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The primary scientific results of the future space-based gravitational wave interferometer LISA will
come from the parameter inference of a large variety of gravitational wave sources. However, the presence
of calibration errors could potentially degrade the measurement precision of the system parameters. Here,
we assess the impact of calibration uncertainties on parameter estimation for individual sources, focusing
on massive black holes, extreme-mass-ratio inspirals (EMRIs), galactic binaries, and stellar origin black
hole binaries. Using a Fisher matrix formalism, we investigate how the measurement precision of source
parameters degrades as a function of the size of the assumed calibration uncertainties. If we require that
parameter measurements are degraded by no more than a factor of two relative to their value in the absence
of calibration error, we find that calibration errors should be smaller than a few tenths of a percent in
amplitude and 10−3 in phase. We also investigate the possibility of using verification binaries and EMRIs to
constrain calibration uncertainties. Verification binaries can constrain amplitude calibration uncertainties at
the level of a few percent, while both source types can constrain phase calibration at the level of a
few × 10−2.
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I. INTRODUCTION

LISA is a space-based gravitational wave observatory
selected by ESA to be the third large mission in the
Cosmic Vision program and will be launched around
2034. Recently it has completed phase A (mission formu-
lation phase) and is now entering phase B1 (preliminary
design), which will lead to mission adoption around 2024.
LISA will consist of three identical satellites in a helio-
centric orbit forming an equilateral triangle with sides of
length 2.5 million km. The center of the constellation will
be trailing about 20 deg. behind the Earth. LISAwill detect
gravitational waves (GWs) by measuring the proper dis-
tance between free-falling test masses (located inside each
spacecraft) using laser interferometry. The change in the
proper distance in the LISA frame (which can be seen as
transverse-traceless gauge) translates into a modulation of
the frequency (or phase) of the laser light and is directly
measured by the phasemeters.
The dominant noise component in LISA measurements

is the laser frequency noise. Even with frequency pre-
stabilization this is expected to be several orders of

magnitude higher than what is required to detect gravita-
tional wave (GW) signals. This problem is further exac-
erbated by the fact that LISA’s arms are not of equal length,
and in fact change over time as the constellation “breathes”
due to the shape of the orbits of the individual satellites.
Fortunately, the laser frequency noise can be canceled in
post-processing. LISA will use transponding interferom-
etry, in which incoming laser light is amplified, phase-
locked and then transmitted back. The phase of the light
in each of the 6 laser links (one in each direction along
each arm of the constellation) will be measured on the
satellites using phasemeters. These phase measurements
can be delayed in time and linearly combined to form
closed loops of equal optical path length. Subtracting such
combinations from each other cancels the laser frequency
noise to an acceptable level. This technique is called time
delay interferometry [1], and for it to work we need to know
the distances between the three spacecrafts accurately and
we need to synchronize their on-board clocks.
Data decimation and postprocessing (that includes

filtering and resampling the data during clock correction
and building TDI) is a complex procedure which leads
to a nontrivial response of the detector to the incident
GW signal. Inaccurate modeling of the signal chain could
potentially distort the GW signal in the data that is
eventually analyzed. We will refer to differences between
the actual GW signal present in the data and how we model
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it as calibration error (or miscalibration). The calibration
process, by which the mapping between an incident
physical signal and a detector output is learnt or measured,
plays an important role in physical experiments. For
example, in the LIGO detector what is actually measured
is the size of the electrostatic force that must be applied to
the end mirrors to keep the detector at a dark interference
fringe. The transformation between the force (or voltage)
and the incident GW strain requires a calibration process, in
which the parameters of a calibration model are constrained
by injecting monochromatic signals into the detector using
laser modulation and measuring the system’s response [2].
Inevitably, the calibration cannot be perfect and leads to
some residual uncertainty that impacts our ability to
measure the parameters of the incident GW signal. In
the case of LISAwe will have more direct measurement of
the GW strain and so we do not expect to require a complex
calibration procedure, or to have a large calibration error.
However, it is still important to estimate the possible impact
of any remaining calibration errors on our ability to detect
and estimate the parameters of sources in the data.
In this analysis, we will treat the GW signal in the

frequency domain and decompose the calibration error
into parts acting on the amplitude and on the phase. The
calibration error can be seen as a biased measurement of the
amplitude and/or phase, and this bias could be both time
and frequency dependent. In practice we will not know this
bias, but it should be possible to bound it by an envelope.
Here we will place limits on the size of that envelope so that
we ensure LISA science exploitation is not affected.
Ignoring calibration error will lead to biases in parameter
estimation, similar to the biases that can appear due to
errors in waveform models [3]. In common with that case,
these biases will tend to be independent of the amplitude of
the gravitational wave signal and hence become propor-
tionally more important and even limiting for loud signals.
In contrast to the waveform error case, time-independent
calibration errors will affect all GW signals in the same way,
which will have implications for inference on populations.
We adopt a particular model for the LISA calibration

uncertainties, which is similar to models previously
employed in the analysis of LIGO data [4]. This model
is based on a natural cubic spline defined at four frequency
knots, chosen to roughly split the full LISA band into low-
frequency (0.1–1 mHz), mid-frequency (1–10 mHz), and
high-frequency (10–1000 mHz) ranges. We place a prior on
the weight at each knot of the spline that is a Gaussian
distribution with zero mean and a width which character-
izes the calibration error envelope.
We use this spline model to determine the impact of

calibration uncertainties on detection and parameter esti-
mation of LISA sources, focusing primarily on the latter.
We use a Fisher matrix formalism to assess our ability to
simultaneously measure the calibration uncertainty and
the source parameters, including the Gaussian prior on
the calibration parameters to represent our knowledge of

the calibration envelope. By changing the variance of the
Gaussian prior we can identify the size of uncertainty at
which calibration uncertainties become limiting. To make
this concrete, we define this as the point at which the
parameter estimation uncertainty doubles relative to its
value in the absence of calibration uncertainty. We consider
all classes of resolvable source expected to be observed by
LISA—galactic binaries, (super-) massive black hole bina-
ries, stellar-origin black hole binaries (SBHB) and extreme-
mass-ratio inspirals (EMRIs). Galactic binaries are binary
systems in the Milky Way containing two compact objects,
typically white dwarfs (WDs), but also neutron stars (NSs)
and black holes (BHs), with orbital periods of the order of
an hour. The GW signals are nearly monochromatic,
modulated by the LISA motion. Some of these systems
are already known through electromagnetic observations,
and are termed verification binaries. For these binaries the
amplitude and phase evolution of the systems are known to
some extent, albeit relatively poorly. Massive black hole
binaries are the strongest sources expected in the LISA
data. These signals arise from the inspiral and merger of
massive black holes in the centers of galaxies, following
mergers between their host galaxies. The GW signals are
broadband and are in the LISA band for between a few
hours and a month, depending on the masses of the binary
components. Stellar-origin black hole binaries are binaries
of two black holes, of the type being observed merging by
ground-based gravitational wave detectors. These systems
are observable in the LISA band in the early-inspiral stage,
between a few and a few hundred years before merger.
Finally, EMRIs are the inspirals of stellar-origin compact
objects (typically BHs, but possible NS or WD) into
massive black holes in the centers of galaxies. These arise
following the capture of a compact object as a result of
relaxation process in the stellar cluster surrounding the
massive black hole. These sources can be observed in LISA
data for up to several years, giving the potential for
ultraprecise measurements of the parameters of the system
by tracking the GW phase over ∼106 cycles.
For all source types, we find that calibration uncertainties

typically become important when they are comparable to
the precision with which the source parameters can be
determined. Amplitude calibration uncertainties become
limiting, although phase uncertainties do not in most cases,
since the phase evolution of individual sources is typically
distinct from the slowly-varying calibration uncertainty we
assume here. We find that if the amplitude calibration is at
the level of 0.1% and phase calibration is at the level of
10−3 then parameter estimation will not be adversely
affected. The paper is organized as follows. In Sec. II
we describe the formalism we will use to set calibration
errors, including the model we use for calibration uncer-
tainties and how we can assess the impact of calibration
errors on both source detection and parameter estimation.
In Sec. III we assess the impact of calibration uncertainties
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on parameter estimation for all resolvable LISA source
types and discuss qualitatively how these results can be
extrapolated to understand the implications for population
inference. Finally, in Sec. IV we discuss how LISA GW
sources can be used as calibrators to measure the LISA
calibration uncertainty, before finishing in Sec. V with a
summary of our conclusions.

II. SETTING CALIBRATION REQUIREMENTS

The typical assumption used in data analysis of gravi-
tational wave (and other) detectors is that the observed data
stream, dðtÞ, is a linear combination of signal and noise

dðtÞ ¼ sðtÞ þ nðtÞ:

We assume a model for how the signal component of
the data, sðtÞ ¼ hðtjθ⃗Þ, depends on the physical parameters,
θ⃗, that characterize the system and which we wish
to determine. The likelihood for the observed data is
then pðdðtÞjθ⃗Þ ¼ pðnðtÞ ¼ dðtÞ − hðtjθ⃗ÞÞ. In a gravita-
tional wave context it is usual to further assume that the
instrumental noise follows a Gaussian distribution charac-
terized by a power spectral density, ShðfÞ. In that case the
likelihood becomes

pðdðtÞjθ⃗Þ ∝ exp

�
−
1

2
ðdðtÞ − hðtjθ⃗ÞjdðtÞ − hðtjθ⃗ÞÞ

�
; ð1Þ

where

ðaðtÞjbðtÞÞ ¼ 4Re
Z

∞

0

ã�ðfÞb̃ðfÞ
ShðfÞ

df: ð2Þ

In reality this model will be imperfect. The noise
distribution might not be Gaussian, or the PSD might be
different to that assumed. We will call this noise modeling
uncertainty. Additionally the response might be different to
what we have modeled, which can be represented by
writing s̃ðfÞ ¼ CðfÞh̃ðfjθ⃗Þ, with CðfÞ ≠ 1, and then

d̃ðfÞ ¼ CðfÞh̃ðfjθ⃗Þ þ ñðfÞ: ð3Þ

We will call the existence of CðfÞ ≠ 1 a calibration error.
While both noise modeling uncertainty and calibration
error can have an impact on scientific inference and must be
minimized, in this paper we will focus on understanding the
latter.
The above expression is not completely general, since it

assumes that the data stream depends linearly on the
incident gravitational wave field and the function CðfÞ
does not depend on the properties of the gravitational wave
sources in the data. Nonlinearities that scale like the square
of the gravitational wave amplitude will be subdominant,
but there could be effects, for example filtering errors or

the presence of data gaps, that lead to leakage between
frequencies such that d̃ðfÞ depends on hðf0jθ⃗Þ for f0 ≠ f.
Calibration errors could also arise differently in different
spacecraft, which would mean the calibration errors in the
TDI channels would depend on the sky locations of the
sources. An additional complication arises because the
LISA data stream will contain multiple sources of different
types, and so in reality

h̃ðfÞ ¼
Xm
i¼1

h̃iðfjθ⃗iÞ ð4Þ

where i enumerates the different sources, with parameters
θ⃗i and waveforms h̃iðfjθ⃗iÞ. As these sources will occur at
different times, they may be affected by slightly different
calibration errors. Some of these effects can be accounted
for by writing down the calibration error in a different way.
For dealing with data gaps, a model similar to Eq. (3) but
applied to the time domain data might be more appropriate,
since gaps are multiplicative filters in the time domain,
whereas they are convolutions in the Fourier domain. To
handle the presence of multiple sources in the data, a model
that includes more than one calibration error function could
be used, for example

d̃ðfÞ ¼ CðfÞ
Xm
i¼1

CiðfÞh̃iðfÞ þ ñðfÞ: ð5Þ

Here CðfÞ and CiðfÞ can be interpreted as the global and
source-i specific calibration error, respectively.
Regardless of how complex the true dependence of the

data stream on the signal parameters is in reality, we can
always define a total calibration error Cðfjfθ⃗igÞ as the ratio
of the signal-dependent part of the instrumental data stream
to the model assumed for that component of the data. Doing
this would introduce a dependence into CðfÞ on the
parameters of the sources in the data. In this paper we
will ignore these complications, and use model (3) to set
limits on how much CðfÞ can deviate from unity before
calibration error starts to impact scientific inference for
individual sources. These results can then be used with
more complete models of the LISA data to assess if the
calibration requirement is met. Provided that the modeled
CðfÞ lies within the derived calibration envelope, for all
sources and for any reasonable realization of the full
population of sources in the data, the conclusion that
science is unaffected should be robust. If the calibration
requirement is not satisfied, using a more complex model
for the calibration error might partially mitigate the
problem. However, those more complex models are not
needed for setting a baseline requirement which is the goal
of this paper.
Eq. (3) applies to a single data stream, but in reality

LISA data will comprise three separate TDI data channels,
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(A, E, T). The response in each one can be modeled in
a similar way, but an assumption must be made as to
whether the calibration uncertainties are independent or
correlated between different channels. There are other
TDI combinations that can be constructed and it may be
that certain TDI combinations can be better represented
by the calibration model assumed here than others. For
the purpose of this paper we will use (A, E, T) and will
additionally assume that the calibration error is common
to the three channels. This should be a conservative
assumption as it makes the calibration error maximally
degenerate with the signal waveform.
Calibration errors affect our ability to identify sources in

the data (see Sec. II B), and our ability to accurately
measure the parameters of the sources (see Sec. II C).
The latter drives the LISA calibration requirement since
the relatively small fluctuations in LISA event rates arising
from calibration uncertainties are much smaller than
intrinsic astrophysical uncertainties in the LISA source
population. However, for completeness, we will describe in
the following sections how to assess the impact of cali-
bration errors on both. Before doing that, in Sec. II A, we
will first describe the calibration error model that we will
use to produce later results in this paper.

A. Calibration model

In practice, the statistical properties of the calibration
error might be estimated through simulation or measure-
ments on board the LISA satellites. Given a distribution of
calibration errors these can be folded into scientific
inference through, for example, reweighting of posterior
samples computed ignoring calibration error.1 For the
purpose of setting/assessing calibration requirements we
propose to take a different approach and write down a
simple model for CðfÞ, the parameters of which can be
interpreted as the accuracy of (amplitude and phase)
calibration at different reference frequencies. First we
decompose

CðfÞ ¼ ð1þ δAðfÞÞ expð2πiδϕðfÞÞ;

in which δAðfÞ can be interpreted as the amplitude
calibration uncertainty at frequency f, and δϕðfÞ can be
interpreted as the corresponding phase calibration uncer-
tainty. We further assume that these uncertainties are
smoothly varying over a relatively wide range of frequency.
At frequencies below 1 mHz, the LISA noise is dominated
by acceleration noise, while above 10 mHz it is dominated
by noise in the optical metrology system. The region
1–10 mHz is a cross-over region [6]. These frequencies
define the scale over which we would expect the LISA

calibration error to vary. We therefore model them as
natural cubic splines in log10ðfÞ, with nodes at the
frequencies

f0.1; 1; 10; 1000g:

In this model, between any two knots (fi and fi−1)
the amplitude or phase calibration error function can be
written as:

δXðfÞ ¼ Mi−1
ðfi − fÞ3
ðfi − fi−1Þ

þMi
ðf − fi−1Þ3
ðfi − xf−1Þ

ð6Þ

þ
�
δXi−1 −

1

6
Mi−1ðfi − fi−1Þ2

�
fi − f

fi − fi−1
ð7Þ

þ
�
δXi −

1

6
Miðfi − xf−1Þ2

�
f − fi−1
fi − fi−1

ð8Þ

where the four amplitude calibration parameters will be
noted as fδA0; δA1; δA2; δA3g and the four phase calibra-
tion parameters as fδϕ0; δϕ1; δϕ2; δϕ3g. The variables Mi
are unknowns that can be easily evaluated by solving a
system of equations defined by the boundary conditions
imposed on the interpolation function. To avoid calibration-
error-induced biases we assume that inference on the LISA
data will include the parameters describing the calibration
error as additional model parameters to be marginalized
over during inference. We represent our knowledge of the
calibration accuracy by the priors on the spline model. For
simplicity we will use Gaussian uncertainties σC, and
assume these are independent between the amplitude and
phase errors and between different frequencies. Example
splines constructed in this way are shown in Fig. 1.

B. Impact of calibration error on source detection

It can be seen from Eq. (3) that the effect of calibration
error is to modify the effective signal component of the
data. As such, it is clear that this will have some bearing on
our ability to identify sources in the data. The methods by
which sources will be identified in the LISA data are not yet
fully specified, but for ground-based detectors source
detection relies mostly on matched filtering [7]. A bank
of templates is constructed, which are waveforms, hðtjθ⃗iÞ,
for a set of parameter choices, θ⃗i, for potential sources. The
waveforms are then normalized,

ĥðtjθ⃗Þ ¼ hðtjθ⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhðtjθ⃗Þjhðtjθ⃗ÞÞ

q ; ð9Þ

where the inner product ðaðtÞjbðtÞÞ was defined in Eq. (1).
The number of templates in the bank is chosen to ensure a
sufficiently dense coverage of parameter space. The maxi-
mum signal-to-noise ratio (SNR) across the template bank

1This is the approach that is now being taken in the analysis of
data from the ground-based gravitational wave detectors. See, for
example [5].
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ρ̂ ¼ max
θ⃗

ðdðtÞjĥðtjθ⃗ÞÞ;

is computed and compared to a threshold. Events above
the threshold are regarded as potential gravitational wave
candidates that are subsequently followed up. In the
presence of calibration errors, the search would be con-
structed and carried out in the same way, but the observed
data would be modified according to (3). We assume that
the observed data contains a source with true parameters θ⃗0,
true signal-to-noise ratio ρ20 ¼ ðhðtjθ⃗0Þjhðtjθ⃗0ÞÞ and has a
true frequency-domain calibration uncertainty C0ðfÞ, so
that d̃ðfÞ ¼ ρ0C0ðfÞĥðfjθ⃗0Þ þ ñ. Expanding the likelihood
in Δθ⃗ ¼ θ⃗ − θ⃗0, and dropping the explicit dependence of
the various quantities on time or frequency for ease of
notation, we obtain

ðdjĥðθ⃗ÞÞ ¼ ðdjĥðθ⃗0ÞÞ þ ðdj∂iĥðθ⃗0ÞÞΔθi

þ 1

2
ðdj∂ijĥðθ⃗0ÞÞΔθiΔθj þ � � �

¼ 1

2
ðΔθi þDkðH−1ÞkiÞHijðΔθj þ ðH−1ÞjkDkÞ

þ ðdjĥðθ⃗0ÞÞ −
1

2
DiH−1

ij Dj þ � � �

max
θ⃗

ðdjĥðθ⃗ÞÞ ¼ ðρ0C0ĥðθ⃗0Þ þ njĥðθ⃗0ÞÞ

−
1

2
DiH−1

ij Dj þ � � �

where Di ¼ ðdj∂iĥðθ⃗0ÞÞÞ; Hij ¼ ðdj∂ijĥðθ⃗0ÞÞÞ: ð10Þ

Since ðĥjĥÞ≡ 1 by construction, we deduce ðhj∂iĥÞ ¼ 0
and hence that the second term is quadratic in small
quantities, while the first term has a linear correction
in the size of the calibration uncertainty. We deduce
that the expected value (i.e., the average value over
realizations of the noise) of the maximum SNR in the pre-
sence of calibration uncertainties is ðρ0C0ĥðθ⃗0Þjĥðθ⃗0ÞÞ ¼

ðC0hðθ⃗0Þjhðθ⃗0ÞÞ=ρ0, which is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðθ⃗0Þjhðθ⃗0ÞÞ

q
Z

∞

0

ð1þ δAðfÞÞe2πiδϕðfÞjh̃ðfjθ⃗0Þj2
SnðfÞ

df:

ð11Þ

The corresponding result in the absence of calibration
uncertainties can be found by setting δAðfÞ ¼ δϕðfÞ ¼ 0
in the above. The fraction of events that pass the specified
SNR threshold could be evaluated using the above model
combined with a population model and a model for the
distribution of calibration uncertainties. However, we will
not do this here for three reasons. First, the modified SNR is
linear in ð1þ δAðfÞÞ and so will tend to average to 1 if we
use a symmetric amplitude calibration uncertainty model.
This does not mean the number of detected events will be
unchanged, as there are more events further away, but it will
partially mitigate the impact. Second, it is not expected that
the calibration of LISA will be terrible, but uncertainties
should be much smaller than unity. Typical uncertainties in
the astrophysical rates of LISA events are one or more
orders of magnitude, which will completely dominate over
any impact of calibration errors. Finally, the measured SNR
also depends on the assumed PSD, ShðfÞ, and so will also
be significantly affected by noise modeling uncertainties,
which are likely to be much larger. It therefore does not
make much sense to use fluctuations in the measured SNR
to place a requirement on calibration if the noise model is
fixed. A more robust way to place requirements on
calibration is to limit their impact on parameter estimation
for detected sources. We will describe how this can be done
in the next section.

C. Impact of calibration error
on parameter estimation

The impact of calibration errors on parameter estima-
tion can be assessed in two different ways. One approach
is to assume that the analysis of the data is based on
taking CðfÞ≡ 1, while the true data generating process is

FIG. 1. Example calibration envelopes. Each line is a random draw of the amplitude calibration uncertainty, 1þ δAðfÞ, assuming
equal size independent uncertainties at each knot of magnitude σC ¼ 10−1. The vertical dashed lines show the locations of the knots.
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described by Eq. (3). When the model used in data analysis
differs from reality you expect to obtain biases. Calibration
error requirements can be set by estimating the induced
biases and requiring them to be smaller than uncertainties
arising from instrumental noise fluctuations. A second
approach is to include additional calibration parameters
as part of the model used to fit the data. In that case,
provided the model is sufficiently flexible, we would not
expect to see biases in parameter estimates, but we would
expect that parameter posteriors would be broadened to
reflect the additional degrees of freedom coming from the
calibration model. We will take the second approach in this
paper, but we describe the first approach in Appendix A,
and show how it coincides with the second approach when
calibration errors are small.
To implement the second approach, we modify the log-

likelihood used in parameter estimation so that it includes
the calibration error

log L ¼ −
1

2

Z
∞

0

jd̃ðfÞ − Cðfjμ⃗Þh̃ðfjθ⃗Þj2
SnðfÞ

df; ð12Þ

where θ⃗ are the parameters of the gravitational wave source,
as before, and μ⃗ are the parameters describing the calibra-
tion error model, in this case the parameters of the
amplitude and phase calibration splines. We assume that
the noise spectral density is known and this allows us to
drop constant terms. If we wanted to model the noise as
well we would need to include those terms. When analyz-
ing observed LISA data using Bayesian inference methods,
the calibration error model parameters can be sampled at
the same time as the parameters describing the source. The
resulting posteriors on the source parameters will be
marginalized over calibration errors. This procedure is
computationally expensive and therefore impractical for
setting calibration requirements over a wide range of source
types and source parameters. However, we will use this in
Appendix B to verify the results we obtain using computa-
tionally cheaper methods.
A cheaper way to assess the impact of calibration errors

is to use the Fisher matrix formalism. In the absence of
calibration uncertainties, the Fisher matrix is defined by

Γθ
ij ¼

�
∂h
∂θi

���� ∂h
∂θj

�
: ð13Þ

The Fisher matrix, Γθ
ij, provides an estimate of the precision

to which the parameters of the source model can be
determined from the data. Specifically, the uncertainty in
parameter θi, Δθi, can be estimated as hΔθiΔθji ¼ ðΓθÞ−1ij .
In the presence of calibration errors, we can now evaluate
the Fisher matrix for the modified likelihood given by
Eq. (12). This Fisher matrix is over the expanded parameter
set that includes both θ⃗ and μ⃗. The modified likelihood is

related to the standard likelihood through the replacement
h̃ðfÞ → Cðfjμ⃗Þh̃ðfjθ⃗Þ. We can thus directly write down the
Fisher Matrix for the combined estimation of θ⃗ and μ⃗

Γ ¼
�

Γθθ Γθμ

ðΓθμÞT Γμμ

�

where Γθθ
ij ¼

�
Cðμ⃗Þ ∂h

∂θi

����Cðμ⃗Þ ∂h
∂θj

�
;

Γθμ
ij ¼

�
Cðμ⃗Þ ∂h

∂θi

����hðθ⃗Þ ∂C
∂μj

�
;

Γμμ
ij ¼

�
hðθ⃗Þ ∂C

∂μi

����hðθ⃗Þ ∂C
∂μj

�
: ð14Þ

We anticipate that calibration will be good and there-
fore that CðfÞ ≈ 1. So, we can evaluate this expression
for CðfÞ ¼ 1 when assessing and setting calibration
requirements.
Knowledge of the accuracy of calibration can be incor-

porated by imposing a prior on the calibration para-
meters, μ⃗. When doing numerical marginalization any
prior can be imposed, but in the Fisher matrix formalism
it is easiest to work with a Gaussian prior. Using the prior
μ⃗ ∼ Nð0;ΣμμÞ (assuming that we center the parameters such
that μ⃗ ¼ 0 corresponds to CðfÞ ¼ 1), the posterior covari-
ance is given by the inverse of the modified Fisher matrix

Γ ¼
�

Γθθ Γθμ

ðΓθμÞT Γμμ þ Σμμ

�
: ð15Þ

The diagonal elements of the inverse of this matrix provide
estimates for the precision with which the corresponding
parameters can be measured. The estimated precision of
measurement of the waveform parameters accounting for
calibration model uncertainty is thus given by the diagonal
elements of the Fisher matrix inverse which can be written
as follows since it is a block symmetric matrix [8]

Σθθ
C ¼ ðΓθθ − ΓθμðΓμμ þ ΣμμÞ−1ðΓθμÞTÞ−1: ð16Þ

Given a specification for the calibration model uncertain-
ties, Σμμ, these parameter estimation uncertainties can be
evaluated and compared to the diagonal elements of
ðΓθθÞ−1, which are the estimated uncertainties with perfect
calibration. If the uncertainties are significantly larger then
our lack of knowledge of the calibration is having an impact
on our ability to measure the parameters of the system. For
the purpose of concreteness we will say that the calibration
knowledge, Σμμ, is not good enough if the error predicted
by Eq. (16) is more than double that predicted by ðΓθθÞ−1
for any parameter. Although chosen arbitrarily, this thresh-
old corresponds to the point at which the systematic biases
that arise from ignoring calibration uncertainties become
comparable to the size of statistical errors, as described
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in Appendix A. This is the standard criterion for concluding
that a systematic bias is unacceptably large in the context of
assessing the impact of waveform modeling errors [3].
In Sec. III we will use this formalism to evaluate the

impact of calibration uncertainty on parameter estimation
for all different types of LISA source. In all cases we will
take Σμμ to be a diagonal matrix, so that we assume the
calibration uncertainty at each frequency knot is indepen-
dent of the others, and amplitude and phase uncertainties
are also independent. Additionally, we will usually assume
that the size of the uncertainties are the same at all knots, so
that there is a single parameter σC ¼ ffiffiffiffiffiffiffi

Σμμ
p

that character-
izes the size of the amplitude uncertainty and likewise for
the phase. This makes the presentation of the results easier,
as we can then plot the ratio of the parameter measurement
uncertainties with and without calibration uncertainty as a
function of the size of the calibration uncertainties σC,
making it easier to identify the point at which the error-
doubling threshold is reached. We will present results that
vary only the amplitude uncertainties or only the phase
uncertainties. For all source types, we have also computed
results varying both amplitude and phase calibration
uncertainties simultaneously. These are not presented
explicitly, as in all cases the results were the same. This
is because there are certain parameters that are sensitive to
amplitude calibration uncertainties and other parameters
that are sensitive to phase calibration uncertainties, but
none appear to be sensitive to both.
As a final remark, we note that we can evaluate Eq. (16)

with Σμμ → 0, and obtain finite uncertainties for many
parameters. This corresponds to the limit in which we
assume that the calibration is completely unknown and that
our data analysis procedure attempts to estimate the
calibration simultaneously with the source parameters.
The fact that source parameters can still be estimated is
because the assumed calibration uncertainty does not look
very much like a gravitational waveform and hence can be
distinguished from a gravitational wave source. This will be
discussed further in Sec. IV.

III. CALIBRATION REQUIREMENTS
FOR INDIVIDUAL SOURCES

In this section we will use the formalism described in the
preceding section to assess the calibration requirement that
arises from requiring that we are able to do accurate
parameter estimation on individual resolvable sources.
We will consider each of the main categories of resolvable
source expected to be observed by LISA.

A. Galactic binaries

1. Definition

Among the gravitational wave sources expected to be
observed by the LISA mission, the most common will

come fromgalactic binaries (GB).Binaries of compact stellar
remnants, typically white dwarfs but also neutron stars and
black holes, with orbital periods of around 1 hour in the
MilkyWay emit gravitationalwaves atmillihertz frequencies
that LISAwill be able to observe. Several tens of millions of
these binaries are expected to be present in the LISA data.
Themajority of thesewill formanunresolvable astrophysical
foreground between 0.5 mHz and 3 mHz, but we still expect
to individually resolve as many as several tens of thousands
of sources. Various approaches have been proposed to
identify and characterize these sources [9–12]. As for all
sources, we will assess the impact of calibration errors on
parameter estimation for individual galactic binaries. In
principle, calibration errors could also lead to the incomplete
subtraction of binaries from the data and hence lead to an
increase of the galactic confusion noise, with a knock-on
impact on the characterizationof otherLISAsources.Wewill
not consider this here, as we expect the effect to be small in
the regime where individual source parameter estimation is
unaffected by calibration error.
To represent gravitational waves from galactic binaries

we will use the model provided by the LISA Data Challenge
[13], including all three TDI data channels, A, E, T. The
GW signal from a GB is characterized by 8 parameters. The
ecliptic latitude λ, the ecliptic longitude β, the inclination ι,
the polarization ψ and the amplitude A are extrinsic para-
meters that describe the position and orientation of the
source with respect to LISA. The remaining three parameters
are intrinsic and determine the temporal evolution of the plus
hþ and cross hx polarizations of the GW as follows:

hSþ ¼ Að1þ cos2ιÞ cosðΦðtÞÞ;
hSx ¼ 2A cos ι sinðΦðtÞÞ;

ΦðtÞ ¼ 2πf0tþ π _ft2 − ϕ0

where f0 is the GW frequency given at an initial moment t0,
_f0 is the frequency first order derivative and ϕ0 is the initial
GW phase. The amplitude depends on the binary chirp mass
Mc, the frequency f0 and the distance D:

A ¼ ðGMcÞ53ðπf0Þ23
c4D

: ð17Þ

The chirp mass is related to the masses of the individual

components of the binary, m1 and m2, via Mc ¼ m
3
5

1m
3
5

2=
ðm1 þm2Þ15. For a binary evolving purely under GW emis-
sion, the frequency derivative and chirp mass are related
through

_f0 ¼ −
96

5

π
8
3

c5
ðGMcÞ53f

11
3

0 ð18Þ

but there are other processes, such as mass-transfer, that can
drive frequency evolution in galactic binaries, so we do not
use this relation to interpret A in terms of D.
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For typical galactic binaries, _f0 ≲ 10−15, so the GW
signal from a GB is almost monochromatic with a slow drift
in the frequency over years of observation, although it is
modulated (time-varying Doppler shift) due to LISA’s
orbital motion. Some galactic binaries, referred to as
verification galactic binaries (VGB), have distances that
have been well measured using electromagnetic observa-
tions. These systems could be used to directly measure the
amplitude calibration error and its evolution with time. This
will be discussed further in Sec. IVA.

2. Calibration uncertainty Fisher matrix
for galactic binaries

In order to understand which of the galactic binary
parameters is most likely to be affected by calibration
uncertainty, we first look at the structure of the Fisher
matrix for the simultaneous estimation of the calibration
uncertainty and GB parameters, computed using the for-
malism described in Sec. II C. We consider a single choice
for the GB parameters, but the structure of the Fisher matrix
does not depend on this choice.
We consider a GB corresponding to the first VGB (called

AM-CVn) present in the LDC catalog ([14] and references
therein) with parameters shown in Table I.
The waveform is generated for a 4 year duration with

LISA analytical orbits given in the LDC manual [15], noise

according to the first version of the Scientific Requirement
Document (SciRDv1) [16] and with instrumental response
computed using second order time delay interferom-
etry (TDI2.0).
As discussed in Sec. II A, the full calibration error model

we use here consists of two cubic spline functions, defined
by four amplitude error parameters fδA0; δA1; δA2; δA3g
and four phase error parameters fδφ0; δφ1; δφ2; δφ3g. The
cubic spline is constructed as a function of the logarithm of
frequency to ensure smoothness over the full LISA fre-
quency range. The elements of the inverse Fisher matrix,
with and without the inclusion of calibration errors, are
given in Fig. 2. The results with calibration errors take the
calibration error uncertainty to be σC ¼ 0.1. The diagonal
elements of the inverse Fisher matrix provide an estimate of
the precision with which the corresponding parameter can
be determined, while the off-diagonal elements indicate the
amount of correlation in the uncertainties between pairs of
parameters.
Comparing the diagonal elements in the left and right

panels we see that the only two parameters for which the
uncertainties change significantly when calibration uncer-
tainties are included are A and ϕ0. This conclusion is
supported by the off-diagonal elements which show that
these two parameters are the only ones that are highly
correlatedwith the calibrationmodel parameters, specifically
δA1 and δφ1. This makes sense physically, since a change in
A represents a constant change in the amplitude of the signal,
and δA1 does the same thing, at the frequency of this source.
Similarly a change inϕ0 is a constant change in phase, which
can also be accomplished by a change in δφ1.

3. Setting a calibration requirement for galactic binary
parameter estimation

In the previous section we saw the precision of parameter
estimation changed for a particular choice of calibration

FIG. 2. Inverse of the Fisher matrix for a single GB with (right) and without (left) a calibration error function. The diagonal elements
provide uncertainties in the corresponding parameters, while the off-diagonal elements indicate the degree of correlation in the estimates
of pairs of parameters. As we are primarily interested in the impact of calibration on the determination of the source parameters, for
clarity we do not show the calibration-calibration sub-matrix. Off-diagonal elements that are smaller than 0.01 are left blank.

TABLE I. Galactic binary parameters.

f0 [Hz] _f0 [Hz2] A ι [rad]

1.9 × 10−3 6.1 × 10−18 2.8 × 10−22 0.8

λ [rad] β [rad] ψ [rad] ϕ0 [rad]

0.7 3.0 2.2 6.1
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uncertainty. To set a calibration requirement, we must vary
the size of the calibration uncertainty to see how large this
can be before parameter estimates become significantly
degraded. These results are shown in Fig. 3 when varying
only the amplitude calibration uncertainty or only the phase
calibration uncertainty. Results varying both simultane-
ously are the same and are therefore not shown. Consistent
with the form of the inverse Fisher matrix in Fig. 2, we find
that the only parameter impacted by phase calibration
uncertainty is the initial phase, ϕ0, and the only parameter
affected by amplitude calibration uncertainty is the ampli-
tude/distance. In each case, the precision of parameter
estimation begins to degrade when the size of the calibra-
tion uncertainty is comparable to the precision with which
the affected parameter can be measured in the absence of
these uncertainties. Requiring that the parameter uncer-
tainty no more than doubles sets a requirement that the
amplitude calibration uncertainty is no bigger than a few
percent and the phase calibration uncertainty is no bigger
than 3 × 10−2.
Once the uncertainty starts to increase it varies roughly

linearly with the size of the calibration uncertainty. This
behavior can be understood analytically, which is discussed
further in appendix B. While these results were based on
the Fisher matrix, they can also be verified by doing full
Bayesian parameter estimation with MCMC methods. We
have done this for the case of galactic binaries and the

MCMC results verify the conclusions of the Fisher matrix.
See Fig. 14 in appendix B.
The stated calibration requirements are valid for this

particular choice of GB parameters, but we would find
a different requirement if we considered different parameter
choices. This dependence on the source parameters can
be understood from the analytic results described in
appendix B, but in general we expect the impact of
calibration uncertainties to be greatest on sources for which
we can determine the parameters most precisely. These are
typically the highest signal-to-noise ratio systems. We
expect the system considered here to lead to one of the
most stringent constraints, so we would not expect to need
more than a factor of a few more stringent calibration
requirement in the worst case.

B. Massive black hole binaries

1. Definition

The mergers of massive black hole binaries (MBHBs)
are among the loudest gravitational wave sources expected
to be observed by the LISA mission. Most galaxies contain
massive black holes at their centers and MBHBs are
expected to form following the merger of their host
galaxies. Such systems are believed to form even very
early in the history of the Universe, and LISA can observe
systems of suitable mass (∼104 M⊙–10

7 M⊙) to very high

FIG. 3. Ratio between the uncertainty of a waveform parameter with (σθ) and without (σθ0) the calibration error function as a function
of the size of the calibration error uncertainty σC. The red line corresponds to a doubling of the parameter uncertainty which is our
threshold for the calibration uncertainty being unacceptably large. In the left hand panel we vary only the amplitude calibration
uncertainty, and in the right panel we vary only the phase calibration uncertainty.
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redshift (z ∼ 20). LISA is expected to observe several tens
of sources and these observations will enable us to better
understand the formation processes of these binary sys-
tems, their environments and to discriminate between
different scenarios of seed MBH formation.
In this analysis, we model the source in the Fourier-

domain using the IMRPhenomD model [17], which rep-
resents coalescing black holes in which the spins are
parallel to the orbital angular momentum. We construct
the LISATDI response in the same way as for the galactic
binaries. The GW signal from a MBHB is characterized by
11 parameters. There are the same five extrinsic parameters
that were described for the GB model: the ecliptic latitude
β, the ecliptic longitude λ, the inclination ι, the polarization
ψ and the distance D. The additional intrinsic para-
meters are the chirp mass, Mc, the symmetric mass ratio,
η ¼ m1m2=ðm1 þm2Þ2, the spins of the two components,
χ1;2, the phase at coalescence, ϕ, and the coalescence
time, τ. The bandwidth of an MBHB signal in the
frequency domain is broad, in contrast to the narrow
bandwidth of a GB, which we expect to help us distinguish
MBHB signals from calibration errors.

2. Calibration uncertainty Fisher matrix
for massive black hole binaries

As for the GB case, we first look at the correlations in the
Fisher matrix for simultaneous estimation of calibration
errors and MBHB parameters. The inverse Fisher matrix
is shown in Fig. 4 for a typical MBHB source with
parameters shown in Table II.
We again take the prior on the calibration uncertainty to

have a width σC ¼ 0.1.
Comparing the diagonal elements in the left and right

hand figures we see that the inclusion of calibration
uncertainties has a moderate impact on the measurements
of several of the intrinsic parameters—Mc, η, χ1, χ2—and
a more significant impact on the measurement of ϕ0 andD.

This is to be expected from looking at the off-diagonal
elements, which show that the measurement of these four
intrinsic parameters is mildly (∼0.3) correlated with the
measurement of the calibration uncertainty parameters,
while the measurements of ϕ0 and D are strongly (∼0.9)
correlated with the phase and amplitude calibration uncer-
tainty parameters respectively. These results make sense—
changes in the amplitude and ϕ0 impact the MBHB signal
in the same way that they impact the GB signal and so we
expect the same degeneracy with the calibration parameters
that we saw in the GB case. The other intrinsic parameters
primarily affect the phase evolution of the MBHB signal
and so we might expect a mild degeneracy with the phase
calibration uncertainty.

3. Setting a calibration requirement
for MBHB parameter estimation

We now explore the variation in the parameter meas-
urement uncertainty for MBHBs as we vary the size of the
calibration uncertainty. These results are shown in Fig. 5.
As expected we see that once the amplitude calibration
uncertainty is comparable to the precision with which the
distance can be measured, it starts to limit our ability to
measure distance. Once the phase calibration uncertainty is
sufficiently large, it has a similar impact on measurements
of the phase offset, ϕ0. In this case we also see a mild
impact on the other intrinsic parameters—Mc, η, χ1, and
χ2. Once again, our ability to measure these parameters

FIG. 4. As Fig. 2 but now for a MBHB source.

TABLE II. Massive black hole binary parameters.

Mc [M⊙] η χ1 χ2 D [Gpc] ι [rad]

7.82 × 105 0.2 1.0 1.0 1.42 × 105 2.3

λ [rad] β [rad] τ [s] ψ [rad] ϕ0 [rad]

−0.6 0.6 4.8 × 106 3.1 4.3
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starts to degrade once the calibration uncertainties become
comparable with the expected precision on these param-
eters in the absence of calibration uncertainty. For these
parameters, however, the uncertainty does not continue to
increase, but levels off at about twice the uncertainty in the
absence of calibration errors. This happens because the
degeneracy is not perfect in this case—the phase evolution
of an MBHB waveform does not look like a calibration
uncertainty of the form modeled here and so the two effects
can be distinguished even with no prior on the size of the
calibration error, with only mild confusion.
For this source we deduce a calibration requirement of

∼8% in amplitude and 2 × 10−2 in phase to ensure the
measurement uncertainties are no more than doubled. Once
again, this conclusion will be source dependent but this
source is relatively high signal-to-noise ratio and so we
would not expect the results to change by more than a factor
of a few for other sources.

C. Stellar-origin black hole binaries

1. Definition

Stellar-origin black hole binaries (SBHBs) refer to bina-
ries of compact objects formed as the endpoint of binary
stellar evolution. These are the systems from which ground-
based detectors are observing gravitational waves emitted
during the final stages of inspiral and merger. For binaries
with sufficiently large component masses (∼30 M⊙), LISA
will observe gravitational waves emitted by these systems as
the gradually inspiral,∼10 years before merger. The number

of these events that will be observed is somewhat uncertain,
as it depends critically on the high-mass end of the SBHB
mass spectrum, which is not yet well constrained. However,
they are of great scientific interest because of the prospect of
multiband observations of the same system with both LISA
and ground-based instruments.
In this work we use the same model for gravitational

waves from SBHBs as we do for MBHBs, the aligned-spin
IMRPhenomD [17] model, as implemented in the LISAData
Challenge. The parameters characterising these systems are
the same as those for the MBHBs, the only difference is that
the chirpmass,Mc, and distance,D, take different ranges.As
for MBHBs, these systems are relatively broad in the
frequency domain which should help to distinguish these
systems from calibration errors. Unlike MBHBs, LISA is
expected to observe SBHBs with relatively low signal-to-
noise ratio and measure the parameters with relatively poorer
precision. This should also limit the impact of calibration
errors.

2. Calibration uncertainty Fisher matrix
for stellar-origin black hole binaries

In Fig. 6 we again show the elements of the inverse
Fisher matrix with and without the inclusion of the
calibration uncertainty parameters. These are shown for
a SBHB source with parameters shown in Table III.
Once again we take σC ¼ 0.1. Comparing the diagonal

elements of the Fisher matrix in the left and right hand panels
we find in this case that there is essentially no change in the
precision of parameter estimation when simultaneously

FIG. 5. As Fig. 3, but now for the MBHB source shown in Fig. 4.
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fitting for the calibrationmodel. This is supported by the off-
diagonal elements of the Fisher matrix which show that there
is almost no correlation between the parameters of the signal
model and those of the calibration error model.

3. Setting a calibration requirement
for SBHB parameter estimation

As before we now vary the size of the calibration uncer-
tainty, σC. The results are shown in Fig. 7. We see that even
for relatively large calibration uncertainties, the parameter
measurement precisions remain almost unchanged relative to
their values in the absence of calibration uncertainty. The
inset panels show that for calibration uncertainties of order
unity we begin to see an impact on the measurement of
distance and initial phase, but the error increases by less than
1%. This result is driven by the fact that SBHBs are observed
with relatively low signal-to-noise ratio and with relatively
poor parameter estimation precision. Artificially increasing
the signal-to-noise we observe more of an effect (see
appendix B). Based on these results, the characterization
of SBHBs does not appear to impose a requirement on the
calibration of the LISA instrument.

D. Extreme-mass-ratio inspirals

1. Definition

Extreme-mass-ratio inspirals (EMRIs) are the inspirals
of stellar-origin compact objects (COs) into massive
black holes (MBHs) in the centers of galaxies. EMRI

observations with LISA have great scientific potential, since
the compact object typically generates 104–105 detectable
waveform cycles in band, during which time it is orbiting in
the strong field region close to the central black hole. The
emitted gravitational waves encode a detailed map of the
space-time outside the central MBH and offer a unique
opportunity to measure the properties, evolution and envi-
ronment of MBHs [18–23], to test for deviations from
general relativity (GR) [24,25] and to constrain cosmological
parameters [26,27]. Event rates are highly uncertain, but
LISA could observe between a few and a few hundred
EMRIs over the mission duration [23,28–32].
Thegreat scientific potential of these astrophysical sources

relies on being able to make very precise measurements of
their parameters and this could therefore be significantly
impacted by calibration uncertainties. To assess this we use
two different waveform models: the analytical Kludge (AK)
[18] and the augmented analytical Kludge (AAK) as imple-
mented in the Fast EMRI waveform package [33–38]. We
use the low-frequency approximation to implement LISA
response, as first described in [18,39]. The full EMRI
parameter space is seventeen dimensional [34], but for the
purposes of this study we restrict attention to seven param-
eters: the central black holemass,M [M⊙], the dimensionless
spin parameter of the central MBH, a, the compact object
mass, μ [M⊙], the initial semi-latus rectum, p0, eccentricity,
e0, and cosine of the inclination, Y0, of the orbit, and the
luminosity distance, D [Gpc].

2. Calibration uncertainty Fisher matrix for EMRIs

In Fig. 8 we show the inverse of the Fisher matrix with
and without including calibration uncertainties for an
EMRI source observed for 2 years with parameters shown
in Table IV.
The EMRI model used for these results was the AAK,

but we found the same quantitative results when using the
AK model. We again fix σC ¼ 0.1. Comparing the diagonal

FIG. 6. As Fig. 2 but now for a SBHB source.

TABLE III. Stellar-origin black hole binary parameters.

Mc [M⊙] η χ1 χ2 D [Mpc] ι [rad]

47.9 0.2 0.0 0.0 742.82 0.4
λ [rad] β [rad] τ [s] ψ [rad] ϕ0 [rad]

2.0 1.2 2.1 × 108 −3.3 2.7
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elements of the Fisher matrix on the left and the right we
see that distance measurement precision is significantly
impacted by calibration uncertainties and there is also a
minor impact on measurements of the intrinsic parameters.
As in previous cases, this behavior is reinforced by looking at
the off-diagonal elements of the Fisher matrix, which shows
weak correlations between measurements of the intrinsic
parameters of the source and the phase calibration param-
eters, and a very strong correlation betweenmeasurements of
the distance and the amplitude calibration parameters.

3. Setting a calibration requirement
for EMRI parameter estimation

We now vary σC, which determines the size of the
calibration uncertainties, and determine how the parameter
measurement precisions change. These results are shown in
Fig. 9 and were again computed using the AAK EMRI
model. Results from the AK model show the same quanti-
tative behavior. These results are consistent with the con-
clusions from looking at the elements of the inverse Fisher
matrix. Once the amplitude calibration uncertainty becomes
too large, we see that the distance measurement precision
rapidly degrades, ultimately linearly with the size of the
calibration uncertainty. The measurement precision of the
intrinsic parameters also starts to degrade once the phase
calibration uncertainty becomes large enough, but the

FIG. 8. As Fig. 2 but now for an extreme-mass-ratio inspiral source.

FIG. 7. As Fig. 3 but now for the SBHB source shown in Fig. 6.

TABLE IV. Caption.

M [M⊙] a μ [M⊙] p0 e0 Y0 D ¼ ½Gpc�
106 0.9 23.1 12.0 0.6 0.7 1.1
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degradation is limited and the measurement precision is
never more than ∼25% worse than in the absence of
calibration uncertainty.
These results are consistent with results for other sources

and are readily understood. The effect of amplitude calibra-
tion error in the observed data is degeneratewith the effect of
a change in the source distance, so once the uncertainty in the
former becomes comparable with the expected measurement
precision in the latter it starts to dominate the uncertainty. The
intrinsic parameters are measured primarily through their
influence on the phase evolution of the source and so we
expect them to be somewhat degenerate with phase calibra-
tion uncertainty.However, the complex evolution of the phase

with frequency in an EMRI is very unlike the slowly varying
phase calibration error we assume here and so the degeneracy
is limited, allowing both effects to be simultaneously con-
strained from the observed data.
One of the primary scientific applications of EMRI

observations will be to provide stringent tests that the
spacetime structure outside the MBH is consistent with the
Kerr metric, as predicted by the no-hair theorem. Such tests
will be carried out by fitting EMRI models that include
additional parameters that represent deviations from this
assumption. We can thus assess the impact of calibration
uncertainties on these tests of general relativity using the
same Fisher matrix approach, applied to the extended

FIG. 9. As Fig. 3 but now for the EMRI source shown in Fig. 8.

FIG. 10. As Fig. 9 but now for the excess quadrupole moment of the extended AK model described in [25]. The waveform parameters
used here are different to those used for Fig. 9, but the results are similar for all choices of EMRI parameters. [30,40].
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parameter space that includes standard EMRI parameters,
calibration uncertainty parameters and parameters charac-
terising deviations from general relativity. We do this using
the extended AK model described in [25,30], which
includes one additional parameter, Q, that represents an
“excess quadrupole,” i.e., a difference in the quadrupole
moment of the spacetime relative to the value predicted
from its mass and spin in the Kerr metric. In Fig. 10 we
show how the measurement precision of Q varies as we
increase the size of the calibration uncertainty. This was
evaluated for a different EMRI system to the one consid-
ered above, with smaller mass for the inspiraling body,
μ ¼ 10 M⊙, smaller eccentricity (epl ¼ 0.06 at plunge) and
a shorter observation time (1 year). The Fisher matrix was
evaluated with the true excess quadrupole moment set to
Q ¼ 0. The conclusions are not significantly affected by
the specific choice of EMRI parameters. This quadrupole
moment is again measured through its impact on the phase
evolution of the binary and hence it is not surprising that the
measurement precision behaves in a similar way to the
other intrinsic parameters. We see a slight degradation in
precision for large calibration uncertainties, but even with
uncertainties of order unity, the measurement precision is
within 5% of its value in the absence of calibration error.
Based on this source, we conclude that EMRIs do not

place a requirement on phase calibration uncertainty, but
place a requirement on amplitude calibration uncertainty of
∼8%. Once again we expect this to be source specific,
and this EMRI has signal-to-noise ratio of 30, which is
close to the threshold needed for EMRI detection. In the
best case EMRIs could have signal-to-noise ratio of a few
hundred, so we might expect to require amplitude calibra-
tion uncertainty of ∼1% to ensure calibration has no impact
for any individually resolved EMRI.

E. Calibration requirements for inference
on source populations

All of the results described in this section have been
based on measurements of the parameters of individual
sources. LISA observations of many individual sources will
also be combined to make statements about the properties
of the underlying population and we also do not want
population inference to be calibration limited. What hap-
pens when sources are combined will depend critically on
whether the calibration errors for each source are indepen-
dent of one another or not, which itself depends on how
much the LISA calibration error might vary with time.
With reference to Eq. (5), it is important to know if
j1 − CiðfÞj ≪ j1 − CðfÞj for all i. If all sources are affected
by the same calibration error then combining the sources
can help to measure the calibration error and hence reduce
uncertainties for individual events. This would rely on the
fact that different sources have different frequency depend-
encies, and does not apply to an overall scaling, which
would impact distance measurements and hence constraints

on cosmological parameters. If individual sources have
independent calibration errors then the impact on popula-
tion parameters will at least partially average out as sources
are combined and so the uncertainties in the population
might well be comparable to those on the individual events.
Without doing detailed simulations, we can place a

conservative bound by considering a worst case scenario.
In the absence of calibration errors we expect that the
constraint on a population parameter improves like 1=

ffiffiffiffi
N

p
as the number of observed sources, N, increases. In the
worst case, the bias in the population parameter arising
from calibration uncertainties will be common to all events
and hence does not change as the number of events is
increased. Therefore, we need the uncertainty arising from
calibration error to be a factor of 1=

ffiffiffiffi
N

p
smaller than the

instrumental-noise induced uncertainty for a single event if
we want to ensure that the calibration-error-induced uncer-
tainty does not dominate after we combine N events.
Typical LISA source populations contain Oð100Þ events
[6]. Thus, if the parameter uncertainties for individual
events are increased by no more than 10%when accounting
for calibration uncertainties, we would expect population
uncertainties to be no more than doubled. This corresponds
to placing a threshold σθ=σθ0 < 1.1 on individual event
parameter inference. Given the roughly linear growth of
parameter uncertainties with the size of calibration uncer-
tainties, we might expect to need a calibration requirement
a factor of 10 more stringent for population inference.
Looking more carefully at the earlier results we find this
constraint imposes amplitude calibration requirements of
10−2, 2 × 10−2, > 1 and 10−2 for population inference with
galactic binaries, MBHBs, SBHBs and EMRIs respec-
tively. The corresponding phase calibration requirements
are 8 × 10−3, 2 × 10−3, > 1 and 2 × 10−2. Including an
additional factor of a few to account for the fact that these
sources may not be completely representative of the
population, we conclude that if LISA amplitude calibration
is better than a few × 0.1% and phase calibration is better
than 10−3 we would not expect to see any impact of
calibration uncertainty on the LISA science output. If this
more stringent requirement could not be met, then a more
careful study would be required to understand if there
would be any impact on population inference, which would
have to account for possible time-variability of the LISA
calibration error. This is beyond the scope of this paper.

IV. USING GRAVITATIONAL WAVE SOURCES
AS CALIBRATORS

A. Known galactic binaries as amplitude calibrators

For all source types we have seen that there is a
degeneracy between measurement of distance and uncer-
tainty in amplitude calibration, which ultimately limits our
ability to measure distances. However, if distance is already
known, the same effect can be used to directly measure the
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amplitude calibration error. Most of the sources LISA will
observe will not have known distances, but the verification
galactic binaries (VGBs) are an exception. These are
galactic binaries which are already known from electro-
magnetic observations [41]. There are a few tens of such
systems for which the sky position is known near-perfectly,
the period is known with a fractional uncertainty of a
few × 10−6, the inclination is known to ∼10% and the
distance is known to between a percent and a few tens of
percent. Combining these uncertainties, the GW amplitude
in Eq. (17) is known to between 1% and several tens of
percent. Figure 11 shows the GW amplitude uncertainties
for all currently known VGBs. By comparing the observed
amplitude of these sources to these expected amplitudes,
we will be able to directly measure the amplitude calibra-
tion error as a function of frequency. The best VGBs for
doing this (giving the tightest constraint over frequencies in
the range [0.3, 5] mHz) are joined by a blue line in Fig. 11.
Unfortunately, the information on the initial phase of the
VGBs is missing. Subsequently, we make the choice to
consider the phase error as small in order to demonstrate the
significant improvement of the calibration error parameters
estimation when multiple VGBs are considered.
To illustrate this procedure, we simulate the observation

of a set of 8 VGBs and then recover posterior distributions
on the source amplitude and the amplitude calibration
spline parameters, keeping the other sources parameters
fixed to their true values. We impose Gaussian priors on the
weights at each knot of the calibration spline, with width of
0.1 in strain, and we consider the case either that there is no
prior electromagnetic information on the source distance,
or that we use EM prior information from the best 8 VGBs
identified in Fig. 11. The waveforms were generated for a
4 year LISA observation, using a LISA response based on
analytical orbits and computed using second order time
delay interferometry (TDI2.0), and with the instrumental

noise generated and modeled according to the first version
of the scientific requirement document (SciRDv1). We
include a calibration error in the simulated data, drawn
randomly from the assumed prior distribution.
The results are shown in the left-hand panel of Fig. 12(a),

along with the prior distribution on the calibration param-
eters for comparison. We see that in the absence of a prior
from the EM data, the posterior recovered for the amplitude
calibration parameters coincides with the prior, as we might
expect. We cannot decouple the unknown distance from the
unknown amplitude calibration without additional infor-
mation. However, once the EM prior is added, the posterior
on δA1 and δA2 are narrower than the prior distribution,
indicating that we are successfully measuring these quan-
tities. These are the weights of the amplitude calibration
spline at f ¼ 1 mHz and f ¼ 10 mHz. All the VGBs lie at
frequencies between these two knots, so it makes sense that
this is where the amplitude calibration uncertainty can be
measured. We see that VGBs could provide amplitude
calibration at the level of a few percent.
GBs also show a similar degeneracy between the phase

offset of the GWsignal and the phase calibration uncertainty,
and sowemight hope to use EMmeasurements of the former
to determine the latter. Unfortunately, the VGB phase offset
is not normally well constrained by EM observations.
However, to illustrate the possibility, we assume that we
do have an EM prior on ϕ0 and repeat the above proce-
dure, now fitting for the system phase and the four phase
calibration parameters, and imposing a Gaussian prior on the
latterwithwidth of 0.1 radians.These results are shown in the
right-hand panel of Fig. 12(a). In this case, the degeneracy
between φ0 and the calibration parameters is not complete
and so even in the absence of EM information the posterior
on the phase calibration parameters, in the region where the
signals lie, is different to the prior. This will be discussed
further for EMRIs in the next subsection.When the EMprior

FIG. 11. Relative error on GW amplitude for different verification binaries as a function of the VGB central frequency. The SNR of
each source is indicated by the color of the dot. The blue line shows the optimal choice of VGB to cover the largest frequency interval
with the lowest relative error in amplitude and highest SNR.
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is added the constraints on all the phase calibration param-
eters becomes tighter, withmeasurement precisions less than
one hundredth of a radian.
We include that EM observations of VGBs can be used

to provide information on calibration of the LISA instru-
ment. This calibration will be limited to the frequency
range where the VGBs lie, which is 0.1 to 5 mHz, and
amplitude calibration will be limited by how well distances
to the VGBs are known, roughly 1% at present. The
publication of the third edition of the GAIA catalog
[42], expected soon, should significantly improve distance
measurements of several VGBs and provide new VGB
candidates. By the time LISA flies we might therefore be in
a position to do somewhat better than this, although it is
unlikely we will meet the necessary amplitude calibration
precision of ∼0.1% identified above. Nonetheless, it is
reassuring to know that even if the calibration of LISAwas
completely unknown we could use this procedure to
minimize the impact on LISA science objectives.

B. Inspiraling binaries as phase calibrators

The previous analysis relied on using additional EM
information to calibrate the LISA data stream. However, we
have also seen that for many of the source types, parameter
uncertainties do not grow without bound as the phase
calibration uncertainties are made arbitrarily large. This is
because the way in which (the assumed model of) phase

calibration errors affects the waveform phase is distinct
and distinguishable from the phase evolution of the signal.
This means that it should be possible to measure both
simultaneously from the data, “piggy-backing” the meas-
urement of the calibration uncertainty onto the measure-
ment of the astrophysical signal. We explore this here,
using EMRI systems, which show the most limited deg-
radation in parameter measurements of all the sources
considered here. EMRIs are expected to be on eccentric and
inclined orbits, so their GW signals contain a large number
of significant harmonic modes. These evolve slightly
differently to one another, but are all affected by the
calibration error in the same way, which is likely what
facilitates separation of the two effects.
To investigate this, we repeat the same Fisher matrix

analysis as before, but now look at the other diagonal
elements of the inverse Fisher matrix, which correspond to
the calibration error model parameters, fδϕi; δAig. These
elements of the inverse Fisher matrix characterize how well
we can measure the calibration parameters. If they are
comparable to the assumed prior width, σC, then we have
not gained any information from fitting these parameters at
the same time as the source. If the posterior is narrower than
σC then it shows we have measured the calibration
uncertainty. We show these results in Fig. 13, as a function
of the assumed calibration uncertainty. We see that EMRIs
cannot be used to measure the amplitude calibration
uncertainty. This is to be expected as that degeneracy is

(a) (b)

FIG. 12. Posterior distribution for the calibration error parameters in three scenarios: without any calibration error (black), with the
calibration error without (green) and with (red) the electromagnetic counterparts a priori. Left corresponds to the amplitude error
parameters (δA0; δA1; δA2; δA3) while right corresponds to the phase error parameters (δφ0; δφ1; δφ2; δφ3). The dashed green lines
indicate the injected value of the calibration error, which was draw randomly from the assumed prior. (a) Amplitude (b) Initial phase.
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perfect. Only by adding external information, as described
in the previous subsection, can we hope to measure the
amplitude calibration. However, we see that we can use
EMRI observations to measure the phase calibration. Once
the phase calibration uncertainty is greater than 0.01 radians
the measured uncertainty starts to flatten off, showing that it
is being determined from the data. It only flattens off for
δϕ1 and δϕ2, but that is because these are the parameters
that affect the calibration in the frequency range where the
EMRI is generating GWs. We conclude that we will be able
to measure the phase calibration uncertainty to better than a
few times 10−2 radians, by fitting it simultaneously with the
parameters of our sources. Once again, this is not quite at
the level we argued was required to ensure no impact on
science, but it is not significantly worse. So even under the
most pessimistic assumptions about calibration uncertain-
ties, LISA should still be able to produce high quality
scientific results.

V. SUMMARY

We have studied the impact of calibration uncertainties,
i.e., differences between the true signal component of a
data set and the model used to describe that signal
component in data analysis, on LISA science output. We
have focused on the impact of calibration uncertainties on
parameter estimation for individual sources, and have
considered all the major source types that LISA is expected
to observe. These results show that amplitude calibration
uncertainties directly affect our ability to measure the dis-
tances to all types of gravitational wave source. Amplitude
calibration uncertainty becomes limiting when it becomes
comparable to the typical precision with which amplitudes
can be measured, which is typically 1%. In a similar way,
phase calibration uncertainties directly limit our ability to
measure the absolute phase of binaries, but the initial phase
is typically not a parameter that conveys a significant
amount of astrophysical information. Phase calibration
uncertainties also affect our ability to measure other phy-

sical parameters of the system, such as masses and spins,
that determine the phase evolution of the gravitational
waveform. However, in that case the impact of calibration
uncertainty is limited and even large phase calibration
uncertainties at worst degrade the determination of the
system parameters by a factor of 2.
The impact of phase calibration uncertainties is limited

because the slowly varying (as a function of frequency)
calibration error that we assume here is not degenerate with
the more rapidly varying phase of a typical gravitational
wave source. This effect allows us to simultaneously fit for
the gravitational wave signal and the calibration error, with
the gravitational wave acting as a carrier beat note for
measuring the calibration uncertainty. Using extreme-mass-
ratio inspirals we find that phase calibration errors of the
level of a few percent could be measured. Amplitude
calibration uncertainty is degenerate with the unknown
distance to the source and so cannot be measured in the
same way. However, some galactic binary sources have
distances measured as a percent level through electromag-
netic observations. These verification binaries could be
used to measure amplitude calibration uncertainties with a
precision of a few percent.
We have focused on the impact of calibration uncer-

tainties on parameter estimation in this paper, because it is
our ability to measure the parameters of sources with high
precision that drives most of the scientific objectives of the
LISA mission [6]. This is not the only thing that calibration
uncertainties will impact, however. Calibration errors will
also impact our ability to detect sources in the data, because
mismatches between the detection templates and the signal
component of the data will lead to losses in signal-to-noise
ratio. For the size of calibration uncertainties that are
limiting for parameter estimation, this effect will be at
the level of tens of percent of the total number of events.
This is much smaller than the intrinsic uncertainties in the
astrophysical rates of LISA events, and uncertainties
arising from weak lensing of sources at cosmological
distances. Additionally, the observed signal-to-noise ratio

FIG. 13. Estimated uncertainty σθ of the calibration parameters δφi; δAi as a function of the prior calibration uncertainty σC, when
fitting these parameters simultaneously with those of the EMRI signal represented in Fig. 9. The black dashed diagonal line shows the
case where the estimated uncertainty σθ equals the prior calibration uncertainty σC. Deviations from this line indicate that we are able to
constrain the calibration parameters δφi; δAi using the observation.
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will fluctuate due to uncertainties in the noise spectral
density of the detector, and these uncertainties are expected
to be much larger than those in the calibration model.
Calibration uncertainties will also affect our ability to infer
the parameters that characterize the astrophysical popula-
tion of sources, obtained by combining observations of
multiple sources hierarchically. To fully understand the
impact of calibration uncertainties on population inference,
we would need to model the time dependence of the
calibration error, making assumptions about the degree of
correlation between the calibration uncertainty in different
events. For the moment, we can crudely estimate that
calibration uncertainties would have to be about one order
of magnitude smaller to be sure they would not limit typical
LISA population inference studies. Finally, we have not
considered the impact of calibration uncertainties on the
characterization of stochastic gravitational wave back-
grounds, as these require a different analysis approach to
the one described here. However, phase calibration uncer-
tainties should not affect our ability to characterize sto-
chastic backgrounds, as the expected phase is random.
Amplitude calibration uncertainties would be degenerate
with stochastic background spectra that had a similar form,
but the spline model assumed here does not resemble the
power-law form of a typical stochastic or cosmological
background, and the calibration uncertainty would be
significantly subdominant to uncertainties arising from
lack of knowledge of the spectral density of the instru-
mental noise.
The results in this paper give a baseline target for the

calibration of the LISA instrument, but the analysis could
be extended in a number of ways if necessary. First, we
have used a very slowly varying model for the calibration
uncertainty. This was well motivated from instrumental
considerations, but it does mean that the calibration
uncertainty is not very degenerate with the gravitational
waveform, and this is one of the reasons that phase
uncertainties are not limiting. Increasing the number of
spline points, or adopting an alternative model such as
representing the uncertainty as a realization of a Gaussian
process, would provide the flexibility to model more
rapidly varying uncertainties. Second, we have taken a
single calibration spline to represent the whole data set,
while in reality the calibration might be expected to vary
over time. This could have an impact on the determination
of sky position, which relies on the variation in amplitude
over the course of a year. We have also ignored realistic
features of the instrumental data, such as data gaps. The
assumed model of the time-dependence of the calibration
error will influence conclusions about population inference

in particular. Finally, in this work we have only placed
limits on the calibration uncertainty, but LISA science will
also be limited by our degree of knowledge of the noise
model. Understanding the impact of and placing require-
ments on our noise-model uncertainty is also important to
ensure the mission delivers on its high scientific promise.

APPENDIX A: SETTING CALIBRATION
REQUIREMENTS BASED ON INDUCED

PARAMETER ERRORS

The Fisher matrix-based approach that we use in this
paper implicitly assumes that the calibration model is being
fitted for at the same time as the individual sources when
the data is analyzed. Another approach to setting calibra-
tion requirements is to ask how large the uncorrected
calibration error can be before it starts to lead to biases in
the recovered parameters.
The bias can be estimated in the linear signal approxi-

mation using the formula

Δθib ¼ ððΓθθÞ−1Þijð∂jhjððCðfÞ − 1Þhðθ⃗ÞÞ: ðA1Þ

This expression can be used to assess whether a particular
calibration error, described by CðfÞ, would lead to signifi-
cant biases in parameter estimation, by comparing the
calibration error-induced parameter uncertainty, Δθib, to the
corresponding statistical uncertainty arising from instru-
mental noise, which is given by the square root of the
corresponding diagonal element of the inverse Fisher
Matrix,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓθθÞ−1ii

p
.

This approach can be related to the joint Fisher Matrix
approach adopted here by working in the linear signal
approximation. We assume that the calibration model
parameters are close to the reference value of zero and write

CðfÞ − 1 ≈
∂C
∂μk

Δμk:

The prior that the calibration errors are centered around
zero with uncertainties characterized by Σμμ is equivalent to
the assumption that Δμk ∼ Nð0; ðΣμμÞ−1Þ. As the precise
calibration error is unknown, the parameter uncertainty
induced by the calibration error

Δθib ¼ ððΓθθÞ−1Þijð∂jhj∂kChðθ⃗ÞÞΔμk
is a random variable. Here we are using the notation
∂kC ¼ ∂C=∂μk. This random variable has zero mean and
variance

hΔθibΔθjbi ¼ ððΓθθÞ−1Þilð∂lhj∂kChðθ⃗ÞÞhΔμkΔμmiððΓθθÞ−1Þjnð∂nhj∂mChðθ⃗ÞÞ
¼ ððΓθθÞ−1ÞilðΓθμÞlkðΣμμÞ−1kmððΓθθÞ−1ÞjnðΓθμÞnm: ðA2Þ
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As this bias is independent of the noise-induced statistical
uncertainty, the total variance in the parameter uncertainties
is the sum of the statistical and systematic variances

hΔθiΔθji ¼ ðΓθθÞ−1ij þ ððΓθθÞ−1ðΓθμÞðΣμμÞ−1ðΓθμÞT
× ððΓθθÞ−1ÞTÞij: ðA3Þ

We can compare this to the expression used here, based on
the inverse of the joint Fisher matrix, Eq. (16), which can
also be expressed in the alternative form

ðΓθθÞ−1 þ ðΓθθÞ−1ΓθμðΓμμ þ Σμμ − ðΓθμÞTðΓθθÞ−1ΓθμÞ−1
× ðΓθμÞTðΓθθÞ−1: ðA4Þ

We see that this has a similar form to expression (A3), but
we have replaced Σμμ by Σμμ þ Γμμ − ðΓθμÞTðΓθθÞ−1Γθμ.
This difference reflects the impact of fitting for the
calibration model. The inverse of this term can be inter-
preted as the residual variance (or uncertainty) in the
calibration model, which is reduced when it is fitted out
of the data.
As a final remark, we note that Eq. (A1) can also be

used to assess our tolerance to unmodeled calibration
effects. In practice, we will fit for some kind of calibration
uncertainty model at the same time as fitting for the
parameters of the sources present in the data. Any compo-
nent of the true calibration uncertainty that cannot be
represented by that model will remain in the data and lead
to biases. These biases can be estimated using the above
formula, but with ðCðfÞ − 1Þ replaced by the residual
calibration error Ctrueðf; μÞ −Cmodðf; μÞ and the set of
parameters and Fisher matrix expanded to include the
calibration model parameters. We will not consider this
further here, but such biases could be assessed once
numerical calibration uncertainty simulations from instru-
mental modeling are available.

APPENDIX B: CROSS-CHECKS OF THE
FISHER MATRIX RESULTS

The Fisher matrix results presented in this paper were
computed numerically. In this appendix we report a number

of cross-checks that were used to verify the validity of these
results. We derive the Fisher matrix for Galactic binaries
analytically and that for SBHBs semianalytically. We also
verify the GB results by directly evaluating a posterior on
the calibration parameters using MCMC methods. To
facilitate the analytic calculations, we first introduce an
alternative model for the calibration error.

1. Calibration error knots formulas

In the main part of this paper, the calibration error is
described using two cubic splines. In order to verify the
validity and stability of the Fisher matrix, we will use in this
appendix a calibration error that is just a simple cubic to
simplify the analytical derivation. While the cubic spline
model has considerably more flexibility in general, when
using only four spline knots it is not so different to a cubic,
and using the latter as an alternative model allows us to
derive analytically (respectively semianalytically) the
Fisher matrix for a GB (resp. SBHB).
The amplitude (respectively phase) error function is a

cubic that is defined with 4 parameters fδAig (resp. fδφig)
defined at specific knots f0.1; 1; 10; 1000g. The total
calibration error can be written:

Cðf; fδAi; δϕigÞ ¼
�
1þ

X3
n¼0

anðfδAigÞðlog10fÞn
�

× e2πi
P

3

n¼0
pnðfδφigÞðlog10fÞn ; ðB1Þ

where faig and fpig corresponds to the cubic function
parameters and are linear combination of fδAig and fδφig
Using δXðfÞ to denote either the amplitude or the phase

error function we have:

˜δXðfÞ ¼ x0 þ x1ðlog10fÞ þ x2ðlog10fÞ2 þ x3ðlog10fÞ3
ðB2Þ

where fxig are the cubic spline parameters, which relate to
the weights at the knots, fδXig, via

8>>><
>>>:

δX0 ¼ δXðf0Þ ¼ x0 þ x1ðlog10 f0Þ þ x2ðlog10 f0Þ2 þ x3ðlog10 f0Þ3
δX1 ¼ δXðf1Þ ¼ x0 þ x1ðlog10 f1Þ þ x2ðlog10 f1Þ2 þ x3ðlog10 f1Þ3
δX2 ¼ δXðf2Þ ¼ x0 þ x1ðlog10 f2Þ þ x2ðlog10 f2Þ2 þ x3ðlog10 f2Þ3
δX3 ¼ δXðf3Þ ¼ x0 þ x1ðlog10 f3Þ þ x2ðlog10 f3Þ2 þ x3ðlog10 f3Þ3

: ðB3Þ

In our case, f0 ¼ 10−4, f1 ¼ 10−3, f2 ¼ 10−2 and f3 ¼ 1 Hz. Writing these equations in matrix form, we can readily invert
them to obtain the relationship between the cubic spline parameters and the error parameters:
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δX3

1
CCCA: ðB4Þ

2. Galactic binary analytical confirmation

Here we recompute the Fisher matrix for GBs analyti-
cally. The noiseless TDI combinations (here X) used to
simulate the gravitational wave can be represented with the
following formula:

d̃ðfÞ≡ Xðf; θ; μÞ ¼ Cðf; μÞRXðf; θÞAeiΦðf;θÞ ðB5Þ

where θ are the waveform parameters, μ the calibration
error parameters, C is the calibration error function, RX is
the LISA transfer function for the TDI X combination,A is
the waveform amplitude and ΦðtÞ is the waveform phase
defined in Eq. (17). For GBs the LISA transfer function RX
only depends on the sky location and is independent from
the intrinsic waveform parameters.
In the main part of the paper, we numerically simulated

the 3 TDI combinations and then calculated the Fisher
matrix via equation (13). To do this, it is necessary to calcu-
late the derivative of each TDI combination with respect to
the different parameters (waveformþ calibration). Since
the calibration error only affects the amplitude and initial
phase of the gravitational wave (as seen in Fig. 2), we will
concentrate on these waveform parameters only:

dXðf; θ; μÞ
dA

¼ 1

A
Xðf; θ; μÞ

dXðf; θ; μÞ
dϕ0

¼ −iXðf; θ; μÞ
dXðf; θ; μÞ

dan
¼ ðlog10ðfÞÞnXðf; θ; μÞ

dXðf; θ; μÞ
dpn

¼ 2πiðlog10ðfÞÞnXðf; θ; μÞ ðB6Þ

where we used the calibration error function defined in
Eq. (B1) and we evaluate the Fisher matrix for zero
calibration error, to ensure no bias, as discussed in
appendix A.
As the source is a galactic binary, we can assume the

waveform frequency is equal to the central frequency of the
GB (f → f0). Using this transformation, the definition of
the inner product integral is simplified:

ðajbÞ≡ 4Re

�
ã�ðf0Þb̃ðf0Þ

Snðf0Þ
�
Δf ðB7Þ

where Δf is the Fourier transform resolution of the ã and b̃
quantities.
The non zero Fisher matrix elements for the waveform

amplitude, waveform initial phase and calibration error
parameters can thus be analytically calculated:

ΓA;A ¼
�
ρ

A

�
2

; Γϕ;an ¼ ρ2
log10ðfÞn

A
; Γϕ;ϕ ¼ −ρ2;

Γϕ;pn ¼ 2πρ2ð−log10ðfÞÞn; Γan;am ¼ ρ2ðlog10ðfÞÞnþm;

Γpn;pm ¼ 4π2ρ2ðlog10ðfÞÞnþm ðB8Þ

where we have defined the signal-to-noise ratio via:

ρ ¼ 4Xðf0Þ2=Snðf0ÞΔf: ðB9Þ

From Eq. (16), we can extract the “calibrated” waveform
amplitude and initial phase uncertainties (index c) com-
pared to the nominal uncertainties in the absence of
calibration uncertainty (index 0):

σ2Ac
¼ σ2A0

þA2
0

X
n

ðlog10ðf0ÞÞ2nσ2an

σ2ϕc
¼ σ2ϕ0

þ 4π2
X
n

ðlog10ðf0ÞÞ2nσ2pn
ðB10Þ

where σan and σpn
are the calibration error spline-function

parameters defined in Eq. (B1). These analytical predic-
tions are shown along with the numerical results in Fig. 14
and we see they are in full agreement.

3. Galactic binary MCMC confirmation

The Fisher matrix is an approximation to the shape of the
posterior, valid in the limit of high signal-to-noise ratio. To
verify that it is valid for the calculations being performed
here, we will now cross-check against results based on the
numerical evaluation of the full Bayesian posterior distri-
bution computed via Markov Chain Monte Carlo (MCMC)
sampling. We proceed as follows. For each value of the
calibration error uncertainty, σC, we generate a large
number (2048 in this case) of realizations of a dataset
containing the same GB source plus calibration error with
parameters drawn randomly from N ð0; σ2CÞ. For each
realization, we find the peak of the posterior numerically
and hence evaluate the bias in the recovered amplitude
and phase of the GW. The distribution of biases over the
realizations is Gaussian, with zero mean (because the
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data generating process and likelihood are consistent), and
standard deviation σA for the GWamplitude and σϕ0

for the
GW phase. If the Fisher matrix is valid, these standard
deviations should coincidewith the Fisher matrix prediction.
The results from this procedure as shown as open circles

in Fig. 14. While the agreement is not perfect, it is within
a factor of 2 for all choices of σC, indicating the Fisher
matrix is providing a very reliable guide to the impact of
calibration uncertainty, at a much smaller computational
cost than MCMC.

4. Stellar-origin black hole binary
semianalytical confirmation

In this sectionwe nowverify the Fishermatrix for SBHBs.
This cannot be done fully analytically, but it is possible to do
it without computing numerical derivatives. For an SBHB,
the noiseless TDI combinations (hereX) used to describe the
observed gravitational wave can be represented as:

d̃ðfÞ≡ Xðf; θ; μÞ ¼ Cðf; μÞRXðf; θÞAðf; θÞeiΦðtÞðf;θÞ

ðB11Þ
where θ are the waveform parameters, μ the calibration error
parameters,C is the calibration error function,RX is theLISA
transfer function for the TDI X combination, A is the
waveform amplitude andΦðtÞ is thewaveformphase defined

in Eq. (17). For this source type the LISA transfer function
RX depends on all the waveform parameters.
As shown in the main section of the paper, the SNR is very

low for this kind of source. In this appendix, we will
artificially increase the SNR (by decreasing the noise power
spectral density) in order to reveal the impact of the calibration
error. As seen in Fig. 15, the initial phase and the distance are
mostly affected by the calibration error. Unlike GBs, SBHBs
have a broad spectral signature that does not allow the integral
over frequency to be approximated by evaluating the inte-
grand at the central frequency, so we still have to evaluate the
elements via a numerical integration. However, we can
directly write down the derivatives that appear in those
integrals. Since the effect on the initial phase is equivalent
to that in the case of GBs (subsection B 2), we will focus on
the chirp mass Mc and the symmetric mass ratio η in this
subsection. The generic derivative of the TDI combination X
with respect to a parameter θ is given by:

dXðf; θ; μÞ
dθ

¼
�

1

Rxðf; θÞ
∂Rxðf; θÞ

∂θ
þ 1

Aðf; θÞ
∂Aðf; θÞ

∂θ

þ i
∂Φðf; θÞ

∂θ

�
Xðf; θ; μÞ ðB12Þ

For the chirp mass Mc and symmetric mass ratio η, the
transfer function Rx and amplitude A derivatives can be
neglected compared to the phase Φ derivative:

FIG. 15. As Fig. 14, but now for the SBHB source. The dotted line shows the result of the semianalytic Fisher matrix evaluation
described in this appendix, while the circles show the results from full numerical evaluation of the Fisher matrix.

FIG. 14. Ratio between the uncertainty of a waveform parameter with (σθ) and without (σθ0) calibration error uncertainty as a function
of the calibration error uncertainty σC. The dotted lines represent the numerical Fisher matrix results, which are in full agreement with
the analytical predictions shown with solid lines and in good agreement with MCMC simulations shown with open circles.
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dXðf; θ; μÞ
dMc

≃ i
∂Φðf; θÞ
∂Mc

Xðf; θ; μÞ;
dXðf; θ; μÞ

dη
≃ i

∂Φðf; θÞ
∂η

Xðf; θ; μÞ ðB13Þ

where the partial derivatives of the phase are analytical
functions that can be derived from the IMRPhenomD

formulas. The derivatives with respect to the calibration
error parameters are the same as for GBs [Eq. (B6)].
Evaluating the integrals of products of these various deriva-
tive expressions over frequency we can obtain an alternative
semianalytic computation of the Fisher matrix. This is
compared to the fully numerical results in Fig. 15. We can
see that the two sets of results are in perfect agreement.
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