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Space-based gravitational-wave detectors offer new prospects for probing the interior of white dwarfs in
binary systems through the imprints of tidal effects on the gravitational-wave signal. Some of the binaries
that will be observed could have evolved for long enough for the white dwarfs to be at least partially
crystallized. The apsidal motion constant k2 (also called the second gravitoelectric Love number) of a cold
crystallized white dwarf is computed in full general relativity considering different compositions. The
elasticity of the crystallized core is found to systematically reduce the tidal deformability, especially for
low-mass stars. Fully relativistic results are compared to those obtained in Newtonian gravity. It is shown
that the relativistic correction to the observable tidal deformability k2R5 (where R is the stellar radius) is
negligible for low-mass white dwarfs but becomes increasingly important for more massive white dwarfs.
When approaching the maximum mass, the application of Newtonian theory instead of general relativity
leads to dramatic errors. The case of eccentric binaries, for which the precession of the periastron causes a
frequency splitting of the gravitational-wave signal depending on the apsidal motion constants of the two
stars, is investigated. Future measurements of the precession rate by the Laser Interferometer Space
Antenna, which is planned to be in operation within the next decade, could potentially provide estimates of
the individual masses. It is found that the errors incurred by the neglect of the elasticity of the crystallized
core could be very large, especially for low-mass white dwarfs. Gravitational-wave observations could thus
provide a new way to study the crystallization of white dwarfs.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) from
the mergers of black holes and/or neutron stars by the
LIGO-Virgo Collaboration has opened a new era in
astronomy, offering a completely new way of probing
the physics of these compact objects [1]. The advent of
space-based GW observatories—such as the Laser
Interferometer Space Antenna (LISA) [2], the Deci-hertz
Interferometer Gravitational Wave Observatory [3],
TianQin, and Taiji [4]—will allow the detection of signals
with lower frequencies ranging from 10−4 to 10 Hz emitted
by a variety of different sources, most of which are
expected to be double white dwarfs (WDs) in our
Galaxy. According to population synthesis models, more
than 104 binaries could be individually resolved over the
nominal 4-year duration of the LISA mission [5–8] (see
also Ref. [9]). Among them, eccentric binaries are of
particular interest for probing the structure of WDs and
the properties of dense matter. Eccentric binaries may be
formed through dynamical interactions in globular clusters
[10] or as products of hierarchical triple systems [11]. For
such binaries, tidal forces cause a non-dissipative preces-
sion of the periastron of the orbit. This so-called apsidal
motion could be observable with LISA [12–14]. While in
purely elliptic binaries GW radiation is emitted at multiples

of the orbital frequency (see, e.g., Sec. IV. 1.2 in Ref. [15]),
in the presence of periastron precession each of these
harmonics is split into a triplet with frequencies separated
by _γ=π, where _γ is the apsidal precession rate [12] (a dot is
used to indicate a time derivative). The tidal contribution to
_γ is governed by the quadrupolar apsidal motion constant
k2 (also referred to as the Love number), which in turn is
determined by the internal constitution of WDs. However,
most binaries are expected to be circular and emit mono-
chromatic GWs at twice the orbital frequency. Information
on tidal effects and k2 could still be potentially extracted
from long-term monitoring of such systems [16–19].
Depending on their initial orbital period and eccen-

tricities, the binaries that will be observed by LISA may
have evolved for billions of years since their formation, a
long enough time for the interior of the WDs to have
crystallized at least partially. Predicted and studied inde-
pendently by Kirzhnits [20], Abrikosov [21], and Salpeter
[22], the crystallization of dense matter in the core of WDs
first found observational evidence in 1997 from the
asteroseismological study of BPM 37093 [23] (see, e.g.,
Ref. [24] for more recent developments). Crystallization
was also shown to affect the cooling of a WD [25,26],
but it was only recently that strong observational support
was reported from the analysis of the GAIA data [27].
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The crystallization of WDs is likely to alter their tidal
deformability, which in turn could impact the orbital
motion of binaries and the GW emission. However,
previous studies, including recent calculations of the tidal
deformability [28,29], assumed purely fluid WDs treated in
Newtonian theory.
In this paper, we compute the quadrupolar apsidal

motion constant k2 of WDs in full general relativity
(GR), allowing for the existence of a solid core by adapting
the formalism developed in the neutron-star context
[30–33]. The adopted equation of state is briefly described
in Sec. II. After presenting the general-relativistic formal-
ism in Sec. III, numerical results are discussed in Sec. IV.
All values for the fundamental constants were taken from

NIST CODATA 2018.1 We use the spacetime metric
signature ð−;þ;þ;þÞ.

II. EQUATION OF STATE FOR
A WHITE DWARF

The core of a WD consists of a dense Coulomb plasma of
atomic nuclei coexisting with a relativistic gas of free
electrons. Apart from carbon and oxygen (the primary ashes
of helium burning), the core may contain other nuclei like
helium [34–36], neon, and magnesium [37]. The core of
some WDs might even be made of iron. Iron WDs could be
formed from the explosive ignition of electron-degenerate
oxygen-neon-magnesium cores [38], or from failed-
detonation supernovae [39]. However, observational evi-
dence for the existence of such iron WDs remains elusive
[40–47]. For simplicity, wewill assume that the stellar core is
made of only one type of nuclei with charge number Z and
mass numberA. The core of aWD is generally surroundedby
a helium mantle and a hydrogen envelope. However, their
contribution to the mass of the star cannot exceed ∼1% and
∼0.01%, respectively, to avoid a thermonuclear runaway.We
will ignore these layers here.
Crystallization of the core occurs at a temperature Tm,

approximately given by [48]

Tm ≈ 1.3 × 105Z2

�
175

Γm

��
ρ6
A

�
1=3

K; ð1Þ

where kB is Boltzmann’s constant, Γm ≈ 175 is the
Coulomb coupling parameter at melting (see, e.g.,
Ref. [49] and references therein for a discussion of
corrections), and ρ6 ¼ ρ=106 g cm−3, where ρ is the
mass-energy density. We will consider that the WD has
sufficiently cooled down such that the core has crystallized.
The core of He WDs might form a Bose-Einstein con-
densate instead [50]; however, a crystalline phase is not
excluded either [51]. Because the temperature Tm is much
lower than the electron Fermi temperature, defined by

TFe ¼
μe −mec2

kB
≈ 6.0 × 109

�
Z
A
ρ6

�
1=3

K; ð2Þ

where μe is the electron Fermi energy, me is the electron
mass, and c is the speed of light, electrons are highly
degenerate in the core of a crystallized WD. To a good
approximation, electrons can therefore be treated as a
relativistic Fermi gas. We will neglect the thermal con-
tributions to the thermodynamic potentials.
Since the Coulomb crystal is electrically neutral, the

number density ni of ions is directly determined by the
electron density ne through ni ¼ ne=Z. The mass density is
thus given by

ρN ¼ ne
MðA; ZÞ

Z
; ð3Þ

where the nucleus massMðA; ZÞ (including the rest mass of
Z electrons) can be obtained from the corresponding
tabulated atomic mass excess EðA; ZÞ after subtracting
out the electron binding energy as follows [52]:

MðA; ZÞ ¼ Amu þ EðA; ZÞ þ 1.44381 × 10−5Z2.39

þ 1.55468 × 10−12Z5.35; ð4Þ

where mu is the unified atomic mass unit. The baryon
number density is given by

n ¼ A
Z
ne ¼ Ani: ð5Þ

Taking into account lattice, electron exchange, and
screening corrections, the mass-energy density ρ and
pressure P of the one-component Coulomb crystal are
approximately given, respectively, by [53]

ρ¼ ρNþ
me

8π2λ3e

h
xrð1þ2x2rÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2r

q
− log

�
xrþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2r

q �i

×

�
1þ α

2π

�
−nemeþCM

�
4π

3

�
1=3αℏ

c
n4=3e Z2=3

eff ; ð6Þ

P ¼ mec2

8π2λ3e

�
xr

�
2

3
x2r − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2r

q
þ log

�
xr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2r

q ��

×

�
1þ α

2π

�
þCM

3

�
4π

3

�
1=3

αℏcn4=3e Z2=3
eff ; ð7Þ

where xr ¼ λeke is a dimensionless relativity parameter
with the electron Compton wavelength λe ¼ ℏ=ðmecÞ and
electron Fermi wave number ke ¼ ð3π2neÞ1=3, ℏ is the
reduced Planck constant, α is the fine-structure constant,
CM is the Madelung constant, and

Zeff ≡ ZσðZÞ3=2 ð8Þ1https://physics.nist.gov/cuu/Constants/.
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with the dimensionless function

σðZÞ≡ 1þ α
124=3

35π1=3
ð1 − 1.1866Z−0.267 þ 0.27Z−1ÞZ2=3:

ð9Þ

The introduction of an effective nuclear charge Zeff is to
approximately account for electron charge screening effects,
as discussed in Ref. [53]. Considering that ions are arranged
in a body-centered cubic lattice, as predicted by ab initio
density functional calculations for carbon [54], theMadelung
constant is given by CM ¼ −0.895929255682 [55].
At the scales of interest for the global description of tidal

deformations, we assume that each stellar matter element
consists of an isotropic polycrystalline solid. The elastic
properties are thus characterized by a single parameter, the
effective shear modulus, given by [56,57]

μ̃ ¼ 0.119457234091

�
4π

3

�
1=3

αℏcZ2=3n4=3e : ð10Þ

This value, obtained from a Voigt average, represents an
upper limit [58].

III. RELATIVISTIC TIDAL DEFORMATIONS
OF AN ELASTIC STAR

A WD in a close orbit with a compact companion is
tidally deformed by the mutual gravitational interactions.
Assuming internal motions are much faster than orbital
motions (adiabatic approximation), the static external
quadrupolar tidal field Eij induces a nonzero quadrupolar
mass moment Qij in the star, which is given to linear order
by [59]

Qij ¼
2

3G
k2R5Eij; ð11Þ

where G is the universal gravitational constant, R is the
stellar radius, and the second gravitoelectric Love number
k2 is a dimensionless parameter characterizing the tidal
response of the star.

A. Background configuration

During most of the binary evolution, tidal effects remain
negligible (see, e.g., Ref. [60] for a review). They come into
play only during the last stage (observable by space-based
gravitational-wave detectors) after a time presumably long
enough for the WDs to have crystallized, as will be further
discussed in Sec. IV D. Considering that the WDs are
nonrotating, we can thus reasonably assume that their solid
interior is not strained when tidal interactions start to
become significant. The stress-energy tensor of a fully
relaxed solid star takes the same form as for a perfect fluid
star,

Tν
μ ¼ ðPþ ρc2Þuμuν þ Pδνμ; ð12Þ

where uμ denotes the fluid four-velocity. The spacetime
metric can be written as

gμν ¼ diagf−eν; eλ; r2; r2 sin2 θg; ð13Þ

where ν ¼ νðrÞ and λ ¼ λðrÞ depend only on the radial
coordinate r. Given the normalization relation uμuμ ¼ −1,
the four-velocity of the fluid inside the static star and the
stress-energy tensor are explicitly given by

uμ ¼ ðe−ν=2; 0; 0; 0Þ ð14Þ

and

Tν
μ ¼ diagf−ρc2; P; P; Pg; ð15Þ

respectively. Setting

eλ ¼
�
1 −

2Gm
c2r

�
−1
; ð16Þ

solving the Einstein field equations leads to the Tolman-
Oppenheimer-Volkoff (TOV) equations [61,62],

m0 ¼ 4πr2ρ; ð17aÞ

P0 ¼ −
1

2
ðPþ ρc2Þν0; ð17bÞ

where the prime denotes a derivative with respect to r and
mðrÞ represents the gravitational mass enclosed in a sphere
of radius r. The metric potentials are given by

ν0 ¼ eλ
�
2Gm
c2r2

þ 8πr
G
c4

P

�
; ð17cÞ

λ0 ¼ eλ
�
−
2Gm
c2r2

þ 8πr
G
c2

ρ

�
: ð17dÞ

The radial coordinate R delimiting the stellar surface and
defining the circumferential radius of the star is determined
by the condition PðRÞ ¼ 0. The gravitational mass of the
star is then defined as M ¼ mðRÞ.
In the Newtonian limit, the TOVequations reduce to the

classical hydrostatic equilibrium equations:

m0 ¼ 4πr2ρN; ð18aÞ

P0 ¼ −
GmρN
r2

; ð18bÞ

with the mass density ρN given by Eq. (3).
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B. Tidal perturbations

We will now review the formalism to determine static
gravitoelectric (even-parity) tidal perturbations following
the analogous study of Ref. [32] in the neutron-star context.
Since we consider an unstrained background, the stellar

elasticity manifests itself only in the perturbed configura-
tion. To solve the elastic problem, we have to consider the
perturbations of the total stress-energy tensor obtained by
adding the contribution δΠν

μ of the shear tensor to variations
of the perfect-fluid stress-energy tensor (12). The perturbed
Einstein field equations thus become

δGν
μ ¼

8πG
c4

δTν
μtot ¼

8πG
c4

ðδTν
μ þ δΠν

μÞ: ð19Þ

From Eq. (12), the perturbed perfect-fluid stress-energy
tensor is given by

δTν
μ ¼ ðδPþ δρc2Þuμuν þ ðPþ ρc2Þðδuμuν þ uμδuνÞ

þ δPδνμ: ð20Þ

Since the equation of state is barotropic, i.e., the mass-
energy density (6) and pressure (7) are functions of the
baryon number density only, their Euler variations are
simply given by

δP ¼ dP
dρ

δρ; δρ ¼ dρ
dn

δn; ð21Þ

where c2 dρ
dn ¼ μ is the baryon chemical potential, and

dP
dρ ¼ c2s is the squared speed of sound. The latter relation
implies in particular that

δP ¼ c2sδρ: ð22Þ

The perturbed perfect-fluid stress-energy tensor is thus
explicitly given by

δTν
μ ¼ diag

	
−
c2

c2s
; 1; 1; 1



δP: ð23Þ

In the Regge-Wheeler gauge [63], the static Eulerian
perturbation of the metric is given by

δgμν ≡ hμν ¼ diagfeνH0; eλH2; r2K;r2 sin2 θKgYlm; ð24Þ

where H0 ¼ H0ðrÞ, H2 ¼ H2ðrÞ, and K ¼ KðrÞ are radial
functions describing the perturbed spacetime and Ylm ¼
Ylmðθ;ϕÞ is a spherical harmonic. Note that, in the
following, all of the perturbed quantities will be factored
into a radial and an angular part in a similar way. The small
changes in the coordinates are described by

r → rþ ξr; θ → θ þ ξθ; ϕ → ϕþ ξϕ; ð25Þ

where the components of the static displacement vector ξμ

are written as

ξμ ¼
�
0;
W
r
;
V
r2

∂

∂θ
;

V
r2 sin2 θ

∂

∂ϕ

�
Ylm; ð26Þ

with the functionsW ¼ WðrÞ and V ¼ VðrÞ describing the
radial and tangential displacements, respectively.
The Lagrangian variation of the fluid four-velocity is

given by [64]

Δuμ ¼ 1

2
uμuνuσΔgνσ: ð27Þ

Since the Lagrangian variations are related to the Eulerian
ones through Δ ¼ δþ Lξ, where Lξ represents the Lie
derivative along ξμ, the Lagrangian variation of the metric
reads Δgμν ¼ hμν þ Lξgμν, and the Eulerian variation of the
fluid four-velocity is thus given by

δuμ ¼ 1

2
uμuνuσhνσ þ⊥μ

νLuξ
ν; ð28Þ

where the orthogonal projector to the fluid flow is
⊥μν ¼ gμν þ uμuν, and Lu represents the Lie derivative
along the fluid four-velocity. Its explicit components are

δuμ ¼
�
e−ν=2

2
H0; 0; 0; 0

�
Ylm: ð29Þ

The Lagrangian variations of the pressure and mass-energy
density are simply given by

ΔP ¼ dP
dρ

Δρ; Δρ ¼ dρ
dn

Δn; ð30Þ

and the Lagrangian variation of the density n is [64]

Δn ¼ −
1

2
n⊥μνΔgμν; ð31Þ

which explicitly reads

Δn ¼ n
r2

�
lðlþ 1ÞV − rW0

−
�
1þ rλ0

2

�
W − r2

�
K þH2

2

��
Ylm: ð32Þ

Finally, using the Gibbs-Duhem relation ρc2 þ P ¼ μn
together with Eq. (32) inserted into Eqs. (30) yields

ΔP ¼ ðPþ ρc2Þc2s
r2c2

�
lðlþ 1ÞV − rW0

−
�
1þ rλ0

2

�
W − r2

�
K þH2

2

��
Ylm: ð33Þ
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From the relation between the Lagrangian and Eulerian
variations and using the TOV equation (17b) for the
pressure, we also have

ΔP ¼
�
δP −

Pþ ρc2

2r
ν0W

�
Ylm; ð34Þ

where here and in the following δP ¼ δPðrÞ denotes the
radial part of the perturbed pressure [with the full pertur-
bation being given by δPðrÞYlmðθ;ϕÞ]. The combination
of the two latter relations will be useful to close the system
of differential equations for the elastic problem.
The perturbed shear tensor is given by [65]

δΠν
μ ¼ −μ̃

�
⊥σ

μ⊥νρ −
1

3
⊥ν

μ⊥σρ

�
Δgσρ: ð35Þ

As in Refs. [30,32], we define the dimensionless radial and
tangential traction variables Tr ¼ TrðrÞ and Tθ ¼ TθðrÞ as
follows:

TrYlm ¼ G
c4

r2δΠr
r

¼ −
2

3

G
c4

μ̃½2rW0 þ ðrλ0 − 4ÞW þ lðlþ 1ÞV
þ r2ðH2 − KÞ�Ylm; ð36Þ

Tθ
∂Ylm

∂θ
¼ G

c4
r3δΠθ

r

¼ −
G
c4

μ̃ðrV 0 − 2V þ eλWÞ ∂Ylm

∂θ
: ð37Þ

With these definitions, the nonzero components of the
perturbed shear tensor are

δΠr
r ¼

c4

G
Tr

r2
Ylm; ð38aÞ

δΠθ
r ¼

eλ

r2
δΠr

θ ¼
c4

G
Tθ

r3
∂Ylm

∂θ
; ð38bÞ

δΠϕ
r ¼ eλ

r2 sin2 θ
δΠr

ϕ ¼ c4

G
Tθ

r3 sin2 θ
∂Ylm

∂ϕ
; ð38cÞ

δΠθ
θ ¼ −

	
μ̃V
r2

�
lðlþ 1Þ þ 2

∂
2

∂θ2

�
þ 1

2

c4

G
Tr

r2



Ylm; ð38dÞ

δΠϕ
ϕ ¼

	
μ̃V
r2

�
lðlþ 1Þ þ 2

∂
2

∂θ2

�
−
1

2

c4

G
Tr

r2



Ylm; ð38eÞ

δΠθ
ϕ ¼ sin2 θδΠϕ

θ ¼ 2μ̃V
r2

�
cot θ

∂

∂ϕ
−

∂
2

∂θ∂ϕ

�
Ylm: ð38fÞ

Combining these with the perturbed Einstein field
equations (19) leads to the following relation:

H2 ¼ H0 þ 32π
G
c4

μ̃V: ð39Þ

The definitions of the traction variables (36) and (37)
together with Eq. (39) lead to two differential equations for
V and W:

V 0 ¼ 2

r
V −

eλ

r
W −

c4

G
Tθ

rμ̃
; ð40aÞ

W0 ¼
�
2

r
−
λ0

2

�
W þ r

2
ðK −H0Þ −

3

4

c4

G
Tr

rμ̃

−
�
16π

G
c4

rμ̃þ lðlþ 1Þ
2r

�
V: ð40bÞ

Defining

H0
0 ¼ β; ð40cÞ

other appropriate combinations of the Einstein field equa-
tions lead to the following differential equations for K, Tθ,
and β:

K0 ¼ β þ ν0H0 þ
16π

r
G
c4

ð2þ rν0Þμ̃V −
16π

r
Tθ; ð40dÞ

T 0
θ ¼

�
λ0 − ν0

2
−
1

r

�
Tθ − reλ

G
c4

δPþ 1

16π
ðν0 þ λ0ÞH0

þ G
c4

eλ

r
½2 − lðlþ 1Þ�μ̃V þ eλ

2r
Tr; ð40eÞ

β0 ¼
�
λ0− ν0

2
−
2

r

�
β

−
	
2

r2
− ½2þlðlþ 1Þ�e

λ

r2
þ 3ν0 þ λ0

r
− ν02



H0

− 8π
G
c4

�
eλ
�
3þ c2

c2s

�
δPþ 2ν0μ̃0V

þ 8

�
1− eλ

r2
þ 3ν0 þ λ0

2r
−
ν02

4

�
μ̃V − 2

eλ

r
ν0μ̃W

�
: ð40fÞ

They also lead to the following algebraic relation involving
δP and Tr:

δP ¼ 1

16πr2eλ
c4

G

	
r2ν0β þ ½lðlþ 1Þeλ − 2þ r2ν02�H0

þ ½2 − lðlþ 1Þ�eλK þ 16π
G
c4

r2ν02μ̃V

− 16πð2þ rν0ÞTθ − 16πeλTr



: ð40gÞ
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To close the system, we need one more relation involving
δP and Tr. To this end, we combine Eqs. (33) and (34),
using Eqs. (39) and (40b):

Tr ¼
4

3

G
c4

μ̃

�
r2c2

ðPþ ρc2Þc2s
δPþ 3

2
r2K

−
3

2
lðlþ 1ÞV þ

�
3 −

rν0c2

2c2s

�
W

�
: ð40hÞ

The system of equations (40a)–(40h) fully determines the
elastic perturbations. Note that all of our equations fully
agree with Eqs. (30a)–(30g) of Ref. [32].
In the purely perfect fluid case, combining Eqs. (40e)

and (40f) and setting μ̃ ¼ 0 leads to the following pertur-
bation equation for β:

β0 ¼
�
λ0 − ν0

2
−
2

r

�
β −

	
2

r2
− ½2þ lðlþ 1Þ� e

λ

r2

þ 9ν0 þ 5λ0

2r
þ ðν0 þ λ0Þc2

2rc2s
− ν02



H0: ð41Þ

This equation coincides with Eq. (15) of Ref. [59] using the
definition (40c). In the Newtonian limit, Eq. (41) reduces to

β0 ¼ −
2

r
β −

�
4πGρN
c2s

−
lðlþ 1Þ

r2

�
H0: ð42Þ

C. Tidal Love number and deformability

In our analysis, we will focus on the case l ¼ 2.
Introducing the dimensionless quantity

y ¼ RβðRÞ
H0ðRÞ

ð43Þ

evaluated at the surface of the star, the second gravito-
electric Love number is given by [59]

k2¼
8

5
C5ð1−2CÞ2½2ðy−1ÞC−yþ2�

×f2C½4ðyþ1ÞC4þ2ð3y−2ÞC3

−2ð11y−13ÞC2þ3ð5y−8ÞC−3ðy−2Þ�
þ3ð1−2CÞ2½2ðy−1ÞC−yþ2� logð1−2CÞg−1; ð44Þ

where C ¼ GM
c2R is the compactness parameter. The observ-

able tidal deformability parameter is related to the Love
number through

Λ2 ¼
2

3
k2C−5: ð45Þ

The Newtonian limit C → 0 of Eq. (44) yields

kN2 ¼ 2 − y
2yþ 6

: ð46Þ

As shown in Appendix B, kN2 coincides with the so-called
apsidal-motion constant discussed in previous studies. The
Love number characterizes the distribution of matter inside
the star: the more matter is concentrated, the lower kN2 is.
The highest possible value is thus reached for an incom-
pressible star and is given by kN2 ¼ 3=4 [66].

D. Boundary conditions

Unlike neutron stars considered in Refs. [32,33] and
made of an elastic crust on top of a liquid core, partially
crystallized WDs are expected to have a solid core
surrounded by some fluid layers. Following the approach
of Refs. [32,33], we present here the boundary conditions
that must be applied inside a WD: at the center, at the
interface between the elastic and fluid regions, as well as at
the surface.

1. Conditions at the stellar center

To solve the system of equations describing the
structure of the star and the tidal perturbations presented
in Secs. III A and III B, we need to specify the density ρc,
pressure Pc, and shear modulus μ̃c at the center of the star.
Since the equations are singular in r ¼ 0 due to the use of
Schwarzschild coordinates (terms in 1=r), we expand all
fields FðrÞ in series of the form

FðrÞ ¼ rs½Fð0Þ þ Fð2Þr2 þOðr4Þ�. ð47Þ

Note that first-order terms in this expansion vanish due to
the symmetry of the field equations. Explicit forms of the
coefficients Fð0Þ and Fð2Þ and the exponents s are given in
Appendix A. In the elastic case, we are left with three
undetermined coefficients: one is an arbitrary amplitude,
which cancels in the expression for the Love number (the
tidal deformability does not depend on the amplitude of the
perturbation), while the two others are to be determined
using the boundary conditions at the surface of the elastic
region.

2. Conditions at interfaces

At an elastic-fluid interface inside the star or at an elastic-
vacuum interface (the stellar surface), the shear modulus μ̃
varies discontinuously. There can also exist density dis-
continuities. In particular, the vanishing of the pressure at
the surface of the star entails a finite density and a finite
shear modulus, as can be seen from Eqs. (7) and (10). We
shall thus consider generic boundary conditions allowing
for discontinuities of both μ̃ and ρ.
Following Ref. [32], imposing the continuity of the

induced three-metric on the interface as well as the
continuity of the extrinsic curvature, and making use of
the appropriate Einstein field equations (40) lead to the
following conditions:
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½Tθ� ¼0;

�
Trþ

G
c4
r2δP−

1

2

G
c2
ν0rρW

�
¼ 0; ½W� ¼ 0;

½K� ¼ 0; ½H0� ¼ 0;

�
βþ16π

G
c4
ν0μ̃V−8π

G
c2
eλ

r
ρW

�
¼ 0;

ð48Þ

where we have introduced the notation ½F� ¼
limϵ→0½Fðrþ ϵÞ − Fðr − ϵÞ�. If the WD is only partially
crystallized up to some radial coordinate r ¼ Rc, the
relevant associated boundary conditions read explicitly

T−
θ ¼0;

G
c4
R2
cðδPþ−δP−Þ−T−

r −
1

2

G
c2
ν0ðRcÞRcðρþ−ρ−ÞWðRcÞ¼0;

ð49Þ

Hþ
0 ¼H−

0 ;

βþ¼β−þ16π
G
c4
ν0ðRcÞμ̃−V−þ8π

G
c2
eλðRcÞ

Rc
ðρþ−ρ−ÞWðRcÞ;

ð50Þ

where the “−” (“þ”) refers to a quantity calculated at
r ¼ Rc from the inner elastic (outer fluid) region. The same
set of conditions can be applied at the surface of the star
with ρþ ¼ 0 and δPþ ¼ 0.

IV. NUMERICAL RESULTS

A. Numerical computations

1. Numerical scheme

We have solved the system of first-order differential
equations (40) together with Eqs. (17) using the classical
fourth-order Runge-Kutta method by integrating from the
center of the star to the top of the elastic region. To avoid
singularities, we have begun the integration at a small radial
coordinate r ¼ ϵ with initial conditions given by Eq. (47).
Since the initial conditions depend on three unknown

coefficients Hð0Þ
0 ; Vð0Þ, and Vð2Þ, we have generated three

linearly independent solutions by setting ðHð0Þ
0 ; Vð0Þ; Vð2ÞÞ ¼

ð1; 0; 0Þ, (0,1,0), and (0,0,1), respectively. When superpos-
ing the solutions, one of the constants must be left arbitrary
(arbitrary amplitude of the perturbation), and the two others
are to be determined using the boundary conditions on the
tractions (49). If a fluid layer is present on top of the elastic
core, the two remaining boundary conditions (50) are to be
used to pursue the integration to the stellar surface and to
calculate the quantity yðRÞ [Eq. (43)]; if not, these latter
conditions are directly used to calculate yðRÞ. Note that the
only density discontinuity that we consider here is at the
stellar surface, recalling that the surface density is taken such
that the pressure vanishes in Eq. (7).

2. Tests of our computer code

We have tested the precision of our computer code by
considering purely fluid stars (with μ̃ ¼ 0 everywhere) in
Newtonian gravity using polytropic equations of state of
the form (where K and Γ are constants)

P ¼ KρΓN; ð51Þ

for which solutions of the hydrostatic equilibrium equa-
tions (18a)–(18b) are known [67]. Love numbers kNl (also
called apsidal constants of motion; see Appendix B) were
calculated for different values of the adiabatic index Γ in
Ref. [66], recalling that physical solutions only exist
for Γ > 6=5.
Given the density ρc at the center of the star, the mass and

radius are expressible as [67]

M ¼ 4π

�
ΓK

4πGðΓ − 1Þ
�
3=2

ρð3Γ−4Þ=2c ξ21jθ0ðϱ1Þj; ð52Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓK
4πGðΓ − 1Þ

s
ρðΓ−2Þ=2c ϱ1; ð53Þ

where θðϱÞ is the solution of the Lane-Emden equation

1

ϱ2
d
dϱ

ϱ2
dθ
dϱ

¼ −θ1=ðΓ−1Þ; ð54Þ

with θð0Þ ¼ 1 and θ0ð0Þ ¼ 0 (the prime denoting here a
derivative with respect to ϱ), and ϱ1 is defined by
θðϱ1Þ ¼ 0. Solutions for different values of Γ can be found
in Ref. [67]. Love numbers kNl are given by [66]

kNl ¼ lþ 1 − ηðϱ1Þ
2lþ 2ηðϱ1Þ

; ð55Þ

where ηðϱÞ is the solution of the Clairaut-Radau equation

ϱη0 þ ηðη− 1Þ−lðlþ 1Þþ 2ϱ
θ1=ðΓ−1Þ

jθ0j ðηþ 1Þ ¼ 0; ð56Þ

subject to the boundary condition ηð0Þ ¼ l − 2. It should
be noted that the functions ηðϱÞ and θðϱÞ depend on the
equation of state only through the adiabatic index Γ but are
independent of K. Moreover, they do not depend on ρc.
As a consequence, Love numbers kNl are uniquely deter-
mined by l and Γ and take the same values for all stars
irrespective of their mass. For the special case Γ ¼ 2,
Eq. (56) for l ¼ 2 can be recast into a Bessel equation and
the Love number is given by [59]

kN2 ¼ 15

2π2
−
1

2
¼ 0.259908877… ð57Þ
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With our code, we have numerically solved Eqs. (18) and
(42), setting Γ ¼ 2 and using some arbitrary value for K.
Our numerical result for the Love number (46) agrees with
the exact value (57) up to nine significant digits.
We have also compared our numerical results with those

obtained when treating electrons in the ultrarelativistic
regime xr ≫ 1, since in this case the equation of state
(7) reduces to the polytropic form (51) with Γ ¼ 4=3 and

K ¼ K0

�
1þ α

2π
þ α

4CM

3

�
4

9π

�
1=3

Z2=3
eff

�
; ð58Þ

where

K0 ¼
ℏcð3π2Þ1=3

4

�
Z

MðA; ZÞ
�

4=3
ð59Þ

is the constant obtained in the original Chandrasekhar
model [68] when considering an ideal electron Fermi gas
ignoring electron exchange, as well as electrostatic and
polarization corrections. The results obtained from our
code agree with the mass and radius given by Eqs. (52) and
(53) using the well-known solution ϱ1 ≃ 6.89685 and
ϱ21jθ0ðϱ1Þj ≃ 2.01824, up to six significant digits at least.
Finally, to assess the numerical stability of our elastic

computer code, we have checked that the results for the
Love number are independent of the chosen value for the
lower radial coordinate ϵ in the integration, provided
the value of ϵ does not exceed ∼1% of the stellar radius
R. Moreover, we have found that the results converge to the
perfect-fluid values when the shear modulus goes to zero.

B. Effects of crystallization on the tidal deformability

To assess the impact of crystallization on the tidal
deformability of a WD, we compare results obtained in
full GR for stars that are either entirely solid or entirely
fluid.
In Figs. 1–6, we show the second gravitoelectric tidal

Love number k2 as a function of the WD mass M with and
without elasticity and the corresponding relative deviation,
for WDs made of 4He, 12C, 16O, 20Ne, 24Mg, and 56Fe,
respectively. First, we can see that, regardless of the
composition and the mass, the inclusion of the elasticity
of dense matter systematically reduces the Love number,
similarly with the results obtained in neutron stars [30–33].
For a given mass, the relative difference in k2 between
the elastic and fluid models increases with the atomic
number Z. This is not surprising as the shear modulus
varies as ∼Z2=3; see Eq. (10). The effect of crystallization is
then the least (most) pronounced for helium (iron) WDs; as
an example, for a 0.3 M⊙ star, the relative differences are
about 2.1%, 5.5%, and 11% for helium, oxygen, and iron
WDs, respectively. For a given composition, the less
massive the star, the more significant the effects of
elasticity. Note that the relative impact of crystallization

on the observable tidal coefficient Λ2 ∝ k2R5 is the same as
on k2 since elasticity only enters through the tidal pertur-
bations; R refers to the radius of the unperturbed (spherical)
star and therefore remains unchanged. Crystallization could
thus be important when analyzing the GW signals from
WD binaries that will be observed by space-based GW
detectors.
To conclude this section, let us now explore the situation

in which the star is not entirely crystallized, i.e., a fluid
layer is present on top of the solid core. In Fig. 7, we show

FIG. 1. Top panel: second gravitoelectric Love number k2
as a function of the WD mass M with and without elasticity,
for a WD made of 4He. Bottom panel: relative deviation
ðkfluid2 − kelastic2 Þ=kelastic2 .

FIG. 2. Same as Fig. 1, for a WD made of 12C.
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the Love number k2 for a typical 0.45 M⊙ oxygen WD,
varying the mass-energy density ρinterface delimiting the
interface between the two regions. In this case, k2 (and
therefore Λ2) remains unchanged if the transition lies at
densities below ∼103 g cm−3, corresponding to a very thin
fluid layer with a thickness of about 80 km, as can be seen
in Fig. 8. On the other hand, k2 is essentially given by that
of a purely fluid star if only the innermost region of the core
down to about 106 g cm−3 is solid. Similar conclusions hold
for different compositions and masses. This shows that the
actual tidal deformability of binary WDs will depend on the
extent of the crystallization region.

C. Deviations between Newtonian theory
and general relativity

In this section, we compare our general-relativistic
results with those obtained for purely fluid stars in
Newtonian gravity. Note that GR changes not only k2
but also R, as shown in Fig. 9 for different WDs
compositions and masses. For low-mass WDs, the devia-
tions for both k2 and the observable combination k2R5 are
small, as one can see in Figs. 10 and 11, respectively. The
relative error on k2R5 for a typical oxygen 0.45 M⊙ WD is
0.48%, which is about an order of magnitude smaller than
the deviation due to elasticity (4.3%). On the other hand,

FIG. 3. Same as Fig. 1, for a WD made of 16O.

FIG. 4. Same as Fig. 1, for a WD made of 20Ne.

FIG. 5. Same as Fig. 1, for a WD made of 24Mg.

FIG. 6. Same as Fig. 1, for a WD made of 56Fe.
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the deviations increase with increasing mass. Although the
separate corrections for k2 and R still lie within ∼10% for
WDs with a mass M ≳ 1 M⊙, that for the observable tidal
deformability exceeds ∼10% and reaches ∼100% at the
Chandrasekhar limit. Therefore, calculations in full GR
become essential for the most massive WDs.
To conclude this section, we have compared our numeri-

cal results for kN2 calculated with the full equation of state
(7) for WDs at the Chandrasekhar limit with different
compositions. Since the polytropic approximation (51)
with Γ ¼ 4=3 becomes more accurate with increasing
density, we expect kN2 to be independent of the mass and

internal composition of the WD, and to converge towards
the universal value kN2 ≃ 0.01444298 [66], as shown in
Sec. IVA 2. We have checked that this is indeed the case
with a precision of at least five significant digits.

D. Eccentric binaries

In this section, we focus on eccentric WD binary
systems, which are of particular interest to extract the
second gravitoelectric Love number from the GW signal.
Indeed, the precession rate of the periastron could be
measured through the frequency splitting of the signal,
as discussed in Sec. I. The total apsidal precession rate _γ of
the binary is the sum of different contributions:

FIG. 7. Second gravitoelectric Love number k2 as a function of
the mass-energy density ρinterface at the interface between the
elastic and fluid regions, for a 0.45 M⊙ WD made of 16O. The
horizontal dotted lines correspond to the two extreme cases where
the star is either fully crystallized (elastic) or fully fluid.

FIG. 8. Mass-energy density ρ as a function of the radial
coordinate r, for a 0.45 M⊙ WD made of 16O.

FIG. 9. Relative deviation between the star radius R calculated
in full GR and in Newtonian theory ðRN − RGRÞ=RGR, as a
function of the WD mass M for different compositions.

FIG. 10. Relative deviation between the Love number calcu-
lated in full GR and in Newtonian theory ðkN2 − kGR2 Þ=kGR2 , as a
function of the WD mass M for different compositions.
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_γ ¼ _γGR þ
X
i¼1;2

_γrot;i þ _γtid;i; ð60Þ

where _γGR comes from GR, _γrot;i from the rotation, and _γtid;i
from the tidal effects in each star, and the index i ¼ 1, 2 is
used to label the individual stars. These contributions are,
respectively, given by [14]

_γGR ¼
�

2π

Torb

�
5=3 3G2=3

c2
M2=3

tot

1 − e2
; ð61Þ

_γrot;i ¼
2π

Torb

1

a5
Mtot

Mi

ðΩi=ΩÞ2
ð1 − e2Þ2 ðk2R

5Þi; ð62Þ

_γtid;i ¼
30π

Torb

1

a5
M3−i

Mi

1þ 3e2=2þ e4=8
ð1 − e2Þ5 ðk2R5Þi; ð63Þ

where Ω ¼ 2π=Torb is the mean motion, Ωi are the angular
velocities of the uniformly rotating stars, Mi are the
individual masses and Mtot ¼ M1 þM2 is the total mass
of the binary, Torb is the orbital period, a is the semimajor
axis of the elliptic orbit, and e is the eccentricity. For
simplicity, in our calculations we assume that the rotations
of the two stars are tidally locked, i.e., Ωi ¼ Ω as in
Ref. [14]. While the GR contribution is only a function of
the orbital parameters and the total mass of the system,
the rotational and tidal ones depend in addition on the
individual masses as well as the internal structure of the
WDs through the parameters ðk2R5Þi. The sum of the tidal
and rotational contributions to the precession rate must
represent at least ∼10% of the total precession rate _γ
to be observable by LISA [14], which requires the two
orbiting stars to be sufficiently close to merger. The merger
time of an initially eccentric binary system at formation is
roughly given by [69]

τ≈9.829×10−3
�
T0
orb

1 h

�
8=3

�
Mtot

M⊙

�
1=3

�
M2

⊙

M1M2

�
Fðe0ÞGyr;

ð64Þ

where T0
orb is the initial orbital period, and Fðe0Þ≈

ð1 − e20Þ7=2 with e0 being the initial eccentricity. Note that
for a circular orbit, Fðe0 ¼ 0Þ ¼ 1. The more eccentric the
orbit, the shorter the merger time: for e0 ¼ 0.6, Fðe0Þ ≈ 0.2
and the merger time is divided by 5 compared to a circular
orbit. Depending on T0

orb and e0, the binaries that will be
observed by LISA may have evolved for billions of years
since their formation. In Fig. 12, we show the initial
eccentricity e0 as a function of the initial period of the
binary T0

orb, which can be estimated from Eq. (64) for any
given merger time τ:

e0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1.017 × 102

�
τ

1 Gyr

��
T0
orb

1 h

�
−8=3

�
M1M2

M2
⊙

��
Mtot

M⊙

�
−1=3

�
2=7

s
: ð65Þ

The shaded area between the two curves represents the
binaries with a merger time between 5 and 11 Gyr, a long
enough time for the interior of the WDs to have crystallized
at least partially. Their initial orbital periods lie in the range
predicted by population synthesis models [6]. Taking into
account 2 Gyr of formation [6], these binaries are now
potentially close enough to merger for tidal effects to be
measurable by LISA provided the frequency of the GW
signal emitted by the binary lies in the sensitivity band

10−4–10−1 Hz. The frequency of maximum GW power
emission is approximately given by [70]

fmax ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
GMtot

p
π

ð1þ eÞ1.1954
½að1 − e2Þ�3=2 : ð66Þ

To determine the current orbital properties of binary
WDs that fulfill all of the above conditions, we must solve

FIG. 11. Relative deviation between k2R5 calculated in full GR
and in Newtonian theory ½ðk2R5ÞN − ðk2R5ÞGR�=ðk2R5ÞGR, as a
function of the WD mass M for different compositions.
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the equations governing the evolution of the semimajor
axis a and the eccentricity e with time [69]:

_a¼−
64

5

G3

c5
M1M2Mtot

1

a3ð1− e2Þ7=2
�
1þ 73

24
e2þ 37

96
e4
�
;

ð67Þ

_e¼−
304

15

G3

c5
M1M2Mtot

e

a4ð1− e2Þ5=2
�
1þ 121

304
e2
�
; ð68Þ

with the semimajor axis of the elliptic orbit being linked to
the orbital period through Kepler’s law,

Torb ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
a3

GMtot

s
: ð69Þ

In Table I, we show some examples of equal-mass eccentric
binary WDs with different compositions. Starting from an
initial eccentricity of 0.60 and an initial orbital period of a
few hours, we find that binaries will merge in a time
between 5 and 11 Gyr. As explained before, the binary has
to be close enough to merger now in order for _γrot ¼P

i¼1;2 _γrot;i and _γtid ¼
P

i¼1;2 _γtid;i to represent a sizable
fraction of _γ. Such a situation is encountered a few million
years before the merger for very low-mass WDs. For more
massive WDs, the corresponding time is shorter. This
justifies our neglect of tidal effects in the evolution of
the orbital parameters a and e in Eqs. (67) and (68). Even
though the eccentricity has been considerably reduced at
this time, it remains measurable (see Ref. [14]). Moreover,
the semimajor axis length is about 1 order of magnitude
larger than the radii of the stars, and therefore the
perturbative approach to compute tidal effects remains

valid. In these examples, the frequency (66) of maximum
GW power emission emitted by the system at the time of
observation is of the order of a few millihertz, which lies in
the LISA sensitivity band.
As previously discussed in Ref. [14], the precession rate

measurement through the GW signal can be used to
determine the individual masses of the WDs composing
the binary system. For this purpose, it is necessary to use a
relation between the observable combinations ðk2R5Þi and
the masses. In turn, this relation depends on the internal
properties of the WDs. We have investigated the errors
made on the inferred masses incurred by the neglect of
crystallization. Since the radius is determined by the
unperturbed configuration, it does not change when taking
elasticity into account. Therefore, we focus on the relation
between k2 and M. We find that the numerical results can
be well fitted by the following fitting formula:

k2 ¼
X6
j¼0

bjMj; ð70Þ

with the massM in solar units. The fitting parameters bj for
fluid and elastic stars are given in Table II. The relative

FIG. 12. Initial eccentricity e0 as a function of the initial period
T0
orb (in hours) for a binary system with two 0.45 M⊙ WDs. The

shaded area represents the binaries with a merger time between 5
and 11 Gyr.

TABLE I. Parameters of potentially observable configurations
of equal-mass WD binaries made of helium (0.3–0.3 M⊙), carbon
(0.45–0.45 M⊙), or oxygen (0.6–0.6 M⊙): initial eccentricity e0,
and initial orbital period T0

orb at formation of the binary, merger
time τ since formation of the binary, remaining time before merger
τ − t, current eccentricity e, current semimajor axis length a,
current orbital period Torb, frequency of maximum GW power
emission fmax, and precession rates due to GR (_γGR), rotation
(_γrot), and tidal effects (_γtid) using values of k2R5 from full GR
calculations with the equation of state (7) and taking crystalliza-
tion into account.

Composition 4He 12C 16O

Mtot [M⊙] 0.60 0.90 1.20
e0 0.60 0.60 0.60
T0
orb [h] 10.0 13.0 16.0

τ [Gyr] 8.813 9.026 9.721
τ − t [Myr] 6.00 1.50 0.350
e 0.0393 0.0225 0.0123
a [105 km] 1.50 1.44 1.24
Torb [h] 0.360 0.275 0.191
fmax [mHz] 1.62 2.07 2.96
_γGR [yr−1] 2.71 5.54 12.4
_γrot [yr−1] 0.279 0.155 0.194
_γtid [yr−1] 2.11 1.17 1.45

TABLE II. Fitting coefficients of Eq. (70) for a WD made
of 16O.

b0 b1 b2 b3 b4 b5 b6

Fluid 0.2005 −0.4338 1.6327 −3.8664 5.0183 −3.3791 0.9165
Elastic 0.1653 −0.1660 0.5015 −1.2012 1.5374 −1.0252 0.2748
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error on the fit is ≲0.1% for WD masses between 0.1 and
1 M⊙. As shown in Fig. 13, the relative error on the mass
when the elasticity of a crystallized oxygen WD is ignored
becomes larger and larger when k2 increases, i.e., for low-
mass stars, and reaches about 90% for k2 ¼ 0.15. Ignoring
the effects of crystallization on the tidal deformability may
lead to dramatic errors when trying to deduce the individual
masses from the relations (62) and (63).

V. CONCLUSIONS

Some of the WD binaries that will be observed by space-
based GW detectors could have evolved for long enough
for the WDs to be at least partially crystallized. We have
investigated the role of crystallization in the quadrupolar
tidal perturbations in binary WD systems. These perturba-
tions, characterized by the apsidal motion constant (second
gravitoelectric tidal Love number) k2, will be potentially
measurable by LISA, which is expected to be in operation
within the next decade.
We have found that the inclusion of elasticity system-

atically reduces the tidal deformability. This effect is more
pronounced for low-mass WDs whose solid core contains
heavy elements. Observations of tidal effects could thus
potentially shed light on elusive iron WDs. Crystallization
can lead to deviations in the tidal perturbations that are
comparable or larger than the estimated observational
uncertainties. This may have important implications for
the analysis of the GW data from space-based detectors
since most of the WDs observable with GWs are expected
to have low masses.
We have also compared fully relativistic results with

Newtonian ones. We have found that the general-relativistic
correction to the tidal deformability remains negligible for
low-mass stars comparedwith the correction due to elasticity.
However, approaching the maximum mass, the relativistic

effects become less and less negligible. Not only is the tidal
Love number k2 affected, but also the radius R of the star.
Finally, we have focused on eccentric binary WD

systems, which are of particular interest when studying
tidal effects, since the precession of the periastron leads to a
frequency splitting of the GW signal depending on the tidal
deformabilities of the two stars. In particular, if the binary is
close enough to merger, measuring this effect in the GW
signal would provide the individual star masses. We have
found that neglecting the elasticity of crystallized matter
can lead to very large errors on the inferred masses,
especially for low-mass stars.
In our work, we have considered WDs with uniform

compositions. However, we do not expect that allowing for
the coexistence of different elements in WDs would change
our conclusions since the pressure is mainly determined by
the electron gas and the shear modulus of solid compounds
are not much different from those of the separate pure
solids. The equation of state we have adopted here assumes
fully ionized matter and complete degeneracy of the
electron gas, and ignores thermal effects. Although these
approximations are expected to be fairly accurate for the
dense core of crystallized WDs, they become less reliable
in the outermost layers. Their impact on the tidal deform-
ability, especially for low-mass WDs, remains to be
investigated using more realistic equations of state.
We have shown that the role of crystallization in tidal

perturbations depends on the extent of the solid core. On
the other hand, the cooling of the WDs and the crystal-
lization may be influenced by tidal heating, especially for
WDs close to merger [71]. This issue could be studied by
performing cooling simulations combined with orbital
evolution of the binary.
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APPENDIX A: TAYLOR EXPANSIONS
AT THE STELLAR CENTER

To start the integration of the system of equations, we
need some initial conditions. Since the equations are singular
at the center of the star due to terms in ∼1=r, we have to
expand each function in Taylor series near the center.
First, we expand the background functions:

P ¼ Pc þ Pð2Þr2 þOðr4Þ; ðA1aÞ

ρ ¼ ρc þ ρð2Þr2 þOðr4Þ; ðA1bÞ

FIG. 13. Relative deviation of themass ðMfluid −MelasticÞ=Melastic

for a WD made of 16O as a function of the Love number k2.
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m ¼ r3½mð0Þ þmð2Þr2 þOðr4Þ�; ðA1cÞ

λ ¼ λð0Þ þ λð2Þr2 þOðr4Þ; ðA1dÞ

ν ¼ νð0Þ þ νð2Þr2 þOðr4Þ. ðA1eÞ

Inserting these expansions into Eq. (16) and the TOV
equations (17) leads to the following expressions for the
different coefficients:

Pð2Þ ¼ −
2

3

G
c4

πðPc þ εcÞð3Pc þ εcÞ; ðA2aÞ

ρð2Þ ¼ Pð2Þ

c2ζc
; ðA2bÞ

mð0Þ ¼ 4

3
πρc; ðA2cÞ

mð2Þ ¼ 4

5
πρð2Þ; ðA2dÞ

λð0Þ ¼ 0; ðA2eÞ

λð2Þ ¼ 8

3

G
c2

πρc; ðA2fÞ

νð2Þ ¼ 4

3

G
c4

πð3Pc þ εcÞ; ðA2gÞ

where εc ¼ ρcc2 and ζc ¼ 1
c2

dP
dρ jr¼0 is the dimensionless

speed of sound evaluated at the center of the star. The
coefficient νð0Þ can be left arbitrary.

Next, we expand the perturbation functions:

H0 ¼ rl½Hð0Þ
0 þHð2Þ

0 r2 þOðr4Þ�; ðA3aÞ

β ¼ rl−1½lHð0Þ
0 þ ð2þ lÞHð2Þ

0 r2 þOðr4Þ�; ðA3bÞ

K ¼ rl½Kð0Þ þ Kð2Þr2 þOðr4Þ�; ðA3cÞ

V ¼ rl½Vð0Þ þ Vð2Þr2 þOðr4Þ�; ðA3dÞ

W ¼ rl½Wð0Þ þWð2Þr2 þOðr4Þ�; ðA3eÞ

Tθ ¼ rl½Tð0Þ
θ þ Tð2Þ

θ r2 þOðr4Þ�: ðA3fÞ

We can also expand the shear modulus in the same way:

μ̃ ¼ μ̃c þ μ̃ð2Þr2 þOðr4Þ; ðA4Þ

where μ̃ð2Þ ¼ Pð2Þχc with χc ¼ dμ̃
dP jr¼0. Inserting these

expansions into the elastic equations (40) and using
Eqs. (A1) with Eqs. (A2) for the background functions,
we get for the zeroth-order coefficients

Kð0Þ ¼ Hð0Þ
0 þ 32π

G
c4

μ̃cVð0Þ; ðA5aÞ

Wð0Þ ¼ lVð0Þ; ðA5bÞ

Tð0Þ
θ ¼ −2

G
c4

ðl − 1Þμ̃cVð0Þ; ðA5cÞ

and for the second-order ones,

Hð2Þ
0 ¼ 2π

G
c4

	
32π

G
c4

ζcð9þ lÞμ̃2c½3ð−3þ lþ 9ζcÞPc þ ð3þ lþ 27ζcÞεc�Vð0Þ

− 9ζcð3þ lÞðPc þ εcÞ
�
ð1þ 9ζc þ lζcÞHð0Þ

0 − 16π
G
c4

ð1þ 3ζcÞχcð−1þ lÞPcVð0Þ
�
Pc

− 3ζcð3þ lÞðPc þ εcÞ
�
ð3þ 15ζc − 3lζc − 2l2ζcÞHð0Þ

0 − 64π
G
c4

ð1þ 3ζcÞχcð−1þ lÞPcVð0Þ
�
εc

þ 48π
G
c4

ζcð3þ lÞðPc þ εcÞð1þ 3ζcÞχcð−1þ lÞε2cVð0Þ − 24π
G
c4

μ̃c½lð9þ lÞ þ 6ζ2cð3þ lÞð9þ lÞ

þ 3ζcð−6þ 13lþ 3l2Þ�P2
cVð0Þ þ 3ζcμ̃cð−3þ 9ζc − lÞð9þ lÞPcH

ð0Þ
0 − 36ζcμ̃cð1þ 3ζcÞð1þ lÞð3þ 2lÞPcVð2Þ

þ 16π
G
c4

μ̃c½3ζclð−7þ lÞð4þ lÞ − 2lð9þ lÞ þ 3ζ2cð−144 − 54lþ 5l2 þ 3l3Þ�PcεcVð0Þ

þ μ̃cζcð9þ lÞð3þ 3lþ 2l2 þ 27ζcÞεcHð0Þ
0 − 36ζcμ̃cð1þ 3ζcÞð1þ lÞð3þ 2lÞεcVð2Þ

þ 8π
G
c4

μ̃c½−lð9þ lÞ þ 3ζcð1þ lÞð−18þ lþ 2l2Þ þ 6ζ2cð−63 − 18lþ 8l2 þ 3l3Þ�ε2cVð0Þ



× f3ζcð3þ 2lÞ½ð9þ lÞμ̃c þ 3ζcð3þ lÞðPc þ εcÞ�g−1; ðA6aÞ
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Kð2Þ ¼ 2π
G
c4

	
−9ζcð3þ lÞðPc þ εcÞ½2þ lþ ζcð6þ 3lþ l2Þ�PcH

ð0Þ
0 − 144π

G
c4

ζcχcð3þ lÞðPc þ εcÞ

× ½ð1 − lÞð2þ lÞ þ ζcð6þ 3lþ l2Þ�P2
cVð0Þ − 3ζcð3þ lÞðPc þ εcÞ

× ½3ð2þ lÞ þ ζcð18þ l − 7l2 − 2l3Þ�εcHð0Þ
0 − 192π

G
c4

ζcχcð3þ lÞðPc þ εcÞ

× ½ð1 − lÞð2þ lÞ þ ζcð6þ 3lþ l2Þ�PcεcVð0Þ − 48π
G
c4

ζcχcð3þ lÞðPc þ εcÞ
× ½ð1 − lÞð2þ lÞ þ ζcð6þ 3lþ l2Þ�ε2cVð0Þ þ 16ζcμ̃

2
c½3ð3þ 2lÞð6þ 3lþ l2Þ�Vð2Þ

þ 32π
G
c4

ζcμ̃
2
c½3ð18þ 21lþ l3ÞPc þ 27ζcð6þ 3lþ l2ÞPc þ ð54þ 87lþ 62l2 þ 17l3Þεc

þ 27ζcð6þ 3lþ l2Þεc�Vð0Þ − 24π
G
c4

μ̃c½lð2þ lÞð9þ lÞ þ 6ζ2cð3þ lÞð6þ 3lþ l2Þ
þ 3ζcð−12þ 8lþ 11l2 þ 3l3Þ þ 4ζcð3þ 2lÞð6þ 3lþ l2Þχc�P2

cVð0Þ

þ 3ζcμ̃c½18 − lð−9þ 6lþ l2Þ þ 9ζcð6þ 3lþ l2Þ�PcH
ð0Þ
0

þ 36ζcμ̃cð3þ 2lÞ½ð−1 − lÞð2þ lÞ þ ζcð6þ 3lþ l2Þ�PcVð2Þ

þ 16π
G
c4

μ̃c½−2lð2þ lÞð9þ lÞ þ 3ζclð−32 − 18l − l2 þ l3Þ
þ 3ζ2cð4þ lÞð−36 − 12lþ 7l2 þ 3l3Þ − 8ζcð3þ 2lÞð6þ 3lþ l2Þχc�PcεcVð0Þ

þ ζcμ̃c½54þ lð99þ 80lþ 25l2 þ 2l3Þ þ 27ζcð6þ 3lþ l2Þ�εcHð0Þ
0

þ 36ζcμ̃cð3þ 2lÞ½ð−1 − lÞð2þ lÞ þ ζcð6þ 3lþ l2Þ�εcVð2Þ

þ 8π
G
c4

μ̃c½−lð2þ lÞð9þ lÞ þ 3ζcð−36 − 40l − 3l2 þ 7l3 þ 2l4Þ

þ 6ζ2cð−90 − 39lþ 34l2 þ 22l3 þ 3l4Þ − 4ζcð3þ 2lÞð6þ 3lþ l2Þχc�ε2cVð0Þ



× f3ζcð2þ lÞð3þ 2lÞ½ð9þ lÞμ̃c þ 3ζcð3þ lÞðPc þ εcÞ�g−1; ðA6bÞ

Wð2Þ ¼
	
6μ̃cð−6þ lÞð1þ lÞVð2Þ þ 16π

G
c4

μ̃c½−9ð−1þ lþ 6ζcÞPc − ð9þ 4l − 3l2 þ 54ζcÞεc�Vð0Þ

− 9ð1þ 3ζcÞðPc þ εcÞHð0Þ
0 þ 18ζclð1þ lÞðPc þ εcÞVð2Þ þ 24π

G
c4

ðPc þ εcÞ

× ½3ðl − 2χc þ 2lχcÞPc þ ðl − 2ζcl − 2χc þ 2lχcÞεc�Vð0Þ



× f6½ð9þ lÞμ̃c þ 3ζcð3þ lÞðPc þ εcÞ�g−1; ðA6cÞ

Tð2Þ
θ ¼ G

c4

	
24π

G
c4

ζcð−1þ lÞð3þ lÞχcðPc þ εcÞ2ð3Pc þ εcÞVð0Þ − 12μ̃2cð−1þ lÞð3þ lÞVð2Þ

þ 16π
G
c4

μ̃2c½9ð−1þ lþ 6ζcÞPc þ ð9 − 5l − 4l2 þ 54ζcÞεc�Vð0Þ

þ 9μ̃cðPc þ εcÞ½ð1þ 3ζcÞHð0Þ
0 − 4ζclð2þ lÞVð2Þ� þ 8π

G
c4

μ̃cðPc þ εcÞ

× ½−9lPc − 3lð1þ 4ζc þ 2ζclÞεc þ ð−1þ lÞð3þ lÞχcð3Pc þ εcÞ�Vð0Þ



× f6½ð9þ lÞμ̃c þ 3ζcð3þ lÞðPc þ εcÞ�g−1: ðA6dÞ
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We note that we only have seven constraints for ten
unknown coefficients. The remaining coefficients can be
determined as discussed in Sec. IVA 1.

APPENDIX B: EQUIVALENCE BETWEEN LOVE
NUMBER AND APSIDAL-MOTION CONSTANT

In this appendix, we show that the apsidal-motion
constants [72] considered in previous (Newtonian) studies
of binary WDs [12–14] are equivalent to Love numbers
[73]. Introducing the function yðrÞ ¼ rβðrÞ=H0ðrÞ, we can
rewrite the perfect-fluid perturbation equation (41) together
with (40c) as a single first-order differential equation:

ry0 þ y2 þ eλ
h
1þ 4π

G
c4

r2ðP − ρc2Þ
i
y

þ 4π
G
c4

r2eλ
�
9Pþ 5ρc2 þ Pþ ρc2

c2s
c2
�

− lðlþ 1Þeλ − r2ν02 ¼ 0: ðB1Þ

If the density ρ does not vanish at the surface of the star
[defined by PðRÞ ¼ 0], one has to add a correction to yðRÞ
calculated from Eq. (B1). It can be obtained from the
boundary conditions (49) and (50), and using the fact that

δP ¼ ρc2þP
2

H0 [from Eq. (29e) in Ref. [32]] in a fluid
region,

yþðRÞ ¼ y−ðRÞ − 3
ρ−ðRÞ
ρ̄ðRÞ ; ðB2Þ

where ρ̄ðrÞ ¼ 3
4πr3 mðrÞ is the average mass-energy density

inside a sphere of radius r.

In the Newtonian limit, Eq. (B1) reduces to

ry0 þ yðyþ 1Þ − lðlþ 1Þ þ 4πGr2ρN
c2s

¼ 0: ðB3Þ

Making the change of variable

yðrÞ ¼ ηðrÞ þ 3
ρNðrÞ
ρ̄NðrÞ

− 1; ðB4Þ

and using the hydrostatic equilibrium equations (18a)–(18b),
we recover the so-called Clairaut-Radau differential
equation for the variable η [see Eq. (5) of Ref. [72]]:

rη0 þ ηðη − 1Þ − lðlþ 1Þ þ 6
ρN
ρ̄N

ðηþ 1Þ ¼ 0: ðB5Þ

The surface boundary condition (B2) remains the same except
that themass-energy density ρ should be replaced by themass
density ρN:

yþðRÞ ¼ y−ðRÞ − 3
ρ−NðRÞ
ρ̄NðRÞ

: ðB6Þ

With this and Eq. (B4) evaluated at r ¼ R, and inserting
yþðRÞ into Eq. (46), we recover the explicit expression for the
Newtonian apsidal-motion constant for l ¼ 2 [see Eq. (1) in
Ref. [66]]:

kN2 ¼ 3 − ηðRÞ
4þ 2ηðRÞ : ðB7Þ
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