cubic-in-spin contributions (including octu-
pole-dependent terms).

SEOBNR_ROM_NRTidalv2 is a frequency domain model
based on the surrogate SEOBNRv4_ROM [65,111]. The
BBH model is augmented with the NRTidalv2 phase correc-
tions [56], uses tidal amplitude corrections, and includes
EOS-dependent spin-spin and cubic-in-spin corrections up
to 3.5 PN.

SEOBNRv4T is a time domain EOB model [47,48] based
on the time domain BBH model [111]. The model includes
quadrupolar and octupolar dynamical tides, as well as EOS-
dependent spin-induced quadrupole moment effects. In our
work, we rely on the publicly available version of
LALSuite [47] that does not include the spin dependence
of the dynamical tidal effects as presented in Ref. [112].

TEOBResumS is a time domain EOB model. In contrast
to SEOBNRv4T, TEOBResumS uses gravitational self-force-
inspired expressions for the attractive tidal potential [51]
but is restricted to adiabatic tidal effects. As for the other
models, we rely on the publicly available TEOBResumS

model that is part of LALSuite [49,50].
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