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The data collected by the current network of gravitational-wave detectors are largely dominated by
instrumental noise. Total variation methods based on L;-norm minimization have recently been proposed
as a powerful technique for noise removal in gravitational-wave data. In particular, the regularized Rudin-
Osher-Fatemi (rROF) model has proven effective to denoise signals embedded in either simulated Gaussian
noise or actual detector noise. Importing the rROF model to existing search pipelines seems therefore worth
considering. In this paper, we discuss the implementation of two variants of the rROF algorithm as two
separate plug-ins of the coherent WaveBurst (cWB) pipeline designed to conduct searches of unmodelled
gravitational-wave burst sources. The first approach is based on a single-step rROF method and the second
one employs an iterative rROF procedure. Both approaches are calibrated using actual gravitational-wave
events from the first three observing runs of the LIGO-Virgo-KAGRA collaboration, namely GW 1501914,
GW151226, GW170817, and GW190521, encompassing different types of compact binary coalescences.
Our analysis shows that the iterative version of the rROF denoising algorithm implemented in the cWB
pipeline effectively eliminates noise while preserving the waveform signals intact. Therefore, the combined
approach yields higher signal-to-noise values than those computed by the cWB pipeline without the TROF
denoising step. The incorporation of the iterative rROF algorithm in the cWB pipeline might hence impact

the detectability capabilities of the pipeline along with the inference of source properties.
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I. INTRODUCTION

The third observational run (O3) [1] of the network of
interferometer detectors Advanced LIGO [2] and Advanced
Virgo [3] has led to a significant increase in the number of
transient gravitational-wave (GW) detections from compact
binary coalescences (CBC) with respect to the previous
two runs. During the first two observing runs (O1 and O2)
[4], the LIGO Scientific Collaboration and the Virgo
Collaboration reported a total of 11 detections, comprising
10 binary black hole (BBH) mergers [5—7], and one binary
neutron star (BNS) merger [8]. During O3, the number of
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confirmed detections from CBC events climbed to 79,
leading to a total of 90 events. Those have been recently
reported by the LIGO-Virgo-KAGRA (LVK) Collaboration
in the third release of the Gravitational Wave Transients
Catalog (GWTC-3 [9]).

The notable increase in the amount and variety of
waveforms is challenging data-analysis procedures. More
exceptional events are present in the O3 data set [1,10,11],
pushing the capabilities of current data-analysis tools and
techniques to extract the GW signals embedded in instru-
mental noise. GW searches in the data collected by the
interferometers are conducted in two different ways:
real-time searches using low-latency online pipelines,
and offline searches on archived data. The latter use
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stand-alone offline versions of the same pipelines without
any time limitation, allowing for the use of higher computa-
tional resources.

Real-time searches try to identify event candidates with
low latency during the observing time, usually less than one
minute since the detection starts. On the other hand, oftline
searches perform an in-depth analysis of event candidates
as well as searches for events missed by the speediness of
the low-latency infrastructure. Both types of analysis
require detailed background studies, noise characterization
and identification, and accurate reconstruction of the
physical parameters of the sources and of their sky
localization. Some of this information may not be readily
available during the low-latency search, which makes
necessary a posterior offline analysis to recover as much
information as possible.

GW interferometers work under conditions of low
signal-to-noise ratio (SNR) and relatively high levels of
instrumental noise. This makes noise removal (or denois-
ing) one of the most challenging problems in GW data
analysis. Detector characterization techniques have been
developed within the LVK Collaboration with the purpose
of reducing, identifying, and characterizing instrumental
noise, applying and identifying vetoes and gates to the data
[2,12,13]. Complementary studies on noise reduction using
machine learning methods are currently under intense
scrutiny [14-17].

In [18] methods for denoising GW signals based on L -
norm minimization, modeling the denoising problem as a
variational problem, were first discussed. Originally, these
methods were developed in the context of image processing
where they proved to be the best approach to solve the
Rudin-Osher-Fatemi (ROF) denoising model [19]. From its
original formulation [19], the ROF model has been
extended to incorporate different denoising alternatives.
One of these is the regularized ROF (rROF) denoising
method whose performance with GW data has been
assessed in [18,20-22]. These studies have shown that
the rROF method is suitable to denoise GW signals
embedded either in additive Gaussian noise [18] or in
actual detector noise [20], irrespective of the signal
morphology or astrophysical origin of the data.
Moreover, it has also been found that the rROF method
leads to suitable results almost irrespective of the data
conditioning, the whitening, or the removal of spectral
artefacts usually present in the analysis procedure of GW
data analysis pipelines.

This paper further extends those studies by discussing
the implementation and calibration of the rROF method in a
GW data-analysis pipeline, with the goal to make it
available in upcoming data-taking runs. The selected
pipeline is coherent WaveBurst (c(WB) which is designed
for GW data analysis of unmodeled sources [23,24]. By
looking for excess energy on pixels in time-frequency
representations of the data, cWB is able to identify

coherently GW transients on a network of GW detectors
with minimal assumptions on signal morphology. We show
here that an implementation of the rROF method based on
iterative regularization [25,26] yields satisfactory denoising
capabilities when applied to actual GW data.

This paper is organized as follows: In Sec. II we briefly
describe the rROF denoising method and assess its per-
formance through the tuning of its intrinsic parameters.
Results and procedures for its use are also presented in this
section. In Sec. III we discuss our specific implementation
of the rROF method in the cWB data-analysis pipeline. The
results of our combined approach are presented in Sec. IV
using first signal GW150914 as a real-case test and then
extending the study to additional GW events from O1 to
O3. Finally, in Sec. V we draw our conclusions and outline
possible extensions of this work.

II. THE rROF METHOD

A. Basics

The starting point of signal denoising is the computation
of the metric distance between the true (noiseless) signal
and the noisy signal. In a metric space, this distance is
usually defined as the square of the L,-norm of the
difference of both functions, which should be identical
to the standard deviation of the noise, o,

lu=fllz, =0 (1)

where f is the observed signal, and u is the (unknown)
signal to be recovered. As usual, we will employ the linear
degradation model,

f=u+n (2)

where n represents the additive noise.

To solve the mathematical problem of denoising Eq. (1),
the first approach one can use is classical least-squares
methods. These methods solve a linear system of equations
using a linear combination of polynomials or wavelets [27],
with unknown coefficients. By determining those coeffi-
cients the denoising problem is solved, although the results
may be affected by ringing or smearing edges effects,
known as Gibbs’ phenomena [28]. In addition, if the linear
system is large compared to the size of the data sample,
finding the solution with least-squares methods can be
computationally very expensive.

One of the most common ways to avoid these problems
is to regularize the least-squares approach, adding an
auxiliary energy term R(u) to the equation. We will refer
to it as the regularization term. This function can be
regarded as an a priori probability density. A solution
for one-dimensional signals, such as a time series, can be
found by solving the constrained variational problem that
results from the addition of the regularization term to
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Eq. (1) (the constraint). This problem has a unique solution
provided the energy function R(u) is convex. Moreover, the
variational problem can be formulated as an unconstrained
variational problem using Tikhonov regularization which
adds the constraint weighted by a positive Lagrange
multiplier 4 > 0 to the energy

. argbrlnin{R(u) + %F(m}. 3)

Here F is the fidelity term that measures the similarity of
the solution to the data. This formulation ensures that for a
positive nonvanishing value of 4, to be determined, there is
a unique solution u that matches the constraint. The scale
parameter A controls the relative significance of the
fidelity term.

The choice of the energy term R(u) will determine the
complexity of the problem as well as the properties of the
solution. For example, if we choose

R(u) = / IVul2.. (4)

where V stands for the gradient operator, we will obtain the
so-called Wiener filter. In order to compute the solution we
solve the associated Euler-Lagrange equation

Au+A(f —u) =0, (5)

under homogeneous Neumann boundary conditions
[29,30]. Equation (5) is a nondegenerate second-order,
linear, elliptic differential equation, which is not difficult to
solve due to the differentiability and strict convexity of the
energy term.

Equation (5) can be solved in an efficient way using the
fast Fourier transform (FFT), which provides a unique
solution. The Fourier coefficients of the solution decay to
zero, while those representing the wave u remain with finite
values. This is no longer the case when the signal contains
noise because it amplifies high frequencies and yields
solutions with spurious oscillations near steep gradients
or edges.

The ROF model [19] tries to address the problems of
least-squares methods by replacing the L,-norm in the
energy term with the L;-norm. By doing this, Eq. (3) reads

. A
u—argm1n{/|Vu|+§||u—f||%2}, (6)

where the fidelity term is chosen to be equal to the variance

of the noise o2,

Fu) = ||u = fII,- (7)

This change allows recovering edges of the original signal
by removing noise and avoiding ringing and spurious

oscillations. Since the energy term R(u) = |Vu|, called
the total-variation (TV) norm, is convex, there is a unique
optimal value of the Lagrange multiplier A for which Eq. (1)
is satisfied. When the standard deviation of the noise is
unknown a heuristic estimation of such optimal value is
needed. For large enough values of 4 the ROF model will
remove very little noise while smaller values will have the
opposite effect.

However, in the associated Euler-Lagrange equation of
the ROF model,

Vu
V-W—l—/l(f—u)zo, (8)

the differential operator becomes singular when |Vu| = 0
and has to be defined properly. The algorithm we consider
in our study is the so-called regularized ROF algorithm
(rROF) [31]. This algorithm computes an approximate
solution of the ROF model by smoothing the TV energy.
Since the Euler-Lagrange derivative of the TV-norm is not
well defined where Vu = 0, the TV functional of the rROF
method is slightly perturbed by introducing in the formu-
lation a small positive parameter, /3,

= angmind [ \/(VaP )+ 51111, | ©)

Here, u € R?, where p is the dimension of the signal.
When f is small the problem turns nearly degenerate and
the algorithm becomes slow in flat regions. In contrast,
when f is large, the rROF method cannot preserve sharp
discontinuities. Assuming homogeneous Neumann boun-
dary conditions, Eq. (9) becomes a nondegenerate second-
order nonlinear elliptic differential equation whose solution
is smooth. To solve Eq. (9) we use conservative, second-
order, central differences for the differential operator and
point values for the source term. The approximate solution
is obtained by employing a nonlinear Gauss-Seidel iterative
procedure that uses as an initial guess the observed signal f.
This algorithm has interesting properties including robust-
ness and fast convergence.

B. Parameter selection

The rROF method contains several specifiable parame-
ters. The results of the denoising procedure strongly depend
on the evaluation of these parameters, most importantly on
the scale parameter A [32]. As discussed, the optimal value
of 1 and of any other parameter in the method, cannot be set
up a priory. These values must be found empirically. In [32]
only the scale parameter A was evaluated in the calibration
of the method. In the present investigation, we gauge the
values of all algorithm parameters, which we shall now
describe. The goal is to find a small span of parameter
values that provide a recovered (denoised) signal for all
waveforms under different SNR conditions. Parameter /3 is
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needed to avoid divisions by zero in the formulation, which
implies that the typical values of this parameter will be
close to zero. Parameter /£ is inherited from the original
ROF model proposed for digital image processing and
corresponds to the step in the finite-difference scheme used
to compute the gradient. In this context, the value of A
should be equal to the distance between two adjacent pixels
of the image to be denoised. However, when adapting the
rROF method to GW analysis, there is no obvious counter-
part explanation about the role of /. Therefore, we treat & as
one more free parameter to adjust.

The solution of Eq. (9) is found through a Gauss-Seidel
iterative procedure that terminates upon the fulfilment of a
given condition. In our case, the error of the TV mini-
mization is compared to a control tolerance value (tol),
which is an additional parameter to adjust. As we discuss
below, the correct adjustment of the tolerance plays a
significant role, as the minimization process may diverge in
some situations.

Finally, to process the data, the entire segment of data
must be divided into smaller samples of equal size. Each of
these samples is treated mathematically as the elements of a
vector with dimension N, where N is equivalent to the
sample size. To optimize the performance of the rROF
algorithm we treat N as another tunable parameter. We will
show that it plays only a minor role in denoising. However,
it is the most important parameter in terms of the computer
workload, regarding memory and execution speed. The
higher the value of N the more computer memory is needed
and the longer the time the evaluation of the parame-
ters takes.

The proper adjustment of these five parameters, &, S, 4,
tol, and N, determines the efficiency and the performance
of the rROF method when denoising a data segment. Our
goal will be to find the optimal parameter set, able to
diminish the amplitude of the noise as much as possible
while preserving the original signal intact. Inadequate
selection of parameters can either result in insufficient
noise removal or in a very aggressive denoising, the latter
reducing in the process the amplitude of the actual GW
signal.

To select the parameters we use a hyper-parameter tuning
system (as described in Sec. I D). We vary the values of the
five-parameter set within predetermined intervals and
perform data denoising for each point in the hyper-
parameter space. Then, the result is compared to a reference
data set, usually consisting of a precalculated waveform
template. The hyperparameter point that provides the best
denoising result with respect to the reference set will allow
us to know the optimal parameter values. In our approach, a
sample of interferometer noise strain and a GW signal are
needed. Different noise strain samples with different
characteristics may need a different set of parameter values.
For this reason, we distinguish between different kinds
of noisy data by considering, on the one hand, the

observational run they belong to (O1, O2, and O3) and,
on the other hand, the interferometer that recorded the noise
(H1, L1, or V1).

C. Iterative rROF

Through the application of the rROF algorithm, we can
compute a residual » = u — f. This residual is treated in the
ROF model as an error and discarded. However, in actual
applications there will always exist some amount of signal
in v and some quantity of noise in u. The distribution
depends on the scale parameter A. A large value of 4 yields
very little noise removal, and hence u is close to f. On the
contrary, a small value of 4 yields a noisy, over-smoothed u.
If the amount of signal in v can be considered an
insignificant fraction of the noise-free signal u, the residual
can be safely discarded treating the signal lost as an
affordable error. However, if this is not the case, a
possibility to improve the denoising process is to apply
the method once again to a new linear degradation model
that results from using the residual, i.e., f = u + v.
This procedure admits a natural iferative generalization,
as proposed in [25], that solves the deficiencies of the
single-step rROF method. Such proposal was first applied
in the context of GW denoising in [18]. Here, we follow
that same approach and build an iterative rROF algorithm
which uses the decomposition of the data f into a candidate
to the true noise-free signal u and a residual v. Therefore, at
each iteration I, = u;,.| + vy, where k is the iteration
index and I, = f + v;. The procedure is as follows:
(1) Initialization: ug = 0 and vy = 0 for k =0
(ii) For k =1,2,...: compute u; | as the minimizer of
I}, as obtained from the rROF method

(iii) Compute the residual vy, | = I} — u;,, which rep-
resents the difference between the input and the
output data of the rROF algorithm

(iv) Add to the initial noisy data the residual,

Le, Iy = f+ vy

The iterative regularization adds the “noise” computed by
the rROF procedure, v, back to f, the original noisy data.
Then the sum is processed by the rROF minimization
algorithm to proceed with the next iteration. The procedure
stops when some discrepancy principle is satisfied, namely
when the square of the L,-norm of the residual matches the
noise level, [[uy — fl[, < 6.

In practice, however, this level may not be known and it
becomes necessary to resort to some other termination
criterion. In [25] it was shown that the residual decreases
monotonically until a stopping index k is reached. Should
the iterations not be stopped properly, the process would
converge to the noisy data f and the TV of the denoised
signal might become unbounded. Thus, our iterative rROF
algorithm proceeds until the result gets noisier, i.e., until
U, becomes more noisy than u,. When this happens
||vkllL, has reached its minimum value. The iterative
procedure is therefore terminated at some index k for

022002-4



IMPLEMENTATION OF THE REGULARIZED ...

PHYS. REV. D 106, 022002 (2022)

which the local extrema of the denoised signal do not start
losing total variation.

The heuristic determination of the index to stop the
iterations depends on A which is the most important
parameter of the method. For a large value of A the
termination criterion may already be satisfied after the first
step, which would result in a suboptimal reconstruction.
This does not happen if A is sufficiently small which
guarantees that the data contained in u;, becomes gradually
less noisy until the termination index is found. This is the
reason why the parameter values to use with the iterative
regularization procedure should be higher than those
identified as the optimal ones.

The iterative rROF method, thus, profits from the
denoising properties of the single-step rROF algorithm
by slowly denoising the data while constantly checking for
any signal removal, instead of extracting as much noise as
possible in only one execution. Therefore, the parameter
values to employ should be higher than the optimal ones to
slow down the pace of the denoising. The single-step rROF
algorithm is still in use at each step of the iterative method,
the main difference residing in the manipulation of the data
through the iterative process, where signal loss is avoided
by enhancing the portion of data where a single-step rROF
denoising might fail.

D. Denoising estimator

To assess the quality of the denoising, an estimator that
compares the results in every point in the hyperparameter
space to reference templates must be used. The estimator
we choose is known as the first Wasserstein distance
[33,34], W; (WD in the following). This estimator is a
distance metric with a finite (bounded) value and it has
been properly defined to be used with time series. The WD
reads

Wy = / " 1) = u()|dr. (10)

A

There is extensive literature describing its properties as well
as its relation with other metrics through the corresponding
transformation rules [35]. The WD is defined to be positive
in real space. When it is equal to zero, the data sample and
the reference are identical. In this way, when using this
estimator in our hyperdimensional system, the adjustment
of the parameter values of the rROF method reduces to a
minimization problem, where we look for the minimum
value of W;. This value will correspond to the optimal set
of rROF parameters.

For the implementation of the rROF method in the cWB
pipeline, we perform the denoising of the GW strain data
acquired by each interferometer before these data are
supplied to the pipeline. Using the WD estimator we find
that the values of the parameters may differ significantly for
different interferometers depending on their particular

(time-dependent) noise characteristics or on the template
used. Therefore, in order to compare estimator results
between different interferometers and normalize them,
we define the Wasserstein scale (WS). When there is no
noise present in the data and the template is a perfect match
of the signal the WS will measure 0, which is identical to
the value of the WD in this situation. On the other hand,
when no denoise has been performed on the data, the WS
will measure 100. In this way, the WS is by definition in the
interval [0, 100] and can be considered equivalent to the
percentage of noise left in the strain data.

A lightweight software package has been developed for
the tuning (parameter estimation) of the rROF algorithm. It
moves over the hyper-parameter space in an automated way
to apply the rROF algorithm to a data sample. The quality
of the results is estimated by comparing each outcome with
a selected reference template using the WS. Following
[18,20-22] early tests were performed during the develop-
ment of the code using numerical-relativity waveform
templates from both CCSN and BBH mergers as reference.
Those revealed important information about the values of
the parameters of the method: (1) their ranges are limited in
all cases to a small interval; (2) the WS shows a character-
istic behavior as a function of each one of the parameters;
(3) the lower the values of A, , 1 and tol the better the
denoising quality, up to some minimum values; (4) param-
eter N behaves in the opposite way showing a plateau at a
characteristic value; (5) parameter tol is related to the
order of magnitude of the GW strain being denoised. The
scan of tol may sometimes reach a minimum value that
can lead to divergences in the iterative single-step rROF
method.

In our practical application of the iterative procedure we
take as starting point the results of the rROF parameter
estimation multiplied by some arbitrary factor. This ensures
the use of parameters with higher values than the opti-
mal ones.

III. ¢WB PIPELINE

The central goal of this investigation is the implementa-
tion of the rROF denoising method in the cWB data-
analysis pipeline [23,24]. The cWB pipeline is especially
suited for searches of unmodeled GW sources. Since no
prior information about the morphology of the signal is
required, cWB can facilitate the detection of GW events for
which templates cannot be numerically generated or
simulated. We briefly describe next the basic features of
this pipeline.

A. Basics of the cWB pipeline

Data analysis from a detector network can be performed
using a coherent approach, requiring a coincidence in a
time window for the events identified by the individual
detectors, and with similar signal morphology. To estimate
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the statistical significance or false alarm rate (FAR) of a
GW candidate, the responses of individual interferometers
in the network are compared against the distribution of the
expected background. By repeating the analysis on many
chunks of data, introducing nonphysical time shifts, allows
to invalidate the coherence in the data that is exclusively
due to random coincidences. Therefore, this method allows
discriminating between detector noise and real signals
present in the data. Background distributions generated
by this time-shifting technique include non-Gaussian noise
and nonstationary structures in the data.

The c¢cWB pipeline' is based on an algorithm that
searches for a coherent maximum likelihood in the whit-
ened time-series data of the detector network employing
Wilson-Daubechies-Meyer (WDM) transformations. This
procedure is applied to a multiresolution time-frequency
(TF) representation of the data. A more complete repre-
sentation of the data is then obtained using a linear
combination of wavelet sets at different resolutions.
Triggers are identified by clustering spectrogram pixels
over the threshold of excess power over the whole
interferometer network. Then a cluster of pixels is selected,
and the likelihood statistics are built. The cWB pipeline is
also able to choose a selection of clusters with a given
pattern, particularly with a frequency increase as a function
of time, which is especially suitable to identify the inspiral
GW signal of compact binary coalescences. The statistics
of a cWB event are proportional to the coherent SNR across
the detector network. It also estimates the network corre-
lation coefficient, defined as the ratio between the coherent
energy and the total energy. This coefficient is expected to
be close to one for real GW events, and almost zero for
nonstationary noise fluctuations.

B. Implementation of the rROF method
in the cWB pipeline

Data analysis with the cWB pipeline starts first with the
data-conditioning step. This is done utilizing a regression
algorithm [36] that identifies and removes persistent lines
and noise artefacts. Afterwards, the data is whitened and
converted to the TF domain using the WDM wavelet
transformation [37]. This analysis is repeated several times
at several frequency resolutions to obtain good TF coverage
for a broad range of signal morphologies. Candidate events
can be identified as a cluster of TF data samples with power
above the baseline detector noise. In the final step, the
pipeline reconstructs the signal waveforms, the wave
polarization and the source sky localization using a con-
strained maximum likelihood analysis over the GW detec-
tor network [23,24].

'¢cWB home page: https://gwburst.gitlab.io/, public reposito-
ries: https://gitlab.com/gwburst/, public documentation: https://
gwburst.gitlab.io/documentation/latest/html/index.html.

The ¢cWB pipeline is written in C + + and is used in
combination with several ROOT macros. The main func-
tions of the pipeline manage the external ROOT macros to
use them for specific tasks to perform the cWB analysis.
This structure allows the possibility of adding external
routines of any kind, called plugins, for any specific
purpose that can be combined with the default analysis
procedure of the pipeline. The implementation of the rROF
algorithm in the cWB pipeline, both using its original
design as well as the iterative regularization extension, has
been developed as plugins. A first plugin was built for the
single-step TROF method. This routine operates over the
data stream after the whitening step, which is performed by
the pipeline itself. The integration at this point of the
analysis procedure ensures that the application of the rROF
algorithm is independent of the frequency range of the data,
as well as of the parameters intrinsic to the algorithm. A
second plugin has also been developed for the iterative
rROF algorithm. When used, this second plugin operates in
replacement of the rROF plugin in the cWB pipeline under
the same conditions.

IV. RESULTS

To test the implementation and performance of the rROF
denoising method in the cWB pipeline we employ real GW
strain data freely accessible through the Gravitational Wave
Open Science Center [38]. The signals we select are two O1
detections, GW150914 [5] and GW151226 [6], the BNS
merger event in O2 GW170817 [8], and the intermediate-
mass black hole event in O3 GW190521 [39]. Most of the
following discussion is focused in GW150914 which we
take as an illustrative example to assess the method. The
evaluation procedure is as follows: first, we determine the
optimal parameter values of the original rROF method for
the GW 150914 event; next, we perform the data analysis
with the cWB pipeline equipped with the rROF denoising
method; finally, we compare these results with those the
cWB pipeline yields when the rROF denoising substep is
not operational. The same approach is then repeated for the
iterative tROF algorithm.

A. Selection of rROF parameters for GW150914

Since GW150914 was observed by the two Advanced
LIGO interferometers, two sets of rROF parameter values
need to be determined, one for each detector. With this
purpose, we use the BBH waveforms computed by the
cWB pipeline as the reference template to tune the
parameters required by the rROF method. Table I reports

TABLE I. Optimal parameter values of the GW150914 event
obtained with the rROF algorithm. Results of the WS are also
shown in the last column.

Detector h p A tol N WS
L1 0.3 0.5 0.02 0.2 1024 30
H1 0.1 0.5 0.01 0.2 512 31
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the optimal set of parameter values we obtain for
GW150914.

The strain data is extracted from the cWB pipeline after
data-conditioning and whitening. Figure 1 shows the
denoised waveforms for GW150914 with the optimal
parameter values listed in Table I. The black lines represent
the denoised data from the whitened strains for both H1
(blue line, left panel) and L1 (green line, right panel). As
this figure shows, the morphology of the reference template
waveform is properly preserved after the denoising. The
evaluation of the rROF method is measured with the WS
estimator. We find that about 70% of the original noise
contained in the signal is subtracted in the case of L1 data
(69% for H1 data) while the waveform is preserved quite
accurately.

We note that the strain data shown in Fig. 1 is obtained
directly from the cWB pipeline right after the whitening
process, the last step of the data-conditioning stage. This
stage includes all quality controls, vetoes and removal of
potential glitches. As a result, the waveforms show some
modifications with respect to the original GW150914 raw-
strain data plotted in [5]. Our focus in Fig. 1 is to highlight
the difference in the whitened strain when the denoising
rROF step is applied or otherwise.

B. Combined analysis of GW150914

We now reanalyse GW150914 with the active imple-
mentation of the rROF method in the cWB pipeline,
using the optimal parameters of Table I. The cWB data
analysis reported a successful identification and wave
reconstruction of the GW150914 event for both H1 and
L1. The original (¢cWB only) and the reconstructed
(cWB + rROF) spectrograms for the two interferometers
are shown in Fig. 2. The left panels display the original
cWB results and the right panels the results obtained with

the addition of the rROF step (L1 is shown on the top and
H1 on the bottom). The overall reduction of the noise
contained in the data is visible in the right plots, providing a
clearer view of the GW150914 chirp signal. However, the
average amplitude of the event is reduced as well. This is to
be expected since the detected signal is a combination of
the actual gravitational waveform and some amount of
noise. Further inspection of the spectrograms reveals that
the rROF step also causes the high-frequency component of
the signal (the ringdown part above 150 Hz approximately)
not to display as prominently in the denoised data as it does
in the original cWB spectrogram. The visual comparison of
the spectrograms shows, indeed, that a portion of the signal
at the higher frequencies is missing in the combined
denoised result.

To further quantify the comparison we analyse the output
of some of the statistical parameters reported by the cWB
pipeline. A selection is shown in Table II including the
SNR, the effective correlated amplitude p, the correlation
coefficient cc, and the network energy disbalance ED. The
effective correlated amplitude is obtained from the SNR
according to (assuming a network correlation near to one):

/=, SNR,
PEN SN (11)
IFO

where Nygg is the number of interferometers active during
an event and SNR; is the signal to noise ratio of the
individual interferometers. We observe that the values of
both the SNR and p are significantly reduced when the
rROF denoising step is active. This result is unexpected
since a reduction of the noise present in the data should
produce an increase of both quantities. On the other hand,
the coherence coefficient cc increases by 3.2%, from 0.93
to 0.96, when the rROF step is active. Hence, this
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to the combined cWB + rROF results. Data on the top panels are for L1 while those on the bottom panels are for HI.

coefficient behaves as one would expect in the case of noise
reduction from the data.

C. Analysis of GW150914 with iterative rROF

From the results we have just described it becomes clear
that the application of the single-step rROF method does
not improve the results of the standalone cWB pipeline, at
least for the case of the GW 150914 waveform. The single-
step denoising subtracts a significant fraction of the signal
at the higher frequencies.

Here we reanalyze this event by combining the cWB
pipeline with the iterative rROF algorithm as the denoising
step, as described in Section II C. This method is designed

TABLE II. Parameters reported by the cWB pipeline for the
analysis of the GW150914 event, with and without the activation
of the rROF algorithm.

SNR  pLl)  p®Hl) ce ED
W/o rROF 25.2 16.7 16.0 093  —0.01
With rROF 155 9.8 9.5 096  —0.05

to compensate for the deficiencies of the single-step
denoising, which occurs when there is significant data
loss. The values of the parameters of the method used in
this case are shown in the first row of Table III. These
values are determined heuristically by increasing the values
regarded as optimal for the single-step algorithm, deter-
mined in Sec. IV A. We note that we do not need to perform
a second parametrization as the iterative method is based on
the successive application of the single-step algorithm with
sub-optimal parameter values, combined with the use of a
data quality check after each step until the stopping
condition is reached. This procedure still uses the same
low-pass filtering rROF algorithm implemented in the

TABLE III. Parameter values of the iterative rROF algorithm
for the GW events considered in this work.

GW event h P A tol N
GW150914 1 1 0.1 0.2 1024
GW151226 1 1 0.2 0.2 1024
GW170817 1 1 1.0 0.001 1024
GW190521 1 1 0.1 0.2 1024
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c¢WB + rROF combined analysis. While the algorithm still
behaves effectively as a low-pass filter the fact of adding
back the residual to the initial data several times improves
significantly the quality of the denoising in the high-
frequency part of the signal.

The cWB pipeline reports once again a successful
identification and waveform reconstruction of the
GW150914 event. Figure 3 displays the new spectrograms
obtained from the cWB pipeline for L1 (top panels) and H1
(bottom panels). The left column shows the original cWB
spectrograms without any denoising step active (as in the
left panels of Fig. 2) and the right column the correspond-
ing spectrograms obtained with the combined cWB and
iterative tROF algorithm.

As for the case of the single-step rROF method, the
iterative rROF algorithm also yields a visible overall
reduction of noise which provides a somewhat clearer
track of the chirp, specially at frequencies higher than
~150 Hz. The most notable difference with respect to the
single-step TROF method is that the iterative rROF algo-
rithm succeeds in keeping the high-frequency part of the
signal intact, showing no data loss above ~150 Hz (com-
pare the right panels of Figs. 2 and 3). Therefore, when

combining the cWB pipeline with the iterative rROF
algorithm the complete ringdown part of the GW150914
signal remains intact and clearly visible. We also notice that
the spectrograms of the denoised signals are extremely
clean at high frequencies (displaying a uniformly dark blue)
as was also the case when using the single-step rROF
method. For the latter, that is an indication that the rROF
algorithm behaves as a low-pass filter. With iterative
regularization this is still the case since the rROF algorithm
is used at every iteration. However, by adding the residual
back to the signal the rROF algorithm behaves as a

TABLE IV. Values of the SNR computed by cWB for the GW
events considered in this work. SNR,, corresponds to the purely
cWB value (no rROF step) while SNR, is the SNR obtained
using cWB in combination with the iterative rROF method.

Event Type Run SNR, SNR,,
GW150914 BBH 01 25.2 27.1
GW151226 BBH O1 11.9 14.0
GW170817 BNS 02 26.8 27.1
GW190521 IMBH 03 14.7 16.8
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low-pass filter just for noise, thus keeping intact the signal
contained in the data.

When inspecting the numerical values of the statistical
parameters computed by the cWB pipeline when used in
combination with the iterative rROF algorithm, we pay
special attention to the reported SNR as our main indicator
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of a successful denoising. As shown in the first row of
Table IV, the SNR of the GW 150914 event increases from
25.2 to 27.1, an enhancement of 7.5% with respect to the
original cWB measurement. We thus conclude that the
results obtained with the iterative denoising for our selected
test case, GW150914, are worth considering.
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FIG. 4. Likelihoods computed by the cWB pipeline for GW events GW 151226 (top), GW170817 (center), and GW 190521 (bottom).
In the results displayed in the left column the rROF method is not active. The right column shows the corresponding likelihoods when

cWB is combined with the iterative rROF algorithm.
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D. Additional GW events

To complete the assessment of the rROF method as a
denoising plugin of the cWB pipeline we extend our
investigation to additional GW events. We aim to prove
that the denoising method can provide positive results with
any signal type regardless of the nature of the noise
contained in the data. To do this we select events
GW151226, a BBH merger signal from observing run
O1 [6], GW 170817, the BNS merger event detected in O2
[8], and GW190521, an intermediate-mass black hole
signal observed in O3 [39]. The corresponding SNR values
computed by cWB are reported in Table IV.

We begin by using the cWB pipeline in combination
with the single-step rROF algorithm. For none of the three
events the pipeline is able to report a detection. Our
conclusion is that in all three cases the subtraction of
signal during the denoising step is more severe than in the
case of GW150914, despite the fact that we used the
optimal parameter values as determined for each event
separately. By removing too much signal from the data the
cWB pipeline is unable to achieve an identification. Our
hypothesis is that it might be related to the low-frequency
filtering nature of the rROF algorithm, which does not
perform appropriately for the low SNR event GW 151226
nor for the high-frequency signal GW170817. To obtain a
conclusive statement would require a deeper analysis of the
data subtracted by the rROF denoising.

However, the combined application of cWB and the
iterative rROF method to the additional GW events yields
entirely satisfactory results. Using the specific values of the
iterative TROF method parameters indicated in Table III we
find that all three signals are identified by the cWB
pipeline, the analysis software is able to reconstruct all
events and in all cases it reports an enhancement in
the waveform SNR. Table IV summarizes the SNR
values obtained for the four GW events analysed in this
work. The specific SNR increments are 7.5% (GW150914),
17.6% (GW151226), 1.1% (GW170817), and 14.2%
(GW190521).

Figure 4 displays the likelihood computed by ¢cWB for
each event: GW151226 in the top row, GW170817 in the
central row, and GW 190521 at the bottom. The left column
shows the likelihood for each event without the use of a
rROF denoising step, while the right column displays the
corresponding likelihood with the iterative rROF algorithm
active. This figure demonstrates that for all GW events
considered, the waveforms are identified and properly
reconstructed by the cWB pipeline. The iterative rROF
algorithm does not introduce any kind of data loss in any
part of the spectrograms, in particular in the high-frequency
region.

Finally, we come back to the issue of the parameter
values used by the iterative regularization, reported in
Table III. The methodology indicates that values higher
than the optimal ones should be used. For all signals

considered, the parameter selection has been made aiming
to find an acceptable denoising result, taking advantage of
the flexibility that the iterative regularization offers.
Moreover, a completely operational denoising method
should be able to successfully operate on any kind of data,
without any prior knowledge about the signal. In this
regard, the possibility of using free parameters independent
of the kind of noise or signal is in our interest. This is
indeed an attractive additional possibility iterative regu-
larization offers.

V. CONCLUSIONS

The rate of detections of GW signals by the Advanced
LIGO-Virgo-KAGRA interferometer network is dramati-
cally increasing with every detector update [9]. The data
collected are largely dominated by instrumental noise
which renders data denoising and signal reconstruction
truly important efforts. In such context, the denoising of
GW signals based on L;-norm minimization approaches
shows strong potential, as evidenced by the results reported
in [18,20-22]. Those studies have shown that the regular-
ized Rudin-Osher-Fatemi method [19] is suitable to denoise
GW signals embedded either in additive Gaussian noise
[18] or in actual detector noise [20], irrespective of the
signal morphology, data conditioning, or whitening.

In this paper, we have extended those studies by
discussing the implementation and calibration of the
rROF method in an existing GW data-analysis pipeline,
with the midterm goal of having it operational in upcoming
LVK data-taking runs. We have selected the cWB pipeline,
designed for coherent searches of unmodeled burst sources
[23,24] and we have implemented the rROF method as a
plug-in within the flowchart of the pipeline. Additionally,
building on a proposal laid out in [18] we have also
implemented an iterative regularization approach (as a
second plug-in) using the single-step rROF algorithm as
the base denoising method for each iteration. The combined
cWB + rROF approach has initially been tested using
actual noisy data from the GW150914 event. The com-
parison between the results of the cWB pipeline with and
without the TROF denoising substep has revealed some
limitations of the single-step rROF method. Our imple-
mentation of the algorithm has led, in particular, to a
significant elimination of the high-frequency component of
the signal (along with the anticipated noise removal). The
remedy to this drawback has been found in the iterative
rROF algorithm, an approach proposed as an improvement
over the original model, especially formulated to compen-
sate for the signal removal sometimes present in a single-
step TROF method. The assessment of the iterative rROF
algorithm with the GW150914 waveform has led to
satisfactory results. We have found that a notable amount
of noise can be removed while at the same time the entire
signal morphology is unaffected at all frequencies, yielding
an increment in the cWB analysis indicators, most impor-
tantly the SNR.
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Our analysis has been completed with three additional
GW events, spanning representative CBC morphologies
and detector noise, namely a second BBH merger from O1,
GW151226, the BNS merger event from O2 GW170817,
and the intermediate-mass black hole event from
03 GW190521. For all of these events we have also
observed that the iterative version of the rROF algorithm
implemented in the cWB pipeline leads to an effectual
reduction of the noise without affecting the signals, thus
yielding enhanced SNR values. For GW170817 the SNR
increment is a modest 1.1% while for GW151226 and
GW190521 is 17.6% and 14.2%, respectively.

As a near-term goal we plan to perform offline analysis
of the complete O1-O3 data with the combined
cWB —+ iterative rROF pipeline. By doing so we will
reevaluate the detectability capabilities of the pipeline for
existing triggers and the inference of the source properties, as
well as investigate whether the improved quality of the data
may lead to unveil potential new triggers on the available
data. In addition, we also plan to implement and deploy the
iterative TROF method in the low-latency version of the cWB
pipeline for O4 and O5. The experience to be gained with the
01-0O3 searches should pave the way to the eventual
application of the denoising technique discussed in this
paper to the upcoming observational campaigns of the
LIGO-Virgo-KAGRA detector network.
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