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We study topological vortex solutions in a generalized Abelian Higgs model with nonpolynomial
dielectric and potential functions. These quantities are chosen by requiring integrability of the self-dual
limit of the theory for all values of the magnetic flux. All the vortex profiles are described by exact
analytical expressions that solve the self-dual vortex equations. There is only a symmetry-breaking
superconducting phase and the model sustains regular phenomenology.

DOI: 10.1103/PhysRevD.106.016015

I. INTRODUCTION

Topological defects involving Higgs and/or gauge fields
have aroused a widespread interest and are a central theme
of research in several branches of physics, and also in
mathematics [1,2]. The most prominent examples are the
kinks of ϕ4 or sine-Gordon theories in 1þ 1 dimensions,
the vortices of the Abelian Higgs model in 2þ 1 dimen-
sions, the monopoles of the Georgi-Glashow model in
3þ 1 dimensions and the instantons of pure Yang-Mills
theory in Euclidean four dimensional space. In all these
cases, at least for some values of the parameters of the
theory, there are bounds in energy or action leading
the defects to obey first-order field equations, called
Bogomol’nyi or self-duality equations, in contrast with
the usual second-order Euler-Lagrange ones. Vortices are,
however, special in this respect in that there are not
available exact solutions to these equations, while analyti-
cal expression for kinks, BPS monopoles and BPST
instantons are known. Although a well-defined procedure
to obtain the coefficients of a series expansion of the fields
has been developed [3], and a remarkable exact result for
the leading term of the fields at large distance from the
vortex core has been found1 [5], no closed expressions of
the scalar and vector fields of the Abelian Higgs model

vortices have been brought to light. The situation changes,
however, when vortices are considered on a curved mani-
fold, where the metric can possibly depend on the scalar
field, instead of on the plane: in these cases several
examples of integrable vortex equations have been found
and classified, see [6] and references therein. From a
different perspective, the Abelian Higgs model on a curved
spacetime and with coupling to the gravitational field has
been also thoroughly investigated, see [7] for a review or
[8] for some recent new solutions obtained numerically.
On the other hand, in the spirit of treating Abelian

Higgs systems as effective field theories in condensed
matter physics or high energy physics, several variants of
the original AHM have been developed. In particular, the
inclusion of a dielectric function multiplying the Maxwell
term in the Lagrangian [9], or of a metric in scalar field
space, making the theory a nonlinear sigma model [10], or a
combination of both extensions [11], have been studied in
several situations, see for instance [12–15]. An aspect of
these generalizations that has been recently investigated is
the possibility of obtaining analytical solutions for vortices.
Thus, in [16] the nonlinear sigma model with dielectric
function and ϕ4 or ϕ6 potentials was considered, and by
positing some exact expression for the scalar field of the
vortex, it was verified that there is a complete analytical
solution compatible with a well-behaved form of the
dielectric function. Other forms of the scalar field leading
to analytical solutions in this class of models were found in
[17], in some cases relaxing the usual requirement that the
dielectric function is positive definite for all field values.
The paper [18] uses a generalized model to address the
issue of finding vorticial solutions of compacton type in
2þ 1 dimensions, and includes, along with numerical ones,
some analytic solutions which arise when a parameter
governing the dielectric function is very large. The same
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1There is a small discrepancy of around 1.5% between this
theoretical prediction and the corresponding numerical coeffi-
cient obtained by de Vega and Schaposnik; a recent evaluation by
high accuracy numerical methods [4] has concluded that the
correct value is that given in [3].
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situation occurs in other models analyzed in [19], this time
in the context of a general formalism leading to vortex
obeying first-order equations. Finally, a procedure of broad
applicability for obtaining analytical vortices, based on the
stipulation of a definite dependence between the scalar and
gauge fields, was proposed in [20], and applied success-
fully to find solutions in several models with dielectric
function and scalar field metric.
A common feature of previous works is that the

analytical vortex solutions found correspond mostly to
the case of n ¼ 1 vorticity, or minimal quantized magnetic
flux. Although cases with n > 1 were considered, for
instance, in [16,17], the corresponding dielectric functions
were computed as a function of the radial coordinate r in
the vortex plane, instead of a function of the scalar field,
with the results depending on n. It seems thus that
analytical vortices with different vorticities do belong to
different theories of the same type, not to the same theory.
The same situation happens with the procedure proposed in
[20]: the relationship between scalar and gauge fields has to
be adjusted in such way that the finite energy boundary
conditions for the gauge field are satisfied, and this leads,
in general, to a dependence of the dielectric function and
potential on the vorticity. It is thus desirable to find a well
definite generalized model in which vortices of all vor-
ticities are analytical. In this note we exhibit one such
model, which differs of previously known examples in two
respects: (i) Although the model contains analytical vor-
tices of any vorticity, these arise into one unique theory, i.e.,
the dielectric function and potential are fixed and indepen-
dent of n; (ii) The analyticity of vortices is not limited to the
case of cylindrical symmetry, configurations corresponding
to separated vortices are given by exact formulas too. The
price to be paid is that the theory is nonpolynomial, but this
is not an important drawback given that the model is to be
considered as an effective theory. Nonpolynomials poten-
tials were also considered before, for instance, in [19] for
Chern-Simons-Higgs vortices. We will present the model
and its solutions in the next two sections and then devote a
third one to study its character as effective theory and some
phenomenology.

II. THE MODEL AND CYLINDRICALLY
SYMMETRIC VORTICES

The generalized Abelian Higgs model with dielectric
function [9] is given by the following Lagrangian density:

Lðϕ;VαÞ ¼ −
1

4μðjϕjv Þ
VαβVαβ þ∇αϕ

�∇αϕ

−
λ

2
μ

�jϕj
v

�
ðjϕj2 − v2Þ2; ð1Þ

where, as in [21], we have chosen to express the theory in
terms of the inverse dielectric function μðjϕjv Þ rather than

using the true dielectric one H ¼ 1
μ. We work in 3þ 1

dimensions with spacetime coordinates yα, α ¼ 0, 1, 2, 3;
the metric signature is ðþ;−;−;−Þ and the Maxwell

tensor and covariant derivatives are Vαβ ¼ ∂Vβ

∂yα −
∂Vα

∂yβ
,

∇αϕ ¼ ∂ϕ
∂yα − iqVαϕ. Notice that in our conventions a

positive value of q corresponds to negative electric charge.
The fields ϕ and Vα and the vacuum expectation value v
have mass dimensions one, while the couplings q and λ and
the function μ are dimensionless. This is the physical model
in natural units. However, for our purposes it is more
convenient to avoid dimensionful quantities and to apply
the rescaling

qvyα ¼ xα Vα ¼ vAα ϕ ¼ vφ

so that Lðϕ;VαÞ ¼ q2v4L with a new Lagrangian density

L¼−
1

4μðjφjÞFαβFαβþDαφ
�Dαφ−

λ

2q2
μðjφjÞðjφj2−1Þ2;

ð2Þ
where Fαβ ¼ ∂αAβ − ∂βAα and Dαφ ¼ ∂αφ − iAαφ (with
∂α ¼ ∂

∂xα), and all fields and couplings are now dimension-
less. We will be interested in static and x3-independent
configurations. Thus, the dimensionless tension, or energy
per unit length along the third axis, is

E ¼
Z

d2x

�
1

2μðjφjÞF
2
12 þDkφ

�Dkφ

þ λ

2q2
μðjφjÞðjφj2 − 1Þ2

�
ð3Þ

where latin indices take the values 1 and 2. We are
here working on flat Minkowski spacetime, but let us
mention that (3) coincides with the form of the energy of
the standard Abelian Higgs Model on a curved two-
dimensional manifold with metric gijðxÞ ¼ ΩðxÞδij,
although in this case the inverse dielectric function
μðjφjÞ should be substituted by the conformal factor
ΩðxÞ, a fixed function of the coordinates reflecting the
geometry of the manifold instead of a function of the scalar
field. This coincidence could be exploited to obtain geo-
metric backgrounds in which the standard AHM has
analytical vortices once the solutions of the generalized
AHM in flat space are known. The static Euler-Lagrange
equations extracted from (3) are

∂k

�
1

μðjφjÞF
kj

�
¼ −iðφ�Djφ − φDjφ�Þ ð4Þ

DkDkφ ¼ −
∂

∂φ�

�
1

2μðjφjÞF
2
12 þ

λ

2q2
μðjφjÞðjφj2 − 1Þ2

�
:

ð5Þ
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We will assume that μðjφjÞ is semidefinite positive and
nonvanishing for jφj ¼ 1. Thus, on account of (3) the scalar
field of configurations with finite tension should go to the
vacuum orbit jφj ¼ 1 for jx⃗j → ∞. This implies that by
means of a gauge transformation we can write φðθÞ ¼ einθ

at infinity, where n is an integer and θ is the polar angle in
the ðx1 − x2Þ-plane. But since the quadratic term in
covariant derivatives has also to vanish asymptoti-
cally, we should require as well that Ak ¼ n∂kθ for
jx⃗j → ∞. This means that the magnetic flux is quantized2:
ΦM¼R

d2xF12¼
H
jx⃗j¼∞Akdxk¼2πn. Therefore, the space

of configurations of finite tension splits into topological
sectors labeled by the topological index n ∈ Z.
As in the standard Abelian Higgs model, the tension (3)

is amenable to a splitting into squares plus a remnant [9]

E¼
Z

d2x

�
1

2μðjφjÞ
�
F12�

ffiffiffi
λ

p

q
μðjφjÞðjφj2− 1Þ

�2

þjD1φ� iD2φj2
�
�
Z

d2xF12

�
jφj2

�
1−

ffiffiffi
λ

p

q

�
þ 1

�

ð6Þ

such that, in the self-dual limit λ ¼ q2, the last term
becomes a purely boundary contribution proportional to
the magnetic flux. Therefore, the solutions of the first-order
Bogomol’nyi equations

F12 ¼ �μðjφjÞð1 − jφj2Þ ð7Þ

D1φ� iD2φ ¼ 0 ð8Þ

are minima of the tension in each topological sector and,
thus, solutions also of the Euler-Lagrange equations. As we
can read from (6), the tension of these solutions is

E ¼ �
Z

d2xF12 ¼ �2πn;

where n > 0 for the upper sign and n < 0 for the lower one.
They are, respectively, the self-dual vortices and antivor-
tices of the model.
Let us now specialize to the case of cylindrical sym-

metry. Wework with radial Ar and azimuthal Aθ gauge field
components, defined by Ak ¼ Ar

∂r
∂xk

þ Aθ
∂θ
∂xk
, k ¼ 1, 2, and

take an ansatz

Ar ¼ 0 AθðrÞ ¼ n − aðrÞ φðr; θÞ ¼ gðrÞeinθ; ð9Þ

along with the boundary conditions needed to ensure
finiteness of energy and regularity at the origin:

gð0Þ ¼ 0 gð∞Þ ¼ 1 ð10Þ

að0Þ ¼ n að∞Þ ¼ 0: ð11Þ

Thus, the first-order equations (7)–(8) become

1

r
da
dr

¼ �μðgÞðg2 − 1Þ ð12Þ

dg
dr

¼ � ag
r

ð13Þ

and the tension density H, given by E ¼ R
d2xH, turns out

to be

H¼ 1

2μðgÞr2
�
da
dr

�
2

þ
�
dg
dr

�
2

þ
�
ag
r

�
2

þ1

2
μðgÞðg2−1Þ2:

ð14Þ

The Euler-Lagrange equations for cylindrically symmetric
configurations can be written by substituting the ansatz (9)
in (4)–(5) or, alternatively, they can be derived from (14).
They take the form

d
dr

�
1

rμðgÞ
da
dr

�
¼ 2ag2

r
ð15Þ

1

r
d
dr

�
r
dg
dr

�
¼ a2g

r2
−

1

4μ2ðgÞr2
�
da
dr

�
2 dμ
dg

þ 1

4

d
dg

ðμðgÞðg2 − 1Þ2Þ: ð16Þ

It is not difficult to see that the Bogomol’nyi
equations (12)–(13) do indeed imply (15)–(16).
Differentiation of (12) with respect to r, plus substitution
of (13) in the right-hand side member, gives (15) directly.
On the other hand, by means of (13) we can write the left-

hand side member of (16) as 1
r
d
dr ðr dg

drÞ ¼ � 1
r
da
dr gþ a2g

r2 , but
then we see by means of (12) that both the first term of this
expression, and the two last terms of the right-hand side
member of (16), are μðgÞgðg2 − 1Þ. Thus, they cancel and
the second Euler-Lagrange equation follows. This means
that the solutions of Bogomol’nyi equations are true
solutions of the theory even if the dielectric function is
not positive definite, as we are assuming. However, in such
a case they would not represent absolute minima of
the tension in each topological sector and they could
become unstable.
From now on we will focus on solutions with n > 0,

i.e., with positive magnetic flux. It is convenient [22] to
express the modulus of the scalar field as an exponential,

2We will refer loosely to F12 and
R
d2xF12 as the magnetic

field and magnetic flux, although really the third component of
the magnetic field is B ¼ −F12.
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gðrÞ ¼ euðrÞ. Equation (13) allows us to solve for the vector
field in the form

a ¼ r
du
dr

; ð17Þ

and then, substituting in (12), all the problem reduce to the
second-order ODE

r2
d2u
dr2

þ r
du
dr

− r2μðuÞðe2u − 1Þ ¼ 0 ð18Þ

which has to be solved with the boundary conditions
coming from (10):

uð0Þ ¼ −∞ uð∞Þ ¼ 0: ð19Þ

Hence, if we are looking for an exact expression for the
vortex fields, we have to choose a form of μðuÞ such that it
is possible to solve the system (18)–(19) analytically. In
such a case, once uðrÞ is found we obtain the gauge field
from (17) and we should check that (11) is fulfilled. Apart
of that, in order that the vortices are stable we should limit
to semipositive definite inverse dielectric functions, and
additionally μðjφjÞ must be regular enough to not spoil
spontaneous symmetry breaking when substituted in the
potential term in (2).
Let us then consider the following possibility:

μðjφjÞ ¼ ln jφj
jφj2 − 1

: ð20Þ

Both ln jφj and jφj2 − 1 are negative if jφj < 1, and positive
when jφj > 1. On the other hand, μðjφjÞ has a regular limit
for jφj ¼ 1, namely limjφj→1 μðjφjÞ ¼ 1

2
. Therefore μðjφjÞ

is positive definite and regular, as required. It decreases
with jφj and vanishes for very high Higgs modulus,
limjφj→∞ μðjφjÞ ¼ 0, blowing up to infinity for zero scalar
field, limjφj→0 μðjφjÞ ¼ þ∞. The potential in (2) is

VðjφjÞ ¼ 1

2
ln jφjðjφj2 − 1Þ ð21Þ

and the same balance of signs than before shows that it is
positive for all values of jφj, while limjφj→1 VðjφjÞ ¼ 0 and
a vacuum orbit jφj ¼ 1 exists guaranteeing spontaneous
symmetry breaking. As the standard jφj4 potential of
the usual Abelian Higgs model, limjφj→∞ VðjφjÞ ¼ þ∞,
although in the present model the potential is not finite
for zero field, limjφj→0 VðjφjÞ ¼ þ∞. The profiles of the
inverse dielectric function (20) and the potential (21) are
shown in Fig. 1.
With the choice (20), Eq. (18) reduces to the modified

Bessel equation of zeroth order:

r2
d2u
dr2

þ r
du
dr

− r2u ¼ 0; ð22Þ

with general solution uðrÞ ¼ αI0ðrÞ − βK0ðrÞ. The boun-
dary condition (19) at infinity selects α ¼ 0, while the
behavior at the origin requires β > 0. In fact, due to (17),
we will need an integer β in order to fulfill the boundary
conditions for the vector field. Thus, choosing

uðrÞ ¼ −nK0ðrÞ

we obtain from (17)

aðrÞ ¼ nrK1ðrÞ ð23Þ

and, since limz→0 zK1ðzÞ ¼ 1 and limz→∞ zK1ðzÞ ¼ 0, the
solution for uðrÞ complies also with the boundary con-
ditions (11). The magnetic field can be obtained by

means of standard Bessel function identities like dKnðzÞ
dz ¼

−1
2
ðKn−1ðzÞþKnþ1ðzÞÞ and Knþ1ðzÞ¼Kn−1ðzÞþ 2n

z KnðzÞ,
with the result

F12 ¼ nK0ðrÞ: ð24Þ

The tension density, once the fields are substituted in (14)
can also be computed to be of the form

HðrÞ ¼ n½K0ðrÞ − e−2nK0ðrÞðK0ðrÞ − 2nK2
1ðrÞÞ�: ð25Þ

0 1 2 3 4 5

0.5

1.0

1.5

2.0
µ

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
V

FIG. 1. The inverse dielectric function and potential for the model (20)–(21).
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It follows from (24) and (25) that both F12ðrÞ and HðrÞ
are divergent for r → 0. Nevertheless, the important
quantities for computing the magnetic flux and the tension
of the cylindrically symmetric vortex are rF12ðrÞ and
rHðrÞ, which are both regular at the origin because
the divergence of K0ðrÞ is logarithmic: K0ðrÞ ¼ − ln rþ
ðln 2 − γEÞ þ 1

4
ð1 − γE þ ln 2 − ln rÞr2 þ � � �, with γE the

Euler-Mascheroni constant, for small r. One can indeed
check by doing the integrals that both the magnetic flux an
the tension are finite and consistent with the Bogomol’nyi
bound, as it should be:

Z
∞

0

drrK0ðrÞ ¼ 1

and also

Z
∞

0

drr½K0ðrÞ − e−2nK0ðrÞðK0ðrÞ − 2nK2
1ðrÞÞ� ¼ 1;

because

Z
∞

0

drrK0ðrÞe−2nK0ðrÞ

¼ −rK1ðrÞe−2nK0ðrÞj∞0 þ 2n
Z

∞

0

K2
1ðrÞe−2nK0ðrÞ

and limr→0rK1ðrÞe−2nK0ðrÞ ¼ limr→∞rK1ðrÞe−2nK0ðrÞ ¼0.

We present in Fig. 2 the profiles of the scalar and gauge
fields of the cylindrically symmetric vortices for several
values of the topological index n, along with the corre-
sponding densities of magnetic flux and tension, including
the factor r. As one can see from the figure, the region
around the vortex center with φ ≃ 0 gets wider as the
vorticity increases, while at the same time the area with
Aθ ≃ 0 becomes stretched. Both rF12 and rH are zero at the
vortex center and have a maximum in the form of an
annulus around it, with the top of the annulus flatter and
wider for higher n values. Because the boundary conditions
are the same, the fields gðrÞ and aðrÞ of our solution and
those of the standard AHM vortices show a similar
appearance, but there are some differences in the way
the origin and infinity are approached. For instance, for the
case n ¼ 1, the fields of our model near the origin are

gðrÞ ¼ eγE

2
rþ eγE

8

�
γE − 1þ ln

�
r
2

��
r3 þ � � �

aðrÞ ¼ 1þ 1

4

�
2γE − 1þ ln

�
r
2

��
r2 þ � � � ;

while in the self-dual limit of the AHM obtained by taking

μðjϕjv Þ ¼ 1 in (1), one would find [7]

gðrÞ ¼ ζr −
ζ

4
r3 þ � � �

aðrÞ ¼ 1 −
1

2
r2 þ ζ2

4
r4 þ � � � ;

2 4 6 8 10
r

0.2

0.4

0.6

0.8

1.0

g

n 1 n 2 n 3 n 4 n 5

2 4 6 8 10
r

1

2

3

4

5

a

n 1 n 2 n 3 n 4 n 5

2 4 6 8 10
r

0.5

1.0

1.5

2.0

r F12

n 1 n 2 n 3 n 4 n 5

2 4 6 8 10
r

0.5

1.0

1.5

2.0

r

n 1 n 2 n 3 n 4 n 5

FIG. 2. Profiles of gðrÞ and aðrÞ and magnetic flux and tension densities for several vorticities. The red and magenta curves
correspond, respectively, to n ¼ 1 and n ¼ 5.
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with ζ ¼ 0.8532 and no logarithmic terms. On the other
hand, the behavior for great r is in both cases of the form

gðrÞ ≃ 1 − K0ðϱrÞ ≃ 1 −O

� ffiffiffiffiffiffiffi
π

2ϱr

r
e−ϱr

�

aðrÞ ≃ rK1ðϱrÞ ≃O

� ffiffiffiffiffi
πr
2ϱ

r
e−ϱr

�
;

with ϱ ¼ 1 in our model, but ϱ ¼ ffiffiffi
2

p
in the AHM,

signaling the fact that in this latter case the elementary
bosons turn out to be

ffiffiffi
2

p
heavier.

We have obtained vortex solutions by solving
equation (18) for r > 0 and using boundary conditions
(10)–(11) at r ¼ 0. Alternatively, it is possible to extend
(18) to the whole plane [22]: writing φðr; θÞ ¼ euðrÞeinθ and
substituting in (8), we can solve for the vector field out of
the origin in the form

A1 ¼ ∂2uþ n∂1θ; A2 ¼ −∂1uþ n∂2θ

and thus the magnetic field picks a singular contribution

F12¼−ð∂21þ∂
2
2Þuþnεij∂i∂jθ¼−ð∂21þ∂

2
2Þuþ2πnδð2Þðr⃗Þ

ð26Þ

when the origin is included. Therefore, for the dielectric
function (20), Bogomol’nyi equation (7) becomes

ð∂21 þ ∂
2
2 − 1Þu ¼ 2πnδð2Þðr⃗Þ; ð27Þ

and we recover our previous solution uðrÞ ¼ −nK0ðrÞ,
now because −K0ðrÞ is the Green function of the
Helmholtz operator (with −1 instead of þ1):

ð∂21 þ ∂
2
2 − 1ÞK0ðrÞ ¼ −2πδð2Þðr⃗Þ: ð28Þ

If instead we take uðrÞ ¼ −βK0ðrÞ with β ≠ n, we obtain a
solution in all the plane except the origin and, at the same
time, the gauge field develops a singularity at this point,
since in this case Aθð0⃗Þ ¼ n − β is nonvanishing. The
nonregularity of the gauge field manifests itself in a
singularity in the magnetic flux: from (26) and (28)

F12 ¼ βK0ðrÞ þ 2πðn − βÞδð2Þðr⃗Þ ð29Þ

and a Dirac string emerges. Nevertheless, if we compute the
total magnetic flux the result remains the same: like in
regular solutions, the first term in (29) gives a contribution
2πβ, and adding the flux of the Dirac string we recoverR
d2xF12 ¼ 2πn. The energy is

E ¼ 2πβ þ 1

2

Z
r≤ϵ

d2x
F2
12

μðjφjÞ ;

where the first term arises by substituting n for β in (25) and
in the second we integrate the Maxwell term over a circle of
infinitesimal radius ϵ around the origin to take care of the
singularity in the magnetic flux. We can approximate
uðrÞ ≃ β ln r, and thus μðjφðrÞjÞ ≃ −β ln r in this circle,
so that

1

2

Z
r≤ϵ

d2x
F2
12

μðjφjÞ ¼ −
1

2

Z
r≤ϵ

d2x
β2ln2r − 4πðn − βÞβ ln rδð2Þðr⃗Þ þ 4π2ðn − βÞ2ðδð2Þðr⃗ÞÞ2

β ln r

¼ −
1

2

Z
r≤ϵ

d2x

�
β ln r − 4πðn − βÞδð2Þðr⃗Þ þ 4π2

ðn − βÞ2
β

δð2Þðr⃗Þ
ln r

δð2Þðr⃗Þ
�
:

Both the first and third terms integrate to zero, in the second

case because δð2Þðr⃗Þ
ln r is of the form fðrÞδð2Þðr⃗Þ with fð0Þ ¼ 0.

Thus

E ¼ 2πβ þ 2πðn − βÞ ¼ 2πn

and the singular pseudo solutions have in this model the
same energy and flux that the true regular ones. This is in
marked contrast with the standard Abelian Higgs model,
where a Dirac string singularity would carry infinite energy
because the third term of the previous integral would
lack the factor 1

ln r coming from the dielectric function.
Thus, in the present situation the configurations with
Aθð0⃗Þ ¼ n − β ≠ 0 are to be rejected uniquely on the basis

that for them the gauge field is not well defined at the
origin, not because they have infinite energy.
Finally, let us comment that the election (20) can be

slightly generalized by means of a new dimensionless
positive coupling χ as

μðjφjÞ ¼ χ
ln jφj

jφj2 − 1
; χ > 0:

The profiles of μðjφjÞ and VðjφjÞ are qualitatively the same
than in Fig. 1, although now μð1Þ ¼ χ

2
. The vortex fields are

in this case of the form

uðrÞ ¼ −nK0ð
ffiffiffi
χ

p
rÞ aðrÞ ¼ n

ffiffiffi
χ

p
K1ð

ffiffiffi
χ

p
rÞ

F12ðrÞ ¼ nχK0ð
ffiffiffi
χ

p
rÞ;
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and the tension density is (25) multiplied by a global
factor χ and with the change r →

ffiffiffi
χ

p
r. Thus, the effect of

a small value of the coupling χ is to make the vortex core
wider, with the magnetic field and energy density less
concentrated around the center, while these magnitudes
would be enhanced and confined into a narrow tube if χ
were large. This can be seen in Fig. 3, where the fields
of the vortex with n ¼ 2 and several values of χ are
displayed. In what follows, however, we will continue
taking χ ¼ 1.

III. MORE GENERAL SOLUTIONS

As it is well known, cylindrically symmetric vortices are
not the only topological solutions of the Abelian Higgs
model with self-dual coupling. In fact, as proved in [23] by
means of index theorem techniques applied to the differ-
ential operator ruling the self-dual deformations of cylin-
drically symmetric vortices, and in [22] through the
construction of a functional whose critical points are in
one-to-one correspondence with the solutions of the
Bogomol’nyi equations, the moduli space of solutions in
the sector of topological index n has dimension 2n, and the
general solution describes an equilibrium distribution of n
separated vortices centered in n different points of the
plane. The same situation occurs also in Abelian Higgs
models with a dielectric functions, see for instance [24]
for the index computation in a generalized model related to
the Chern-Simons-Higgs system. While the existence of

assemblies of vortices distributed on the plane has gen-
erally to established by indirect means, we will show in this
section that the model we are dealing with has the virtue of
allowing an explicit analytical construction of the solutions
reflecting the structure of moduli space.
Thus, we are now looking for noncylindrically symmet-

ric solutions of the Bogomol’nyi equations (7)–(8) with the
upper signs, and with the inverse dielectric function given
by (20). We assume that the topological index is n and that
the scalar field has n zeroes which are located at some given
points r⃗ ¼ r⃗j, j ¼ 1; 2; 3;…; n, of the plane. As in the
cylindrically symmetric case, these zeroes correspond to
the centers of the vortices. We proceed as in [22] by taking
the ansatz

φðr⃗Þ ¼ exp½uðr⃗Þ þ iΩðr⃗Þ�

where the gauge is chosen in the form

Ωðr⃗Þ ¼
Xn
k¼1

θðr⃗ − r⃗kÞ ð30Þ

with θðs⃗Þ the polar angle corresponding to position vector
s⃗, i.e., θðs⃗Þ ¼ arctanðx2x1Þ for s⃗ ¼ x1e⃗1 þ x2e⃗2. The boundary
conditions for uðr⃗Þ are now

uðr⃗kÞ ¼ −∞; k ¼ 1; 2;…; n; uðr⃗Þjjr⃗j→∞ ¼ 0: ð31Þ
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FIG. 3. Profiles of gðrÞ and aðrÞ and magnetic flux and tension densities for vorticity n ¼ 2 and χ ¼ 0.1; 0.3, 1, 2 and 5. The red and
magenta curves correspond, respectively, to χ ¼ 0.1 and χ ¼ 5.
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Out of the vortex centers, Eq. (8) gives the vector field
components in terms of the modulus and phase of the
scalar field:

A1 ¼ ∂2uþ ∂1Ω; A2 ¼ −∂1uþ ∂2Ω: ð32Þ
Therefore, using (32) in (7), we rewrite the equation for
uðr⃗Þ in these points as

ð∂21 þ ∂
2
2 − 1Þu ¼ 0: ð33Þ

We have to solve (33) with boundary conditions (31).
We proceed directly in Cartesian coordinates: using that
dK0ðzÞ
dz ¼ −K1ðzÞ and dK1ðzÞ

dz ¼ −K0ðzÞ − 1
z K1ðzÞ, we have

∂jK0ðjr⃗jÞ ¼ −
xj

jr⃗jK1ðjr⃗jÞ;

∂
2
jK0ðjr⃗jÞ ¼

ðxjÞ2
jr⃗j2 K0ðjr⃗jÞ þ

ðxjÞ2 − ðεjkxkÞ2
jr⃗j3 K1ðjr⃗jÞ;

and thus ð∂21 þ ∂
2
2 − 1ÞK0ðjr⃗jÞ ¼ 0 for r⃗ ≠ 0. Hence, by

choosing

uðr⃗Þ ¼ −
Xn
k¼1

K0ðjr⃗ − r⃗kjÞ ð34Þ

equation (33) is satisfied out of the vortex centers. Also,
since K0ð0Þ ¼ ∞ and K0ð∞Þ ¼ 0, (34) is consistent with
the boundary conditions (31). Thus, the solution for the
scalar field of the multivortex configuration is simply

φðr⃗Þ ¼
Yn
k¼1

e−K0ðjr⃗−r⃗kjÞeiθðr⃗−r⃗kÞ:

With uðr⃗Þ found explicitly and the form of Ωðr⃗Þ fixed by
the gauge election, the vector field can be computed by
means of (32), with the result

Aiðr⃗Þ ¼ −εij
Xn
k¼1

�
xj − xjk
jr⃗ − r⃗kj2

−
xj − xjk
jr⃗ − r⃗kj

K1ðjr⃗ − r⃗kjÞ
�
; ð35Þ

where εij the antisymmetric symbol, ε12 ¼ 1. In fact, it is
easy to see that this gauge field is a sum of fields of unit
vorticity and, therefore, it is regular at the centers of the
vortices. The term of (35) corresponding, for instance, to
the vortex located at r⃗ ¼ r⃗1 is

Að1Þ
1 ðr⃗Þ ¼ −

x2 − x21
jr⃗ − r⃗1j2

þ x2 − x21
jr⃗ − r⃗1j

K1ðjr⃗ − r⃗1jÞ

¼ −
sin θ1
r1

ð1 − r1K1ðr1ÞÞ

Að1Þ
2 ðr⃗Þ ¼ x1 − x11

jr⃗ − r⃗1j2
−
x1 − x11
jr⃗ − r⃗1j

K1ðjr⃗ − r⃗1jÞ

¼ cos θ1
r1

ð1 − r1K1ðr1ÞÞ

where we denote θ1 ¼ θðr⃗ − r⃗1Þ and r1 ¼ jr⃗ − r⃗1j. Going
to the polar components of the gauge fields, as they were
defined in Sec. II, we conclude that this corresponds

to Að1Þ
r1 ¼ 0 and Að1Þ

θ1
¼ 1 − r1K1ðr1Þ, which coincides

with (9)–(23) for n ¼ 1. Hence, Að1Þ
θ1

goes to zero at the
center of the vortex, as it should do.
Since (35) is a sum of unit vorticity vector fields, so is the

magnetic field. We can see this in Cartesian coordinates:
out of the vortex centers and for i ≠ j, we obtain

∂iAj ¼
Xn
k¼1

�
εij

�
1

jr⃗ − r⃗kj2
− 2

ðxi − xikÞ2
jr⃗ − r⃗kj4

−
1

jr⃗ − r⃗kj
K1ðjr⃗ − r⃗kjÞ þ

ðxi − xikÞ2
jr⃗ − r⃗kj2

K2ðjr⃗ − r⃗kjÞ
��

;

where there is no sum in i and j, and we have used
d
dz ðK1ðzÞ

z Þ ¼ − K2ðzÞ
z . Thus

F12 ¼
Xn
k¼1

�
−

2

jr⃗ − r⃗kj
K1ðjr⃗ − r⃗kjÞ þ K2ðjr⃗ − r⃗kjÞ

�

but − 2
z K1ðzÞ þ K2ðzÞ ¼ K0ðzÞ, and then

F12 ¼
Xn
k¼1

K0ðjr⃗ − r⃗kjÞ;

which is consistent with (7). As in the cylindrically
symmetric case, the magnetic field diverges at the vortex
core, but the magnetic flux is nevertheless finite.
As an illustration, we present in Fig. 4 the splitting of a

cylindrically symmetric vortex with n ¼ 2 into two sepa-
rated vortices, with the distance between centers increasing
from 0 to 5 units along the x1 axis. The figure shows the
modulus of the scalar field of the vortices and, for
convenience, the vertical axis has been inverted, i.e., the
summit of the hills are the vortex centers with φ ¼ 0 and
the surrounding flat landscape corresponds to jφj ¼ 1.

IV. OTHER ISSUES CONCERNING THE MODEL

As we have seen, the choices (20) and (21) for the
inverse dielectric function and potential are appealing in
that they provide an integrable model which makes it
possible to work out analytically and in full generality the
fields of self-dual topological vortices. Of course, inte-
grable theories are always welcome because they contribute
to a better understanding of the objects that they contain,
but in the present case there are some aspects which could
be a cause of concern, in particular the fact that the potential
is infinite for zero scalar field and the divergence of the
magnetic field at the center of the vortices. In this section
we elaborate a little further on the theory with the aim to
show that these singularities do not prevent the model from
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displaying a regular and well-behaved phenomenology.
Specifically, we will illustrate this by discussing two topics:
the description of the model in terms of its elementary
excitations and the interaction of fermions with vortices.

A. Elementary particles and interactions

The model (1) can be interpreted in the usual way as an
effective Ginzburg-Landau theory of superconductivity, see
from instance Sec. 21.6 of [25]. From this perspective, the
vacuum jφj ¼ 1 is a superconducting ground state filled
with a scalar condensate of Cooper pairs originated from
the interactions of some underlying microscopic theory.
Instead, these interactions are weaker and Cooper pairs
disappear in the normal symmetric state φ ¼ 0. The most
important difference between the theory (20)–(21) and the
standard Abelian Higgs model is that in the latter the
potential is finite for φ ¼ 0, while now Vð0Þ ¼ þ∞. This
implies that, whereas in a bounded spatial domain of the
AHM it would be possible to completely destroy electron
pairing and to turn the field to the normal state φ ¼ 0 at a
finite energetic cost (by applying, for instance, a strong
external magnetic field), this is not possible within the
model we are considering. The only occurrence of the
symmetric phase is precisely at discrete points at the center
of the vortices, where the magnetic field is allowed to
become infinite inside a configuration of finite total energy.
This behavior is reminiscent of type II superconductivity,
although in the present model we are at the self-dual limit
and therefore, unlike in that case, vortices of any vorticity
are stable, not only those with n ¼ 1 as in usual type II
materials. An intuitive interpretation for the large gap
between the normal and superconducting phases is to

suppose that (20) and (21) are suitable effective ingredients
to describe a high temperature superconductor located in a
thermal environment which is well below the critical point.
In order to study the perturbative excitations of the

superconducting vacuum it is convenient, to restore dimen-
sions coming back to the original variables given in (1). The
theory is invariant under the Uð1Þ transformations

ϕðyÞ → eiωðyÞϕðyÞ VαðyÞ → VαðyÞ þ
1

q
∂ωðyÞ
∂yα

and we can use them to adopt a gauge in which the scalar
field is real and positive everywhere: ϕðyÞ ¼ ρðyÞ ∈ Rþ. In
this gauge the Lagrangian density is

Lðϕ;VαÞ ¼ −
1

4μðρvÞ
VαβVαβ þ ∂ρ

∂yα
∂ρ

∂yα
þ q2VαVαρ2

−
λ

2
μ

�
ρ

v

�
ðρ2 − v2Þ2

and, with the subsequent shift of ρ and rescaling of Vα

given by

ρðyÞ ¼ vþ 1ffiffiffi
2

p ηðyÞ Vα ¼
ffiffiffiffiffiffiffiffiffi
μð1Þ

p
Bα;

it can be split into quadratic plus interaction parts,

Lðϕ;VαÞ ¼ Lð2Þ
ðϕ;VαÞ þ Lint

ðϕ;VαÞ, of the form

Lð2Þ
ðϕ;VαÞ ¼ −

1

4
BαβBαβ þ 1

2

∂η

∂yα
∂η

∂yα
þ q2v2μð1ÞBαBα − λμð1Þv2η2

FIG. 4. Splitting of a n ¼ 2 vortex into two n ¼ 1 vortices.
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and

Lint
ðϕ;VαÞ ¼

ffiffiffi
2

p
μð1Þq2vηBαBα þ 1

2
μð1Þq2η2BαBα

−
X∞
p¼1

βpη
pBαβBαβ −

X∞
p¼3

γpη
p: ð36Þ

Here, the couplings are given in terms of derivatives of
dielectric function and its inverse at ρ ¼ 1, and are as
follows:

βp¼
μð1ÞHðpÞð1Þ
2

p
2
þ2p!vp

γp¼
�
λp−2þ

1ffiffiffi
2

p λp−3þ
1

8
λp−4

�
v4−p;

λp¼
λμðpÞð1Þ
2

p
2p!

; ð37Þ

where we recall that H ¼ 1
μ. Thus, for the theory (20)–(21),

in which μð1Þ ¼ 1
2
, the spectrum consists in a massive

vector boson with MB ¼ qv and a Higgs scalar with mass
Mη ¼

ffiffiffi
λ

p
v. On the other hand, all the interactions can be

computed from (20), for instance the cubic and fourth-order
terms in Lint

ðϕ;VαÞ are

Lint ð3Þ
ðϕ;VαÞ ¼

1ffiffiffi
2

p q2vηBαBα −
1

4
ffiffiffi
2

p
v
ηBαβBαβ

Lint ð4Þ
ðϕ;VαÞ ¼

1

4
q2η2BαBα −

1

48v2
η2BαβBαβ −

λ

48
η4:

Indeed, the inverse dielectric function μðρÞ is perfectly
regular at ρ ¼ 1, as one can see from Fig. 1. Thus all
derivatives entering in (36)–(37) exist and are finite and, in
fact, a few explicit calculations show that their values keep
decreasing as the derivative order increases. This means
that the interactions between the massive fields are well
defined and the model makes sense as an effective low
energy theory for the elementary particles. All scattering
amplitudes among them can be computed by sewing
together a finite number of the tree level Feynman diagrams
extracted from (36).

B. Coupling to fermions

In this subsection we shall consider several aspects of the
physics of spin one-half fermions in the presence of a
vortex. Rather than trying to present a full account of
fermion dynamics under the influence of a vortex, our aim
here is limited to convey some results providing evidence
on the fact that the divergence of the magnetic field at the
center of the vortex is not incompatible with a regular
phenomenology. Thus, for simplicity, we will limit the
treatment to the nonrelativistic regime and will consider
only the coupling of the fermions with the gauge field of
the vortex, which is enough for our purposes. For a more

thorough treatment of fermions on real superconductors
see [26] and for the relativistic case with the vortex
idealized as a Dirac delta flux line, see [27].
Fermions of mass MF enter in the theory (1) through an

additional term

LðΨ;VαÞ ¼ Ψ̄ðiγα∇Z
α −MFÞΨ

where the covariant derivative is∇Z
α ¼ ∂

∂yα − iZqVα and we
allow for different electric charges for fermions and the
scalar condensate (remember that Z > 0 would correspond
to negative charge). The field Ψ has mass-dimension 3

2
, an

thus the rescaling

Ψ ¼ qv
3
2ψ MF ¼ qvm

gives

LðΨ;VαÞ ¼ q2v4fψ̄ðiγαDz
α −mÞψg

with dimensionless field ψ and mass m, and with
DZ

α ¼ ∂α − iZAα. The nonrelativistic limit leads to the
Schrödinger-Pauli Hamiltonian

H ¼ −
1

2m

X2
k¼1

ð∂k − iZAkÞ2 −
gZF12

4m
σ3 ð38Þ

where we have left the gyromagnetic radio g unspecified to
take into account the possibility that our fermions are not
elementary and thus g ≠ 2, although we do not consider
anomalous magnetic moment contributions in the nonrela-
tivistic approach. The physical energies are EðΨ;VαÞ ¼ qvE,
where E are the dimensionless eigenvalues of the
Hamiltonian H, and we are treating the problem as a
two-dimensional one: the energy spectrum in 3þ 1 dimen-

sions is obtained by summing p2
3

2m to the eigenvalues obtained

from H, and multiplying the eigenfunctions by eip3x
3ffiffiffiffi

2π
p , where

p3 is the momentum along the vortex axis.

1. Zero modes and bound states

Let us introduce the operators

D ¼ DZ
1 − iDZ

2 D† ¼ −DZ
1 − iDZ

2 :

By comparing with (38), we see that the matrixH splits into
two scalar Hamiltonians H�, corresponding to states with
spin s3 ¼ � 1

2
, which are of the form

Hþ ¼ 1

2m
DD† − ðg − 2ÞZF12

4m
ð39Þ

H− ¼ 1

2m
D†Dþ ðg − 2ÞZF12

4m
: ð40Þ
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For a cylindrically symmetric vortex we have

D ¼ e−iθ
�
∂r −

i
r
ð∂θ − iZAθÞ

�

D† ¼ −eiθ
�
∂r þ

i
r
ð∂θ − iZAθÞ

�

where AθðrÞ is given by (9) and (23), and n > 0. With the
explicit form of the gauge field known, it is easy to find
the zero modes of these operators. For instance, if Z < 0

the operator D† does not have normalizable zero modes,
while Dvlðr; θÞ ¼ 0 for

vlðr; θÞ ¼ NlrZn−leZnK0ðrÞeilθ;

which can be normalized if the orbital angular momentum
l is l ¼ −ðjZnj − 2Þ;…; 0, if Zn is integer, or l ¼
−ð½jZnj� − 1Þ;…; 0, where ½·� is the integer part, if Zn
is not integer. Thus, in these cases there are, respectively,
jZnj − 1 or ½jZnj� normalizable zero modes. The normali-
zation constants are given by

2πN2
l

Z
∞

0

r2ðZn−lÞþ1e2ZnK0ðrÞ ¼ 1:

When Z > 0 the situation is analogous, but now zero
modes ofD are absent andD† has normalizable modes with
the opposite signs of orbital angular momentum.
In view of (39)–(40), if the fermion is an elementary

particle the zero modes of D† and D are zero-energy
solutions of the Schrödinger-Pauli equation for, respec-
tively, spin up or down. Instead, they can become bound
states for the case of composite fermionic particles with
gyromagnetic ratio different from two. For instance, if we
deal with a fermion of positive electric charge and g > 2,
such as a proton, the modes vlðr; θÞ adquire negative

energy which, if the constants of the theory are such that
the coefficient of the second term in (39) is small, can be
computed in first order perturbation theory:

El¼
ðg−2ÞZ

4m

Z
d2xF12jvlj2

¼πðg−2ÞZn
2m

N2
l

Z
∞

0

drr2ðZn−lÞþ1K0ðrÞe2ZnK0ðrÞ: ð41Þ

For concreteness, we can take q ¼ 2e for a condensate
of Cooper pairs, and then Z ¼ − 1

2
for the proton. Thus,

according with the previous analysis of zero modes, we
conclude that:

(i) If the vorticity n is even, H− has n
2
− 1 bound states

corresponding to orbital angular momen-
tum l ¼ 0;−1;…;−ðn

2
− 2Þ.

(ii) If the vorticity n is odd, H− has n−1
2

bound states
corresponding to orbital angular momentum l ¼
0;−1;…;− n−3

2
.

The energy of some of these bound states, in the form

El ¼ πðg−2Þ
2m εl and computed numerically using (41) are

given in Table I. We see that they are finite and are not
affected by the divergence of the magnetic field at the
origin, which is overcome by the rate at which the wave
function vanishes at this point.

2. Scattering states and phase shifts

Let us now turn to scattering states. Changing to polar
gauge field components and using (9) in (38), the
Schrödinger-Pauli equation is

�
∂
2
rþ

1

r
∂rþ

1

r2
ð∂θ− iZAθÞ2þ

gZ
2r

dAθ

dr
σ3þk2

�
ψ ¼0;

k¼
ffiffiffiffiffiffiffiffiffiffi
2mE

p
;

TABLE I. Energy εl of bound states for a proton in the vortex field for several values of the orbital angular
momentum l and vorticity n.

Energy εl of bound states

l ¼ 0 l ¼ −1 l ¼ −2 l ¼ −3 l ¼ −4 l ¼ −5 l ¼ −6

n ¼ 3 −0.0681
n ¼ 4 −0.1513
n ¼ 5 −0.2470 −0.0468
n ¼ 6 −0.3529 −0.1038
n ¼ 7 −0.4674 −0.1695 −0.0390
n ¼ 8 −0.5892 −0.2429 −0.0858
n ¼ 9 −0.7175 −0.3231 −0.1396 −0.0347
n ¼ 10 −0.8514 −0.4093 −0.1996 −0.0759
n ¼ 11 −0.9904 −0.5008 −0.2653 −0.1229 −0.0319
n ¼ 12 −1.1340 −0.5971 −0.3360 −0.1753 −0.0695
n ¼ 13 −1.2818 −0.6978 −0.4113 −0.2325 −0.1121 −0.0300
n ¼ 14 −1.4335 −0.8025 −0.4908 −0.2942 −0.1594 −0.0649
n ¼ 15 −1.5887 −0.9110 −0.5742 −0.3599 −0.2110 −0.1043 −0.0284
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where now the energy E is positive. In particular, for states
of orbital angular momentum l

ψðr; θÞ ¼ ξlðrÞeilθ

the equation takes the form

r2
d2ξl
dr2

þr
dξl
dr

þ
�
k2r2−ðl−ZAθÞ2þ

1

2
gZr

dAθ

dr
σ3

�
ξl¼0:

Since the last term is proportional to the product r2F12ðrÞ,
the divergence of the magnetic field at the origin is
harmless. On the other hand, very far from the origin,
where Aθ ≃ n and the magnetic field vanishes at a expo-
nential rate, the solution for each spin component is a linear
combination of Bessel functions

ψ lðr; θÞ ¼ ðalJjl−ZnjðkrÞ þ blY jl−ZnjðkrÞÞeilθ for r ≫ 1;

ð42Þ

where both coefficients al and bl can be taken to be real.
Except for an arbitrary global normalization, they are fixed
by imposing regularity at the origin once the solution is
extended to the whole plane. Using the expressions of the
Bessel functions valid for great r

JmðzÞ ≃
ffiffiffiffiffi
2

πz

r
cos

�
z −m

π

2
−
π

4

�
ð43Þ

YmðzÞ ≃
ffiffiffiffiffi
2

πz

r
sin

�
z −m

π

2
−
π

4

�
ð44Þ

the asymptotic wave function (42) can be written as

ψ lðr; θÞ ¼
1ffiffiffiffiffiffiffiffi
2πk

p
�
eikrffiffiffi
r

p e−i
π
2
jl−Znje−iπ4ðal − iblÞ

þ e−ikrffiffiffi
r

p ei
π
2
jl−Znjeiπ4ðal þ iblÞ

�
eilθ: ð45Þ

For a free fermion, without magnetic field or potential, the
asymptotic linear combination of Bessel functions (42)
solves the Schrödinger-Pauli equation for all r, but Y jljðkrÞ
blows up at the origin. Thus the free solution with orbital
angular momentum l is

ψ free
l ðr; θÞ ¼ JjljðkrÞeilθ

and, using (43) again, we can write this free wave
function as

ψ free
l ðr; θÞ ¼ 1ffiffiffiffiffiffiffiffi

2πk
p

�
eikrffiffiffi
r

p e−i
π
2
jlje−iπ4 þ e−ikrffiffiffi

r
p ei

π
2
jljeiπ4

�
eilθ:

ð46Þ

We can imagine (46) as a superposition of two circular
waves, one incoming from great distance to the origin and
the other being scattered from it toward infinity with a
phase change. When an interaction with cylindrical sym-
metry is at work, due to the join conservation of angular
momentum and probability, we expect for the asymptotic
solution the same structure of (46), with the incoming and
outgoing waves having the same amplitude but a different
phase, i.e., we should have something like

ψ lðr; θÞ ¼ A

�
eiðkrþ2δlÞffiffiffi

r
p e−i

π
2
jlje−iπ4 þ e−ikrffiffiffi

r
p ei

π
2
jljeiπ4

�
eilθ:

for r ≫ 1; ð47Þ

where δl is the phase shift due to the interaction. Thus,
by comparing (45) with (47), we find for the phase shifts
produced by the vortex magnetic field the following
expression:

δl ¼
π

2
ðjlj − jl − ZnjÞ − arctan

�
bl
al

�
: ð48Þ

The first term is precisely the Aharonov-Bohm result
δABl ¼ π

2
ðjlj − jl − ZnjÞ [28,29], corresponding to a situa-

tion in which the magnetic field is confined within an
infinitesimally thin tube along the x3 axis. For Zn ∈ Z this
reduces to e2iδ

AB
l ¼ ð−1ÞZn, i.e., the contribution to the

phase shift factor in (47) is þ1 or −1, but the same for all l.
This means that if we take a superposition of circular
incoming waves with different l values, we obtain the same
superposition of outgoing circular waves than in free case,
except for a global physically irrelevant factor. Thus, as it is
well known, an infinitesimally thin flux tube with integer

TABLE II. Phase shifts for the scattering of an electron with
spin up from the n ¼ 1 vortex.

Phase shifts for n ¼ 1

l ¼ −2 l ¼ −1 l ¼ 0 l ¼ 1 l ¼ 2

k ¼ 1 −0.6711 −0.4438 0.2619 0.5595 0.6918
k ¼ 2 −0.4666 −0.2367 0.1455 0.3794 0.5288
k ¼ 3 −0.3452 −0.1587 0.0999 0.2843 0.4191
k ¼ 4 −0.2722 −0.1191 0.0758 0.2267 0.3452
k ¼ 5 −0.2242 −0.0953 0.0610 0.1883 0.2929
k ¼ 6 −0.1905 −0.0794 0.0510 0.1610 0.2541
k ¼ 7 −0.1656 −0.0680 0.0438 0.1405 0.2243
k ¼ 8 −0.1464 −0.0595 0.0384 0.1247 0.2006
k ¼ 9 −0.1312 −0.0529 0.0342 0.1120 0.1815
k ¼ 10 −0.1189 −0.0475 0.0308 0.1017 0.1656
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ΦM
2π has not physical effects. The situation is different for the
vortex: in this case the integer flux of ΦM

2π is not innocuous
due to the second term in (48). As an illustration, we have
solved numerically the Schrödinger-Pauli equation to
compute some of the phase shifts produced by the vortex
with n ¼ 1. In Table II we give the phase-shifts for the spin
up states of an electron (Z ¼ 1

2
; g ¼ 2) for several values of

the momentum k and angular momentum l, and in Fig. 5 we
show how the phase-shifts change with l for a fixed energy.
As one can see, the results are perfectly regular, with
phase-shifts decreasing with energy and showing also a
dependence with l which reflects the nontrivial interaction
produced by the vortex as compared to the Aharonov-
Bohm background.

V. CONCLUSIONS

In this paper, we have examined a generalized Abelian
Higgs model in which the solutions for topological vortices
of any magnetic fluxΦM ¼ 2πn; n ∈ Z, are analytical. The
model comes about by reducing Bogomol’nyi equations for
a cylindrically symmetric vortices to a second order ODE,
and then looking for a form of the dielectric function which
makes the ODE linear. The solution of the ODE, given in
terms of Bessel functions, can be made compatible with the
boundary conditions required for finite energy. The dielec-
tric function and potential are regular, except when the
scalar field goes to zero. Despite the singularity appearing
at this point, the model can be understood as a well behaved
effective theory describing the low energy interactions
of a massive vector boson and a Higgs field which

arise perturbatively around a vacuum which engenders
symmetry breaking. Once the solutions for cylindrically
symmetric vortices are found, their structure gives a strong
clue that the solutions corresponding to separated multi-
vortices must be given by exact analytical expressions too,
and a more detailed analysis confirms this. The simplifica-
tions leading to both cylindrically and noncylindrically
symmetric static analytical solutions occur for the first-order
equations valid in the Bogomol’nyi limit. Thus, we do not
expect that similar simplifications play a role in the time-
dependent full dynamical second order equations, except for
the well known fact that the low energy scattering of BPS
solitons is interpreted in the adiabatic approximation as the
geodesic motion in the moduli space of static solutions with
the metric induced from the vortex zero modes [30].
A salient feature of the solutions is that, at the center of

the vortices, both the magnetic field and the energy density
diverge. Nevertheless, the divergences are mild enough to
make the total magnetic flux and energy finite and con-
sistent with the Bogomol’nyi bound. The divergences do
not spoil either other facets of the theory, like the dynamics
of fermions on the vortex field, which display a regular
phenomenology.
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