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Elastic self-scatterings do not change the number of dark matter particles and as such have been
neglected in the calculation of its relic abundance. In this work we highlight the scenarios where the
presence of self-scatterings has a significant impact on the effectiveness of annihilation processes through
the modification of dark matter momentum distribution. We study a few example freeze-out scenarios
involving resonant and subthreshold annihilations, as well as a model with an additional source of dark
matter particles from the decays of a heavier mediator state. Interestingly, when the calculation is performed
at the level of dark matter momentum distribution function, we find that the injection of additional energetic
dark matter particles onto the thermal population can lead to a decrease of its final relic abundance.
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I. INTRODUCTION

The extremely dense and hot plasma of the very early
Universe exhibits exceptional conditions for particle cre-
ation. Every new particle species that (i) is coupled to the
Standard Model (SM) states, (ii) has a nonvanishing mass
not exceeding the reheating temperature, and (iii) is stable
on cosmological timescales, will inevitably end up with a
relic thermal population contributing to the present-day
dark matter (DM) density. In the simplest scenarios this
thermal component accounts for all of the observed DM,
withΩh2 ¼ 0.120� 0.001 [1]. If adopted, this requirement
puts significant constraints on the parameters of a given
DM model that affect the rates of the particle-number-
changing processes.
An attractive, yet not overly restrictive assumption is that

the interactions between the DM particles and SM plasma
are sufficiently frequent to enforce chemical equilibrium at
some time in the very early Universe. In such scenario the
relic density of DM is predominantly determined by just
one quantity—the cross section of annihilation—in a wide
range of DM masses. Effectively, when the rate of
annihilation drops below the rate of the Universe expan-
sion, the dark sector departs from the chemical equilibrium
with the SM plasma and the number of DM particles in the
comoving volume ceases to change with time (freezes out),
hence establishing the relic population. The general

approach to determine the relic abundance of DM is solving
the Boltzmann equation (BE) that describes the evolution
of the DM distribution function in the expanding Universe.
To calculate the relic abundance often only the zeroth
moment of this equation, tracing only the particle-number
density, is considered, which is what is used in numerous
existing numerical packages, e.g., [2–4].
In a broader class of DM models thermodynamics in the

earlyUniverse can bemore elaborate and the relic abundance
can be generated in other ways than described above, but the
leading principle that the relic density is determined by the
interplay of DM number-changing processes remains.
However, the rate of number-changing processes

depends not only on the interaction strength but also on
the characteristics of the DM population, in particular its
number density and momentum distribution. While the
former is determined by chemical equilibration and decou-
pling governed by annihilations, the latter is related to the
local kinetic equilibrium that is maintained mostly by
elastic and inelastic scatterings on the particles from the
SM plasma. Although in the typical models of weakly
interacting massive particles the kinetic equilibrium is
maintained long after the freeze-out, exceptions to this
standard scenario exist in even simple models [5–12] and
are expected to occur much more often in more involved
scenarios containing processes actively disrupting local
thermal equilibrium, e.g., decays of heavier states or self-
heating [13] due to semi-annihilations, cannibalization
[14], or conversions (see, e.g., [8,15,16]). In such cases
the crucial question is whether the scattering processes are
efficient enough to force the momentum distribution to
follow the equilibrium one with the same temperature as the
SM plasma or not.
The impact of elastic scatterings between DM and the

thermal-bath particles has been studied in recent years both
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at the level of tracing the evolution of DM temperature,
see, e.g., [5–7,17–20], alongside the number density in a
coupled systems of Boltzmann equations (cBEs) for
the zeroth and the second moments of the distribution
function, as well as at the level of numerical solution of
the full momentum-dependent Boltzmann equation (FBE)
[7,12,21,22]. When comparing these two approaches it was
noted [7] that although CBEs and FBEs give in general
consistent results, they can substantially differ in scenarios
with strong velocity-dependent annihilations, e.g., due to a
resonance or a threshold. This is because a CBE enforces
the shape of the distribution to be of the Maxwell-
Boltzmann form, which is equivalent to insisting that
DM self-scatterings, redistributing energy in the dark
matter component, are very efficient. While without the
explicit inclusion of DM self-scattering on top of annihi-
lation and elastic scatterings on the thermal-bath particles,
the FBE method effectively neglects all such processes
altogether. Hence, which of these approaches gives a better
estimate clearly depends on the actual strength of self-
scattering processes.
In this paper we implement, for the first time in the

literature, the complete DM self-scatterings at the level of
FBE in the context of thermal relic density calculation1

and investigate how they modify the energy distribution of
DM and ultimately its relic density for three different
models of DM with strong velocity dependence of anni-
hilation processes. We compare the results of the different
approaches discussed above to shed light on their ranges of
applicability regarding the rate of self-scattering. In par-
ticular, we explore a model with the injection of an
energetic component of DM in the form of heavier particle
decay products.
It is worth mentioning, that as far as elastic scatterings

on thermal-bath particles and annihilations are typically
strongly tied together in the underlying DMmodel, the self-
scattering processes are often unrelated and in particular
can have much larger cross sections. In fact, models of
strongly interacting DM have gained a substantial attention
in the literature as a possible solution of the discrepancies
between observations and theoretical prediction for the
density profiles of DM in small scale structures (see, e.g.,
Ref. [24] for a review).
The paper is organized as follows. In Sec. II we describe

our implementation of self-scattering processes in the
Boltzmann equation. Section III discusses applications
to two models with the standard freeze-out production,
while in Sec. IV we extend the analysis to an example
with an additional nonthermally produced component and
its interplay with the freeze-out mechanism. Finally, Sec. V
concludes.

II. DARK MATTER SELF-SCATTERING

Before we discuss the specifics of self-scattering proc-
esses, let us briefly review the formalism used in the
calculations of the thermal relic density. The evolution of
the DM component is well described in the semiclassical
limit by the Boltzmann equation that in Friedmann-
Roberston-Walker space-time takes the following form:

Eð∂t−Hp∂pÞfχ ¼Cann½fχ �þCel½fχ �þCdec½fχ �þCself ½fχ �;
ð1Þ

where fχðt; pÞ is the DM distribution function depending
on time t (in what follows replaced with temperature T) and
momentum p (or equivalently, energy E), H stands for the
Hubble expansion rate, and C denotes different collision
terms that are relevant in the early Universe. As an example
we provide here the structure of the collision term for a
particle i that participates in a general 2-to-2 process

Cij→mn ¼
1

2gi

Z
d3p̃

ð2πÞ32Ẽ
Z

d3k
ð2πÞ32ω

Z
d3k̃

ð2πÞ32ω̃
× ð2πÞ4δð4Þðp̃þ p − k̃ − kÞ
× ½jMj2ij←mnfmðωÞfnðω̃Þ½1� fiðEÞ�½1� fjðẼÞ�
− jMj2ij→mnfiðEÞfjðẼÞ½1� fmðωÞ�½1� fnðω̃Þ��;

ð2Þ

where gi is the number of degrees of freedom of particle i,
ω, and ω̃ (4-momenta k and k̃) are the energies of the
final state particlesm and n, and E and Ẽ are the energies of
the initial state particles i and j, respectively (4-momenta p
and p̃). The amplitude squared jMj2 is summed over both
initial and final internal degrees of freedom. The corre-
sponding distribution functions are marked with the
respective indices. The first term in this expression is
generally referred to as the gain term, while the second is
the loss term. The signs in front of the distribution functions
of the products in the forward and backward reactions
depend on the spin statistics describing these particles.
If these particles constitute a very dilute gas ½1� f� ≈ 1,
then these factors can be neglected.
The standard approach [25] of solving only the single

Boltzmann equation for the number density nχ (NBE) can
be obtained from Eq. (1) by the integration over the
momentum p⃗ leading to

dnχ
dt

þ 3Hnχ ¼ gχ

Z
d3p

ð2πÞ3E fCann½fχ � þ Cdec½fχ �g: ð3Þ

The collision terms for elastic and self-scattering do not
change the number density and therefore cancel out after
the integration. However, in order to solve this equation one
needs to know the form of fχðt; pÞ, so that the rhs of the

1For an implementation within a relaxationlike approximation,
see Ref. [23].
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equation can be integrated and expressed in terms of the
number density. A common assumption is that the dis-
tribution of DM has an equilibrium shape (Fermi-Dirac/
Bose-Einstein distributions in general or Maxwell-
Boltzmann distribution in the dilute or non-relativistic
limit) that corresponds to the temperature of the SM plasma
and with a potentially nonzero chemical potential that is
effectively solved for. This assumption is often justified
since the elastic scattering processes on SM particles
typically proceed at a large enough rate. In cases when
the elastic scatterings cannot maintain local thermal equi-
librium, but the shape of the distribution function is still
close to the thermal one, albeit with Tχ ≠ T, the CBE
approach is expected to give an accurate prediction not only
for the DM relic abundance but also for its temperature
evolution. This system of equations for the number density
and temperature is obtained from Eq. (1) by the integration
over ðgχ=ð2πÞ3Þ

R
d3p=E and ðgχ=ð2πÞ3Þ

R
d3pp2=E2,

respectively. In the following we show the results obtained
with these two approaches only as a comparison to the full
treatment we study in this work. Thus, for more technical
details regarding NBEs and CBEs we refer to Ref. [7],
while below we discuss our implementation of the FBEs,
and especially the self-scatterings.
The collision term for annihilation of DM particles into

two SM states (neglecting the ½1� fχ � factors) is given by

Cann ¼
1

2gχ

Z
d3p̃

ð2πÞ32Ẽ
Z

d3k
ð2πÞ32ω

Z
d3k̃

ð2πÞ32ω̃
× ð2πÞ4δð4Þðp̃þ p − k̃ − kÞ
× ½jMj2

χ̄χ←f̄f
gðωÞgðω̃Þ − jMj2

χ̄χ→f̄f
fχðEÞfχðẼÞ�;

ð4Þ
where g stands for the thermal distribution for a considered
thermal-bath state. The gain term in the annihilation
collision term does not contain any unknown distribution

functions and in principle can be calculated explicitly.
The loss term contains two DM distribution functions: one
of them can be taken out of the integration, the other has to
be integrated over the corresponding momentum, while the
residual part of the integrand can be expressed in terms
of annihilation cross section. To perform this integration
numerically the unknown distribution function can be
regarded as a combination of discrete components fχðpiÞ
for a given value of momentum pi. Thus, the momentum-
dependent Boltzmann equation is split into a system of
ordinary differential equations for each momentum compo-
nent and the integration is approximatedwith aweighted sum
of these components. This scheme in particular is realized in
the DRAKE code [12],whichweuse for the solution of theBE,
except for the self-scatterings (see below) that are not
included in the current public version of DRAKE.
The same procedure can be in principle applied to the

loss term of the elastic collision term

Cel ¼
1

2gχ

Z
d3p̃

ð2πÞ32Ẽ
Z

d3k
ð2πÞ32ω

Z
d3k̃

ð2πÞ32ω̃
× ð2πÞ4δð4Þðp̃þ k̃ − p − kÞjMj2χf↔χf

× ½ð1 ∓ g�ðωÞÞg�ðω̃ÞfχðẼÞ − ðω ↔ ω̃; E ↔ ẼÞ�;
ð5Þ

which has the same structure as the gain term, but with the
energies transformed as indicated. However, in the limit of
small momentum transfer the whole Cel can be expressed
through the DM distribution function and its derivatives with-
out any numerical integrations left [26] (see Appendix B).
Finally, the decay collision term Cdec can be simplified to an
analytical expression (see Sec. IV), as long as the decaying
particle is described by an equilibrium distribution.
The collision term for self-scattering has the following

general expression (neglecting the ½1� fχ � factors)

Cself ¼
1

2gχ

Z
d3p̃

ð2πÞ32Ẽ
Z

d3k
ð2πÞ32ω

Z
d3k̃

ð2πÞ32ω̃ ð2πÞ4δð4Þðp̃þ p − k̃ − kÞ

×

�
1

2
jMj2χχ↔χχ ½fχðωÞfχðω̃Þ − fχðEÞfχðẼÞ� þ jMj2χχ̄↔χχ̄ ½fχðωÞfχ̄ðω̃Þ − fχðEÞfχ̄ðẼÞ�

�
: ð6Þ

The first term (both loss and gain parts) describes the
scattering on particles and the second term the scattering on
antiparticles. The factor 1=2 in front of the first one takes
into account the symmetry between the identical particles χ
with momenta that are integrated over. In the absence of
CP-violating processes in the dark sector the distribution
function for particles and antiparticles is always the same,
thus the self-scattering collision term can be written in
terms of an effective amplitude squared

jMj2self ¼
1

2
jMj2χχ↔χχ þ jMj2χχ̄↔χχ̄ ; ð7Þ

and one set of gain and loss terms.
In comparison to elastic scattering, the rate of self-

scattering is suppressed by an additional fχ in the collision
term, especially with respect to light SM states that are
greatly more abundant in equilibrium. However, it is an
insufficient reason to claim that self-scatterings play a little
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role in shaping the DM energy distribution. First of all, an
average relative momentum transfer for elastic scattering is
δp=p ∼ ðT=mχÞ1=2 ≪ 1, while for self-scattering it is
δp=p ∼ 1, so an effective energy redistribution in the latter
case does not require many collisions. It is useful to
compare the characteristic relaxation times for both proc-
esses τr ∼ Ncoll=Γ, where Γ ¼ nχhσvi is the rate of scatter-
ings and Ncoll is the number of collisions required to
substantially change the momentum of DM (see also
Ref. [26]). In case of elastic scatterings Nel

coll ∼mχ=T,
the density of relativistic SM particles nSM ∝ T3 and the
overall relaxation time scales with temperature as T−6 [27].
For self-scatterings after freeze-out the density of DM
particles scales with temperature by the same law due to
the expansion, but Nself

coll ∼ 1 and for the models that we
consider in Secs. III A and IV hσviself ∝ T in the non-
relativistic limit. Thus, the relaxation time for self-scatter-
ing scales with temperature as T−4, which means that
self-scattering processes remain an effective mean of
equilibration longer than elastic scatterings.
Second, self-scattering can rely on different couplings

(or even on a different type of interaction) than the ones that
govern elastic scattering. For instance, in the case of scalar
DM model considered in Sec. III B self-interaction can
arise from a simple ϕ4 vertex interaction with the amplitude
squared proportional to the square of the respective
coupling, while elastic scattering on SM fermions is loop
suppressed. In the case of fermion DM coupled to a vector
mediator (Sec. III A), the rate of elastic scattering can be
suppressed by the squared ratio of the two couplings, given
that the coupling of the mediator to the heat bath fermions
is smaller. In other models of DM self-scattering can be
boosted with respect to elastic scattering by an s-channel
resonance, Sommerfeld enhancement, etc. In addition, DM
self-interactions are generally not as constrained by obser-
vations as the elastic scatterings. For example, the upper
bound on the cross section of electron scattering for a DM
particle with the mass of 1 GeV is ∼10−34 cm2 [28], while
the cross section of DM self-scattering for that mass can be
as large as ∼10−24 cm2 [29].
From a technical point of view, the additional compli-

cation introduced by the self-scattering collision term in
Eq. (6) comes from the gain term that contains two
distribution functions of the products. While the loss term
can be treated in the same way as for annihilation, the gain
term for self-scattering cannot be simply formulated in
terms of the cross section and the presence of two unknown
function in the integrand leads to complicated angular
dependencies during the integration (see Appendix A).
Since self-scatterings are not implemented in the current
version of DRAKE, we merged the existing version with the
program for the calculation of the self-scattering collision
term that we developed. Though the loss term in Eq. (6) can
be expressed through the self-scattering cross section and

implemented numerically with one summation of the
momentum components, we use the same procedure as
for the gain term to achieve a better numerical cancellation
between the two terms close to equilibrium point, since the
same interpolation procedure is used in both cases.

III. IMPACT IN FREEZE-OUT MODELS

During the freeze-out process the self-scattering does not
introduce any direct change in the DM number density, but
indirectly it can significantly affect the annihilation rates.
To exemplify this we have chosen to present results of a
study of two models introduced in Ref. [12]: the generic
vector resonance and subthreshold scenarios. In both cases
the kinetic decoupling and nonequilibrium shape of fχðpÞ
can have a strong impact on the final relic abundance and as
noted in Ref. [12] there can be a substantial difference
between the CBE and FBE approaches. As it was pointed
out in Ref. [7] it is expected that inclusion of self-
scatterings to FBE treatment should in the limit of large
self-interactions lead to results coinciding with CBEs. In
this section we demonstrate that this is indeed the case and
quantify how strong the self-interactions need to be to have
an impact.

A. Vector resonance model

The arguably most common scenario where the DM
annihilation cross section has a strong velocity dependence
arises in models with s-channel resonance. For concrete-
ness let us take exactly the same model as in Ref. [12]
where the resonance is mediated through an exchange of a
generic vector mediator Aμ, with the interaction Lagrangian

L ⊃ −λχχ̄γμχAμ − λff̄γμfAμ: ð8Þ

The model can be described by a set of five parameters: the
DMmassmχ , the mediator massmA, the mass ratio of heat-
bath fermions to DM r≡mf=mχ , and finally the coupling
constants λf and λχ . Out of these input parameters it is
convenient to define deviation from the exact resonance
position δ≡ ð2mχ=mAÞ2 − 1 and a dimensionless measure
of the total decay width of Aμ, γ̃ ≡ ΓA=mA. Note, that
compared to the discussion in Ref. [12], we separate the
couplings λf and λχ , as the self-interactions break the
degeneracy between them in the calculation of the DM
annihilation cross section.
Indeed, the annihilation cross section for the process

χχ̄ → A⋆ → ff̄, can be written as [12]

σvlab ¼
λ2χλ

2
f

384πm2
χ

ð1 − r2=s̃Þ1=2ð1þ δÞ2
2s̃ − 1

αðs̃ÞDðs̃Þ; ð9Þ

with αðs̃Þ ¼ 4ð2s̃þ 1Þð2s̃þ r2Þ and s̃≡ s=ð4m2
χÞ, whereffiffiffi

s
p

is the center-of-mass energy, and
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Dðs̃Þ≡ 1

½s̃ð1þ δÞ − 1�2 þ γ̃2
ð10Þ

is the Breit-Wigner propagator.2 The self-scattering ampli-
tude squared in this model consists of two contributions, as
in Eq. (7), but both of them depend only on the coupling λχ

jMjself ¼ λ4χðδþ 1Þ2½2β1ðs̃; t̃ÞDðs̃ÞDðt̃Þ
þ β2ðs̃; t̃ÞDðs̃ÞDðũÞ�; ð11Þ

where t̃≡ t=ð4m2
χÞ, ũ ¼ 1 − s̃ − t̃, and β1 and β2 are

functions of s̃ and t̃ defined in the Appendix B.
In the calculations we also include elastic scatterings

on the thermal-plasma fermions f, which is exactly in the
same way as in Ref. [12], to where we refer the reader for
more details.
Let us start the discussion of the results from presen-

ting the evolution of the yield Y ¼ nχ=s and tempera-
ture parameter y ¼ mχTχs−2=3, where sðTÞ is the entropy
density, for a benchmark point with the resonance having
SM Higgs-like width γ̃ ¼ 3 × 10−5, and relatively heavy
annihilation products, r ¼ 0.5 withmχ ¼ 100 GeV. Fixing
the width γ̃ and requiring that the NBE solution provides
the observed relic abundance defines the couplings λf ¼
10−3 and λχ ¼ 5.85 × 10−2 and ultimately the strength of
self-scattering process. The result of the evolution is given
in Fig. 1 for the NBE (blue), CBE (green), and FBE without

(orange) and including self-scatterings (black). For this
benchmark δ ¼ −0.05 and thus the resonant annihilations
deplete momenta around the peak of the distribution at the
time of freeze-out, resulting in a slight temperature raise at
first and then an abrupt chemical and kinetic decoupling.
Self-scatterings reshuffle the DM particles’ momenta,
repopulate the regions depleted by annihilation and thus
prolong the freeze-out, leading to a lower final abundance.
This can be directly seen in Fig. 2, where the four time
snapshots of the momentum distribution are given.
Comparing to the result obtained with self-scatterings
(black), which make fχðpÞ retain shape close to thermal,
the curves without self-scattering (orange) show a signifi-
cant dip in the distribution for the momenta that are slightly
above the peak of the distribution. The particles with these
momenta are efficiently depleted by the resonant annihi-
lation, while elastic scatterings on the thermal bath are not
sufficient to replenish them effectively. The overall dis-
tribution is also visibly shifted from the equilibrium one
(blue) indicating that Tχ is significantly lower than T
indeed. The bottom panel of Fig. 2 highlights the relative
size of the difference between the two distributions, with
different colors signifying different time snapshots.
One can see that the self-thermalization due to self-

scatterings in this model is rather efficient, in large part due
to the fact that the distortion introduced by v-dependent
annihilation is limited. Nevertheless, even such a relatively

eq.

NBE

CBE

FBE

FBE
no self–scatt.

20 40 60 80 10010–12

10–11

vector resonance

20 40 60 80 100

1

2

3

4

5

FIG. 1. An example evolution of the particle yield Y (left panel)
and the temperature parameter y (right panel) for the bench-
mark vector resonance model. On both panels the blue line gives
the result with NBE treatment, green the CBE, orange FBE
without self-scatterings, and black of the full calculation. The
couplings are fixed by the value of γ̃ and the requirement
that ðΩh2ÞNBE ¼ 0.12.

FIG. 2. Top panel: time snapshots around the freeze-out of the
evolution of the normalized momentum distribution for the
benchmark vector resonance model. Black (orange) points show
fχðpÞ with (without) self-scatterings, while for comparison the
blue line shows the equilibrium distribution at the SM plasma
temperature. Bottom panel: the difference between the normal-
ized fχðpÞ with and without the inclusion of self-scatterings, to
highlight the size of the deviation.

2Note however, that the Breit-Wigner form might not be
sufficient in some cases, in which the velocity-dependent width
should be used instead [18].
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small deviation from thermal shape visibly affects the relic
abundance through modifying the annihilation rate.
Quantitatively, Fig. 3 shows the relative difference between
the thermally averaged cross sections hσvi calculated with
the resulting fχðpÞ and with a thermal distribution of
the same temperature. The result without self-scatterings
(orange line) around the freeze-out time x ∼ 25 shows
significant deviation from the thermal one, while with self-
scatterings (black line) a much milder one. When the
temperature drops, to about x ∼ 50 and further, both
solutions predict an enhanced annihilation rate, but with
somewhat different dependence. In particular the peak of
this enhancement happens earlier for the solution with self-
scatterings than without, which is a consequence of an
impact on resonant annihilation by an interplay between the
temperature drop and the distribution shape modification.
The deviations from unity thus show that even with the
self-scatterings the annihilations introduce too much of a
disruption to allow maintaining an equilibrium shape. Note
that these are both normalized to Tχ corresponding to the
given FBE solution in order to highlight the effect of the
nonthermal shape only. This can be contrasted with the blue
line including the impact of the temperature change as well,
where the comparison is made to hσviT .
Finally, Fig. 4 shows how the change of the coupling λχ

affects the relic abundance for the same benchmark
scenario. If this coupling is not fixed by the relic abundance
requirement, then fixing γ̃ introduces relation λfðλχÞ and
one can vary the strength of self-scatterings. Note though,
that there is a maximal value, in case of this benchmark

point λmax
χ ¼ 5.855 × 10−2, above which it is not possible

to obtain width γ̃ ¼ 3 × 10−5. In order to highlight the most
interesting region, in which self-scatterings are as effective
as possible, the x axis of the figure displays the distance
from this maximal value λmax

χ . Top panel shows the result
for the relic density, while the bottom one—the ratios of the
result for Ωh2 obtained with FBE without (orange) and
with self-scatterings (black) to the CBE one. For small
values of λχ (on the right edge of the plot) the FBE result
coincides with the one without self-scatterings whatsoever,
while for the values approaching the maximal one (on the
left edge) it departs towards the result of CBE.
All in all, these results suggest that for typical values of

the self-scattering strength the FBE as currently imple-
mented in DRAKE gives a better approximation of the actual
result than the CBE approach. However, this statement is
model dependent and when a precise result for the relic
abundance is called for, one should in principle fully
include self-interactions.

B. Subthreshold model

A second common scenario where the DM annihilation
cross section has a strong velocity dependence is when the
DM annihilation process has a threshold at s > 4m2

DM.
Below this threshold the annihilation can be kinematically

FBE
no self–scatt.

FBE

20 40 60 80 100

100%

–50%

0%

+100%

+50%

FIG. 3. Effect of the deviation from the thermal shape of fχðpÞ
on the thermally averaged annihilation cross section for the same
benchmark vector resonance model and λχ ¼ 0.0585. To dem-
onstrate the impact of only the shape modification the black
(orange) line shows the difference of hσvineq with (without) self-
scatterings compared to hσviTχ

calculated at Tχ corresponding to
the given FBE solution. This can be contrasted with the blue line
that includes the impact of the temperature change as well, where
the comparison is made to hσviT .

FBE

FBE

CBE

NBE



FIG. 4. The relic density as a function of the self-coupling for
the same benchmark vector resonance model. The blue line gives
the result with NBE treatment, green the CBE, orange FBE
without self-scatterings, and black of the full calculation. Bottom
panel shows the ratio of the last two solutions to the CBE one in
order to highlight the size of the effect of self-scatterings.
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impossible, sometimes dubbed “forbidden” DM [30], or
nonzero, but suppressed. Again for concreteness let us take
exactly the same model as the subthreshold model in
Ref. [12], composed of two scalar particles, where ϕ1

takes the role of the DM, while ϕ2 is in thermal contact with
the heat-bath fermions f. The interaction Lagrangian is
given by

L ⊃ −
g
4
ϕ2
1ϕ

2
2 −

λ

4!
ϕ4
1 þ yfϕ2f̄f; ð12Þ

where compared to the discussion of this model in Ref. [12]
we added the self-interaction term, which was not imple-
mented previously. We will assume that the scalars are
close in mass and the DM is slightly lighter, i.e.,
r≡m2=m1 ≳ 1. In such regime, to the lowest order, the
total DM annihilation takes place through the process
ϕ1ϕ1 → ϕ2ϕ2 and the cross section is given by

σvlab ¼
g2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

2=s
p
s − 2m2

1

; ð13Þ

while the momentum transfer rate between the DM and
the heat-bath fermions f is strongly suppressed [12]. The
amplitude squared of self-scattering in this case is simply a
constant and equal to λ2.
In the resonance example we discussed in detail one

benchmark model point—here instead let us focus on the
relic density as a function of self-scattering strength for a
representative set of parameter points. In Fig. 5 we show
the effect on the relic density for four values of r ∈
f1.001; 1.1; 1.15; 1.2g using CBE (dotted), FBE without
self-interactions (dashed), and full calculation (solid) as a
function of the self-coupling λ. Increasing the self-
scattering strength makes the full result go from being
the same as FBE λ ¼ 0 to approaching the CBE result,
which agrees with the expectations. However, performing
the analysis at the quantitative level reveals that, at least
for a forbiddenlike subthreshold model at hand, one would
require λ > 1 to actually significantly depart from the
FBE λ ¼ 0 result. This confirms the observation from
the previous section, that the FBE result from DRAKE is
expected to be typically a better estimate for the relic
density, than the CBE one.
Before closing this section a comment on the technical

side of the numerical computation is in order. Equation (6)
after discretization takes the form of a three-dimensional
matrix of entries being two-dimensional angular integrals,
see Eq. (A1). Therefore, the mitigation of numerical
inaccuracies by discretizing on a denser grid is rather
costly CPU-wise with OðN3Þ scaling with the grid density
for tabulation and also OðN2Þ scaling for generating the
collision term matrix at every x step of FBEs. Even though
typically this matrix is rather well behaved, this problem
becomes especially relevant when the annihilation

predominantly relies on the high momentum tail of the
distribution. This is the case for the subthreshold model
where the tail is much more prone to numerical error than
the bulk of the distribution. All in all, the results presented
on the plot in Fig. 5 required several hours of CPU time per
point and still have small, but visible irregularities in the
full result at large values of λ. This attests to the level of
numerical accuracy that one can achieve within a manage-
able CPU cost with our current implementation.3

IV. SELF-THERMALIZATION OF A
NONTHERMAL COMPONENT

The effects of self-scattering are expected to be particu-
larly important for scenarios in which a considerable
portion of DM is produced nonthermally on top of the
thermal component. Quite commonly particle physics
models with the DM candidate(s) contain heavier particles
that can decay with a production of one or several DM
states. If the lifetime of these heavy particles is sufficiently
long, the contribution from the decays does not simply
annihilate away and return the distribution to the

r=1.001

r=1.1

CBE

FBE =0

r=1.15

r=1.2

subthreshold

CBE

FBE =0

10–1 1
1

2

3

4

5

FIG. 5. Impact of DM self-scattering on the relic density in the
subthreshold model. For all the chosen values of r ∈ f1.001; 1.1;
1.15; 1.2g the solid line shows the ratio of the full Ωh2 to the NBE
one with the coupling g being fixed by ðΩh2ÞNBE ¼ 0.12. The
dotted lines indicate the corresponding results for CBE and FBE
without self-scatterings. The gray shading highlights the region
where self-coupling becomes nonperturbative.

3The numerical code we used is available on request and is
planned to be publicly released as an additional optional package
to a future DRAKE version.

IMPACT OF DARK MATTER SELF-SCATTERING ON ITS … PHYS. REV. D 106, 023007 (2022)

023007-7



equilibrium, but it can noticeably alter the evolution of DM
distribution, its density, and other properties [17,31–34].
This additional nonthermal contribution can also arise, for
example, from the bubble collisions following a first-order
phase transition [35] or primordial black holes evaporation
[36]. If the velocity-averaged cross section of DM annihi-
lation is essentially momentum independent, then this
injection will have an impact on the rate of annihilation
solely by the increase of the density—the resulting relic
density will be determined by the interplay of the prolon-
gation of annihilation that depletes the density and the
continuous supply of new particles that increases the relic
abundance. However, if the annihilation is strongly velocity
dependent, then the effect of the distribution on the
annihilation rate is more complicated. If the injected
component is rather energetic with respect to the thermal
one, self-scattering processes will lead to the redistribution
of DM particles into the region of the phase space with a
larger momentum and hence it can noticeably affect the
velocity-averaged cross section. Moreover, the effects of
self-scattering on the energy distribution of DM with a
nonthermal component can have consequences that go
beyond just the impact on the relic density. For instance, the
shape of the relic distribution of light DM particles at later
stages of the evolution of the Universe can affect the
formation of large scale structure (e.g., [37–39]). However
it is worth exploring, and the analysis of this phenomenon
stays out of the scope of our paper.

A. Model setup

To study the self-thermalization of a nonthermal compo-
nent we take a sterile-neutrino-like model of DM that is
coupled to a scalar singlet field S, which has been previously
studied in the literature (e.g., [38,40,41]), with an additional
U0ð1Þ gauge interaction (dark electromagnetism). In
Ref. [22] a similar model is considered in the context of
the impact of nonthermal processes on the DM distribution
function. However, it does not include the additional U0ð1Þ
making the self-scattering processes absent in their case.
The Lagrangian of the model looks as follows:

L ¼ LSM þ 1

2
ð∂μSÞ2 − VðS;HÞ þ ySχ̄χ þmχ χ̄χ

þ χ̄iDμγ
μχ −

1

4
F0
μνF0μν −

ϵ

2
F0
μνFμν þ 1

2
m2

AA
0
μA0μ;

ð14Þ

where ϵ is the mixing parameter between the photon and
the dark photon A0

μ, Dμ ¼ ∂μ − ie0A0
μ and VðS;HÞ is the Z2

symmetric part of the scalar potential

VðH;SÞ¼−μ2HjHj2−1

2
m2

SS
2þλHjHj4þλS

4
S4þλHS

2
jHj2S2:

ð15Þ

The reason we impose the nearly exact, as explicitly broken
only by the interaction of S with DM fermions, S → −S
symmetry is twofold. For one it motivates the choice of the
effective Yukawa coupling y to be small and lead to a long
lifetime of S (wewill focus on a casewheremS is sufficiently
large to allow the decays to a pair of energetic DM particles).
But also it allows for a more clear discussion of the process
studied in this work without being sidetracked to other, well-
known effects. In particular, significant explicit or sponta-
neous breaking of this Z2 symmetry would lead to terms in
the Lagrangian that would allow for (loop suppressed,
though typically quite efficient) S decay to the SM states.
This would not affect directly the discussion of self-thermal-
ization and the size of the DM component coming from S
decay could always be adjusted by modifying the S freeze-
out. Nevertheless, it could lead to a substantial entropy
increase due to the decays of S to radiation and introduce
another impact on the relic density of DM that has been
already verywell studied in the literature (see, e.g., [42–44]).
In the case that we consider the mass of the dark fermion

mχ is introduced explicitly by the mass term. We do not
stipulate here the exact mechanism by which the dark
photon gets its mass or a UV complete theory of the mixing
between the two gauge interactions, however several
possible scenarios have been studied in the literature and
we refer the reader to a recent review of these models [45].
We focus on a region of the model parameters that satisfy

the following conditions: (i) the coupling of the Higgs field
to the singlet scalar S is strong enough to keep it in kinetic
equilibrium with the SM bath around the DM freeze-out;
(ii) mA < 2mχ , so that the dark photon can only decay to
SM states. Then the contribution to the collision term of
χðpÞ from the decay of SðkÞ is given by

Cdec ¼
1

2gχ

Z
d3p̃

ð2πÞ32Ẽ
Z

d3k
ð2πÞ32ω ð2πÞ4δð4Þðk − p − p̃Þ

× jMj2S↔χ̄χfSðωÞð1 − fχðEÞÞð1 − fχðẼÞÞ; ð16Þ

where we have neglected the inverse decay process, as is
appropriate for a long-lived S. Using the fact that fSðωÞ ∝
feqS ðωÞ and that fχðEÞ ≪ 1 the term above simplifies
significantly and is completely independent on the DM
distribution function. For the decay amplitude squared

jMj2S↔χ̄χ ¼
y2

2
ðs − 4m2

χÞ ð17Þ

after performing the integrations one arrives at

Cdec ¼
y2

32πgχ

nS
neqS

T
pE

½e−E=TκðEÞ�Emax
Emin

; ð18Þ

with
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κðEÞ ¼ 4m2
χ − E2 − 2ET − 2T2; ð19Þ

Emax =min ¼
m2

S

2m2
χ

 
E� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

m2
S

s !
: ð20Þ

The normalization of this decay term is proportional to the
number density of S particles, which can be in or out of
equilibrium. It is in turn determined by the chemical
decoupling of S from the thermal bath that is governed by
its annihilation processes. In our numerical implementation
we solve an NBE-type Boltzmann equation for its evolution
including the decay process, but neglecting the backreaction
of χ, which is a very good approximation as long as the decay
happens somewhat later than its decoupling.
The self-scatterings and elastic scatterings aremediated by

the dark photon A0
μ in the same fashion as in the model

considered in Sec. III A.Dependingon the ratio of themasses
of DM and the dark photonmχ=mA this model can reproduce
both of theDMannihilation patterns considered in Sec. III. In
the region of masses mA=mχ ≲ 2 the DM annihilates to SM
electrically charged states via the resonantly enhanced
s-channel mixing between the two photon mediators (res-
onance regime). In the region mA=mχ ≳ 1, the annihilation
channel to two dark photons is opened when s > 4m2

A. Far
from any resonance, annihilation cross section to dark
photons is proportional to e04, while annihilation to SM
states via photon mixing is suppressed by the factor ϵ2α=e02,
whereα is the fine structure constant. Since the upper limit on
the kinetic mixing for the value of the dark photon mass that
is relevant for our study is ϵ ∼ 10−3 (see, e.g., Fig. 3.3 in
Ref. [45]), the difference of annihilation rates below and
above the threshold of s ¼ 4m2

A is significant, effectively
leading to the subthreshold regime.Despite the smallness of ϵ
the dark photon remains in chemical equilibrium throughout
the freeze-out of DM.
Finally, before discussing the results a comment on the

elastic scatterings on bath particles is in order. We follow the
implementation in DRAKE, briefly summarized inAppendixA,
which was derived in a semirelativistic Fokker-Planck appro-
ximation applicable to the thermal freeze-out. In the presence
of an additional relativistic component formally this treatment
breaks down and the implemented elastic-scattering term
may deviate from the actual one. Nevertheless, as we will
see, for the results shown themomentum transfer rate in elastic
scatterings, γðTÞ is subleading compared to the other proc-
esses, and therefore the current implementation is expected to
be sufficient.

B. Results

Below we show numerical results only for the sub-
threshold regime, because the resonance regime for the
given model with the constraints on ϵ requires an extremely
sharp resonance to not overproduce the relic density, and so

it is phenomenologically less interesting within the model
at hand, while retaining similar qualitative behavior.
An example of the particle yield Y and the temperature

parameter y is shown in Fig. 6 for a benchmark set of
parameters mχ ¼ 100 GeV, mA ¼ 108 GeV, e0 ¼ 1, and
ϵ ¼ 0.001, which is chosen such that the NBE approach
with the decays switched off (gray curve) reproduces the
observed relic density. All the curves, except for the gray
one, display the same inflection point after the density
decouples from the equilibrium value. At this point the rate
of particle loss due to annihilation and the rate of particle
gain due to the decay are comparable. From this point
the NBE curve (blue) grows somewhat, but the FBE
curves (orange and black) decrease even further. While
the behaviour of the first curve is expected as the produc-
tion of additional DM particles should increase the density,
the fact that the account for the actual shape of DM
momentum distribution in this case leads to the decrease
of the DM density can seem quite surprising. However, it
can be easily understood from the velocity-dependent
annihilation pattern of the model and the momentum
distributions that correspond to the different approaches.
The evolution of fχðpÞ is shown in Fig. 7. In the NBE
approach the shape of the distribution is assumed to be
unchanged even if the DM particles from S decay are in fact
more energetic, hence the rate of annihilation is only
slightly affected by the presence of additional DM particles
and the decay gain term dominates over annihilation in the
density evolution until it becomes too small to noticeably
increase the abundance of DM. In the FBE case with the
switched-off self-scatterings (orange) the decays create a
small bump in the distribution function with a characteristic
momentum that is sufficient to overcome the annihilation
threshold and thus the rate of annihilations in the DM gas is

no decay

eq.

NBE

FBE

FBE
no self–scatt.

20 40 60 80 100

10–13

10–12

10–11

10–10

subthreshold +

20 40 60 80 100100

101

102

103

FIG. 6. An example evolution of the particle yield Y (left panel)
and the temperature parameter y (right panel) for a benchmark
subthresholdþ decay model. On both panels the blue line
gives the result with NBE treatment, orange FBE without self-
scatterings, and black of the full calculation. For comparison gray
lines show the equilibrium yield and the one obtained in a model
without decay.
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significantly boosted. The effective temperature of DM
rises with respect to the SM plasma temperature (orange
line in the right plot in Fig. 6); however, as the most
energetic particles in the bump annihilate away, the
effective temperature drops below the equilibrium temper-
ature due to the cooling caused by the expansion. At this
stage the majority of annihilation processes happens below
the threshold again, hence the thermally averaged cross
section becomes very small and the DM freezes out.
In the presence of self-scattering the FBE curve (black)

displays a steeper drop of the particle yield as the injected
DM component heats up the DM gas via elastic collisions
such that more DM particles have the energies to overcome
the annihilation threshold. In the example that we consider
the rate of self-scatterings is large enough compared
to the rate of annihilations4 in the absence of self-scattering
(cf. Fig. 8) that the injected component can effectively
transfer the energy to the thermal component before that
additional component is annihilated and the energy stored
in it is dumped into the SM plasma. This heat significantly
increases the temperature of DM and keeps the annihilation
rate larger than the Hubble rate for a longer time, so the
relic density is established later and gets a smaller value
compared to the case when self-scatterings are switched
off. The second inflection point in the abundance curve
appears when the supply of DM particles from the decays

essentially ceases and little heat is injected in the DM gas.
In spite of that, the rate of annihilation does not decrease as
fast as in the absence of self-scattering, because these
scatterings promote the clustering of particles in the phase-
space region of higher momenta than the characteristic
thermal scale and hence prolong the annihilation above the
threshold. Note that the enhancement of annihilation that
we consider here is only relevant for the early history of
DM evolution—long before the effects of DM annihilation
can leave an imprint on cosmological observables the DM
gas is cooled down by the expansion of the Universe to an
extent that annihilation proceeds only below the threshold.
To summarize, we have considered a practical example

of a DM model with a late nonthermal component and
demonstrated that the offset between the relic densities
predicted by the NBE and FBE treatments can reach up to a
few orders of magnitude and that the impact of self-
scatterings on the result is crucial as well.
The above discussion also highlights that there is no

good way of formulating a general and simple model
independent criterion as to when the DM distribution’s
departure from equilibrium shape significantly affects the
relic density. The final effect comes from an interplay of not
only the expansion, annihilation, elastic, and self-scattering
processes but also potentially other processes that disrupt
the equilibrium, e.g., decays or annihilations of heavier
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x = 34

+
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FIG. 7. Time snapshots around the freeze-out of the evolution
of the normalized momentum distribution for the benchmark
subthresholdþ decay model. Black (orange) lines show fχðpÞ
with (without) self-scatterings, while for comparison blue line
shows equilibrium distribution at the SM plasma temperature.
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FIG. 8. All the relevant rates as compared to the Hubble rate H
for the benchmark subthresholdþ decay model: full FBE (black),
FBE without self-scatterings (orange), NBE at Tχ , and SM
plasma T (green and blue, respectively). Dotted blue and black
lines show the momentum transfer and self-scattering rates,
respectively. Note that these are the rates are obtained using
the actual solutions for nχ, not its equilibrium value. The raise of
the annihilation rates in the FBE approaches starting at x ∼ 30
explains why the injection of extra DM particles can lead to a
significantly enhanced annihilation and an ultimately decreased
relic abundance. The green curve is shown to highlight the fact
that it is not the change in temperature, but the shape of the
distribution that is the main reason of this enhanced annihilation.

4Note that the intensity of annihilation in the subthreshold
regime and the intensity of self-scattering are controlled by the
same coupling.
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particles into DM. Moreover, comparison of just the rates
for these processes is insufficient, as they can be very
efficient for some range of the momenta while not for
others, as exemplified in the discussed models. A useful
rule of thumb of when to expect a possibility of departure
from kinetic equilibrium is if the rate of a process that
disrupts kinetic equilibrium is larger than the rate of elastic
scatterings between the DM and bath particles. As to the
importance of careful inclusion of self-scattering processes
one can expect it to be necessary when the result obtained
with CBE and FBE methods differs to a larger extent than
the desired accuracy.
Before ending this section let us mention that although

we have not studied phenomenological implications of the
observed effects, other than the relic abundance, we did
check that the presented benchmarks within the example
models are feasible. In particular, the present day annihi-
lation cross section is well below the current observational
limits and A0 decay lifetime is short enough not to spoil the
cosmic microwave background anisotropies, nor the big
bang nucleosynthesis.

V. CONCLUSIONS

In this paper we investigated the impact of the DM
elastic self-scattering process on the evolution of its
momentum distribution function and formation of the relic
abundance. Building upon the DRAKE framework and code
we implemented numerically the self-scattering collision
term and applied it to two example models with thermal
freeze-out and one model with an additional source of DM
particles from decay of a heavier long-lived state.
We found that in all these cases the effect of self-

scattering on the thermalization of the distribution function
is large enough to bring visible changes in the effective
annihilation rates and therefore final relic abundance of
DM. In the freeze-out models our result does follow the
expectation of interpolating between the relic abundance
obtained using the coupled system of Boltzmann equations
for number density and temperature (CBE) and the
numerical solution of for fχðpÞ without including the
self-scattering collision term (FBE). This not only validates
both of these approaches in their respective limits but also
shows that very large self-scattering rates are needed to
recover the CBE result, thus suggesting, though in a model-
dependent way, that the FBE is typically a more accurate
approach.
In the case of an additional source of DM particles from a

decay of a heavier state the disruption of the close-to-
equilibrium shape of the thermal component that follows
can be very significant, making self-scatterings a crucial
ingredient in obtaining the accurate predictions for the relic
abundance, temperature, and the shape of the DM distri-
bution function. Additionally, we found an intriguing
feature that can only be uncovered when studying the
evolution at the level of the distribution function: the

injection of high energetic DM particles on top of the
freeze-out thermal component can lead to a decrease of the
resulting relic abundance. This effect arises in the scenarios
with strong velocity-dependent annihilations and is sig-
nificantly enhanced due to DM self-interactions. It would
be interesting to consider phenomenological implications
of such an effect in concrete DM models, which we leave
for future work.
Though in this paper we focused on the relic abundance,

the provided study also has consequences for the prediction
of the matter power spectrum for light DM candidates that
have some nonthermal component. In such situations the
precise shape of the distribution function is needed to
accurately predict the size of density perturbations and as a
consequence can affect, e.g., the warm DMmass limit [39].
Our work shows that self-scatterings can play a significant
role in such calculations.
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF SELF-SCATTERINGS

The collision term for self-scattering from Eq. (6) [taking
into account Eq. (7)] can be formulated in terms of the
discretized momentum components of the distribution
function fn ≡ fχðpnÞ (n ¼ 1…N) for the numerical imple-
mentation on a uniform grid. The integration over momen-

tum ⃗k̃ can be performed using the three-dimensional delta
function that imposes the momentum conservation. The
residual delta function can be used for one angular
integration, so one is left with two integrals over angles
and two integrals over the absolute values of momenta p
and k̃, which are approximated by the weighted sums of
the corresponding discretized momentum components.
Thus, the collision term for self-scattering can be calculated
as follows

Cself ½fi� ≈
ðΔpÞ2
2gχ

X
n

X
m

Fðpn; pmÞ½fnfm − fi efj�; ðA1Þ

where Δp is the momentum discretization step size on the
uniform momentum grid, f̃j corresponds to the momentum

p̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þ p2

m − p2
i

p
, which is fixed by the momentum

conservation. The value of f̃j is the result of a linear
interpolation between fj and fjþ1, which correspond to the
nearest momentum nods pj ≤ p̃j ≤ pjþ1. The function
Fðpn; pmÞ is a double integral over the angles
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Fðpn; pmÞ ¼
1

4ð2πÞ4
Z

d cos θ2

Z
d cos θ3

×
jMj2ðs; tÞ

sin θ2 sin θ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ϕ

p : ðA2Þ

Here θ3 is the angle between momenta p⃗i and p⃗m and θ2 is
the angle between momenta p⃗i and p⃗n (θ2 and θ3 span in
the range from 0 to π) and ϕ is the angle between the
projections of p⃗n and p⃗m onto the plane that is orthogonal
to p⃗i. The cosine of ϕ is fixed by the energy conservation
law and can be expressed through the energies and
integration angles as follows

cosϕ ¼ ðm2 þ EnEm − EnEi − EmEi

þ piðpn cos θ2 þ pm cos θ3Þ
− pnpm cos θ2 cos θ3Þ=pnpm sin θ2 sin θ3: ðA3Þ

The actual limits of integration over cos θ2 and cos θ3 are
restrained by the condition that j cosϕj ≤ 1. In particular,
this condition implies that the expression under the square
root in Eq. (A2) is not negative. s and t variables can be
expressed through the angles and energies as follows:

s ¼ 2ððEn þ EmÞEi − piðpn cos θ2 þ pm cos θ3ÞÞ;
t ¼ 2m2 − 2EiEn þ 2pipn cos θ2: ðA4Þ

We calculate the integrals in Fðpn; pmÞ numerically
using a nested adaptive Gauss-Kronrod quadrature. We
use the same set of functions Fðpn; pmÞ for the backward
and forward term similarly to the approach considered in
Ref. [46] in the context of general 2 → 2 collision proc-
esses, which also requires two numerical integrations over
the angles, though it is formulated using different notation.
Although the forward term in Eq. (6) can be reduced further
to an even simpler expression, this is not possible for
the backward one. In order to achieve the same level of

numerical accuracy and establish a better numerical can-
cellation between the two terms close to the equilibrium
point we treat both terms in the way presented above, which
allows us to combine them before performing the angular
integrals. This increases the stability of the time integration
of the Boltzmann equation in the stiff regime in which the
distribution function just slightly departs from equilibrium.
A detailed description of the approach to calculate a general
2 → 2 collision terms with a separate treatment of the
forward and the backward terms can be found in Ref. [22].
Also, useful expressions for a specific case f1 þ f2 →
f3 þ fχ can be found in Ref. [21].

APPENDIX B: USEFUL EXPRESSIONS

In the semirelativistic regime for DM velocities and
small momentum transfer with respect to its mass the
elastic scattering collision term [Eq. (5)] can be expressed
in the Fokker-Planck type approximation [47] as

Cel ≃
E
2
γðTÞ

�
TE∂2p þ

�
2T

E
p
þpþ T

p
E

�
∂p þ 3

�
fχ ; ðB1Þ

where the momentum exchange rate γðTÞ is given by

γðTÞ ¼ 1

48π3gχm3
χ

Z
dω g�∂ωðk4hjMj2itÞ; ðB2Þ

with

hjMj2it ≡ 1

8k4

Z
0

−4k2cm
dtð−tÞjMj2 ðB3Þ

and k2cm ¼ ðs − ðmχ −mfÞ2Þðs − ðmχ þmfÞ2Þ=ð4sÞ evalu-
ated at s ¼ m2

χ þ 2ωmχ þm2
f.

The full expressions for the functions β1 and β2 that we
use in the expression for the self-scattering amplitude
squared of Eq. (11) are given below:

β1 ¼ γ̃2ð10s̃2 þ 4s̃ð4t̃ − 1Þ þ 2t̃ð5t̃ − 2Þ þ 1Þ þ 4ðδþ 1Þ2s̃4 þ 4ðδþ 1Þs̃3ð−δþ 2ðδþ 1Þt̃ − 4Þ
þ s̃2ðδðδþ 10Þ þ 12ðδþ 1Þ2 t̃2 − 24ðδþ 1Þt̃þ 19Þ þ s̃ð−δþ 8ðδþ 1Þ2 t̃3 − 24ðδþ 1Þt̃2 − ðδ − 3Þðδþ 5Þt̃ − 5Þ
þ t̃ð−δþ t̃ðδðδþ 10Þ þ þ4ðδþ 1Þ2 t̃2 − 4ðδþ 4Þðδþ 1Þt̃þ 19Þ − 5Þ þ 1; ðB4Þ

β2 ¼ −3δþ g2ð10s̃2 þ 4s̃ðt̃ − 4Þ þ 4ðt̃ − 1Þt̃þ 7Þ þ 4ðδþ 1Þ2s̃4 þ 4ðδþ 1Þs̃3ð2ðδþ 1Þt̃ − 3δÞ
þ s̃2ðδð13δ − 2Þ þ 12ðδþ 1Þ2 t̃2 − 12δðδþ 1Þt̃ − 5Þ þ s̃ð−6δ2 þ 9δþ 8ðδþ 1Þ2t̃3 − 12δðδþ 1Þt̃2
þ ðδ − 1Þð3δþ 1Þt̃ − 1Þ þ δ2ððt̃ − 1Þt̃ð4ðt̃ − 1Þt̃ − 1Þ þ 1Þ þ 2δð1 − 2t̃Þ2ðt̃ − 1Þt̃þ ðt̃ − 1Þt̃ð4ðt̃ − 1Þt̃þ 7Þ þ 3:

ðB5Þ
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