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We present a search for gravitational waves from the coalescence of binaries which contain at least one
subsolar-mass component using data from the LIGO and Virgo observatories through the completion of
their third observing run. The observation of a merger with a component below 1 M⊙ would be a clear sign
of either new physics or the existence of a primordial black hole population; these black holes could also
contribute to the dark matter distribution. Our search targets binaries where the primary has mass M1

between 0.1 and 100 M⊙ and the secondary has mass M2 from 0.1 to 1 M⊙ for M1 < 20 M⊙ and 0.01 to
1 M⊙ for M1 ≥ 20 M⊙. Sources with M1 < 7 M⊙, M2 > 0.5 M⊙ are also allowed to have orbital
eccentricity up to e10 ∼ 0.3. This search region covers from comparable to extreme mass ratio sources up to
104∶1. We find no statistically convincing candidates and so place new upper limits on the rate of mergers;
our analysis sets the first limits for most subsolar sources with 7M⊙ < M1 < 20 M⊙ and tightens limits by
∼8 × ð1.6×Þ where M1 > 20 M⊙ (M1 < 7 M⊙). Using these limits, we constrain the dark matter
fraction to below 0.3ð0.7Þ% for 1 ð0.5Þ M⊙ black holes assuming a monochromatic mass function.
Due to the high merger rate of primordial black holes beyond the individual source horizon distance, we
also use the lack of an observed stochastic background as a complementary probe to limit the dark matter
fraction. We find that although the limits are, in general, weaker than those from the direct search, they
become comparable at 0.1 M⊙.
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I. INTRODUCTION

Gravitational waves are now regularly observed by the
ground-based observatories Advanced LIGO [1] and
Advanced Virgo [2]. Their accomplishments include more
than 90 observed binary black hole (BBH) mergers [3–5]
and a handful of binary neutron star [6,7] and neutron star–
black hole mergers [8]. These observations provide a
wealth of knowledge for understanding the population of
stellar-mass black holes [9], which may have arisen through
standard stellar evolution [10]. Field evolution [11–14] and
dynamical formation channels [15–20] for compact bina-
ries have been proposed to describe this process. Several
observations, though, have challenged current understand-
ing of stellar formation; these include GW190521 [21,22],
the observation of a merger that includes a black hole that
may be in the “upper mass gap” caused by pair-instability

supernovae [23–25]. Observations also confirm the exist-
ence of compact objects with secondary mass 1 − 3M⊙
(e.g., GW190814) [9,26]. It has been proposed that such
events may be composed of primordial black holes (PBHs)
[27–31]. Studies have also shown that the current pop-
ulation of observed binary black holes is compatible
with and may include contributions from a population of
merging PBHs [32–34].
PBHs are hypothesized to form by direct collapse of

overdensity in the very early Universe [35,36] and have
implications for several astrophysical and cosmological
scenarios [37]; these include seeding the first galaxies and
the formationof supermassive black holes [38,39], explaining
the recent excess power detected by pulsar timing arrays
[40–43], and most intriguingly, as a candidate for dark matter
[36]. A variety of astrophysical observations have put con-
straints on PBH abundance (for a review see, e.g., Ref. [44]).
So far, dark matter has evaded all direct searches based on
experiments on the Earth, including the hunt for weakly
interacting massive particles (WIMPs) [45] and axion dark
matter [46]. The interest in macroscopic dark matter candi-
dates such as PBHs has been revived in light of the discovery
of black hole mergers by LIGO and Virgo [47–49].
Among the gravitational-wave catalog, GW190814 is a

source of particular interest due to its mass ratio (q ∼ 10)
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and low spin [26]. Its spin is consistent with a merger of
primordial origin [28,50]; however, more mundane explan-
ations are also possible [51]. Like GW190814, GW190425
[52], GW191219, GW200105, GW20015 [8], and
GW200210 all contain secondary components with mass
less than 3M⊙ [9], which is lighter than the lower limit
observed from x-ray binaries [53–55]. If there exists a
distribution of binaries composed of PBHs, the population
could be convincingly demonstrated by the observation of a
similar source with a subsolar-mass black hole secondary.
The detection of a subsolar-mass black hole would con-
fidently establish the existence of PBHs [44,56,57] or other
exotic physics able to produce subsolar-mass black holes
[58–60] due to their inability to form through standard
stellar evolution [61,62].
In this paper, we conduct a search to answer if LIGO and

Virgo have observed any mergers that include a subsolar-
mass secondary using the most recent data from the three
completed observation runs (O1–O3) [63,64]. Previous
work has directly searched for comparable mass subso-
lar-mass sources up to the first half of the third observation
run (O3a) [65–70], and high-mass-ratio sources through the
second observation run (O2) [71]. We perform a broad
analysis designed to be sensitive to sources where the
primary massM1 is 0.1 − 100 M⊙ while the secondary can
range from 0.01 − 1M⊙ for M1 > 20M⊙ and 0.1 − 1M⊙
for M1 < 20M⊙. Figure 1 shows the boundaries of this
search and how they compare to previous analyses; our
search encompasses the mass ranges of prior searches and,

for the first time, includes the full range where the primary
mass is 7 − 20 M⊙. The most significant candidate in our
search had a false alarm rate of ∼1 per 1.8 years. Due to the
time searched, we consider this a null observation. With the
inclusion of the most recent data, our limits on the rate of
mergers are ∼8 times more stringent than our prior high-
mass-ratio search [71] and 1.6 times the comparable mass
search [65,66], which only included up to O2 and O3a,
respectively. We find that the merger rate of 0.5–0.5 (1–1)
M⊙ binaries is <4400ð700Þ Gpc−3 yr−1, and for 1−20M⊙
sources it is <65 Gpc−3 yr−1.
Our nondetection constrains astrophysical population

models which predict the binary PBH merger rate. For a
fiducial monochromatic mass population, we find that the
dark matter mass fraction of PBHs is ≤ 6%ð0.3%Þ for
component mass 0.1ð1ÞM⊙. For a two-point mass function
where the primary mass is fixed to be 37M⊙ (approx-
imately the average value for all detections), the mass
fraction is ≤ 3%ð0.03%Þ for secondary mass 0.01ð1ÞM⊙.
Because the stochastic gravitational-wave background
[72–74] provides information about the population of
unresolved, high-redshift sources and the PBH merger rate
increases with redshift beyond the detection horizon for
individual sources, we also use the nondetection of a
stochastic background in O3 data [75] to infer additional
constraints.

II. SUBSOLAR-MASS SEARCH RESULTS

Our search is conducted using the compact-binary
analysis included in the open-source PyCBC toolkit [76].
The analysis identifies candidates [77–79], checks for
consistency between the data and astrophysical sources
[80–82], and assesses each candidate’s statistical signifi-
cance. Our analysis targets the parameter space shown
in Fig. 1 and is configured similarly to our previously
conducted analyses for comparable mass sources in
Refs. [65,66] and high-mass-ratio binaries in Ref. [71].
To detect sources, our matched-filter-based analysis

requires a model of the expected gravitational-wave signal.
We model the signal using the TaylorF2 waveform template
derived from the post-Newtonian expansion for noneccen-
tric sources [83–86] where M1 < 7M⊙ and EOBNRv2
[87], which includes a model of the merger and ringdown
phase of the signal for higher masses, elsewhere. We use
TaylorF2e [88–90] to model eccentric sources up to e10 ∼
0.3 where 0.5M⊙ < M1 < 7M⊙, M2 > 0.5M⊙ and e10 is
the binary eccentricity at a reference gravitational-wave
frequency of 10 Hz. Our template models only include the
dominant mode of the gravitational-wave signal. A discrete
set of template waveforms is selected using a stochastic
placement algorithm [91] to ensure that the signal-to-noise
ratio (SNR) loss due to solely template bank density is
3%–5% on average. To control for computational cost, the
search analyzes data from a minimum of 20 Hz, but this
frequency is raised independently for each template to

FIG. 1. Primary and secondary (redshifted) masses of the
sources searched by our analysis (orange), 4-OGC/GWTC-3
(blue) [3,4], and the subsolar-mass LIGO-Virgo-KAGRA Col-
laboration (LVK) search (blue dotted) [67]. We show boundaries
where our search also includes sources with eccentricity up to 0.3
(black dashed), along with the boundaries of our prior compa-
rable mass (green dashed) [65,66] and high-mass-ratio (orange
dashed) searches [71]. For comparison, we show the masses of
reported gravitational-wave sources closest to our search region
(yellow stars); if any of these is primordial in origin, the
population may extend into our search region.
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ensure its duration is no more than 512 s whereM1 < 7M⊙
and 60 s everywhere else; in the most extreme cases this
causes an additional loss in SNR of up to ∼30%.
The public LIGO and Virgo data set now contains data

from all three observing runs through 2021, which amounts
to 1.2 years of multidetector time [63,64]. Our analysis
finds no convincing gravitational-wave detections; the
most significant candidate has a false alarm rate of 1 per
1.8 years, which is consistent with a null observation given
the observation time. Using a null detection, we can set an
upper limit at 90% confidence on the rate of mergers
(shown in Fig. 2) as a function of the binary parameters
using

R90ðm1;2Þ ¼
2.3

VTðm1;2Þ
; ð1Þ

where VT is the measured volume-time of the search [92].
We measure the VT of our analysis as a function of the
component masses of a binary by empirically measuring
the response of our analysis to simulated signal popula-
tions. Sources are assumed to have isotropic orientation and
sky location in addition to a uniform distribution in
comoving volume. For comparable mass sources we use
TaylorF2(e) as a source model. ForM1 > 7 where the mass

ratio can be up to 104, we use the EOBNRv2HM model,
which includes subdominant modes of the gravitational-
wave signals [87,93]; this allows us to account for the effect
of neglecting subdominant modes in our search. In addi-
tion, we assume that PBHs will have negligible spin, which
is consistent with the predicted spin distribution [94–98].
For large total mass binaries, M1 þM2 > ∼35 − 80 M⊙;
however, we note that non-negligible spin may be induced
depending on the level of accretion [99].

III. OBSERVATIONAL CONSTRAINTS
ON PRIMORDIAL BLACK HOLE DARK

MATTER CONTRIBUTION

Limits on the observed merger rate can constrain the
dark matter mass fraction of PBHs given a population
model for the binary merger rate. We use the model in
Refs. [48,100–102], which assumes a Poisson spatial
distribution for PBHs when they initially form from large
overdensity collapse in the early Universe. A nearby pair of
black holes form a binary after decoupling from the cosmic
expansion and then inspiral due to gravitational radiation.
Given a general mass distribution PðmÞ, the binary merger
rate in units of Gpc−3 yr−1 is

FIG. 2. The 90% upper limit on the rate of mergers from the null detection in our direct search for compact-binary mergers. Left: upper
limit as a function of chirp mass M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5. For sources with comparable mass components, the search
sensitivity can be approximated as only a function of the chirp mass. The most recent results from our prior analysis (orange dashed) [66]
and the LVK (gray dashed) [67] are shown for reference. Our limits are up to 3 times more constraining than the most recent LVK results,
and have improved by ∼60% over our prior limits. For comparison, a high-mass-ratio system with M1 ¼ 20 is also shown; high-mass-
ratio sources will have reduced sensitivity in comparison to comparable mass at the same chirp mass due to the effect of higher-order
gravitational-wave modes and the merger moving into the sensitive frequency band (20–500 Hz) of the observatories. Right: upper limit
as a function of the secondary mass for a selection of primary masses. Masses as shown in the (redshifted) detector frame; the most
distant detectable source would be a 20 − 1 M⊙ merger at z ∼ 0.1. Our new limits for M1 ¼ 37M⊙ (green solid) have improved by 8
times over the prior state of the art (green dashed) [71]. The one-sigma Monte Carlo statistical uncertainty from the estimation of the
search’s VT is shown with shading.
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Rðf̃PBH; m1=2; tÞ ¼ 3 × 106f̃2PBHð0.7f̃2PBH þ σ2eqÞ−21
74

× ðm1m2Þ 3
37ðm1 þm2Þ3637

× min

�
Pðm1Þ
m1

;
Pðm2Þ
m2

�

×

�
Pðm1Þ
m1

þ Pðm2Þ
m2

��
t
t0

�
−34
37

; ð2Þ

wherem1=2 are in units ofM⊙, t is the cosmic time and t0 is
the age of the Universe, both in units of years, and σeq ¼
0.005 characterizes the variance of density inhomogeneity
from dark matter at the mass density equality era. The
effectivemass fraction is defined as f̃53=37PBH ¼ Sf53=37PBH , where
fPBH is the true mass fraction and the suppression term S
accounts for binary disruption after formation. The PBH
fraction would effectively be f̃ as if there were negligible
disruption. References [103–105] showed that the disrup-
tion by nearby PBH clusters can reduce the merger rate by
orders of magnitude if PBHs account for nearly all dark
matter but becomes negligible when fPBH ≲Oð0.1%Þ.
In this paper we focus on a common fiducial mass

distribution following [65,66,71], where the component
masses are fixed to chosen values. Limits for arbitrary
extended distributions can also be derived from our limits
(see, e.g., Refs. [65,106,107]).

A. Constraints from our direct search

We first use our direct search limits to constrain the dark
matter mass fraction from PBHs. Results are shown in

Fig. 3. In the left panel the PBH mass function is assumed
to be a delta distribution. For 1 and 0.1 M⊙ reference
masses, the fraction of dark matter composed of PBHs
cannot exceed 0.3% and 6%, respectively. The right panel
of Fig. 3 shows constraints where we choose the mass
function to be a two-point delta distribution. We fix f̃PBH ¼
0.3% for the primary mass and constrain the f̃PBH of the
secondary PBH. This choice is motivated by Ref. [34]
which fitted a PBH mass function and abundance with the
current black hole merger observations [3], assuming they
are primordial in origin. We consider five representative
primary component masses 1, 5, 20, 37 (approximately the
average mass of all gravitational-wave events), and 60 M⊙,
and a secondary mass range in [0.01, 1] M⊙. The previous
constraints for M1 ¼ 37 M⊙, which included data only up
to O2, are also shown for comparison. The O3b constraints
improved over our previous results by 1 order of magnitude
due to upgrades of the advanced detectors for O3 and the
longer duration of observation [3,108].

B. Constraints from the stochastic background

In addition to individually resolvable sources, the
incoherent superposition of all binary PBH coalescences
produces a stochastic background of gravitational waves
[111–113]. While the astrophysical binary black hole
merger rate approximately follows the star formation rate
peaking at redshift ∼2 [114], the PBH merger rate gets
higher when redshift increases [48,100]. The search for an
isotropic stochastic gravitational-wave background by the

FIG. 3. Left: 90% upper limits on the fraction of dark matter accounted for by PBHs assuming a delta function mass distribution. The
orange dot-dashed and dashed lines are constraints from our previous direct searches with data through O2 [65] and O3a [66]. The
orange solid line is the result from this work using data from the three observation runs. The blue solid and dashed lines are constraints
from the stochastic background using O3 data. As a comparison, we plot the constraints on the PBH fraction from the microlensing
observation from OGLE [109] and EROS [110]. Right: 90% upper limits on the abundance of PBHs for the secondary black hole
assuming a two-point delta function for mass. To allow consistent comparison with previous work, we follow Ref. [65] to fix the
abundance of the primary mass to be fprimary

PBH ¼ 3 × 10−3, which is obtained by fitting the observed black hole merger population [34].
The solid lines are constraints for different representative primary mass. The dashed line is the prior constraint based on data only
through O2.
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LVK did not find any significant excess energy in their O3
analysis [75]. We investigate the implication of this
nondetection of a stochastic background for the PBH
abundance.
The stochastic background is characterized by

ΩGW ¼ ν

ρc

dρ
dν

; ð3Þ

where dρ is the gravitational-wave energy density in a
frequency bin ½ν; νþ dν�, normalized by critical energy
density for a flat universe ρc. Given the merger rate model
for PBH binaries from Eq. (2), the stochastic background
can be computed as

ΩGW ¼ ν

ρc

Z
Rðz; f̃PBH; m1=2Þ
ð1þ zÞHðzÞ

dEs

dνs
dz; ð4Þ

where HðzÞ is the Hubble parameter at redshift z, and
dEs=dfs is the energy spectrum from a single inspiraling
source evaluated in the source frame. We use the waveform
template IMRPhenomD [115,116] to compute dEs=dfs
and integrate Eq. (4) up to z ¼ 20; the contributions from
higher redshifts can be neglected.
We assume a delta mass distribution for PBH binaries

and have verified that its stochastic background spectrum
follows a power law with slope index 2=3 within the LIGO/
Virgo’s most sensitive frequency band (∼20–100 Hz).
Therefore, we apply the LVK O3 upper limit for a power
law spectrum with index 2=3 to constrain the PBH mass
fraction, where ΩGWðν ¼ 25 HzÞ < 3.4 × 10−9 for a log-
uniform prior on ΩGW and ΩGWðν ¼ 25 HzÞ < 1.2 × 10−8

for a uniform prior [75]. The result is shown in the left
panel of Fig. 3 accompanied by the results from our direct
search. As shown, the constraint is generally weaker than
the direct search by 1 order of magnitude, but it becomes
comparable for 0.1 M⊙ where the individual source search
is less sensitive. The stochastic background from PBH
mergers at high redshift complements the direct search
which only probes the local universe.

IV. CONCLUSIONS

Subsolar-mass black holes would establish the existence
of a population of PBHs [44,56,57] or hint at new physics
outside of the standard model of stellar evolution [58–60].
We have performed a broad search for compact-binary
coalescences where at least one component is less massive
than one solar mass; binary sources span from comparable
mass to extreme mass ratios up to 104. We use our null
detection to set new upper limits on the rate of mergers and
the implied fraction of dark matter composed of PBHs. The
top candidates from our analysis, along with the configu-
ration files necessary to reproduce the search, are available
at Ref. [117].
We have investigated the constraints on PBH abundance

from the nondetection of the direct search for individual
sources and a search for a stochastic background from the
superposition of unresolved sources [75]; these probe
gravitational-wave sources from the local and high redshift
universes, respectively. The observation of binary black
hole mergers at high redshift is a key way to distinguish
primordial from stellar origin because the former can merge
before star formation [118–120].
Assuming a nondetection, we expect that the next

observing run (O4), with expected data available at the
end of 2024, will be able to improve constraints by another
factor of 2 to 4 times [121]. The future direct detection of
subsolar-mass black hole binaries or an excess in the
merger rate at high redshift would give decisive evidence
for PBHs.
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