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Enhancing the sensitivity of interferometers
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We present a new quantum control strategy for increasing the shot-noise-limited sensitivity of optical
interferometers. The strategy utilizes active phase-insensitive quantum filtering of the signal inside the
interferometer and does not rely on optical squeezing. On the example of the coupled-cavity resonators,
employed in the gravitational-wave detectors, we show that fully causal and stable phase-insensitive filters
can improve the interferometer sensitivity by more than an order of magnitude. The role of the phase-
insensitive component in such systems is to provide frequency-dependent compensation for the unwanted
dispersion introduced by the position-sensing optical cavity. The system’s stability is achieved by limiting
the frequency band of this compensation. We demonstrate that stable optomechanical Parity-time-
symmetric (PT-symmetric) filters comprise a special subclass of such phase-insensitive devices and find
entirely new solutions which overcome the sensitivity of PT-symmetric filters. This scheme is robust
against optical loss at the output of the detectors and in the cavities.
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I. INTRODUCTION

Quantum nature of light imposes fundamental limits
on the sensitivity of laser interferometers [1], such as
axion detectors [2—6], optomechanical sensors [7], and
gravitational-wave (GW) observatories [8,9]. In particular,
the photon-counting (shot) noise [10-12] leads to the
diminished Laser Interferometer Gravitational-Wave
Observatory (LIGO) sensitivity in its most sensitive fre-
quency band above 50 Hz [13,14] and will limit the
sensitivity of the proposed third-generation detectors, such
as Cosmic Explorer and Einstein Telescope, over their
whole sensitivity band [15,16]. New quantum noise sup-
pression techniques can allow us to expand horizons of the
axion and GW observatories, improve localization of GW
sources [17], probe physics of neutron stars [18,19], and
study black hole spectroscopy [20,21].

The GW community widely applies three strategies to
suppress the quantum noise: (i) increase the optical power
resonating in the detectors, (ii) utilize the coupled-cavity
topology [22,23], and (iii) inject squeezed states of light
[24,25], or create them internally [26,27]. Each of these
techniques has a number of advantages and limitations:
() leads to optical losses due to the distortion of interfer-
ometer geometry caused by the absorption of laser light in
the mirrors [28], creates parametric instabilities [29-31],
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and increases radiation pressure, which results in the
standard quantum limit of sensitivity [32], (ii) enhances
the detector response above 100 Hz but suppresses it at
lower frequencies (or vice versa) [12,33,34], and
(iii) improves the quantum noise by making the interfer-
ometers quantum enhanced [35-37], but suffers from
optical losses in the detectors [12,38].

In this work, we show that another quantum technique
known as linear phase-insensitive amplification [39,40] can
significantly improve the sensitivity of the optical inter-
ferometers. We consider quantum filters given by the
equation

b = Ga + Kn, (1)

where b and & are the output and input modes of the filter,
G is the gain, and 7, is the filter’s internal noise, which is
coupled to the output mode with a minimal coupling

magnitude of
kl=|iee -1 @)

Phase-insensitive amplification has been recently studied
in the GW community with the goal to increase the
bandwidth of the detectors and to achieve the “white-light
cavity” effect [41-46]. However, these configurations rely
on intrinsically unstable systems. In practice, white-light
cavities require the development of external stabilization
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controllers that were not found yet. The next step was made
in [47,48], where a stable phase-insensitive amplification
based on a Parity-time-symmetric (PT-symmetric) [49]
optomechanical interaction has been proposed. In this
paper, we present causal and stable quantum filters that
increase the quantum-limited sensitivity (within a finite
frequency band) without compromising the bandwidth or
stability of the interferometer. The mechanism underlying
this sensitivity enhancement is the frequency-dependent
compensation for the unwanted time delay introduced by
the sensing cavity. We demonstrate that stable optomechan-
ical PT-symmetric filters found in [47] form a special
subclass of systems, described in this work, and find entirely
new solutions which overcome the sensitivity limits of
PT-symmetric filters. We also consider optical losses at the
output of the detector and inside the optical cavities and
show that phase-insensitive filters are much more robust
against these losses as compared to phase-sensitive tech-
niques, such as the use of squeezed states of light.

II. PHASE-INSENSITIVE FILTERING
A. Layout

We apply phase-insensitive amplification to the coupled
cavity layout [Fig. 1(a)], which is equivalent to the one of
LIGO and Virgo detectors. The layout consists of the input
mirror (IM), the central mirror (CM), and the end mirror
(EM). Symbols r and ¢ with subscripts IM and CM denote
the amplitude reflection and transmission coefficients of
the corresponding mirrors, respectively. Motion x of the
end mirror (or equivalent GW strain & = x/L;) creates a
“signal” EM field £ with a spectral density Sz via
modulation of a carrier field, which is resonant in the
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FIG. 1. (a) General schematic of the detector: a system of two
coupled optical resonators, a sensing cavity with length L, and a
filter cavity with length L. Positional signal x creates a signal
electromagnetic field £ via modulation of a carrier field, which is
resonant in the sensing cavity. The vacuum fluctuations 7, leak
into the system through the open port, creating shot noise in the
readout mode a,,. The active phase-insensitive element G
modifies the signal and couples additional noises 7, and 7,
into it. (b) Propagation of signal and noise in the system in the
Laplace domain.

sensing cavity with length L. The filter cavity with length
Ly shapes the frequency response of the detector to &.
Information about the signal is read at the output port in the
mode ;.

Figure 1(b) shows the propagation of the laser fields in
the optical system in the Laplace s-domain. We propose to
implement an active quantum component, characterized by
gain G and described by Eq. (1), in the filter cavity. In our
analysis, we assume that the active element G is non-
reflective and acts equally on the fields that propagate in
both dlrectlons This couples two additional noise sources

My, Al .2 into the signal in accordance with (1). The shot
noise is accounted for by considering vacuum fluctuations

A

ity in the input port. In this work, we assume that noise

sources fzzl, ﬁZQ, and 7, are all uncorrelated and have equal
spectral densities S,,. Note that Z(s) = ™™ and Z,(s) =
e™*% represent phase delay acquired by light as it prop-
agates through the sensing cavity and the filter cavity,
respectively. Here 7, » = L, /c is the one-way propagation
time through the respective cavities.

We evolve the signal and noise operators as they
propagate through the optical system and compute the
transfer functions 7, T , T, and T} , from each of these
components to the output field a,, (see Appendix A 1 for
explicit equations of the transfer functions). Our strategy is
then to optimize G to achieve the highest signal-to-noise
ratio (SNR) in the optical readout. In case of the homodyne
readout with the homodyne angle ¢; o, which is considered
in Appendix B, the SNR is given by the equation

S
SNR(0) = () S5, 3)
where
v M) singuo + iT(iw)eosdiol
) = T @) 4 T )P,
and

T1(s) = Te(s) £ T (—s). (5)

The subject of our optimization is y*(w), which is
functionally dependent on G(iw). Physically, it represents
the SNR enhancement by the interferometer as compared to
the system consisting of a single test mirror.

B. Optimal filter

We choose the optical homodyne angle ¢ and the
quantum gain G to achieve the maximum y. This can be
done analytically in the second-order approximation of the
delay functions,
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e~ 1 — st + 527%/2. (6)

We find (see Appendix C 1) that y? is formally maximal at
all frequencies if

G(s) = Gonls) = |/ *2 L )

vs = ctem/ (4Ly) (8)

where

is the bandwidth of the sensing cavity. This result has an
intuitive understanding: the SNR is maximized if Ggpt
compensates for the unwanted dispersion introduced by
the delay Z; in the sensing cavity [45], whilst the equation
|Gope| = 1 ensures that the noises 7, 1, do not couple to
aoy at all [see Eq. (1)]. We see that the active phase-
insensitive element G, does not act as an “amplifier”
because it does not change the magnitude of the signal
(|Gop| = 1); rather, it comprises an all-pass quantum
filter. The role of G, is to tune the phase of the laser
light in the filter cavity in a frequency-dependent way:
50(60) = arg Gopt(iw)'

Figure 2 shows the comparison of the performance of the
optimal filter G, and the passive system (G = 1) for the
parameters used in [48]: Ly = 4 km, Ly = 40 m, Tgy = 0,
Tem = 0.5%, and Ty = 2%. In the passive case, we
detune the filter cavity from its resonance by a set of
angles in the range from O up to z/2. The tuning ¢ = 7/2
corresponds to the standard resonant signal recycling
technique [22]. “Antiresonant” tuning ¢ = 0 corresponds
to the wideband, or ‘“resonant sideband extraction”
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FIG. 2. Signal-to-noise ratio enhancement in the optimal
readout quadrature of: (1) a passive system (G = 1) for dif-
ferent microscopic length tunings ¢ of the filter cavity (thin
curves) and (2) a system with optimal G(w) given by Eq. (7)
(thick solid curve).

scheme [23]. Any tuning in between realizes the “detuned
recycling” scheme [50], providing significant enhancement
around one particular frequency. Figure 2 shows the
enhanced responses in the narrow set of frequencies for
different detunings in the passive case.

In the active case, the gain G = G, ensures optimal
response at all frequencies within the sensitive bandwidth
(thick solid curve in Fig. 2). The response curve has a pole
at s = y,. The mechanism of sensitivity enhancement in
systems with phase-insensitive amplification is the same
as the one provided by passive signal recycling cavities
(SRCs),—namely, compensation for unwanted phase shift
generated by the sensing cavity. The difference is that a
passive SRC can only provide perfect compensation at a
single particular frequency, while in the active phase-
insensitive systems such compensation is provided at a
wide range of frequencies. Unlike single-sided passive
detuned configurations, G, provides optimal phase cor-
rection of both signal sidebands. This provides additional
enhancement by a factor of ~2 above the peak values of
dash-dotted curves in the figure. Simplified analytic
expressions for the sensitivity enhancement are given in
Appendix D.

We quantify the total SNR improvement by integrating
x? over frequency. In the passive case, the integral’s upper
bound does not depend on the filter cavity detuning ¢ and
can be obtained by using the single-mode approximation:

r/(27,)
/ 7 ,G=1)do <n/t, = 1. 9)
0

In the active case G = G, the integral enhancement is
given by the equation

Iopt ~ 4”/(t12MTs) = 4'IO/Z‘%M (10)

and equals 200/, for our set of parameters.

1. Stability

The optimal gain G, shows a significant SNR enhance-
ment but has an unstable pole at s = y,. In our stability
analysis, we use the Nyquist criterion [51] applied for the
open loop transfer function of the whole coupled cavity
system shown in Fig. 1 (Appendix E). This analysis shows
that the whole system is also unstable if G = Gy

However, it is always possible to approximate an
unstable G, within a finite frequency band with a causal
and stable gain G expressed by a rational function with a
sufficiently large number of poles and zeros [52]. If,
additionally, the resulting closed-loop transfer function
of the whole system is also kept causal and stable, then
it will still provide sensitivity enhancement in a finite
frequency range. We discuss it in the next section.
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III. STABLE NEAR-OPTIMAL FILTERS

This section is organized into two parts. First, we show
that the coherent quantum feedback scheme with PT-
symmetry [47,48] is a causal and stable approximation
of Gy in a finite frequency range. Second, we use a
constrained optimization algorithm to find two other stable
and causal solutions for G that achieve even stronger SNR
enhancement compared to the PT-symmetric systems.

A. PT-symmetric filters

In the PT-symmetric coherent quantum strategy, the
coupled-cavity sensitivity is improved by embedding a
mechanical oscillator in the filter cavity with an eigenfre-
quency w,,, quality factor Q,,, and mass m. The filter cavity
is then pumped with an addition laser field with frequency
@, + w,, and the circulating power P;. The pump field at
@y + @,,, the mechanical mode at w,,, and the signal
sidebands around w, interact via the radiation pressure.
This improves the sensitivity of the detector when the
optomechanical coupling rate [7] is equal to

167P W,
=, —L =22 11
g \/ miw,L; /2 (11)

fem
= 12
o, = 5L (12

where

is the optical coupling rate between the filter cavity and the
sensing cavity. Moreover, the Hamiltonian of the whole
optical system becomes PT-symmetric, allowing it to be
stable without any external controllers.

In the resolved sideband regime w,, > y,,7s, the PT-
symmetric coherent quantum strategy provides phase-
insensitive amplification in the filter cavity given by the
equation

B 1o 4g°t 0,
68 = Gr() = 1 = Sy —2iw) D)

where y,, = ®,,/(20,,) is the linewidth of the mechanical
oscillator. The role of the amplifier’s noise is played by the
input vacuum noise at frequency @, + 2w,, and the thermal
motion of the mechanical oscillator.

We show (see Appendix F1 for details) that the
PT-symmetric condition (11) corresponds to the case
when the gain of the optomechanical component is close
to the optimal gain, Gpr & G, for w 2 y,. Therefore, at
high frequencies w > y,, the sensitivity enhancement is
limited by

t 1
xer(@) < \/Eﬂ .
I 0T,

(14)
Details of our analysis of the sensitivity limits in PT-
symmetric filters is given in Appendix F2. We find that
arg Gpr(iw) =~ arg G, (iw) is satisfied for frequencies
above the mechanical linewidth, @ > y,,. However, the
amplitude requirement |Gpr| & |G| = 1 gives a stronger
additional low-frequency limit for the SNR enhancement of
the PT-symmetric configuration,

8t
ror() < Mo, (15)
CM

Inequalities (14) and (15) do not depend on the properties
of the mechanical oscillator; in this sense, they reflect
fundamental limitations of the PT-symmetric scheme with
gain (13). The dash-dotted curve in Fig. 3 shows a more
precise limit of enhancement that can be provided by the
PT-symmetric scheme (achieved with Q,, = o0), which
can be approximated by expression (F9). The maximal
integral enhancement achievable with the PT-symmetric
quantum strategy is given by the equation

Ipr = 7/ (tmts) = Io/tim (16)

and equals to &7 for our set of parameters.

The PT-symmetric optomechanical element Gpr is
causal and stable since its gain (13) has no poles in the
right-hand side complex half-plane. Stability analysis
of the whole system is somewhat complicated because
of the “idler” mode w, + 2w,,, which also circulates in the
interferometer and must be included in the stability
analysis; such rigorous analysis was presented in [48],
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FIG. 3. Thick lines represent stable optimized configurations of

G with two poles (cyan) and three poles (magenta) with improved
integral enhancement /,» as compared to the best PT-symmetric

optomechanical (OM) configuration (dash-dotted line).
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where it was shown that the full system is also causal
and stable.

However, we show below that the approximation of Gy
achieved by the optomechanical PT-symmetric filters is not
optimal, even among causal and stable approximations of
Gope With rational functions that have only two poles.

B. Constrained optimization of sensitivity

We developed an algorithm to find optimal zeros Z,
poles P, and gain K of the approximation of Gy to
maximize the integral given by the equation

1 [/

I, 2w, Z,P,K)dw. (17)

7y o
The optimization algorithm also enforces the stability of the
element G and the stability of the coupled-cavity system.
This is achieved by detecting open-loop instability [i.e.,
unstable poles of Eq. (El)] and closed-loop instability
(using an automated Nyquist stability criterion) and includ-
ing them in the cost function with large weights. A detailed
description of our algorithm and the solutions we obtained
with it are given in Appendix G.

1. Two-pole systems

We first searched for the optimal G with two poles and
utilized the transfer function given by Eq. (13) as an initial
guess. Using our constrained optimization algorithm, we
found a stable phase-insensitive filter with /,» ~# 9.2 dB,
which exceeds the PT-symmetric limit of sensitivity
enhancement /pr =~ 8.5 dB (cyan curve in Fig. 3).

2. Three-pole systems

We further improved SNR enhancement y by increasing
the number of poles of the phase-insensitive element.
The magenta curve in Fig. 3 shows y for the case of a
G with three stable poles. The pole and zero locations were
obtained using the vectfit algorithm [53] modified for
complex-valued impulse responses and further improved
using the constrained optimization described above, result-
ing in /> ~ 12.5 dB.

IV. EFFECT OF OPTICAL LOSSES

The key advantage of our quantum noise reduction
strategy is its resilience to optical losses. To demonstrate
it, we employ the phase-insensitive formalism: for each
optical loss channel with loss A, we add a quantum
phase-insensitive component described by (1) with gain
G = /1 — A. Specifically, in this work, we consider the
output loss A,,, the round-trip filter cavity loss A, and the
round-trip sensing cavity loss A;. Each of these loss

channels couples in an additional quantum noise process

ﬁj\; we assume that these noise processes are uncorrelated
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FIG. 4. Comparison of the SNR enhancement y provided by
stable optimized configurations of G with three poles with and
without optical losses. An output loss of A, = 30% (green curve)
reduces the integral SNR /. from the lossless case (magenta
curve) by 20%. A combination of A, = 30%, filter cavity loss
Ay =0.2%, and sensing cavity loss A; = 0.005% (thick black
curve) decreases [,» by 34% from the lossless case. All
configurations retain both open-loop and closed-loop stability.

between each other and can be described with the same
spectral density (that of vacuum fluctuations) S,,. These
noise sources, together with previously considered shot
noise 71, and noise fluctuations associated with the phase-

insensitive element, ﬁ;l and ﬁjlz, all contribute to the

denominator of the sensitivity enhancement Fig. (4)
through their corresponding transfer functions, which are
given and discussed in Appendix A 2.

Optical loss is the main limiting factor for the performance
of phase-sensitive techniques (optical squeezing) that are
currently in use in GW detectors. In particular, optical loss A,,
in the output channel decreases the measurable level of
squeezing from infinity to <6 dB for A, = 30% [54].
However, the same amount of output loss will reduce the
SNR enhancement y? only marginally in a system based on a
phase-insensitive element in the filter cavity. This is illus-
trated by Fig. 4, where the integral enhancement [, is
decreased by ~20% by output loss (green solid curve).
Furthermore, the thick black curve in Fig. 4 shows the
enhancement provided by a stable configuration with a three-
pole transfer function G of the filter and optical losses typical
for amodern GW detector: A, = 30%, Ay = 0.2% [55], and
As =50 ppm. The integral enhancement /,. is decreased
by ~34% with respect to the lossless case, but it still exceeds
the enhancement of schemes without phase-insensitive
amplification (G = 1) by a factor of ~12.

V. CONCLUSION

We have shown that stable quantum phase-insensitive
filters can significantly improve the SNR of coupled-cavity
systems. Such filters can be implemented by means of
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optomechanical resonators discussed above, or via quan-
tum conversion of optical frequency in nonlinear crystals
[56]. The system configuration can be obtained from a
known G via the quantum network synthesis method [57];
however, detailed studies of the technical design lie beyond
the scope of the present paper. The use of quantum
photonic integrated circuits [58,59] can allow for stable
broadband systems with many optical poles, whose integral
SNR enhancement approaches the limit (10).

In contrast to the injection of squeezed states of light,
which improves the SNR by reducing the variance of the
vacuum noise in the measured quadrature, stable phase-
insensitive amplification improves the SNR by enhancing
the signal field in the interferometer. Therefore, the two
quantum techniques are complementary and can be
used together to improve the quantum noise-limited sensi-
tivity of interferometric detectors. The sensitivity can be
improved even further by introducing quantum correlations
between different noise sources (in particular, the shot noise
i1, and the noise of the active element 71, ). We leave these
topics for future research.
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APPENDIX A: TRANSFER FUNCTIONS

1. The lossless case

In this section, we obtain explicit expressions for the
transfer functions to the output field a,, (Fig. 1): T; from
|

the signal £ and T, Th,,» and T, , from each of the sources

]

', nl,, and i, of the quantum noise. The arm cavity is
assumed to be resonant with the carrier light with frequency
@,. Since there is an active element with a complex-valued
gain G in the filter cavity, we assume without loss of
generality that the filter cavity without G would also be
resonant at @, because we include any additional phase shift
in the filter cavity into the expression for G. This corresponds
to the resonant sideband extraction tuning used in Advanced
LIGO and results in an increased bandwidth at the cost of
limited peak sensitivity (see the case ¢ = 0 in Fig. 2).

The key element of this setup is an active phase-
insensitive component for the optical mode embedded into
the filter cavity. The component’s gain G(s) is represented
by real-valued gain magnitude G, and phase ¢ as

G(s) = Gy(s)e'?sls), (A1)

In accordance with Caves’ formalism, such a phase-
insensitive filter introduces additional noise ﬁZ, whose
impact has a lower bound which depends on the gain

magnitude, and the relation between the input mode & and
the output mode b is

b =Ga +‘\/G3—1

Quantum mechanics imposes a constraint only on the
magnitude of the internal mode’s coupling to the output.
The phase term can be arbitrary, and we ignore it as
irrelevant for now.

In this document, the following convention for the
Fourier transform is assumed:

. (A2)

@) = Fx(1))(@) = /_ :x(z)e—iwtdz. (A3)

The four transfer functions, one from the signal ff and

three from the three noises 71,7141,/ to the output a,,, are

T. — out - Goe've temtmZyZy Ad
T\ E T 1+ renZE + Gy orZi(rem — 22) (A4
Ay gy Aty =0 cmZs + Gj mZy(rem — Z5
T <&0ul> - G(z)ez%Z%(FCM -7 + rv(=1 + remZ?) (A5)
" fig ) ea a=o  —L+TenZs + Gy erwZi(rem = Z3)
o <&0ut> B e5Goy/1 - G(z)tIMZ%(rCM - 73) (A6)
o fat ) egypa=o0  —1+ renZs + Goe* o ryZi(rem — Z3)
T o <&0ut> _ V1= Git(=1 + reuZ3) (A7)
e far ) espa=o0  —1+ remZs + Gge* o rZi(rem — Z3)
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TABLE 1. Optimized configurations of gain G(s) = K vazl (s—z)/ H;V:”I (s — p;) of the phase-insensitive filter, presented in the

form of lists of zeros z;, poles p;, and gain K.

Configuration As Ay Poles, Hz Zeros, Hz Gain
PT-symmetric filter Gpy 0 0 —2.5%x107° 14.91 + 1.0 x 10° 1.0
(fn =500 kHz, Q,, = 10'9) -2.5%107% + 1.0 x 10° -14.91-i2.22 x 107*
Optimized with two poles 0 0 —-1.0x 1072 —i3.61 x 10~ 14.82 +i17.75 x 10* 1.019389
(lossless) —7.39 x 107! +418.13 x 10* —14.79 +i5.16 x 1073
Optimized with three poles 0 0 —8.56 —i7.48 x 107* -21.33 0.998930
(lossless) —2.62+il1.31 x 1073 —-6.91 4+ i12.78
—9.33 4i9.90 x 10~* —6.91 —i12.78
Optimized with two poles 2x 1073 5x107° —1.0x 1072 - i2.76 x 1073 10.84 4 i9.98 x 10° 1.003015
(with loss) —19.36 x 1072 + i10.03 x 10° —14.78 —i3.49 x 10~*
Optimized with three poles 2x1073  5x107° —7.26 + i8.30 x 107* —-21.09 0.999188
(with loss) —2.20 +i16.66 x 1073 =7.18 +1i12.30
—11.37 +i10.38 x 107* -7.18 —i12.30
2. Effect of optical losses b=+V1-Aa~+ \/Kﬁj\, (A8)

In this work, we consider three types of optical losses:
(1) Output loss A,
(i) Filter cavity loss Ay,
(iii) Sensing cavity loss A;.
From the quantum mechanical point of view, any
loss A is also a phase-insensitive component with

gain /1 — A and additional quantum noise 715, which
gets coupled to the output signal b through coefficient

VA:

where a is the input mode [cf. Eq. (1)].

In order to calculate the transfer functions to the output, we
amend the configuration in Fig. 1 by adding loss elements
VI=2A,, /1 =Ay, and /T — A, and their corresponding

noises ﬁj\ ﬁ;\, and ﬁj\ to the output signal, the filter cavity,

and the sensing cavity, respectively. Introducing the modified
propagators Zy = Z;\/1 = Ay, Z; = Z\/1 — A and the
output effectiveness n = /1 — A,,, we obtain

. nGOe“”GICMfIMZst (A9)
¢ -1+ rCMZ% + G%eZW’G VIMZ;”(rCM - Z?) ’

_— n[Gge* 7o 23 (rem — 23) + rv(=1 + rem Z5))] (A10)

g —1 + rCMZ% + G%eziq}GrlMZ%(rCM - Z%) ’

T B neilﬁ(;GomthZ}(}’CM —Z%) (All)
" =1+ reu 2 + G o 2 (row — 22)

B n\/l——/\fmtﬂ\’l(_l + remZ3) (A12)
Na2 —1 —+ VCMZ% + G(Z)eZi(pGrIMZ%(rCM - Z%) ’

T, = VA (AL3)

o ny/ At (=1 + remZ3) (A14)
Y -1 + rCMZ% + G%€2i(ﬂGrlMZ]2‘(rCM - Z%) ’

_ nGoe e tomtinZ  Zs /Ay (A1S5)

T, =- - .
Mas -1 + rCMZ% + G(Z)e2”ﬂ6rlMZ%(rCM - Z%)

¥

To calculate the SNR enhancement, we include terms associated with noises 7, , ﬁj\f, and 71, introduced by optical losses

into (B13).
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The presence of output loss A, does not affect the
internal stability of the system. On the other hand, filter
cavity loss Ay and sensing cavity loss A, do affect the
stability. Therefore, we need to apply the optimization
algorithm described in Appendix G 1 separately to each
particular set of loss coefficients. Results for Ay = 0.2%,
Ay =50 ppm are presented in Table I.

APPENDIX B: SNR ENHANCEMENT OF THE
HOMODYNE READOUT

1. Signal
a. Modulation

In an interferometer, signal & is created by phase
modulation of the carrier field with amplitude A, and
frequency @, by the effective motion x of a test mirror. For
simplicity, in our derivation we will consider classical
mechanical motion at a single frequency w only as

1 . .
x(t) = x,, cos(wt + ¢,,) = 3 (X e + Xie ), (B1)
where X, = x, e,
The field reflected of the test mirror,
2x(t) 2x(t)da
areﬂected(t) = dincident <t - T) ~ a(t) 757 <B2)

contains modulation sidebands,
signal &(7):

which comprise the

2ri

&) = N

—_ _l'(é:wei(moer)t + é';lei(mo—w)t) +c.c.,

A (X, el @0t 4 Xneloo)) 4 cc.
(B3)

where 1y = wy/c and the symbol c.c. here and below
denotes the complex conjugate of the preceding expression.

b. Output

The quantity £(7) serves as a classic input to the
interferometer. By switching to the frequency domain,
propagating this signal to the output a,, of the interfer-
ometer, and switching back to the time domain, we find the
signal component ag, of the output:

asig<t) = Sin(a)ot) b(lei(m +ZTe_iw[]
+ cos(wpt) 2™ + yre~"]
= ag, (1) sin(wgt) + g (1) cos(wpt).  (B4)

Here

_2:(@) + (@)

X1 () T

:)(+<w) —x-(0)

are the “phase” and the “amplitude” field quadratures,
respectively, and

(B6)

X+ (a)) = \/Efng(ia))’ (B7)

1-(@) = V2&,T:(~iw). (B8)

c. Readout

In the balanced homodyne setup, the output field
ag, (B4) beats with a local oscillator field,
aro = ecos (oot + ¢ro), (B9)

where ¢ o is the homodyne angle. The two fields beat with
each other on a 50:50 beam splitter, creating another pair
of fields with amplitudes proportional to a,, *+ a; . Each
of these two fields is incident on a photodetector, creating

photocurrents i; and i,. The currents are proportional to the
average power of the incident fields per oscillation:

Wy

. _ 27/ wy
i12(t)  (agy + aro)?* = ﬂl (dou £ aro)?dr.

(B10)

Substituting (B4) and (B9) into (B10) and taking the
difference between the two photocurrents, we obtain the
readout signal

Igignal = I — I x a(t) cos o — (1) singho.  (BI)

Calculating the power spectral density S, of this signal,

sig
we get
Ssig(w) . . .
T T:(—
5y o | Tslio) & Ti(=i) sin o

2

+i(Te(iw) — Tg(—iw)) cosdrol”, (B12)
which constitutes the numerator of the right-hand side
of Eq. (4).

2. Noise

In order to calculate the noise, we apply standard two-
photon formalism, suggested in [10,11] and described in
detail for coupled-cavity systems in [12]; the only differ-
ence from the latter paper is that we have three separate
incoherent noise sources (7, 7,1, and 71,,) instead of one.
We assume that each one of these noise sources is in the
electromagnetic vacuum state |0). Consequently, the power
spectral density of the output noise is
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Snoise(w)

S, (@) Ty, (i) + |T,, (=iw)[* +|T,,, (iw)?

(—iw)|*.

(B13)

+|T,, (—iw)|* + |T,, (iw)* + |T

Naa a2

This gives the denominator of the right-hand side of Eq. (4).

APPENDIX C: OPTIMIZING THE
PHASE-INSENSITIVE GAIN

1. Optimal phase-sensitive gain

Our goal in this section is to find the magnitude and
phase of G at each frequency that would maximize the
signal-to-noise ratio enhancement (4) by the system. We
use the second-order approximation of the delay functions
(6), which is the lowest order approximation that accounts
for coupled-cavity effects, such as splitting of the reso-
nances induced by optical coupling.

Assuming that fpy, oy << 1, we obtain the following
analytical solutions for optimal gain magnitude and phase:

Gy (5) = [Gop(5) = 1, (C1)

. 1 s
40(Gpt)(s) = arg Go(s) = Earctan [S bl } . (C2)
S —Ys

where y, is the bandwidth of the sensing cavity (8). The
optimal gain magnitude of 1 shows that contribution of the
added noise vanishes; the active element actually plays
the role of a pure all-pass filter. The role of the introduced
phase ¢ is to compensate for the unwanted phase shift
introduced by the sensing cavity. Combining (C1)—(C2),
we write down the optimal gain G, in the form of (7).

2. Suboptimal gain magnitude

To analyze the PT-symmetric configuration, we need
estimations for the sensitivity enhancement if |G| = G is
not precisely equal to unity, but arg G = ¢ is kept equal to

the optimal phase ¢(G°pl) as given by (C2). Assuming

Go(s) =1+ &(s), (C3)

we write down the relative sensitivity enhancement as

){[‘”’ G=(1+ E)ei'/’gm]

)(rel(a)v 8) = opt

)([a), G = ei‘/’é )} <C4)

Assuming that |e| is small, the second-order approximation
for the cavity delays (6) yields

T T

0 I i
10 A Full expression A
::é VAl == Approximation
2 7\
Z /
/ 1\
! \
<
5
2 N
=
E \\
é 1071 Pl N
~N
—0.04 —0.02 0.00 0.02 0.04
Gain deviation from unity € = |G| — 1
FIG. 5. Relative SNR enhancement for a suboptimal filter with

gain G = |G|ei¢<cop[) if the phase is optimal [given by Eq. (C2)],
but |G| =1+¢e# 1. Solid line represents the full solution;
dashed line shows approximation (C5).

l‘2
4 le 2 . ’ €< 0’
V11682 =422 e (e+2)

) 2 (C5)
M
Vi 1684122 e(e+2) e>0.

The relative enhancement suppression, when moving away
from Gy =1, does not explicitly depend on frequency.
The dependence of this suppression on gain magnitude is
shown in Fig. 5.

APPENDIX D: APPROXIMATE ANALYTIC
EXPRESSIONS FOR SENSITIVITY
ENHANCEMENT

To analyze the key features of phase-insensitive amplifi-
cation, we obtain simplified analytic expressions for curves
that correspond to three distinctive cases. These include
two “passive” configurations without any phase-insensitive
amplification G = 1 and two different values of the filter
cavity detuning parameter ¢. One of these values, ¢ = 0,
corresponds to the largest bandwidth of the sensitivity curve
and the lowest peak sensitivity (we will refer to this as the
“passive broadband” configuration below); the other,
@ = /2, realizes the passive narrow band configuration
characterized by the smallest bandwidth and the highest peak
sensitivity. The third configuration assumes optimal filtering
(G = Gyp and @ = 0). To do this, we substitute the second-
order expansion of the cavity phase-shifts (6) to (B12)
and (B13). We also expand (B12) and (B13) into second-
order series in 3, and 7%, and neglect the insignificant terms.
Results are presented in Fig. 6 and below.

1. Passive narrow-band configuration (p=7/2, G =1)

Sensitivity enhancement can be approximated as
X nb

)( w z4,
@)~

(D1)
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Sensitivity with and without the optimal amplifier

H H
1 1
103 : A :
] i Ty |
] ! [)CM ] -
T E\I 1 -:
| 1 ) :
] i i i
— 1 \% ! —!
1 \}\}. 1 E|
SRl %, o <[22
I I % I Bl
g ?tglcxli ¢?» ||H i Ftﬁlm i
2 X NG SO
= I 1 1
G : : :
1 1 1 1
= 10 | | |
o i i i
1 1 1
1 1 1
! 1 ]
———— e e -
i
i
10° + ;
T — p=m/2,G=1 :
_— @:OaG:Gopt i
1072 10t 10° 10! 102 103 10*

Frequency, Hz

FIG. 6. Sensitivity enhancement curves for different configurations: passive narrow band (tuned signal recycling), green; passive
broadband (resonant sideband extraction), blue; optimal phase-insensitive filter, black. Solid lines represent full solutions; dashed lines
show approximations (D1), (D10), and (D13). DC levels and corner frequencies are shown as thin dashed lines.

where X, is the zero-frequency (DC) level

44/2
P (D2)
Iimicm

and w,, is the corner angular frequency

2
Wpp = Vs % . (D3)
The integral enhancement is
o 7
Ly, =1,= A 22 (@)do = EXﬁba)nb =r/t,. (D4)

2. Passive broadband configuration (p =0, G =1)
Depending on the bandwidth of the filter cavity
vy = ctiv/(4Ly),

there are two different cases. If y; > wyy,, where wy, is the
corner frequency for the broadband case

(D5)

4
Wpp = Vs3>

oy (D6)

then the coupled cavity effects can be neglected, and the
sensitivity curve is approximated as

Xop
PN P A — (D7)
V14 o'/ o
Here the DC level is
2t
Ky = Y2 (8)
fem
Since X3, /X2, = wg/w,, the integral  sensitivity
enhancement is
Iy, = Iy, = Iy = /7. (D9)

We note that one can recover the sensitivity enhancement
curve of a single sensing cavity by formally setting tp = 1
in any of (DI) or (D7).
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If the bandwidth of the filter cavity is comparable to or
smaller than the broadband corner frequency, y; < @y,
then the shape of the sensitivity curve (D7) can be
significantly distorted by coupled-cavity effects, and a
higher-order expansion is required for an accurate repre-
sentation of the sensitivity in the vicinity of wy,:

Xbb

W)~ .
){bb( ) ] + wfz |:] + wz_zwbbyf]
?y y}

(D10)

3. Optimal filtering (¢ =0, G=G,p,)

In the optimal regime G = G, the DC level of the
sensitivity enhancement curve is equal to that of the passive
narrow-band configuration, but the corner frequency is
shifted to y, i.e., towards higher frequencies:

an

Yot @) R ——.
opt( ) 1+602/7/%

Therefore, the integral sensitivity enhancement is also
increased as compared to the passive configurations:

(D11)

47 4

L
3 3
Tshim  fim

L. (D12)

opt —

Similar to (D10), a more accurate approximation of the
sensitivity enhancement near @y, is given by

X
b (D13)

)(opt(a)) N - -
o? o?
1+% [1 + y}]

APPENDIX E: NYQUIST STABILITY ANALYSIS

The open-loop transfer function of the system is given by
Tor(s) = rIMGz(S)Z}(S)rs(S)’ (E1)

where

o) = e (€2

is the frequency-dependent effective amplitude reflectance
off the sensing cavity.

For the optimal filter, G = G, (7) and the open-loop
function has one unstable pole (P = 1) at s =y,. The
Nyquist plot for this system is shown in Fig. 7. Since the
contour encircles the critical point N = 0 times, the closed-
loop system is also unstable with Z = N 4+ P = 1 unsta-
ble poles.

Nyquist plot for the optimal amplifier Gopt

T T T
100“—w<0 :

10l 4+—— w>0
10-24 X Critical point ___|

Imaginary part
o
X

T T
0 107% 10~%* 10=3 102 10~! 10° 10!
Real part

FIG. 7. Nyquist plot for the optimal phase-insensitive filter
G = G- The critical point is encircled zero times; the open-loop
gain (E1) has one unstable pole at s = y,. Therefore, the closed-
loop system has a single unstable pole.

The key idea of self-stabilized systems is to replace Gy
with a transfer function that would make both the open-
loop and closed-loop systems stable and, at the same time,
would deviate from G, as little as possible, to keep the
sensitivity enhancement provided by phase-insensitive
amplification.

APPENDIX F: PT-SYMMETRIC
OPTOMECHANCIAL FILTERS

1. Optimal optomechanical coupling

We consider a PT-symmetric optomechanical filter: a
mechanical oscillator with frequency w,, and Q-factor Q,,,,
which is coupled to the circulating field in the filter cavity
via the radiation pressure. Pumping the filter cavity with an
additional electromagnetic field at the frequency wy + w,),,
with circulating power P, results in phase-insensitive
amplification of the signal [47,48] with the gain given
by (13):

4gzrf-a)m
(S + ym)(s + Ym— 21-60,”) '

G(s) = Gow(s) = 1 -

where y,, = ®,,/(20,,) is the linewidth of the mechanical
oscillator, and g & /P is the optomechanical coupling

rate [7]
9= miw,, Ly
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We notice that the open-loop gain (E1) is stable for such a
filter. In this section, we show that the value of g suggested
in [47,48],

_ o _ 1 fewm

B \/i B 7527f7s ,

corresponds to the approximation of G, by Gpr in the
operating range of frequencies.

Let us start with considering infinite mechanical Q
factor, i.e., y,, = 0. Equation (13) cannot satisfy both
conditions (Cl) and (C2) simultaneously. However, the
second condition can be fulfilled in a wide range of
frequencies between DC and 2w,,, which includes all
frequencies between DC and the sensing cavity’s free
spectral range (FSR). Indeed, assuming o <« 2w,,, one
can write for the gain phase

(F1)

2¢°t,
go(GOM) ~ arctan <— I > (F2)
®
Therefore,
2ne™ AP
an2gf " = 2O L IO (63)
1 — tan® g 49°t; — @
On the other hand, it follows from (C2) that
tan 27 = _ Stewto (F4)
Gy - 1600
Comparing these equations, one can find that tan 2(p(GOM) ~
tan 2q)<G°pt) when
2 Z%M (FS)
8z,
or

In our schematic, the optomechanical element is placed
inside the filter cavity rather than at the input mirror;
therefore, the light interacts with it twice per round-trip,
hence the required OM coupling rate is reduced by v/2 as
compared to [47,48].

The phase is shown in Fig. 8 (bottom). One can see that
the phase curves for a PT-symmetric filter with infinite Q,,
(solid blue) and the optimal filter G,y (dashed black)
coincide. However, a real mechanical resonator always has
a finite Q factor. The effect of this is illustrated by the black
curve, for which Q,, = 5 x 10°. At frequencies below the
mechanical linewidth, the phase of Gpr starts to increase

Magnitude and phase
of the optomechanical gain Gowm

T T T T

e — fm=5x10°Hz, Qm =00 ]
c§> E\—fm:5><105Hz,Qm:5><105
9 102 | —— Gopt -
) =
ge}
E .
E 10! o ™
o0 E
z AN
100 4 =

10-2 10t 100 10! 102 103 104

0
()
S a0 N
§ 40
- /
s —60 /
?
S _go
A —

102 107! 100 10! 102 103 10%
Frequency, Hz

FIG. 8. Deviation of the optomechanical gain magnitude from
unity (top) and optomechanical gain phase (bottom) as functions
of frequency in a PT-symmetric optomechanical filter. The two
solid curves correspond to a mechanical oscillator without
dissipation Q,, = oo (blue) and to a mechanical oscillator with
0,, =5 x 10% (red). The thick dashed line shows the optimal
filter with gain (7).

with decreasing frequency and arrives at 0 at DC. This
means that the SNR enhancement in such systems is
achievable only at frequencies above the mechanical
linewidth.

2. Limits of sensitivity enhancement

Finite mechanical bandwidth is not the only factor
limiting the SNR enhancement at low frequencies (LF).
The other one comes from (C1) and would exist even in a
system with infinite mechanical Q factor. Indeed, one can
write that the deviation of the gain magnitude from unity,
if 0, =0, is

, > 1,
s:Gg‘)M>—1:\/1+n2—1z{|" U (F7)
/2, Il <1,

where (again, assuming that o < ®,,)

20T _ofry gy vy (F8)
® ® 4oL, o

In|

Therefore, for frequencies comparable to or smaller than
the bandwidth of the sensing cavity, ® < y,, one gets € 2 1,
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SNR enhancement

>
10! 4
O 4
g
<]
Q
=}
<
=
=
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o
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1+ Mechanical Q-factor ]
— 102 104 —— 10° 00 ‘\1
g | 4 |
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FIG. 9. Solid curves represent the sensitivity enhancement by a
PT-symmetric optomechanical filter with mechanical resonant
frequency f,, = 500 kHz and different Q factors (as shown in the
legend). The thick orange curve corresponds to the limit of
sensitivity improvement that can be provided by PT-symmetric
filters. The thin black dash-dotted line shows the analytic
approximation (F9) of the orange curve. The dotted line repre-
sents the low-frequency limit (15) due to the deviation of |G| from
unity; black, blue, and green dashed curves are the same as
in Fig. 2.

and condition (C1) is not fulfilled. This is illustrated by
Fig. 8 (top).

The LF limit for SNR enhancement imposed by the gain
magnitude mismatch can be estimated by substituting
e = || into (C5). After simplifications, we get Eq. (15):

811m
xer(@) < tg—w%
CM

This limitation means that there always exists a value of
Q,, such that any further decrease of Q,, does not result in
any significant sensitivity improvement. This is illustrated in
Fig. 9, which shows sensitivity enhancement of the opto-
mechanical filter for different quality factors of the mechani-
cal oscillator. The dotted curve represents the limit (15).

Therefore, sensitivity enhancement by the PT-symmetric
optomechanical technique is fundamentally limited at
lower frequencies by (15) and at high frequencies by (D11).
Using the approximation technique described in
Appendix D, we approximate ypr for Q,, = o as

)~ 8\ 21y,
\/th + 481y Ry Tiw? + 647t (thy + 167202

xer(@

(F9)

If the bandwidth of the filter cavity is larger than the
frequencies of interest, y; > @y, then the term 16rfa)2 in

the denominator of (F9) can be neglected, and the integral
sensitivity approaches the limit of sensitivity enhancement
that can be provided by PT-symmetric optomechanical
systems:

00 1 1 t
IPT:/) Z%’T(w>dw___:_10:ﬁlopt'

— F10
Mm%y Iim 4 (F10)

APPENDIX G: OPTIMIZATION DETAILS

1. Optimization algorithm

In Sec. III B, we present sensitivity curves corresponding
to optimized stable solutions for G(s). In this section, we
describe the optimization algorithm we used to find these
solutions.

We optimize G(s) with fixed number of poles N, and
zeros N, and gain K:

G(s) = K% (G1)
j=1\8 = Dj

We will denote the sets of zeros and poles required to
represent a given G(s) as Z and P, respectively. The
optimization procedure amounts to the minimization of a
certain cost function, which depends on Z, P, and K. This
minimization is performed via the Nelder-Mead algorithm
using standard Python optimization tools.

The cost function is based on the integral sensitivity
enhancement by the system in the frequency range between
zero and half the FSR of the sensing cavity z/(2z,):

/2t
I(Z,P,K,gbLo):A P(@,Z,P.K, po)do.  (G2)

The cost function also includes terms whose role is to
ensure that both G and the closed-loop system with loop
gain (E1) are causal and stable. It is calculated for a given
set of zeros Z, poles P, and gain K as follows:

(1) By plugging (G1) into (B12) and (B13) and dividing
the former by the latter, we obtain / as a function of
given Z, P, K, and the homodyne angle ¢y .

(2) We maximize I(Z, P, K, ¢ o) for the given Z, P, and
K with respect to ¢y by a separate Nelder-Mead
optimization procedure, thus obtaining the optimal
homodyne angle ¢, (Z, P, K).

(3) We normalize I(Z,P,K,¢,y) by the maximum
integral enhancement I, = 7 /7 that can be provided
by passive systems for which G =1 [see Eq. (D9)].
The upper limit for the normalized enhancement is
given by the quantity 4/74, [see Eq. (D12)].

(4) We count the total number N;; of unstable and
nearly unstable poles p; in the set P, for which

Rep; > -Myg, (G3)
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where M is a small positive value describing how
close to zero the negative real part of a stable pole
can be in our system.

(5) We calculate the total number N, of times the
mapped Nyquist contour for the system (E1) en-
circles the critical point (—1,0) clockwise (the
winding number). This is done automatically: we

(6) Finally, we calculate the cost function as

0
T
C(Z,P.K) = _;SI(Z’P’K7¢Opt(vavK)) JFW(NUG + Nycr +{

Here W is the weight of the instability penalty, which
is set to a very large number as compared to 4/t3,,
and M, represents the stability margin—the measure
of how close we allow the Nyquist contour of a
stable system to be to the critical point. We used
W =108, Myg =27 x 107 rad/s, and M, = 10™*
in our calculations presented in the following
sections.

2. Two-pole solution

Here we consider a phase-insensitive filter G with
N, =2 poles and N, =2 zeros. The poles and zeros
are complex, and their real and imaginary parts both act as

Optimized 2-pole amplifier (lossless)

| \ |

106 I I I rd

No. of encirclements: 0

101-
] \

g \
2 104
;>.4} .
g 0 223
¥ —107* 1
E ] v

—10t ] / — w<0

] —_ w>0
X  Critical point
—-106
—-10%  —10! -—10=% 107% 10t 106
Real part

introduce a radial coordinate system (p, ¢) with its
center at the critical point, unwrap the phase ¢ along
the Nyquist contour, and calculate the net amount of
full turns by —360° it accumulates along the contour.
The system is unstable if Ny > 0. We also
calculate the minimal distance p,,;, between the
Nyquist contour and the critical point.

2 1)

1 _pmin/Mp if Pmin < Mp

independent variables in the optimization. Since the opti-
mization space has a large number of dimensions,

Np =2N,+2N, +1, (G5)
and since we do not have a very good measure of how close
to stability the closed-loop system is if it is unstable, it is
important that the initial guess of Z, P, and K resulted in a
stable closed-loop system.

For the two-pole system, an obvious choice of the initial
guess is the stable PT-symmetric optomechanical solution
(13). The resulting optimized values of Z, P, and K, which
correspond to the cyan sensitivity curve in Fig. 3, are given
in Table I. The Nyquist plot of the system is shown in

Optimized 3-pole amplifier (lossless)

108
No. of encirclements: 0
>
101 N~ }-
1 )
10~4
0 X
—10—4
*101 "
) -
-108 +~——"—""t+-r—r-r—r—t+r—r—rtr+rrrtrrrr
—106 —101  —10=* 10* 10! 106

Real part

FIG. 10. Nyquist plots for the systems with optimized two-pole (left) and three-pole (right) phase-insensitive gain G. Both systems are
stable since the number of times the mapped Nyquist contour encircles the critical point is zero.
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Fig. 10 (left). Note that we shift the critical point to the
origin and use the symmetric logarithmic scaling [60] for
both axes to improve the readability of our Nyquist plots.

3. Three-pole solution

The integral sensitivity enhancement can be improved by
increasing the number of poles and zeros of G. In principle,
one can approximate G, with a stable G within the chosen
frequency range with arbitrary precision by choosing a
sufficiently large number of poles and zeros. However, this
needs to be balanced with the technical complexity and
additional losses introduced by the physical realizations
of quantum filters, which are likely to increase with the
number of poles and zeros. Because of that, in this work,
we only show that increasing the number of poles can
indeed improve the sensitivity, without compromising the
stability, by considering the case of N, =3, N, = 3.

To get the initial approximation for this case, we fitted
G op in the range of angular frequencies [y, 27 - 10°] rad/s
with a stable three-pole G. We used our Python imple-
mentation [61] of the vectfit algorithm [53] for this.
Results of the fit are shown in Fig. 11. Fitted values of Z, P,
and K were then used as the initial guess for the opti-
mization procedure described in Appendix G 1. Results of
the optimization are given in Table I and plotted in Fig. 11,
and the corresponding SNR enhancement is shown in Fig. 3
(the magenta curve).

Stable approximation of G with three poles

T T T
L e — Gopt
s 101 .\\‘ == vectfit, 3 poles |
8 ] \ —— Optimized, 3 poles
B
<
3
=
=
&b
3
=
10°
102 107t 100 10t 102 103 104
0 — —
g N pd
= —20
: N7
o —40 /
¥ \
=10}
s —60 1
© k\/ I/
£ 80
i I P - \:
10-2 107t 100 10t 102 108 104
Frequency, Hz
FIG. 11. The fit of the optimal filter’s transfer function Gy

(thick dashed black curve) with a causal and stable three-pole
transfer function (dashed blue curve) and the optimized three-
pole transfer function (solid red curve).
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