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If dark matter annihilates with a velocity-dependent cross section within a subhalo, then the magnitude
and angular distribution of the resulting photon signal will change. These effects are encoded in the
J-factor. In this work we compute the J-factor for a variety of choices for the cross section velocity
dependence, and for a variety of choices for the dark matter profile, including generalized Navarro-Frenk-
White, Einasto, Burkert and Moore. Interestingly, we find that for a density profile with an inner slope
power law steeper than 4=3, Sommerfeld-enhanced annihilation in the Coulomb limit leads to a divergence
at the center, requiring a more detailed treatment of departure from the Coulomb limit.
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I. INTRODUCTION

A promising strategy for the indirect detection of dark
matter is the search for photons arising from dark matter
annihilation in galactic subhalos, including those which
host dwarf spheroidal galaxies (dSphs) [1–4]. This strategy
is promising because the photons will point back to the
subhalo, which is a region with a large dark matter density,
but relatively small baryonic density [5,6]. There is thus
relatively little astrophysical fore/background to a potential
dark matter signal. The dependence of this photon signal on
the properties of an individual subhalo is encoded in the
J-factor, which in turn depends on the dark matter velocity
distribution in the subhalo, and on the velocity dependence
of the dark matter annihilation cross section.
Different models for the velocity dependence of the dark

matter annihilation cross section can lead to J-factors with
different normalizations and angular dependences [7–17].
In this way, the microphysics of the dark matter annihi-
lation cross section is connected to both the amplitude and
morphology of the resulting photon signal. For this reason,
it is important to determine J-factors which arise under
all theoretically motivated assumptions for the velocity
dependence of the cross section. The most well studied case
is s-wave annihilation, in which σv is velocity independent.
In recent work, e.g., [18], J-factors have been calculated for
other well-motivated examples, such as p-wave, d-wave,
and Sommerfeld-enhanced annihilation. But most of these
calculations have been performed under the assumption

that the dark matter density profile ρðrÞ is of the Navarro-
Frenk-White (NFW) form [19]. Our goal in this work is to
generalize this calculation to other density profiles which
are commonly used, and motivated by N-body simulation
results.
Wewill consider generalized NFW, Einasto [20], Burkert

[21], and Moore [22] profiles. Like the standard NFW
profile, these density distributions are characterized by only
two dimensional parameters, ρs and rs. The dependence of
the J-factor on these parameters is largely determined by
dimensional analysis [15]. Given our results, one can easily
determine the amplitude and angular distribution of the
photon signal for any subhalo and choice of density profile,
in terms of the halo parameters and the velocity-dependent
cross section.
Our strategy will be to use the Eddington inversion

method [23] to determine the dark matter velocity distri-
bution fðr; vÞ from ρðrÞ. This velocity distribution will, in
turn, determine the J-factor. For each functional form,
we will be able to determine a scale-free J-factor which
depends on velocity dependence of the annihilation cross
section, but is independent of the halo parameters. The
dependence of the J-factor on ρs and rs is entirely
determined by dimensional analysis. This will leave us
with a set of dimensionless numerical integrals to perform,
for any choice of the velocity dependence and of the density
distribution functional form, which in turn determine the
J-factor for any values of the subhalo parameters.
We will also find that, for some classes of profiles,

one can find analytic approximations for the velocity and
angular distributions. These analytic computations will
yield insights which generalize to larger classes of profiles
than those we consider. For example, we will find that, in
the case of Sommerfeld-enhanced annihilation, the anni-
hilation rate has a physical divergence if the inner slope of
the profile is steeper than 4=3 (independent of the shape at
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large distance), requiring one to account for deviations
from the Coulomb limit.
The plan of this paper is as follows. In Sec. II, we review

the general formalism for determining the J-factor. In
Sec. III, we describe the models of dark matter particle
physics and astrophysics which we will consider. We
present our results in Sec. IV, and conclude in Sec. V.

II. GENERAL FORMALISM

We will follow the formalism of [15], which we review
here. We consider the scenario in which the dark matter
is a real particle whose annihilation cross section can be
approximated as σv ¼ ðσvÞ0 × Sðv=cÞ, where ðσvÞ0 is a
constant, independent of the relative velocity v.
The J-factor describes the astrophysical contribution to

the dark matter annihilation flux,

JSðθÞ ¼
Z

dl
Z

d3v1

Z
d3v2fðrðl; θÞ; v1Þfðrðl; θÞ; v2Þ

× Sðjv1 − v2j=cÞ; ð1Þ

where f is the dark matter velocity distribution, l is the
distance along the line of sight, and θ is the angle between
the line-of-sight direction and the direction from the
observer to the center of the subhalo.

A. Scale-free J

We will assume that the dark matter density profile ρðrÞ
depends only on two dimensionful parameters, ρs and rs.
In that case, we may rewrite the density profile in the
scale-free form ρ̃ðr̃Þ, where

r̃≡ r=rs;

ρ̃ðr̃Þ≡ ρðrÞ=ρs: ð2Þ

ρ̃ðr̃Þ has no dependence on the parameters ρs and rs. Aside
from ρs and rs, the only relevant dimensionful constant
is GN . We also define a scale-free velocity using the only
combination of these parameters with units of velocity,

ṽ≡ v
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGNρsr2s

q
; ð3Þ

in terms of which we may define the scale-free velocity
distribution,

f̃ðr̃; ṽÞ≡ ð4πGNρsr2sÞ3=2ρ−1s fðr; vÞ; ð4Þ

where ρ̃ðr̃Þ ¼ R
d3ṽ f̃ðr̃; ṽÞ and where f̃ðr̃; ṽÞ is indepen-

dent of the dimensionful parameters.
We will assume that the velocity dependence of the

dark matter annihilation cross section has a power-law
form, given by Sðv=cÞ ¼ ðv=cÞn. We may then express the
J-factor in scale-free form:

JSðnÞðθ̃Þ ¼ 2ρ2srs

�
4πGNρsr2s

c2

�
n=2

J̃ðθ̃Þ;

JtotSðnÞ ¼
4πρ2sr3s
D2

�
4πGNρsr2s

c2

�
n=2

J̃tot; ð5Þ

where the scale-free quantities J̃SðnÞðθ̃Þ and J̃totSðnÞ are

given by [15]

J̃totSðnÞ ≈
Z

∞

0

dθ̃ θ̃J̃SðnÞðθ̃Þ;

J̃SðnÞðθ̃Þ ≈
Z

∞

θ̃
dr̃

�
1 −

�
θ̃

r̃

�
2
�−1=2

P2
nðr̃Þ; ð6Þ

and where

P2
n ¼

Z
d3ṽ1d3ṽ2jṽ1 − ṽ2jnf̃ðr̃; ṽ1Þf̃ðr̃; ṽ2Þ: ð7Þ

In the case of s-wave annihilation, P2
n¼0 ¼ ρ̃2. P2

n is thus
the generalization of ρ̃2 relevant to computation of the
J-factor for velocity-dependent dark matter annihilation.
Note that if n is a positive integer, then the expression for

P2
n can be expressed in terms of one-dimensional integrals.

In particular, we find

P2
n¼2ðr̃Þ ¼ ½ρ̃ðr̃Þ�2½2hṽ2iðr̃Þ�;

P2
n¼4ðr̃Þ ¼ ½ρ̃ðr̃Þ�2

�
2hṽ4iðr̃Þ þ 10

3
ðhṽ2iðr̃ÞÞ2

�
; ð8Þ

where hṽmiðr̃Þ ¼ 4π½R∞
0 dṽ ṽmþ2f̃ðr̃; ṽÞ�=ρ̃ðr̃Þ. For the case

of n ¼ −1, one must perform the two-dimensional integral.

B. Eddington inversion

If the subhalo is in equilibrium, then the velocity
distribution can be written as a function of the integrals
of motion. Since we have assumed that the velocity
distribution is spherically symmetric and isotropic, it can
be written as a function only of the energy per particle,
E¼v2=2þΦðrÞ, where ΦðrÞ is the gravitational potential1
[that is, fðr; vÞ ¼ fðEðr; vÞÞ]. The velocity distribution can
then be expressed in terms of the density using the
Eddington inversion formula [23], yielding

fðEÞ ¼ 1ffiffiffi
8

p
π2

Z
Φð∞Þ

E

d2ρ
dΦ2

dΦffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ − E

p ; ð9Þ

where

1Following convention, we use the symbol Φ for both the
photon flux and the gravitational potential. We trust the meaning
of Φ will be clear from context.
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ΦðrÞ ¼ Φðr0Þ þ 4πGNρsr2s

Z
r̃

r̃0

dx
x2

Z
x

0

dy y2ρ̃ðyÞ: ð10Þ

Note, we have assumed that the baryonic contribution to the
gravitational potential is negligible.
In terms of the scale-free gravitational potential and

energy Φ̃ðr̃Þ≡ΦðrÞ=4πGNρsr2s, Ẽ≡ E=4πGNρsr2s , we
then find

f̃ðr̃; ṽÞ ¼ f̃ðẼðr̃; ṽÞÞ ¼ 1ffiffiffi
8

p
π2

Z
Φ̃ð∞Þ

Ẽ

d2ρ̃

dΦ̃2

dΦ̃ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ̃ − Ẽ

p : ð11Þ

The scale-free quantities J̃ and J̃tot depend on the
functional form of the dark matter density distribution
(ρ̃), and on the velocity dependence of the annihilation
cross section (n), but are independent of the parameters ρs
and rs. For any functional form of ρ̃, and any choice of n,
one can compute J̃ðθ̃Þ and J̃tot by performing the integra-
tion described above. For any individual subhalo with
parameters ρs and rs, a distance D away from Earth, the
J-factor is then determined by Eq. (5). This calculation has
been performed for the case of an NFW profile, in which
case ρ̃ðr̃Þ ¼ r̃−1ð1þ r̃Þ−2 [15]. We will extend this result to
a variety of other profiles.

III. DARK MATTER ASTROPHYSICS
AND MICROPHYSICS

We will consider four theoretically well-motivated sce-
narios for the power-law velocity dependence of the dark
matter annihilation cross section (Sðv=cÞ ¼ ðv=cÞn).

(i) n ¼ 0 (s-wave): In this case, the dark matter initial
state has orbital angular momentum L ¼ 0, and σv is
independent of v in the nonrelativistic limit. This is
the standard case which is usually considered.

(ii) n ¼ 2 (p-wave): In this case, the dark matter
initial state has orbital angular momentum L ¼ 1.
This case can arise if dark matter is a Majorana
fermion which annihilates to a Standard Model (SM)
fermion/antifermion pair through an interaction
respecting minimal flavor violation (MFV) (see,
for example, [24]).

(iii) n ¼ 4 (d-wave): In this case, the dark matter initial
state has orbital angular momentumL ¼ 2. This case
can arise if dark matter is a real scalar annihilating to
an SM fermion/antifermion pair through an inter-
action respecting MFV (see, for example, [24–26]).

(iv) n ¼ −1 (Sommerfeld-enhancement in the Coulomb
limit): This case can arise if there is a long-range
attractive force between dark matter particles,
mediated by a very light particle. If the dark matter
initial state is L ¼ 0, a 1=v enhancement arises
because the dark matter initial state is an eigenstate
of the Hamiltonian with a long-range attractive
potential. If the mediator has nonzero mass, then

the 1=v enhancement will be cut off for small
enough velocity, but we focus on the case in which
this cutoff is well below the velocity scale of the
dark matter particles. For a detailed discussion, see
[27,28], for example.

Despite significant effort, there is no consensus on the
functional form of the dark matter profile which one should
expected in subhalos. We consider various dark matter
profiles, which are motivated by N-body simulations and
stellar observations:

(i) Generalized NFW [ρ̃ðr̃Þ ¼ r̃−γð1þ r̃Þ−ð3−γÞ]: γ ¼ 1
corresponds to the standard NFW case [19], and was
originally proposed as a good fit to the density found
in N-body simulations. The generalization to γ ≠ 1
was first studied in [29], and has been argued to be
good fit N-body simulation results for larger values
of γ [30], although previous work had also indicated
that smaller values of γ may also be acceptable [31].
We will consider a broad range of choices of γ
ranging from 0.6 to 1.4. (Note, for γ ≥ 1.5, the
s-wave annihilation rate would diverge.)

(ii) Einasto profile [ρ̃ðr̃Þ ¼ expð−ð2=αÞðr̃α − 1ÞÞ]: This
profile has been found to be at least as good a fit as
NFW to densities found in N-body simulations
when α lies roughly in the range 0.12 < α < 0.25
(see, for example, [32,33]), and we will consider
values of α in this range.

(iii) Burkert profile [ρ̃ðr̃Þ ¼ ð1þ r̃Þ−1ð1þ r̃2Þ−1]: This
is a commonly used example of a cored profile,
which was found to be a good fit to observations of
stellar motions in dwarf galaxies [21].

(iv) Moore profile [ρ̃ðr̃Þ ¼ ðr̃1.4ð1þ r̃Þ1.4Þ−1]: This is an
example of a very cuspy profile, which was found to
be a good fit to the N-body simulations considered
in [22,30].

IV. RESULTS

For any choice of ρ̃ðr̃Þ and of n, the J-factor is
determined by three parameters (ρs, rs and D), and by a
scale-free normalization (J̃totSðnÞ) and an angular distribution

(J̃SðnÞðθ̃Þ=J̃totSðnÞ), which must be determined by numerical
integration. We can characterize the angular size of gamma-
ray emission from a subhalo with the quantity hθi=θ0,
defined as

hθi
θ0

≡
R∞
0 dθ̃ θ̃2J̃SðnÞðθ̃Þ

J̃totSðnÞ
: ð12Þ

In Tables I and II, we present J̃totSðnÞ and hθi=θ0,
respectively, for all of the profiles (ρ̃ðr̃Þ) and choices of
n which we consider. We also plot J̃SðnÞðθ̃Þ=J̃totSðnÞ for all of
these profiles and choices of n in Figs. 1 (generalized
NFW), 2 (Einasto), and 3 (Burkert), and 4 (Moore). The
data in these tables and plots as well as the intermediate
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data products including Φ̃ðr̃Þ, f̃ðẼÞ, P2
nðr̃Þ are all available

as Supplemental Material [34].
We see that for relatively cuspy profiles, smaller values

of n lead to an angular distribution which is more sharply
peaked at small angles. On the other hand, we see that for a
cored profile, such as Burkert, the angular distribution is
largely constant at small angles, regardless of n.

A. Inner slope limit

To better understand the dependence of the gamma-ray
angular distribution on the density profile and on the
velocity dependence of the dark matter annihilation cross
section, we will consider the innermost region of the
subhalo, for which r̃ ≪ 1. In this region, care must be
taken during the numerical integration to achieve precise
results, especially in the case of Sommerfeld-enhanced
annihilation. The divergence near the origin requires fine-
grained sampling of the integrands in order to obtain
convergence of the integrals. However, the numerical
accuracy of such integrals can be hard to estimate.
Additionally, we cannot determine a priori whether the
integral will converge for any given model (as will be
discussed for certain Sommerfeld-enhanced annihilation
models later in this section). Fortunately, we will find that if
ρ̃ðr̃Þ has power-law behavior, then we can solve for f̃ðẼÞ
analytically in the inner slope region, giving us simple
expressions for P2

nðr̃Þ and J̃SðnÞðθ̃Þ, which can be matched
to the full numerical calculation.

We may relate the density distribution to the velocity
distribution using

ρ̃ðr̃Þ ¼ 4π

Z
ṽescðr̃Þ

0

dṽ ṽ2f̃ðr̃; ṽÞ

¼ 4
ffiffiffi
2

p
π

Z
Φ̃ð∞Þ

Φ̃ðr̃Þ
dẼ f̃ðẼÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ − Φ̃ðr̃Þ

q
: ð13Þ

We assume that, in the inner slope region, we have
ρ̃ðr̃Þ ¼ ρ̃0r̃−γ , with γ ≥ 0. We then have

Φ̃ðr̃Þ ¼ ρ̃0
ð3 − γÞð2 − γÞ r̃

2−γ; ð14Þ

where we adopt the convention Φ̃ð0Þ ¼ 0. Defining
x ¼ E=Φ̃ðr̃Þ, we then have

ρ̃0r̃−γ ¼ 4
ffiffiffi
2

p
πðΦ̃ðr̃ÞÞ3=2

Z Φ̃ð∞Þ
Φ̃ðr̃Þ

1

dx
ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
f̃ðxΦ̃ðr̃ÞÞ: ð15Þ

For r̃ ≪ 1 we may take Φ̃ð∞Þ=Φ̃ðr̃Þ → ∞, in which case
the integral above depends on r̃ only through the argument
of f̃.
For γ > 0, we can solve Eq. (15) with the ansatz

f̃ðẼÞ ¼ f̃0Ẽβ, where β ¼ ðγ − 6Þ=½2ð2 − γÞ� < −3=2 and

TABLE I. Numerical values for the scale-free normalization J̃totSðnÞ [defined in Eq. (6)] for n ¼ −1, 0, 2, and 4, where the profile is taken
to be either generalized NFW (with γ as listed), Einasto (with α as listed), Burkert, or Moore.

J̃totSðnÞ

NFW (γ) Einasto (α)

Burkert Mooren 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.25 1.3 1.4 0.13 0.16 0.17 0.20 0.24

−1 0.26 0.33 0.43 0.59 0.83 1.25 1.99 2.57 3.39 � � � 15 10.7 9.73 7.7 6.07 0.1 � � �
0 0.1 0.13 0.18 0.24 0.33 0.49 0.77 0.99 1.31 2.45 11.4 8.53 7.88 6.45 5.26 0.034 2.58
2 0.038 0.051 0.07 0.098 0.14 0.22 0.35 0.46 0.62 1.19 18.7 14.6 13.6 11.4 9.43 0.0069 1.37
4 0.024 0.034 0.05 0.075 0.12 0.19 0.33 0.45 0.62 1.28 62.5 48.9 45.6 37.9 31 0.0022 1.64

TABLE II. Numerical values for the angular distribution hθi=θ0 [defined in Eq. (12)] for n ¼ −1, 0, 2, and 4, where the profile is taken
to be either generalized NFW (with γ as listed), Einasto (with α as listed), Burkert, or Moore.

hθi=θ0
NFW (γ) Einasto (α)

Burkert Mooren 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.25 1.3 1.4 0.13 0.16 0.17 0.20 0.24

−1 0.65 0.57 0.48 0.4 0.32 0.24 0.18 0.15 0.12 � � � 0.18 0.23 0.24 0.29 0.33 0.53 � � �
0 0.71 0.63 0.55 0.47 0.39 0.32 0.25 0.21 0.18 0.12 0.24 0.29 0.3 0.34 0.38 0.51 0.15
2 0.73 0.66 0.59 0.52 0.45 0.38 0.31 0.28 0.24 0.18 0.31 0.35 0.37 0.39 0.42 0.47 0.22
4 0.73 0.66 0.59 0.52 0.46 0.39 0.33 0.3 0.26 0.2 0.34 0.38 0.39 0.41 0.43 0.44 0.26
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f̃0 ¼
ρ̃0

4
ffiffiffi
2

p
π

�
ρ̃0

ð3 − γÞð2 − γÞ
�
−ðβþ3=2Þ

×

�Z
∞

1

dx xβ
ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p �
−1
: ð16Þ

This matches the expression found in Ref. [35]. Given this
expression for f̃ðẼðr̃; ṽÞÞ, we can perform the integral in
Eq. (7), yielding

P̃2
nðr̃ ≪ 1Þ ¼ Cγ;nr̃bn ; ð17Þ

where bn ¼ nþ γð1 − ð6þ nÞ=2Þ and

Cγ;n ¼ 16π2f20

�
ρ̃0

ð3 − γÞð2 − γÞ
�
2βþð6þnÞ=2

×
Z

∞

0

dy1

Z
∞

0

dy2 y21y
2
2

�
y21
2
þ 1

�
β
�
y22
2
þ 1

�
β

×

�ðy1 þ y2Þnþ2 − ðjy1 − y2jÞnþ2

2ðnþ 2Þy1y2

�
: ð18Þ

Note, however, that this integral only converges if
n < −3 − 2β ¼ 2γ=ð2 − γÞ. For larger values of n, the
dark matter annihilation rate is dominated by high
velocity particles, and it is necessary to determine the
velocity distribution outside of the small Ẽ regime. For
Sommerfeld-enhanced annihilation (n ¼ −1), the integral
will converge for all of the cuspy slopes we consider.
Equation (6) then simplifies in the limit θ̃ ≪ 1 to

J̃SðnÞðθ̃ ≪ 1Þ ≈ Cγ;nθ̃
1þbn

Z
r̃0=θ̃

1

dx
xbnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x−2

p ; ð19Þ

where the integral in Eq. (6) is truncated at r̃0 ≤ 1.
We assume that the power-law description of ρ̃ is accurate
for r̃ < r̃0, and truncate the integral outside this region.
For bn < −1 and θ̃ ≪ r̃0, the integral is insensitive to this
cutoff.
For a cuspy profile, we thus have analytical expressions

for the J̃SðnÞ at small θ̃, and these expressions match the full
expression obtained from numerical integration (see Fig. 1,
upper left panel). It is interesting to note that the exponent

FIG. 1. The scale-free photon angular distribution arising from Sommerfeld-enhanced n ¼ −1 (upper left), s-wave n ¼ 0 (upper
right), p-wave n ¼ 2 (lower left), and d-wave n ¼ 4 (lower right) dark matter annihilation in a generalized NFW subhalo where the
inner region goes like ∝ r−γ (the profile parameter γ varies from 0.6 to 1.4, as labeled). The dashed lines show the analytic
approximation from Eq. (19) for Sommerfeld-enhanced dark matter with γ ¼ 0.7, 1.0, 1.3.
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FIG. 2. The scale-free photon angular distribution arising from Sommerfeld-enhanced (upper left), s-wave (upper right), p-wave (lower
left), and d-wave (lower right) dark matter annihilation in an Einasto subhalo (the profile parameter α varies from 0.12 to 0.25, as labeled).

FIG. 3. The scale-free photon angular distribution for the
Burkert profile, with n ¼ −1, 0, 2, 4, as labeled.

FIG. 4. The scale-free photon angular distribution for the
Moore profile (solid lines), with n ¼ 0, 2, 4, as labeled. For
comparison, the scale-free angular distribution for generalized
NFW (γ ¼ 1.4) is also plotted (dotted lines).
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bn exhibits a degeneracy between γ and n. Thus, for
example, the power-law behavior of J̃SðnÞ for the case of
Sommerfeld-enhanced annihilation (n ¼ −1) and a pure
NFW profile (γ ¼ 1) is identical to that of s-wave anni-
hilation (n ¼ 0) for a generalized NFW profile with
γ ¼ 1.25. However, the normalization coefficients Cγ;n

are different. This implies that, for a cuspy profile, a
detailed analysis of the angular distribution at both small
angles and intermediate angles is in principle sufficient to
resolve the velocity dependence of dark matter annihilation.
To illustrate this point, in Fig. 5 we plot J̃SðnÞðθ̃Þ=J̃totSðnÞ

for two generalized NFW profiles, γ ¼ 1 (n ¼ −1) and
γ ¼ 1.25 (n ¼ 0). This figure confirms our analytical

result; both of these models yield angular distributions
which exhibit the same behavior at small angles. But they
differ at larger angles, implying that with sufficient data and
angular resolution, it is in principle possible to determine
the velocity dependence of the annihilation cross section.
Indeed, for γ ¼ 1.25, n ¼ 0, we find hθi=θ0 ¼ 0.21, which
is significantly smaller than the value found for γ ¼ 1.0,
n ¼ −1 (hθi=θ0 ¼ 0.32). This result is to be expected,
since the γ ¼ 1.25, n ¼ 0 model has a much more cuspy
profile than the γ ¼ 1.0, n ¼ −1 model. Moreover, both
profiles illustrated in Fig. 5 have a density which falls off as
r−3 at large distance. If the profile were made less steep at
large distances (in order for the angular distribution to fall
off less rapidly), the mass of the halo would grow as a
power law with distance. Thus, if the slope of angular
dependence in the innermost region can be determined,
then the scale at which that power-law behavior cuts off
is sufficient to distinguish s-wave annihilation from
Sommerfeld-enhanced annihilation, with Sommerfeld-
enhanced annihilation producing a more extended angular
distribution. Although we have plotted the angular distri-
butions in terms of θ̃ ¼ θ=θ0, this result does not depend on
one’s ability to determine rS experimentally. A rescaling of
rs (or, equivalently, θ0) would amount to a shift of one of
the curves plotted in Fig. 5, but not a change in its shape.
In a similar vein, we have compared the angular

distribution for the Moore profile and generalized NFW
profile (γ ¼ 1.4) in Fig. 4. Both profiles have the same
inner slope, but the Moore profile yields more extended
emission. This result is echoed in Table II, where we see
that hθi=θ0 is about ∼20% larger for a Moore profile than
for generalized NFW with γ ¼ 1.4, for n ¼ 0, 2, 4.
In Fig. 6, we supplement the values of hθi=θ0 by

illustrating the differences in the angular spread of the
annihilation of a given DM profile for different velocity-
dependent models. For the cuspy profiles, Sommerfeld
emission dominates near the center and at larger angles but

FIG. 5. The scale-free photon angular distribution for a gen-
eralized NFW profile, with either γ ¼ 1.25, n ¼ 0 (blue) or
γ ¼ 1.0, n ¼ −1 (purple).

FIG. 6. Comparisons of different velocity-dependent models with the same DM profile.
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is the smallest in between. On the other hand, d-wave
emission is smallest near the center and at larger angles but
dominates in between. Quantitatively, we can see from
Table II that for the cuspy profiles hθi=θ0 increases with
increasing n.
Interestingly, we find that, for Sommerfeld-enhanced

annihilation (n ¼ −1), we have bn¼−1 < −3 for γ > 4=3.
For bn < −3, the integral for J̃totSðnÞ diverges at small θ̃. This

implies that for a profile, such as Moore, with γ > 4=3, our
treatment of Sommerfeld-enhanced annihilation has been
inconsistent. In particular, we have implicitly assumed that
dark matter annihilation does not deplete the dark matter
density significantly, which may not be the case. Moreover,
the 1=v Sommerfeld-enhancement of the annihilation cross
section is cut off at a velocity scale which depends on the
mediator mass [27], and we have assumed that this cutoff is
at a velocity small enough to be irrelevant.
It is also interesting to note that, for cuspy profiles

J̃totSðn¼2Þ tends to be significantly smaller than J̃totSðn¼0Þ, while
J̃totSðn¼4Þ is only slightly smaller than J̃totSðn¼2Þ. This may seem

counterintuitive, since the integrals which determine P2
n

have integrands which scale as powers of ṽn. As we have
seen, for larger n, P2

n becomes more sensitive to the high-
velocity tail of particles which are not confined to the core.
As a result, we find hṽ4i ≫ ðhṽ2iÞ2.

B. Cored profile

The situation is somewhat different for a cored profile.
For the Burkert profile, which exhibits a core, the
differences in the angular distribution arising from
n ¼ −1, 0, 2 or 4 are much smaller. In particular, the
angular distribution is flat at small angles, regardless of n.
This implies that morphology of the photon signal carries
less information regarding the velocity dependence of dark
matter annihilation.
We can again understand this behavior by considering

an analytic approximation. Let us approximate the cored
profile with ρ̃ðr̃Þ ¼ ρ̃0 for r̃ < 1, and assume the density
vanishes rapidly for r̃ > 1. For r̃ < 1 we then have
Φ̃ðrÞ ¼ ðρ̃0=6Þr̃2, and Eq. (15) can be rewritten as

ρ̃0 ¼ 4
ffiffiffi
2

p
π

�
ρ̃0r̃2

6

�
3=2 Z r̃−2

1

dx
ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
× f̃

�
x
ρ̃0r̃2

6

�
; ð20Þ

for small r̃, where we have made the approximation that
particles do not explore the region outside the core. In this
case, one cannot find a power-law solution for f̃ while
taking the upper limit of integration to infinity, as the
integral would not converge. Instead, this equation can be
solved for r̃ ≪ 1 by taking f̃ ¼ ð9 ffiffiffi

3
p

=4πÞρ̃−1=20 .
We thus see that, for a cored profile, the velocity

distribution is independent of Ẽ for paths confined to the
innermost region. This implies that, for r̃ ≪ 1, f̃, and thus

P2
n, are independent of r̃. If the velocity distribution is

independent of r̃, the angular distribution of the gamma-ray
signal cannot depend on n, since the effects of velocity
suppression do not depend on the distance from the center
of the subhalo. Indeed, we can confirm this result by noting
that, for a cored profile, since P2

n is independent of r̃ at
small r̃ for all n, we can rewrite Eq. (19) as

J̃coredSðnÞ ðθ̃Þ ∝ θ̃

Z
r̃0=θ̃

1

dx½1 − x−2�−1=2: ð21Þ

But in this case, we cannot ignore the upper limit of
integration, and we find that J̃coredSðnÞ ðθ̃Þ becomes independent

of θ̃ at small angles.
This result matches what is found from a complete

numerical calculation for the Burkert profile. More gen-
erally, we see from Table II that, as profiles become more
cored, the difference in hθi=θ0 between the n ¼ −1, 0, 2
and 4 becomes smaller. The above argument suggests that
the degeneracy of all four cases is only broken by the
behavior of the profile at larger r̃, as one leaves the core.
For a Burkert profile, hθi=θ0 tends to decrease as n

increases. This behavior can be readily understood, because
annihilation at large angles is dominated by particles which
are far from the core. As particles get farther from the core,
the escape velocity (which is the largest allowed velocity
for a bound particle) decreases, suppressing annihilation for
larger n. But interestingly, hθi=θ0 tends to increase with n
for the case of generalized NFW. The suppression of
annihilation far from the core with larger n still occurs
in this case. But there is an additional effect; P2

nðrÞ has a
less steep slope in the inner region for large n. Thus, for
cuspy profiles, as n increases, the angular distribution is
suppressed both at large and very small angles, with the
overall effect being to increase the average angular size of
emission. For a cored profile like Burkert, on the other
hand, the second effect is not present, as the angular
distribution in the inner slope region is flat for any n.

V. CONCLUSION

We have determined the effective J-factor for the cases
of s-wave, p-wave, d-wave and Sommerfeld-enhanced (in
the Coulomb limit) dark matter annihilation for a variety of
dark matter profiles, including generalized NFW, Einasto,
Burkert, and Moore. We have assumed that the dark matter
velocity distribution is spherically symmetric and isotropic,
and have recovered the velocity distribution from the den-
sity distribution by numerically solving the Eddington
inversion equation. If the density profile is power law in
the inner slope region, then the velocity distribution in the
inner slope region can be determined analytically, yielding
results which match the full numerical calculation. We have
found that, for a large class of profiles, the angular
dependence of the photon flux at small angles is completely
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determined by the steepness of the cusp and the power-law
velocity dependence. Although there is a degeneracy
between these two quantities in the angular distribution
at small angles, this degeneracy is broken at larger angles.
For a cored profile, on the other hand, the velocity

distribution is largely independent of position. Thus,
although the velocity dependence of the annihilation cross
section will affect the overall rate of dark matter annihi-
lation, it will not affect the distribution within the core.
Instead, the effect of the velocity dependence on the photon
angular distribution is largely determined by what happens
at the edge of the core.
Our analysis has focused on the magnitude and angular

distribution of the dark matter signal. We have not
considered astrophysical backgrounds, or the angular
resolution of a realistic detector. It would be interesting
to apply these results to a particular instrument in develop-
ment, to determine the specifications needed to distinguish
the velocity dependence of a potential signal in practice.
For a cuspy profile, it is apparent from Fig. 1 that, to resolve
the power-law angular slope dependence of the inner slope
region, one would need an angular resolution of better than
1=10 of the angle subtended by the scale radius.
Interestingly, we have found that if the dark matter

density profile has a power law steeper than γ ¼ 4=3 (an
example is the Moore profile), then the rate of Sommerfeld-
enhanced annihilation in the Coulomb limit diverges at the
core. In a specific particle physics model, one expects that
the 1=v Sommerfeld enhancement in the Coulomb limit
will not be valid at arbitrarily small velocities, unless the

particle mediating dark matter self-interactions is truly
massless. It is often assumed that this cutoff occurs at
velocities which are negligible, but if the profile is steep
enough, then this effect cannot be ignored. Moreover, if the
dark matter annihilation rate at the core is sufficiently large,
then the effect of annihilation on the dark matter distribu-
tion also cannot be ignored. It would be interesting to
consider Sommerfeld-enhanced annihilation in the very
cuspy limit in more detail.
As we have seen, one would need excellent angular

resolution to robustly distinguish the dark matter velocity
dependence of a single dark matter subhalo (for recent
work on determining the velocity dependence using an
ensemble of subhalos, see, for example, [36,37]). The
Galactic Center is a larger target, and it would be interesting
to perform a similar analysis for that case. One important
difference, in that case, is that there is a large baryonic
contribution to the gravitational potential, which would
affect the dark matter velocity distribution.
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