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We study quantum electrodynamics (QED) in the light-front dynamical form by using null-plane causal
perturbation theory. We establish the equivalence with instant dynamics for the scattering processes, whose
normalization allows one to construct the instantaneous terms of the usual null-plane QED Lagrangian
density. Then we study vacuum polarization and normalize it by studying its insertions into Møller’s
scattering process, obtaining the complete photon propagator, which turns out to be equivalent to the one of
instant dynamics only when gauge invariance is taken into account.

DOI: 10.1103/PhysRevD.106.016014

I. INTRODUCTION

Quantum electrodynamics (QED) is the theory of the
interaction between leptons and photons. It was the first
quantum field theory to be constructed and, by virtue of its
accessibility to experimental testing as well as its great
success in predicting physical quantities such as the
gyromagnetic ratio of the electron and Lamb’s shift, it
becomes the paradigm of this entire area of physics and one
of the most studied theories. The most famous formulation
of QED is the one developed by Tomonaga [1–5],
Schwinger [6–8], Feynman [9], and Dyson [10] between
1946 and 1949. It was also Dyson, in 1949, who invented
the techniques of regularization of the QED integrals and
renormalization of the theory by the absorption of the
infinities into the mass and charge terms [11].
In 1949, Dirac [12] started the study of the relativistic

dynamical forms. He discovered three possibilities:
(a) Instant dynamics: The one in which the isochronic
surfaces are the planes of constant x0. (b) Point-form
dynamics: The isochronic surface is the superior branch
of the hyperboloid a2 ¼ x2, the parameter a2 being the
time. (c) Light-front dynamics: The isochronic surfaces are
null planes of constant xþ. This list was completed by
Leutwyler and Stern [13] in 1978; they encountered two
more dynamical forms [14], with the following isochronic
surfaces: (d) the superior branch of the hyperboloid
ðx0Þ2 − ðx1Þ2 − ðx2Þ2 ¼ a2, and (e) the superior branch

of the hyperboloid ðx0Þ2 − ðx3Þ2 ¼ a2; in both cases the
parameter a2 being the time. Among these dynamical forms
the light-front one is special: in it the number of Poincaré
generators independent of the interaction is maximum [12];
also, the null planes are the characteristic surfaces of Klein-
Gordon-Fock’s equation [15,16]. These theoretical advan-
tages of light-front dynamics translate into its success in
treating a variety of practical problems, for example, in the
context of current algebra [17–19], in the study of laser
fields [16,20,21], for treating deep-inelastic scattering
[22–25], or in QCD for the study of hadron physics [26].
However, being, as there are, many ways to describe the

relativistic dynamics, there will also be various quantum
field theories. The obvious question to ask in this context is
which one of them is the correct theory, or if they are
physically equivalent. To develop such theories is neces-
sary in order to answer that question. Focusing on light-
front dynamics, the quantization of fields on the null plane
and the corresponding formulation of null-plane QED were
done by Chang and Ma [27], Kogut and Soper [28],
Rohrlich and Neville [16,29], and Leutwyler, Klauder,
and Streit [30]. The equivalence between null-plane
QED and the conventional instant one was then considered
by Ten Eyck and Rohrlich [31,32] and by Yan [33,34]. In
all these calculations, Feynman’s amplitudes at one-loop
level exhibited double-pole singularities as a consequence
of an inconsistent treatment of the poles of the gauge field
propagator in the null-plane gauge Aþ ¼ 0; this problem
was solved by Pimentel and Suzuki [35,36], who proposed
a prescription to treat those poles in a causal way.
Perturbative renormalization of null-plane QED was stud-
ied by Brodsky, Roskies, and Suaya [37] and by Mustaki,
Pinsky, Shigemitsu, and Wilson [38]. Additionally, the
constraint structure of classical QED and scalar QED in
light-front dynamics and in the null-plane gauge was
studied by Casana, Pimentel, and Zambrano [39].
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However, the equivalence between null-plane QED and the
instant one is still under discussion; particularly, the
importance of the instantaneous terms in the fermion
and gauge fields propagators is not clear; recent reviews
on the status quo of the gauge field propagator can be found
in Refs. [40,41]. Very recently, the equivalence problem for
one-loop radiative corrections was studied in Refs. [42,43],
and the fulfilment of Ward-Takahashi’s identity at one-loop
order in Ref. [44].
It is in this context that the axiomatic approaches could

offer a new insight into the subtleties of null-plane QED.
Particularly, we will adopt the “S-matrix program” point of
view, initiated by Heisenberg [45] in 1943 as an attempt to
go beyond the Lagrangian theory, and which was axiom-
atized in instant dynamics in the works by Stückelberg and
Rivier [46,47] and Bogoliubov, Medvedev, and Polivanov
[48–50]. The detailed perturbative solution to Bogoliubov-
Madvedev-Polivanov’s axioms was carried out in 1973 by
Epstein and Glaser [51], in a method in which the causality
axiom plays an essential role, and its first application to
QED was done by Scharf in 1989—in a monograph which
is the first edition of Ref. [52]. This theory is now called
causal perturbation theory. Within this framework, QED in
2þ 1 dimensions was considered by Scharf, Wreszinski,
Pimentel, and Tomazelli [53], while Dütsch, Krahe, and
Scharf [54] used this theory to study scalar QED (SQED),
showing that in the causal approach it suffices to start with
the first-order coupling and the second-order vertex of the
usual formulation is automatically generated as a normali-
zation term in the second-order step. SQED was also
investigated by Lunardi, Pimentel, Valverde, Manzoni,
Beltrán, and Soto [55,56], who have used causal perturba-
tion theory (CPT) to study the equivalence between
Klein-Gordon-Fock’s and Duffin-Kemmer-Petiau’s scalar
quantum electrodynamics. Also Podolsky’s second-order
electrodynamics was considered from the causal point of
view by Bufalo, Pimentel, and Soto [57,58]. So, QED in
instant dynamics CPT is well established. It is the purpose
of this paper, which is the first in a series, to start the study
of null-plane QED in the causal framework. The formu-
lation of CPT on light-front dynamics was done in
Refs. [59,60], in which the causality axiom is referred to
the null-plane time coordinate xþ, and has been success-
fully applied to obtain the radiative corrections for
Yukawa’s model [61], directly showing the equivalence
with the instant dynamics formulation [62] for that model.
In view of the mentioned successes of CPT, we hope that
this framework would lead to a very clear formulation of
null-plane QED.
This paper is organized as follows. Section II is devoted

to the definition of the field operators of the electron and
photon. In Sec. III we offer a short review of null-plane
CPT. The construction of the second-order causal distri-
bution for null-plane QED is done in Sec. IV. Møller’s and
Compton’s scattering processes are studied in Sec. V, in

which also a comparison with the Lagrangian approach is
discussed. Then, in Sec. VI we turn to vacuum polarization.
Section VII contains our conclusions and perspectives of
future work.

II. QUANTIZED FIELD OPERATORS
OF NULL-PLANE QED

QED deals with fermion and photon fields; the quanti-
zation of them was done in Appendix A of Ref. [60] by the
method of direct construction of Fock’s space and a careful
choice of the basis functions in the one-particle Hilbert
space, exploiting the relation with the classical Goursat’s
problem. Then it was obtained that the fermion quantized
field operator has the following expression:

ψðxÞ ¼ ð2πÞ−3=2
X
s

Z
dμðpÞ

ffiffiffiffiffiffiffiffi
2p−

p
ðusðpÞbsðpÞe−ipx

þ vsðpÞd†sðpÞeipxÞ; ð1Þ

with the four-component functions u; ū and v; v̄ normalized
so as to satisfy the sum rules:

X
s

usðpÞūsðpÞ ¼
Eγþ þ jp−jγ− þ p⊥γ⊥ þm

j2p−j
; ð2Þ

X
s

vsðpÞv̄sðpÞ ¼
Eγþ þ jp−jγ− þ p⊥γ⊥ −m

j2p−j
; ð3Þ

and the emission and absorption field operators satisfying
the following anticommutation relations:

fbsðpÞ;b†rðqÞg ¼ 2p−δsrδðp − qÞ ¼ fdsðpÞ; d†rðqÞg: ð4Þ

The anticommutator of Dirac’s field with its Dirac’s
adjoint is

fψðxÞ; ψ̄ðyÞg ¼ −iSðx − yÞ; ð5Þ

with the distribution SðxÞ the one which in the classical
case solves Goursat’s problem for Dirac’s equation:

SðxÞ ¼ ið2πÞ−3
Z

d4pðpþmÞsgnðp−Þδðp2 −m2Þe−ipx

¼ ði=∂þmÞDðxÞ: ð6Þ

Particularly, the equal-time anticommutation relation is

fψðxþ; xÞ; ψ̄ðxþ; yÞg ¼ ð=∂ − imÞDðx − yÞjyþ¼xþ : ð7Þ

In the right-hand side of this equation, the derivation with
respect to the variables x− and x⊥ can be directly done, with
the following result:
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Dð0;x−yÞ¼ ð2πÞ−1δðx⊥−y⊥Þ
Z þ∞

0

dp−
sin½p−ðx− −y−Þ�

p−

¼ 1

4
sgnðx− −y−Þδðx⊥−y⊥Þ: ð8Þ

The derivation with respect to xþ, instead, must be done
before the evaluation at yþ ¼ xþ. It leads to

∂þDðx − yÞjyþ¼xþ

¼ ð2πÞ−3
Z

d4psgnðp−Þpþδðp2 −m2Þe−ipðx−yÞ
���
yþ¼xþ

¼ ð2πÞ−3
Z

d3p
1

4p2
−
ðp2⊥ þm2Þe−ip−ðx−−y−Þ−ip⊥ðx⊥−y⊥Þ

¼ −
1

4∂2−
δðx− − y−Þð−∂2⊥ þm2Þδðx⊥ − y⊥Þ

¼ −
1

8
jx− − y−jð−∂2⊥ þm2Þδðx⊥ − y⊥Þ: ð9Þ

Therefore,

fψðxþ; xÞ; ψ̄ðxþ; yÞg

¼ 1

2

�
γ−δðx− − y−Þ þ 1

2
sgnðx− − y−Þðγ⊥∂⊥ − imÞ

−
1

4
γþjx− − y−jð−∂2⊥ þm2Þ

�
δðx⊥ − y⊥Þ: ð10Þ

This result coincides with the one obtained by Kogut and
Soper [28], by Rohrlich and Neville [16,29], and by the use
of Dirac-Bergmann’s method via the correspondence prin-
ciple in Ref. [39].
The photon quantized field operator in the null-plane

gauge, on the other hand, is

AaðxÞ ¼ ð2πÞ−3=2
X
λ¼1;2

Z
dμðpÞελðpÞa

× ðaλðpÞe−ipx þ a†λðpÞeipxÞ: ð11Þ

As we can see, only the physical degrees of freedom—the
transversal polarization vectors—appear in it. For com-
pleteness we give the expression of the four polarization
vectors, which can be found in a classical analysis [63]:

ε1ðpÞa ¼
�
0; 1; 0;−

p1

p−

�
; ε2ðpÞa ¼

�
0; 0; 1;−

p2

p−

�
;

εþðpÞa ¼
�
1;−

p1

p−
;−

p2

p−
;
p2⊥
2p2

−

�
; ε−ðpÞa ¼ ð0; 0; 0; 1Þ:

ð12Þ

The photon emission and absorption field operators satisfy
the following commutation relations:

½aλðpÞ; a†σðqÞ� ¼ 2p−δλσδðp − qÞ: ð13Þ

The commutation distribution for this field operator is

½AaðxÞ;AbðyÞ�≕ iDabðx − yÞ; ð14Þ

with

DabðxÞ ¼ ið2πÞ−3
Z

d4pe−ipx

× sgnðp−Þδðp2Þ
�
gab −

paηb þ ηapb

p−

�
: ð15Þ

Here, the vector η has components ðηaÞ ¼ ð0; 0⊥; 1Þ. We
can also obtain the restriction of these commutation
relations to the null plane yþ ¼ xþ. The equal-time
commutators between the transversal components of the
quantized field operators are

½Aαðxþ; xÞ;Aβðxþ; yÞ�

¼ −
i
4
δαβsgnðx− − y−Þδðx⊥ − y⊥Þ: ð16Þ

Again, these results agree with the ones in Refs. [16,29,39].

III. NULL-PLANE CAUSAL
PERTURBATION THEORY

In the causal theory one uses the operation of “adiabatic
switching” [49], by means of which the coupling constant
of the interaction theory is multiplied by a “switching
function” g ∈ S ðR4Þ∶R4 → R, in order to isolate the
problem of infrared divergences, and with it, the problem
of the confinement in the real (physical) asymptotic states;
it is through the adiabatic limit g → 1 that the real
interaction is recovered. This operation allows the usage
of the free fields for the construction of the SðgÞ scattering
operator, which is subjected to Bogoliubov-Medvedev-
Polivanov’s axioms [48–50]: (i) translation invariance,
(ii) causality—now referred to the xþ null-plane time,
(iii) unitarity, (iv) Lorentz invariance, and (v) vacuum
stability. For the construction of CPT only the axioms (i)
and (ii) are necessary, while (iii), (iv), and (v) are physical
conditions imposed for the normalization of the scattering
operator. The details of the formulation of this theory on
light-front dynamics can be found in Ref. [60].
Being a perturbation theory, in CPT the SðgÞ operator is

written as the following formal series:

SðgÞ ¼ 1þ
Xþ∞

n¼1

1

n!

Z
dXTnðXÞgðXÞ; ð17Þ

with the notations TnðXÞ≡ Tnðx1;…; xnÞ, gðXÞ≡
gðx1Þ…gðxnÞ, and dX ≡ d4x1…d4xn. Equation (17) is also
the definition of the transition distributions of order n or
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n-point distributions Tnðx1;…; xnÞ ∈ S 0ðR4nÞ, which are
symmetrical in the coordinates x1;…; xn as the products of
functions gðx1Þ…gðxnÞ are.
The inverse operator SðgÞ−1 is given as a perturbation

series as well:

SðgÞ−1 ¼ 1þ
Xþ∞

n¼1

1

n!

Z
dXT̃nðXÞgðXÞ;

T̃nðXÞ ¼
Xn
r¼1

ð−1Þr
X

X1 ;…;Xr≠∅
X1∪…∪Xr¼X

Xj∩Xk¼∅;∀j≠k

Tn1ðX1Þ…TnrðXrÞ: ð18Þ

The causality axiom implies that the transition distribu-
tions are “chronologically ordered”—in the sense of the xþ
time:

TnðXÞ ¼ TmðX2ÞTn−mðX1Þ for X1 < X2;

½TnðXÞ;TmðYÞ� ¼ 0 for X ∼ Y: ð19Þ

Because of this, we can define the advanced distribution of
order n as the following distribution:

AnðY; xnÞ ¼
X
X∪X0¼Y
X∩X0¼∅

T̃mðXÞTn−mðX0 ∪ fxngÞ; ð20Þ

and the retarded distribution of order n as

RnðY; xnÞ ¼
X
X∪X0¼Y
X∩X0¼∅

Tn−mðX0 ∪ fxngÞT̃mðXÞ: ð21Þ

In these distributions the n-point distribution appears once.
Separating it from the other terms:

AnðY; xnÞ ¼ TnðY ∪ fxngÞ þ A0
nðY; xnÞ;

RnðY; xnÞ ¼ TnðY ∪ fxngÞ þ R0
nðY; xnÞ; ð22Þ

with the following definitions of the advanced subsidiary
distribution and of the retarded subsidiary distribution,
respectively, which do not contain Tn, but only the
transition distributions Tm with m ≤ n − 1:

A0
nðY; xnÞ ≔

X
X∪X0¼Y
X∩X0¼∅
X≠∅

T̃mðXÞTn−mðX0 ∪ fxngÞ; ð23Þ

R0
nðY; xnÞ ≔

X
X∪X0¼Y
X∩X0¼∅
X≠∅

Tn−mðX0 ∪ fxngÞT̃mðXÞ: ð24Þ

The transition distribution of order n is then equal to
(a similar formula holds with the advanced distribution)

TnðY ∪ fxngÞ ¼ RnðY; xnÞ − R0
nðY; xnÞ: ð25Þ

Therefore, the n-point distribution can be found by
encountering the retarded distribution of order n, which
can be done by splitting [64–66] the causal distribution of
order n:

DnðY; xnÞ ≔ RnðY; xnÞ − AnðY; xnÞ
¼ R0

nðY; xnÞ − A0
nðY; xnÞ: ð26Þ

It must be done as follows: Suppose that the causal
distribution of order n was already constructed by means
of the inductive procedure; it has, in general, the following
form:

Dnðx1;…; xnÞ ¼
X
k

dknðx1;…; xnÞ∶CkðuAÞ∶; ð27Þ

with dknðx1;…; xnÞ a numerical distribution and ∶CkðuAÞ∶ a
Wick’s monomial of the different quantized free field
operators uA of the theory. Since these field operators do
not restrict the support of the complete distribution, it is
sufficient to consider the splitting of the numerical dis-
tribution dkn, whose support, then, is causal by hypothesis.
Also the advanced and retarded distributions will maintain
the operator fields structure of the causal distribution:

Anðx1;…; xnÞ ¼
X
k

aknðx1;…; xnÞ∶CkðuAÞ∶; ð28Þ

Rnðx1;…; xnÞ ¼
X
k

rknðx1;…; xnÞ∶CkðuAÞ∶; ð29Þ

with akn and rkn the advanced and retarded parts, respec-
tively, of the numerical distribution dkn. Using the
translational invariance, define the numerical distribution
d ∈ S 0ðR4n−4Þ as

dðxÞ ≔ dknðx1 − xn;…; xn−1 − xn; 0Þ; ð30Þ

with suppðdÞ⊆Γþ
n−1ð0Þ∪Γ−

n−1ð0Þ, and which will be split as

d¼r−a; suppðrÞ⊆Γþ
n−1ð0Þ; suppðaÞ⊆Γ−

n−1ð0Þ: ð31Þ

Here we are denoting

Γþ
n ð0Þ ≔ fðx1; � � � ; xnÞ ∈ Mnj ∀ j ∈ f1;…; ng∶;
xþj ≥ 0 ∧ ð ∃ xk ∈ Vþð0Þðk ≠ jÞ∶xj ∈ ṼþðxkÞÞg;

with V�ðxÞ the interior of the future or past, respectively,

light-cone with vertex at the point x, V�ðxÞ its closure, and
Ṽ�ðxÞ the union of its closure and the x− axis. An analogous
definition holds for Γ−

n ð0Þ. Additionally, in Eq. (30) we
have written dðxÞ; x means ðx1 − xn;…; xn−1 − xnÞ. In the
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following we will use Schwartz’s multi-index notation [67].
We will also use the notation xa ≡ ðxa1 − xan;…; xan−1 − xanÞ.
To perform the splitting, it is crucial to remember that the

product of a distribution with a discontinuous function can
be ill defined if the distribution has a singularity precisely
on the discontinuity surface of the function [69]. In our case
we then need to control the behavior of the causal
distribution near the splitting region. In instant dynamics,
in which the splitting region is the vertex of the light cone,
the concept of Vladimirov-Drozzinov-Zavialov’s quasia-
symptotics [70] was introduced to cast that behavior [71].
In null-plane dynamics, the splitting region is the inter-
section of the null plane xþ ¼ 0 with the light cone, which
is the entire x− axis, hence the concept of quasiasymptotics
by selected variable [72] is most adequate for this purpose:
Definition.—Let d ∈ S 0ðRmÞ be a distribution, and let ρ

be a continuous positive function. If the (distributional)
limit

lim
s→0þ

ρðsÞs3m=4dðsxþ; sx⊥; x−Þ ¼ d−ðxÞ ð32Þ

exists inS 0ðRmÞ and is non-null, then the distribution d− is
called the quasiasymptotics of d at the x− axis, with regard
to the function ρ.
The function ρðsÞ can be shown to be a regularly varying

at zero function, also called an automodel function [52,70],
which means that for every a>0: lims→0þ ρðasÞ=ρðsÞ ¼ aα

for some α ∈ R, called the order of automodelity of the
function ρ. This number serves as a characterizing param-
eter of the distribution, which is called its singular order at
the x− axis and is denoted by ω−.
In momentum space the following splitting formulas are

found: For negative singular order, ω− < 0,

r̂ðpÞ ¼ i
2π

Z þ∞

−∞

d̂ðpþ − k; pÞ
kþ i0þ

dk: ð33Þ

For non-negative singular order, ω− ≥ 0, the retarded
distribution with normalization line ðqþ; q⊥;p−Þ is

r̂qðpÞ ¼
i
2π

Z þ∞

−∞

dk
kþ i0þ

�
d̂ðpþ − k; pÞ

−
Xbω−c

jcj¼0

1

c!
ðpþ;α − qþ;αÞcDcþ;αd̂ðqþ − k;q⊥;p−Þ

�
:

ð34Þ

A particular case of normalization line is ð0; 0⊥;p−Þ; the
solution normalized at it is called the central solution.
Finally, if r1 and r2 are two solutions of the splitting

problem, then they could be different only by normalization
terms which are distributions with support on the x− axis.
In momentum space,

r̂1ðpÞ − r̂2ðpÞ ¼
XM
jbj¼0

Ĉbðp−Þpb
þ;⊥; ð35Þ

with Ĉbðp−Þ some distributions of the variable p−. The
singular order of each one of these terms is jbj, independ-
ently of which is the distribution Ĉbðp−Þ is, because the
variable p− is not scaled in the singular order calculus in
light-front dynamics; this leads to a richer variety of
possible normalization terms when compared to instant
dynamics; particularly, instantaneous normalization terms
are now allowed. The procedure of determining these
unknown distributions by the imposition of physical
requirements is called the normalization process.

IV. CAUSAL DISTRIBUTION OF THE
SECOND-ORDER QED

For QED the first-order term of the SðgÞ operator is given
by the one-point distribution:

T1ðxÞ ¼ i∶jaðxÞ∶AaðxÞ≡ ie∶ψ̄ðxÞγaψðxÞ∶AaðxÞ: ð36Þ

The construction of the second-order causal distribution
starts with the definition of the subsidiary ones:

A0
2ðx1; x2Þ ¼ T̃1ðx1ÞT1ðx2Þ ¼ −T1ðx1ÞT1ðx2Þ; ð37Þ

R0
1ðx1; x2Þ ¼ T1ðx2ÞT̃1ðx1Þ ¼ −T1ðx2ÞT1ðx1Þ; ð38Þ

with which the causal distributionD2 ¼ R0
2 − A0

2 is equal to

D2ðx1; x2Þ ¼ ½T1ðx1Þ;T1ðx2Þ�: ð39Þ

The explicit expression of this distribution is obtained by
replacing Eq. (36) into Eq. (39), and by using Wick’s
theorem with the contractions:

ψaðxÞψ̄b

j j

ðyÞ ¼ 1

i
Sabþðx − yÞ; ð40Þ

ψ̄aðxÞψb

j j

ðyÞ ¼ 1

i
Sba−ðy − xÞ; ð41Þ

AaðxÞAb

j j

ðyÞ ¼ iDabþðx − yÞ: ð42Þ

We will need the subsidiary retarded distribution [see
Eq. (25)] given by

R0
2ðx1; x2Þ ¼ e2γaabγ

b
cd½∶ψ̄aðx1Þψbðx1Þψ̄cðx2Þψdðx2Þ∶

þ iSbc−ðx1 − x2Þ∶ψ̄aðx1Þψdðx2Þ∶
þ iSdaþðx2 − x1Þ∶ψbðx1Þψ̄cðx2Þ∶
− Sbc−ðx1 − x2ÞSdaþðx2 − x1Þ�
× ½∶Aaðx1ÞAbðx2Þ∶þ iDabþðx2 − x1Þ�; ð43Þ
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and the causal distribution, whose final form is

D2 ¼ DðMÞ
2 þDðCÞ

2 þDðVPÞ
2 þDðSEÞ

2 þDðVGÞ
2 ; ð44Þ

with (we use the relative coordinate y≡ x1 − x2)

DðMÞ
2 ðx1; x2Þ ¼ −ie2DabðyÞ

× ∶ψ̄ðx1Þγaψðx1Þψ̄ðx2Þγbψðx2Þ∶; ð45Þ

DðCÞ
2 ðx1; x2Þ ¼ ie2∶Aaðx1ÞAbðx2Þ∶

× ½∶ψ̄ðx1ÞγaSðyÞγbψðx2Þ∶
− ∶ψ̄ðx2ÞγbSð−yÞγaψðx1Þ∶�; ð46Þ

DðVPÞ
2 ðx1;x2Þ¼−e2∶Aaðx1ÞAbðx2Þ∶

×Tr½γaS−ðyÞγbSþð−yÞ−γaSþðyÞγbS−ð−yÞ�;
ð47Þ

DðSEÞ
2 ðx1; x2Þ ¼ −e2∶ψ̄ðx1Þγa½S−ðyÞDabþð−yÞ

þ SþðyÞDabþðyÞ�γbψðx2Þ∶þ e2∶ψ̄ðx2Þγa
× ½Sþð−yÞDabþð−yÞ þ S−ð−yÞDabþðyÞ�
× γbψðx1Þ∶; ð48Þ

DðVGÞ
2 ðx1;x2Þ¼−ie2Dabþð−yÞ

×Tr½γaS−ðyÞγbSþð−yÞ−γaS−ð−yÞγbSþðyÞ�:
ð49Þ

In this form, Eqs. (45)–(49) allow one to directly identify
the terms which will contribute to each process: the
noncontracted quantized field operators determine the
initial and final states which will give a non-null contri-
bution to the amplitude jhΨ; SðgÞΦij2. Hence, the distri-

bution DðMÞ
2 describes the scattering of two fermions, DðCÞ

2 ,
the scattering of a fermion by a photon; the distributions

DðVPÞ
2 and DðSEÞ

2 represent the vacuum polarization and
fermion’s self-energy, respectively; finally, the distribution

DðVGÞ
2 does not describe any physical process.

V. SCATTERING PROCESSES

In this section we will show in a very direct manner that
the equivalence with instant dynamics for the scattering
processes at second order can be obtained by a suitable
choice of the normalization terms.

A. Møller’s scattering

The scattering of two leptons, called Møller’s scattering,
is described by the causal distribution in Eq. (45). The
numerical distribution contained in it is the commutation

distribution of the radiation field, whose expression in
momentum space and in the null-plane gauge is

D̂abðpÞ ¼
i
2π

sgnðp−Þδðp2Þ
�
gab −

paηb þ ηapb

p−

�
: ð50Þ

Some of the components of this causal distribution have
singular order ω− ¼ −2, while others have ω− ¼ −1. In
any case, the singular order is negative, so the retarded part
is found by application of Eq. (33). In order to do that, it
will be convenient to define the following distributions:

d̂1ðpÞ≔
i
2π

sgnðp−Þδðp2Þ; d̂2aðpÞ≔ d̂1ðpÞ
pa

p−
; ð51Þ

as a function of which the commutation distribution is

D̂abðpÞ ¼ gabd̂1ðpÞ − ½d̂2aðpÞηb þ ηad̂2bðpÞ�: ð52Þ

To find the retarded part of D̂ab is then equivalent to finding
the retarded parts of d̂1 and d̂2a. We find, by using the
variable s ¼ −2kp−,

r̂1ðpÞ ¼ −ð2πÞ−2
Z þ∞

−∞

sgnðp−Þδðp2 − 2kp−Þ
kþ i0þ

dk

¼ ð2πÞ−2
Z þ∞

−∞

δðsþ p2Þ
s − ip−0

þ ds

¼ −ð2πÞ−2 1

p2 þ ip−0
þ ; ð53Þ

since the variables pα;− do not change in the splitting
formula of Eq. (33):

r̂2α;−ðpÞ¼
pα;−

p−
r̂1ðpÞ¼−ð2πÞ−2 1

p2þ ip−0
þ
pα;−

p−
; ð54Þ

and finally,

r̂2þðpÞ¼−ð2πÞ−2
Z þ∞

−∞

sgnðp−Þδðp2−2kp−Þðpþ−kÞ
p−ðkþ i0þÞ dk

¼ð2πÞ−2
Z þ∞

−∞

δðsþp2Þðpþþ s
2p−

Þ
p−ðs− ip−0

þÞ ds

¼−ð2πÞ−2
�

1

p2þ ip−0
þ
pþ
p−

−
1

2p−

�
: ð55Þ

Equations (53)–(55) imply that the retarded part of the
commutation distribution of the massless vector field is [see
Eq. (52)]
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D̂ret
abðpÞ ¼ −

ð2πÞ−2
p2 þ ip−0

þ

×

�
gab −

paηb þ ηapb

p−
þ p2

2p2
−
½δaþηb þ ηaδbþ�

�
:

ð56Þ

But, since δaþ are precisely the components of ηa, the
above equation simplifies to

D̂ret
abðpÞ ¼

−ð2πÞ−2
p2 þ ip−0

þ

�
gab −

paηb þ ηapb

p−
þ p2

p2
−
ηaηb

�
:

ð57Þ

Subtracting the subsidiary retarded distribution, which
corresponds to the negative frequency part of the commu-
tation distribution,

D̂ab−ðpÞ¼−
i
2π

Θð−p−Þδðp2Þ
�
gab−

paηbþηapb

p−

�
; ð58Þ

we obtain Feynman’s propagator of this quantized field:

D̂F
abðpÞ≔D̂ret

abðpÞ−D̂ab−ðpÞ

¼−
ð2πÞ−2
p2þi0þ

�
gab−

paηbþηapb

p−
þp2

p2
−
ηaηb

�
; ð59Þ

which is the one that enters into the transition distribution
for Møller’s scattering:

TðMÞ
2 ðx1; x2Þ ¼ −ie2DF

abðyÞ
× ∶ψ̄ðx1Þγaψðx1Þψ̄ðx2Þγbψðx2Þ∶: ð60Þ

As we see in Eq. (57), we have obtained an instantaneous
term in the splitting process of the causal distribution. This
has led to the so-called doubly transverse gauge propagator,
shown in Eq. (59), which means that D̂F

abðpÞ is transverse
both to pa and ηa [31,32,73]; here we have obtained it in a
very natural way. Now, the singular order of this distribu-
tion is ω−½DF

ab� ¼ 0, so it is allowed a normalization term of
the form Ĉðp−Þ. Choosing

Ĉðp−Þ ¼ −ie2ð2πÞ−2 ηaηb
p2
−

; ð61Þ

the instantaneous term which arose in the splitting pro-
cedure cancels out and we are left with

d̂abðpÞ≡ D̂F
abðpÞ þ Ĉðp−Þ

¼ −
ð2πÞ−2
p2 þ i0þ

�
gab −

paηb þ ηapb

p−

�
: ð62Þ

Consider now the following initial and final states,
respectively, with definite momenta:

b†s1ðp1Þffiffiffiffiffiffiffiffiffiffi
2p1−

p b†r1ðq1Þffiffiffiffiffiffiffiffiffiffi
2q1−

p Ω;
b†s2ðp2Þffiffiffiffiffiffiffiffiffiffi
2p2−

p b†r2ðq2Þffiffiffiffiffiffiffiffiffiffi
2q2−

p Ω: ð63Þ

For these states, the S operator to second order in the
adiabatic limit g → 1 is

SðMÞ
12 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p1−2q1−2p2−2q2−
p ðΩ; br2ðq2Þbs2ðp2ÞSðMÞ

2 bs1ðp1Þ†br1ðq1Þ†ΩÞ

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p1−2q1−2p2−2q2−
p ie2

2ð2πÞ2
Z

d4kd4x1d4x2e−ikyd̂abðkÞðΩ; br2ðq2Þbs2ðp2Þ

× ∶ψ̄ðx1Þγaψðx1Þψ̄ðx2Þγbψðx2Þ∶bs1ðp1Þ†br1ðq1Þ†ΩÞ: ð64Þ
Inside the parentheses, the non-null contributions are found by using Wick’s theorem. There are four contributions, which
we obtain by using the contractions

bsðpÞψ̄
j j

ðxÞ ¼ ð2πÞ−3=2Θðp−Þ
ffiffiffiffiffiffiffiffiffi
2p−

p
ūsðpÞeipx;

ψðxÞbs
j j

ðpÞ† ¼ ð2πÞ−3=2Θðp−Þ
ffiffiffiffiffiffiffiffiffi
2p−

p
usðpÞe−ipx; ð65Þ

Then,

SðMÞ
12 ¼ ie2

2ð2πÞ8
Z

d4kd4x1d4x2e−ikyd̂abðkÞΘðp1−ÞΘðq1−ÞΘðp2−ÞΘðq2−Þ

× fūs2ðp2Þγaur1ðq1Þūr2ðq2Þγbus1ðp1Þeiðp2−q1Þx1þiðq2−p1Þx2

− ūs2ðp2Þγaus1ðp1Þūr2ðq2Þγbur1ðq1Þeiðp2−p1Þx1þiðq2−q1Þx2

− ūr2ðq2Þγaur1ðq1Þūs2ðp2Þγbus1ðp1Þeiðq2−q1Þx1þiðp2−p1Þx2

þ ūr2ðq2Þγaus1ðp1Þūs2ðp2Þγbur1ðq1Þeiðq2−p1Þx1þiðp2−q1Þx2g: ð66Þ
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In all of the terms the following integral appears:Z
d4x1d4x2e−ikyeiPx1þiQx2 ¼ð2πÞ8δðk−PÞδðPþQÞ; ð67Þ

so that, integrating in the variable k and using the
symmetries of the d̂ab distribution [see Eq. (62)],

d̂abðkÞ ¼ d̂abð−kÞ and d̂abðkÞ ¼ d̂baðkÞ; ð68Þ

we finally find

SðMÞ
12 ¼ ie2δðp2 þ q2 − p1 − q1Þ

× Θðp1−ÞΘðq1−ÞΘðp2−ÞΘðq2−Þ
× fūs2ðp2Þγaur1ðq1Þūr2ðq2Þγbus1ðp1Þd̂abðp2 − q1Þ
− ūs2ðp2Þγaus1ðp1Þūr2ðq2Þγbur1ðq1Þd̂abðp2 − p1Þg:

ð69Þ

The wave-functions uðpÞ and ūðpÞ satisfy Dirac’s
equation in momentum space:

puðpÞ ¼ muðpÞ; ūðpÞp ¼ mūðpÞ: ð70Þ

Therefore,

ūs2ðp2Þγaur1ðq1Þðp2a − q1aÞ ¼ ūs2ðp2Þðp2 − =q1Þur1ðq1Þ
¼ 0; ð71Þ

and the noncovariant terms in the d̂ab distribution do not

contribute to SðMÞ
12 [see Eqs. (62) and (69)]. We conclude

that all of the nonlocal terms cancel out, and the result is the
same as if we would consider the covariant part of the
radiation field commutation distribution only:

−
ð2πÞ−2
k2 þ i0þ

gab; ð72Þ

establishing the equivalence with instant dynamics.

B. Compton’s scattering

Now we turn to the study of Compton’s scattering, this is
to say, the scattering of a fermion by a photon, whose causal
distribution at second order is the one in Eq. (46). Defining
the numerical distribution,

dabðyÞ ¼ ie2γaSðyÞγb; ð73Þ

we will have

DðCÞ
2 ðx1; x2Þ ¼ ∶Aaðx1ÞAbðx2Þ∶ð∶ψ̄ðx1ÞdabðyÞψðx2Þ∶

− ∶ψ̄ðx2Þdbað−yÞψðx1Þ∶Þ: ð74Þ

The distribution dabðyÞ has singular order ω− ¼ −1, and its
retarded part is

r̂abðyÞ ¼ ie2γaSretðyÞγb: ð75Þ

Hence we need to obtain the retarded part of the anti-
commutation distribution of the fermion field. In momen-
tum space it is

ŜðpÞ ¼ i
2π

ðpþmÞsgnðp−Þδðp2 −m2Þ: ð76Þ

As it was said, its singular order at the x− axis is
ω− ¼ −1 < 0, so its retarded part is given by Eq. (33):

ŜretðpÞ¼−ð2πÞ−2
Z

dk
kþ i0þ

sgnðp−Þ½ðpþ−kÞγþ

þp⊥γ⊥þp−γ
−þm�δð2pþp−−2kp−−ω2

pÞ: ð77Þ

Using the variable s ¼ −2kp−, the above integral is equal to

ŜretðpÞ ¼ ð2πÞ−2
Z

ds
s − iq0þ

δðsþ 2pþp− − ω2
pÞ

×

�
pþγþ þ p⊥γ⊥ þ p−γ

− þmþ s
2p−

γþ
�

¼ −ð2πÞ−2
pþm − 2pþp−−ω2

p

2p−
γþ

2pþp− − ω2
p þ ip−0

þ

¼ −ð2πÞ−2
�

pþm
p2 −m2 þ ip−0

þ −
γþ

2p−

�
: ð78Þ

Subtracting the corresponding r̂0abðyÞ subsidiary distribu-
tion, which corresponds to the negative frequency part of
the anticommutation distribution,

Ŝ−ðpÞ ¼ −
i
2π

Θð−p−ÞðpþmÞδðp2 −m2Þ; ð79Þ

we obtain for the numerical part of the transition distribution

tabðyÞ ¼ ie2γaSFðyÞγb; ð80Þ

with Feynman’s propagator being

ŜFðpÞ ≔ Ŝ−ðpÞ − ŜretðpÞ

¼ ð2πÞ−2
�

pþm
p2 −m2 þ i0þ

−
γþ

2p−

�
: ð81Þ

As we see, in the splitting process of the causal distribution
an instantaneous term arises. Writing the normalization
term that is allowed for ω− ¼ 0, which is the singular order
of the distribution tab,
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t̂abðpÞ ¼ ie2

ð2πÞ2 γ
a

�
pþm

p2 −m2 þ i0þ
−

γþ

2p−

�
γb þ Ĉðp−Þ:

ð82Þ

Choosing

Ĉðp−Þ ¼
ie2

ð2πÞ2
γaγþγb

2p−
; ð83Þ

the instantaneous noncovariant term in the fermion
Feynman’s propagator is canceled out, and we arrive at
the final result,

t̂abðpÞ ¼ ie2

ð2πÞ2 γ
a pþm
p2 −m2 þ i0þ

γb; ð84Þ

showing, also for this scattering process, the equivalence
with instant dynamics.

C. Interaction Lagrangian density

In our study of the scattering processes we have seen that
Lorentz’s covariance requires the introduction of very
specific normalization terms. In the case of Møller’s scatter-
ing, the contribution of the normalization term in Eq. (61) to
the second-orderSðgÞ operator in the adiabatic limit g → 1 is

þ i
2

Z
d4x1d4x2∶jaðx1ÞδðyÞ

ηaηb
∂
2
−

jbðx2Þ∶

¼
Z

d4x1∶jþðx1Þ
i

2∂2−
jþðx1Þ∶: ð85Þ

This is precisely the instantaneous term which in the usual
approach appears in the Lagrangian density by solving the
constraint equation for the radiation field in the null-plane
gauge in the interacting theory [31,32].
Another normalization term was required to obtain a

covariant transition distribution for Compton’s scattering—
Eq. (83); its contribution to the scattering operator in the
adiabatic limit g → 1 is, taking into account the two terms
in Eq. (74),

þ1

2

Z
d4x1d4x2e2

�
∶ðψ̄ðx1ÞγaAaðx1ÞÞ

×δðyÞ γ
þ

2∂−
ðγbAbðx2Þψðx2ÞÞ∶

þ∶ðψ̄ðx2ÞγbAbðx2ÞÞδðyÞ
γþ

2∂−
ðγaAaðx1Þψðx1ÞÞ∶

�

¼
Z

d4x1e2∶ψ̄ðx1ÞγaAaðx1Þ
γþ

2∂−
γbAbðx1Þψðx1Þ∶: ð86Þ

The term so obtained is the one which corresponds, in the
Lagrangian approach, to the instantaneous interaction term

which arises when solving the constraint equation for the
fermion field in the interacting theory [31,32].
Joining Eqs. (36), (85), and (86) we can identify the

interaction Lagrangian density, defined as −i times the one-
point transition distribution plus −i times the contribution
of the normalization terms of the next-order transition
distributions to the scattering operator in the adiabatic limit:

L ¼ ∶jaðxÞAaðxÞ∶ − ∶
1

2

�
1

∂−
jþðxÞ

�
2

∶

þ e2

2
∶ðψ̄ðxÞγaAaðxÞÞ

γþ

i∂−
ðγbAbðxÞψðxÞÞ∶: ð87Þ

This Lagrangian density was first obtained by Kogut and
Soper [28]. We remind the reader that the Lagrangian
density of Eq. (87) is of first order in e when written as a
function of interacting fields; its second-order structure
arises when the constraint equations are solved and
reintroduced in it. Therefore, that these terms appear in
null-plane CPTat the second order is in accordance with the
philosophy of the causal approach, which works with free
fields only.
Now, it is a debate question if the instantaneous terms in

this Lagrangian density cancel exactly the terms coming
from the instantaneous terms in the field propagators. Null-
plane CPT answers this question in a direct way: Since the
normalization terms cancel the instantaneous terms of the
propagators at second order, it will cancel them at all orders
in a perturbation series based onL , because the next-order
causal distributions are constructed with the normalized
transition distributions. Here we see the advantage of
working in an inductive framework.

VI. VACUUM POLARIZATION

We consider in this subsection the radiative correction
known as vacuum polarization, which will be precisely
defined later on, and which comes from the study of the
causal distribution in Eq. (47); we write it as

DðVPÞ
2 ðx1;x2Þ¼ ðPabðyÞ−Pbað−yÞÞ∶Aaðx1ÞAbðx2Þ∶; ð88Þ

with

PabðyÞ ¼ e2Tr½γaSþðyÞγbS−ð−yÞ�: ð89Þ

Fourier’s transform of the Pab distribution is

P̂abðkÞ ¼ e2ð2πÞ−2
Z

d4pTr½γaSþðpÞγbS−ðp − kÞ�

¼ e2ð2πÞ−2
Z

d4pTr½γaðpþmÞγbðp − =kþmÞ�

× D̂þðpÞD̂−ðp − kÞ: ð90Þ
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The trace which appears here is calculated by the usual
techniques:

Tr½γaðpþmÞγbðp−=kþmÞ�
¼ Tr½γapγbðp−=kÞ� þm2Tr½γaγb�
¼ 4½paðpb − kbÞ þpbðpa − kaÞ− gabðpðp− kÞ−m2Þ�:

ð91Þ

Also, since

D̂�ðpÞ ¼ � i
2π

Θð�p−Þδðp2 −m2Þ; ð92Þ

in the integrand of Eq. (90) the following Dirac’s delta
distributions will appear: δðp2 −m2Þ and δððp − kÞ2 −m2Þ;
they imply that p2 ¼ m2 and k2 ¼ 2pk. Hence,

P̂abðkÞ¼ 4e2

ð2πÞ4
Z

d4p½2papb−pakb−kapbþgabpk�

×Θðp−Þδðp2−m2ÞΘðk− −p−Þδðk2−2pkÞ: ð93Þ

We can see from Eq. (93) that the distribution P̂abðkÞ is
symmetric in its indices. And, in addition, it is orthogonal to
themomentumk, since themultiplication by this vector gives

kaP̂
abðkÞ ∼ ð2pk − k2Þpb; ð94Þ

which is null by means of the support of δðk2 − 2pkÞ.
Therefore, P̂abðkÞ must be proportional to the projector
kakb − k2gab:

P̂abðkÞ ¼ ðkakb − k2gabÞBðk2Þ: ð95Þ

Taking the trace of this equation and also in Eq. (93), we
obtain the following formula for Bðk2Þ:

Bðk2Þ ¼ −
1

3k2
P̂a

aðkÞ ¼ −
4e2

3ð2πÞ4
�
1þ 2m2

k2

�
IðkÞ; ð96Þ

with IðkÞ the following integral:

IðkÞ ¼
Z

d4pΘðp−ÞΘðk− − p−Þδðp2 −m2Þδðk2 − 2pkÞ:

ð97Þ

This integral is the samewhich appears in the calculus of the
boson’s self-energy in Yukawa’s model; see Ref. [61]. It is
equal to

IðkÞ ¼ π

2
Θðk−ÞΘðk2 − 4m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s
: ð98Þ

Then,

P̂abðkÞ ¼ e2

3ð2πÞ3
�
gab −

kakb

k2

�
ðk2 þ 2m2ÞΘðk−Þ

× Θðk2 − 4m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s
: ð99Þ

The numerical distribution associated with vacuum polari-
zation is therefore [see Eq. (88)],

d̂abðkÞ ¼ e2

3ð2πÞ3
�
gab −

kakb

k2

�
ðk2 þ 2m2Þsgnðk−Þ

× Θðk2 − 4m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s
: ð100Þ

In order to obtain its retarded part we will factorize a
second-order polynomial:

d̂abðkÞ ¼ e2

3ð2πÞ3 ðk
2gab − kakbÞd̂1ðkÞ; ð101Þ

with d̂1ðkÞ the following distribution:

d̂1ðkÞ¼
�
1þ2m2

k2

�
sgnðk−ÞΘðk2−4m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

k2

s
: ð102Þ

Now, a great amount of calculations could be avoided if one
uses the following result, which can be shown by using the
general splitting formulas given in Eqs. (33) and (34):
For a causal distribution which in momentum space is of

the form

d̂ðpÞ ¼ PðpÞd̂1ðpÞ; ð103Þ

with P a polynomial, if r̂1ðpÞ is a retarded distribution
corresponding to d̂1ðpÞ, then PðpÞr̂1ðpÞ is a retarded
distribution corresponding to d̂ðpÞ. This property is very
convenient for practical purposes because it assures that it
suffices to split the distribution d̂1ðpÞ, which is less
singular than d̂ðpÞ.
Therefore, returning to our problem, we only need to

obtain the retarded part of d̂1ðkÞ given in Eq. (102), whose
singular order at the x− axis is

ω−½d̂1� ¼ 0: ð104Þ

Its retarded part is given by (we use the variable
s ¼ −2k−q)
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r̂1ðkÞ ¼ −
i
2π

Z
ds

s − ik−0þ

�
Θðsþ k2 − 4m2Þ

×

�
1þ 2m2

sþ k2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

sþ k2

s

− Θðs − 4m2Þ
�
1þ 2m2

s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r �
: ð105Þ

Applying Sokhotskiy’s formula in the first integral, then
changing the variable to sþ k2 → s in it, we find

r̂1ðkÞ ¼
i
2π

k2EðkÞ þ 1

2
sgnðk−ÞΘðk2 − 4m2Þ

×

�
1þ 2m2

k2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s
ð106Þ

with

EðkÞ ¼
Z þ∞

4m2

ðsþ 2m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

s

q
s2ðk2 − sÞ ds: ð107Þ

This is the same integral which appears in instant dynamics
[52], and has the value

EðkÞ ¼ m2

k4

�
1þ ξ

1 − ξ

�
ξ − 4þ 1

ξ

�
logðξÞ

þ 5

3

�
ξþ 1

ξ

�
−
22

3

	
; ð108Þ

with the parameter ξ defined by the relation

k2

m2
¼ −

ð1 − ξÞ2
ξ

: ð109Þ

Therefore, the retarded distribution is

r̂1ðkÞ ¼
i
2π

m2

k2

��
1þ ξ

1 − ξ

�
ξ − 4þ 1

ξ

�
logðξÞ

þ 5

3

�
ξþ 1

ξ

�
−
22

3

	
− iπsgnðk−Þ

× Θðk2 − 4m2Þðk2 þ 2m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s �
: ð110Þ

Note however that by Eq. (109)

ξþ 1

ξ
¼ 2 −

k2

m2
; ð111Þ

so the terms in the first line of Eq. (110) which do not
multiply the logarithm have coefficients subjected to
normalization. Finally, putting this result into Eq. (101)

to obtain the retarded distribution r̂abðkÞ and subtracting
the subsidiary distribution r̂0abðkÞ, we are able to define the
vacuum polarization tensor ΠabðkÞ as

t̂abðkÞ≕ − iΠ̂abðkÞ;

TðVPÞ
2 ðx1; x2Þ ¼ −i∶Aaðx1ÞΠabðx1 − x2ÞAbðx2Þ∶; ð112Þ

so that

Π̂abðkÞ≕ ð2πÞ−4
�
kakb

k2
− gab

�
Π̂ðkÞ; ð113Þ

with

Π̂ðkÞ ¼ e2m2

3

��
1þ ξ

1 − ξ

�
ξ − 4þ 1

ξ

�
logðξÞ

þ 5

3

�
ξþ 1

ξ

�
−
22

3

	

−iπΘðk2 − 4m2Þðk2 þ 2m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

k2

s �
: ð114Þ

Additionally, since Π̂ðkÞ has singular order ω− ¼ 2, its
general expression is

Π̃ðkÞ ¼ Π̂ðkÞ þ C0 þ C2k2; ð115Þ
because a term such as caka is forbidden due to parity
invariance of the QED. In order to fix the values of C0 and
C2 we study Møller’s scattering with vacuum polarization
insertions. By a procedure identical to the one developed
for the scattering of two fermions in Yukawa’s model in
Ref. [61], we find that the total radiation field propagator is
the solution of the equation:

D̂ab
tot ¼ d̂acðδbc þ ð2πÞ4Π̃cdD̃db

totÞ; ð116Þ

with d̂ab the normalized distribution for Møller’s scattering
given in Eq. (62). Equation (116) can also be put in the
following form:

ðδad − ð2πÞ4d̂acΠ̃cdÞD̂db
tot ¼ d̂ab: ð117Þ

The usual technique [52] to solve this equation consists in
inverting the distribution d̂ab. However, in our case this
distribution has no inverse due to the noncovariant terms
contained in it [74]. Nonetheless, with Eqs. (62) and (113)
we can form the inter-parenthetical expression of Eq. (117),
which we will write as

La
d ¼ π1δ

a
d þ π2kaηd; ð118Þ

π1 ¼
k2 − ð2πÞ−2Π̃þ i0þ

k2 þ i0þ
; π2 ¼

ð2πÞ−2Π̃
k−ðk2 þ i0þÞ :
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It turns out that this tensor does have an inverse, which we
will call Ec

a:

Ec
a ¼ σ1δ

c
aþσ2kckaþσ3kcηaþσ4η

ckaþσ5η
cηa: ð119Þ

Then the coefficients σi are found by the set of equations
Ec

aLa
d ¼ δcd; the solution is

σ1 ¼
1

π1
; σ2 ¼ 0; σ3 ¼−

σ1π2
π1þ k−π2

; σ4 ¼ 0¼ σ5:

ð120Þ

Substituting Eq. (120) with the values of πi given in
Eq. (118) into Eq. (119) we find

Ec
a ¼

1

k2− ð2πÞ−2Π̃þ i0þ

�
k2δca−

ð2πÞ−2Π̃
k−

kcηa

�
: ð121Þ

Now we can solve Eq. (117) by multiplying it by Ec
a. We

obtain that the total photon propagator is

D̂cb
totðkÞ ¼ −

ð2πÞ−2
k2 − ð2πÞ−2Π̃ðkÞ þ i0þ

×

�
gcb −

kcηb þ ηckb

k−

�
: ð122Þ

As we can see, the total propagator preserves the same
tensor structure of the distribution d̂abðkÞ. This is different
to what occurs when normalizing the total photon propa-
gator in a covariant approach in instant dynamics, when the
total propagator is split into two terms. The one which
contains Π̃ is transversal to the momentum k, while the part
parallel to the momentum remains independent of Π̃; see
Ref. [52]. However, the two propagators reduce to the
covariant one and are equal to each other once the
conservation of the current is taken into account, elimi-
nating all the terms proportional to ka; this is an expression
of gauge invariance.
The vacuum polarization scalar Π̃ appears in the denom-

inator of D̂ab
totðkÞ, so that it is possible to impose the physical

requirements: (i) The physical mass of the photon is zero,
so that the propagator must have a pole in k2 ¼ 0. (ii) The
physical value of the electric charge is the coupling
constant e of the one-point distribution T1. These two
requirements are translated, respectively, into

lim
k2→0

Π̃ðkÞ ¼ 0 and lim
k2→0

dΠ̃ðkÞ
dðk2Þ ¼ 0: ð123Þ

These two conditions are already satisfied by Π̂ðkÞ in
Eq. (114), so that the coefficients in Eq. (115) must be
C0 ¼ 0 ¼ C2, and the right normalized solution is the
central one.

VII. CONCLUSIONS

We have formulated QED in light-front dynamics
in the causal framework, for which we used the quan-
tized field operators obtained by direct construction of
Fock’s space; it was proved that the equal-time (anti)
commutation relations for them are the same as that
obtained in Refs. [16,28] and by the usage of Dirac-
Bergmann’s method and the correspondence principle
in Ref. [39].
We proved that Møller’s and Compton’s scattering

processes are equivalent to those in instant dynamics if
the right normalization terms are chosen, and, in the first
case, if the conservation of current is taken into account—
an extension off the mass shell of the S operator would lead
to a difference with instant dynamics, but that is not
manifest in the real world. We can interpret this result
by saying that the instantaneous terms in Feynman’s
propagators are not physical ones, but a consequence of
the splitting procedure according to a time variable whose
isochronic surfaces intersect the light cone on the entire x−

axis. Such a splitting procedure, by construction, cannot tell
anything about the value of the retarded distribution at the
x− axis [60], so the instantaneous terms that arise in it
cannot be relied on, but must be fixed by other conditions
besides causality. As we have seen, Lorentz covariance
implies that they must not be there. We see here that the
intrinsic richness of the possible normalization terms in
light-front dynamics allows one to start with an invariant T1

distribution, without instantaneous interaction terms
that are unnecessary in order to obtain a covariant
theory. They can be recovered, however, by defining the
Lagrangian density as containing all the normalization
terms of the higher-order transition distributions, which
establishes a direct link to the usual approach, and showing
in passing, and without the necessity of any combinatoric
argument, that in a perturbation series based on L , the
instantaneous terms in it cancel exactly the ones in the field
propagators.
In the study of vacuum polarization, the calculation is

greatly simplified by the factorization of a second-order
polynomial, leading to a result which is equal to the one
obtained in instant dynamics. For its normalization we have
considered Møller’s scattering with vacuum polarization
insertions. This requires one to define the total photon
propagator, which has the same tensor structure as the
commutation distribution of this field. Again, although
different to the instant dynamics total propagator, it leads to
the same physical results because the current conservation
holds in the real world, as an expression of gauge
invariance. The imposition of the zero mass of the photon
and the value of the electric charge imply that the central
solution is the right one.
Along this study we have encountered gauge invariance

at two points: in the study of Møller’s scattering and in the
study of vacuum polarization. We have explicitly shown
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that the equivalence of these two results with instant
dynamics relies on the gauge invariance property,
expressed as the conservation of the electric current.
Consequently, it is mandatory to study the complete
implementation of quantum gauge invariance in null-plane
QED. Our study of QED in the null-plane CPT will
continue by addressing this problem and by considering

other radiative corrections, Ward-Takahashi’s identities,
and so on.
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