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We consider the evolution equations for the bulk viscous pressure, diffusion current, and shear tensor
derived within second-order relativistic dissipative hydrodynamics from kinetic theory. By matching the
higher-order moments directly to the dissipative quantities, all terms which are of second order in the
Knudsen number Kn vanish, leaving only terms of order OðRe−1KnÞ and OðRe−2Þ in the relaxation
equations, where Re−1 is the inverse Reynolds number. We therefore refer to this scheme as the inverse-
Reynolds-dominance (IReD) approach. The remaining (nonvanishing) transport coefficients can be
obtained exclusively in terms of the inverse of the collision matrix. This procedure fixes unambiguously
the relaxation times of the dissipative quantities, which are no longer related to the eigenvalues of the
inverse of the collision matrix. In particular, we find that the relaxation times corresponding to higher-order
moments grow as their order increases, thereby contradicting the separation of scales paradigm. The formal
(up to second order) equivalence with the standard DNMR approach is proven and the connection between
the IReD transport coefficients and the usual DNMR ones is established.
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I. INTRODUCTION

Formulating a causal and stable framework for relativistic
dissipative hydrodynamics has been a long-standing issue
that has seen a series of improvements in the last decade
[1–3]. This problem is not merely academic, as dissipative
fluid dynamics has been proven to be a powerful effective
theory in relativistic systems, such as heavy-ion collisions
[4–7] and relativistic astrophysical processes [8–10].
While the relativistic Euler equations describing the

dynamics of the perfect fluid are unambiguously formu-
lated, their generalization to relativistic dissipative fluids
proves to be a formidable problem. In the nonrelativisic case,
the leading-order contribution to the Chapman-Enskog
expansion, i.e., the Navier-Stokes equations, yield a suitable
theory for viscous hydrodynamics which has seen tremen-
dous success [11]. At this level, the dissipative quantities,
otherwise known as thermodynamic fluxes [12], are fixed
by constitutive equations to the thermodynamic forces
(expressed as gradients of the fluid properties), thereby
implying an instantaneous response and an infinite infor-
mation propagation speed, thus violating causality [12–15].

An approach attracting much interest in recent years is to
abandon the traditional (Landau or Eckart) matching con-
ditions, by which the energy and particle number density of
the system are equated to their fictitious local-equilibrium
counterparts. In contrast, general matching conditions can be
exploited in the frame of a first-order-like theory closely
resembling the Navier-Stokes formulation in a way that
guarantees causality and stability [2,3,16,17].
In this paper, we focus on the more traditional approach

of formulating a causal and stable theory of dissipative
hydrodynamics in the form of relaxation equations for
the dissipative quantities appearing in the particle current
and stress-energy tensor decompositions, namely the bulk-
viscous pressure Π, the particle diffusion current nμ, and the
shear-stress tensor πμν. Such second-order theories introduce
relaxation times governing the response of the dissipative
quantitieswith respect to changes in the fluid properties (e.g.,
pressure P, ratio α ¼ μ=T between the chemical potential μ
and temperature T, and four-velocity uμ). This procedure
sets finite relaxation timescales of the approach towards the
corresponding asymptotic Navier-Stokes limits, thereby
rendering the formulation causal [18].
Naturally, due to the microscopic nature of the coef-

ficients involved in second-order theories, an underlying
formulation has to be provided. Most works employ kinetic
theory, since it provides a suitable limit of quantum field
theories in the semiclassical limit [19]. From a thermody-
namical perspective, the entropy current describing the
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entropy flow in second-order hydrodynamics exhibits sec-
ond-order terms, which are in principle calculable from
kinetic theory [19–21] or can be postulated within the frame
of extended irreversible thermodynamics [22–27].
Even though the second-order formalism by Müller,

Israel and Stewart [20,28] has long been the most widely
used second-order theory, its equations of motion were
obtained by employing a nonorthogonal momentum space
basis which cannot be used to systematically account for all
second-order terms, leading to inaccurate expressions for
the transport coefficients. This issue can be resolved by
considering the exact equations of motion for the irreduc-
ible moments of the Boltzmann equation, as has been done
in the celebrated DNMR formulation of relativistic dis-
sipative hydrodynamics [1,29–31]. In addition, this formu-
lation provided a way to improve the truncation by
increasing the number of moments considered for a given
tensor rank, thereby moving from the (lowest-order)
14-moment approximation to 23 moments and beyond.
In the DNMR formulation [1,32], the main idea consists

of obtaining a system of relaxation equations for the
eigenmodes of the linearized collision kernel, which can
then be related to the irreducible moments and thus to the
dissipative quantities. The evolution equations for the
dissipative quantities obtained in this procedure read

τΠ _Πþ Π ¼ −ζθ þ J þKþR; ð1aÞ

τn _nhμi þ nμ ¼ κIμ þ J μ þKμ þRμ; ð1bÞ

τπ _π
hμνi þ πμν ¼ 2ησμν þ J μν þKμν þRμν; ð1cÞ

where τΠ, τn and τπ are the relaxation time corresponding
to Π, nμ and πμν, respectively, while ζ, κ and η are the
bulk viscosity, diffusivity and shear viscosity coefficients,
constituting the so-called first-order (Navier-Stokes) trans-
port coefficients. In this procedure, the relaxation equa-
tions for the dissipative quantities are derived on the basis
of a hierachical truncation with respect to the inverse
Reynolds number Re−1, related to the magnitude of the
dissipative quantities (Re−1 ∼ jΠj=P0; jnμj=n0; jπμνj=P0),
as well as to the Knudsen number Kn, which can be
related to the magnitude of gradients (Kn ∼ l∇A=A0,
where l is a characteristic microscopic scale and A is a
fluid property) or to the microscopic mean free path
(Kn ∼ τΠ=L; τn=L; τπ=L, where L is a macroscopic length
scale). By the above definitions, the second-order terms
J μ1���μl , Kμ1���μl , and Rμ1���μl collect all contributions that
are of orders OðRe−1KnÞ, OðKn2Þ and OðRe−2Þ, respec-
tively. All third-order terms with respect to Kn and
Re−1, i.e., the terms of orders OðRe−3Þ, OðRe−2KnÞ,
OðRe−1Kn2Þ, and OðKn3Þ, are neglected. It is thus implied
that, besides the requirement that both Re−1 and Kn are
small, the above power-counting scheme also assumes
that they are of the same magnitude, i.e., Kn ∼ Re−1. It

should be noted that in general the magnitudes of Kn and
Re−1 need not be the same, hence the regimes where only
one of these quantities is small and the other one is large lie
outside the domain of applicability of second-order hydro-
dynamics. Such regimes may be probed using third-
order hydrodynamics [33,34] or directly kinetic theory
[15,35–40], however in this paper we focus only on the
second-order theory.
The Rμ1���μl terms, derived in Ref. [29], arise due to

quadratic terms appearing in the collision term. These terms
will not be discussed further in this work. TheKμ1���μl terms
involve quadratic terms in the first-order gradients of the
flow properties (e.g., σλhμσνiλ) or second-order gradients
(e.g.,Δμ

λ∇νσ
λν). Their transport coefficients were derived in

Ref. [29], however they are usually disregarded because
they give rise to parabolic equations [39]. On the other
hand, the terms in J μ1���μl are hyperbolic in nature and are
fully compatible with special relativity.
In this paper we show that it is possible to formulate a

theory of dissipative relativistic hydrodynamics setting the
noncausal contribution Kμ1���μl to zero by construction. The
basis of our analysis is the asymptotic matching scheme
proposed in Ref. [39] in the context of multiple dynamical
moments, as well as in Ref. [41] for the case of multi-
component fluids. The scheme finds its nonrelativistic
analogue in the work of Struchtrup [42], and it is sometimes
called the order of magnitude approach.
Except in the case of the lowest-order truncation, the

transport coefficients and the relaxation times obtained in
this scheme are different compared to those obtained in
DNMR. The two theories thus seem to yield, in general,
different equations. In this paper we establish the con-
nection between the two schemes and show that they are
equivalent up to second order in Kn and Re−1. By
consistently using the matching conditions to express
thermodynamic forces in terms of dissipative quantities,
we show that all terms contained in Kμ1���μl in DNMR can
be reabsorbed into the transport coefficients in J μ1���μl and
the relaxation times, thus modifying the usual DNMR
transport coefficients. We therefore call our approach the
inverse-Reynolds-dominance (IReD) approach, as it con-
sists, effectively, in replacing OðKn2Þ terms in favor of
OðRe−1KnÞ, making the inverse Reynolds number “dom-
inant” over the Knudsen number. The IReD equations are
formally equivalent to the DNMR ones. We will show this
by analytically establishing the connection between the
transport coefficients appearing in the two formulations.
The outline of this paper is as follows. In Sec. II,

we review the DNMR formalism introduced in Ref. [1],
while in Sec. III we discuss the IReD scheme, leading to
vanishing Kμ1���μl terms [41]. Section IV addresses the
connection between the transport coefficients arising in the
IReD approach compared to the DNMR ones (technical
details are relegated to Appendix A). SectionV discusses the
connection between the approach introduced in Ref. [39] for
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the case of 23 dynamical moments and our proposed IReD
approach. In Sec. VI we list the explicit values for the
transport coefficients in the limit of an ultrarelativistic ideal
gas of hard spheres, demonstrating the convergence of the
method when including higher-order moments. The general
expressions for the transport coefficients in the IReD
approach are summarized in Appendix B. Section VII
concludes this paper. Throughout this paper, we use
Planck units (c ¼ ℏ ¼ kB ¼ 1) and the ðþ;−;−;−Þ metric
convention. Our analysis is restricted to second order with
respect to Kn and Re−1 and we work under the assumption
that Kn ∼ Re−1.

II. DNMR APPROACH

In this section, we review the DNMR formalism intro-
duced in Ref. [1]. The starting point of the analysis is the
Boltzmann equation,

kμ∂μfk ¼ C½f�; ð2Þ

where fk ≡ fkðxÞ is the one-particle distribution function,
kμ ¼ ðk0;kÞ is the on-shell four-momentum (k2 ¼
ðk0Þ2 − k2 ¼ m2), while C½f� is the collision term. By
the H-theorem [19,43,44], C½f� acts by drawing the system
towards local thermodynamic equilibrium, described by the
equilibrium distribution f0k.
The deviation from equilibrium δfk ¼ fk − f0k can be

characterized in terms of its irreducible moments ρμ1���μlr ,
defined as

ρμ1���μlr ¼
Z

dKEkkhμ1 � � � kμliδfk; ð3Þ

where dK ¼ gd3k=½ð2πÞ3k0� is the Lorentz-invariant inte-
gration measure (g is the number of internal degrees of
freedom),whileAhμ1���μli ¼ Δμ1���μl

ν1���νlA
ν1���νl is the symmetrized

and (for l > 1) traceless projection of the tensor Aμ1���μl with
respect to the fluid four-velocity uμ. In particular, the r ¼ 0
moments can be related to the bulk pressure Π, diffusion
current nμ and shear stress πμν as follows:

ρ0 ¼ −
3

m2
Π; ρμ0 ¼ nμ; ρμν0 ¼ πμν: ð4Þ

In the Landau frame, the charge currentNμ and stress-energy
tensor Tμν admit the following decomposition:

Nμ ¼ nuμ þ nμ;

Tμν ¼ εuμuν − ðPþ ΠÞΔμν þ πμν; ð5Þ

where Δμν ¼ gμν − uμuν. Since the particle-number den-
sity n and energy density ε are equal to their fictitious
equilibrium values (n ¼ n0, ε ¼ ε0), the moments ρ1 ¼ δn
and ρ2 ¼ δε both vanish. In addition, the heat flow Wμ ¼
Δμ

νuλTνλ ¼ ρμ1 also vanishes by the Landau matching con-
dition, Tμ

νuν ¼ εuμ. Summarizing, in the Landau frame the
following moments are automatically zero:

ρ1 ¼ ρ2 ¼ ρμ1 ¼ 0: ð6Þ

Starting from the Boltzmann equation (2) and defining
∇μ ¼ Δμ

ν∂
ν and _f ¼ Df ¼ u · ∂f for an arbitrary function

f, the equations of motion for the irreducible moments ρr,
ρμr and ρμνr can be derived as shown in Ref. [1], leading to

_ρr − Cr−1 ¼ αð0Þr θ −
G2r

D20

Πθ þ G2r

D20

πμνσμν þ
G3r

D20

∂μnμ þ ðr − 1Þρμνr−2σμν þ rρμr−1 _uμ −∇μρ
μ
r−1

−
1

3
½ðrþ 2Þρr − ðr − 1Þm2ρr−2�θ; ð7aÞ

_ρhμir − Chμi
r−1 ¼ αð1Þr Iμ þ ρνrω

μ
ν þ

1

3
½ðr − 1Þm2ρμr−2 − ðrþ 3Þρμr �θ − Δμ

λ∇νρ
λν
r−1 þ rρμνr−1 _uν

þ 1

5
½ð2r − 2Þm2ρνr−2 − ð2rþ 3Þρνr�σμν þ

1

3
½m2rρr−1 − ðrþ 3Þρrþ1� _uμ

þ βJrþ2;1

εþ P
ðΠ _uμ −∇μΠþ Δμ

ν∂λπ
λνÞ − 1

3
∇μðm2ρr−1 − ρrþ1Þ þ ðr − 1Þρμνλr−2σλν; ð7bÞ

_ρhμνir −Chμνi
r−1 ¼2αð2Þr σμν−

2

7
½ð2rþ5Þρλhμr −2m2ðr−1Þρλhμr−2�σνiλ þ2ρλhμr ωνi

λ

þ 2

15
½ðrþ4Þρrþ2−ð2rþ3Þm2ρrþðr−1Þm4ρr−2�σμνþ

2

5
∇hμðρνirþ1−m2ρνir−1Þ

−
2

5
½ðrþ5Þρhμrþ1−rm2ρhμr−1� _uνi−

1

3
½ðrþ4Þρμνr −m2ðr−1Þρμνr−2�θþðr−1Þρμνλρr−2 σλρ−Δμν

αβ∇λρ
αβλ
r−1þrρμνλr−1 _uλ; ð7cÞ
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where Iμ ¼ ∇μα. Furthermore, σμν ¼ ∇hμuνi, ωμν ¼
1
2
ð∂μuν − ∂νuμÞ and θ ¼ ∂μuμ denote the shear tensor,

vorticity tensor and expansion scalar, respectively, while

Chμ1���μli
r−1 represents an irreducible moment of tensor-rank l

of the collision term, defined in analogy to Eq. (3):

Chμ1���μli
r ¼

Z
dKEr

kk
hμ1 � � � kμliC½f�: ð8Þ

Furthermore, Gnm ¼ Jn0Jm0 − Jn−1;0Jmþ1;0, Dnq ¼
Jnþ1;qJn−1;q − J2nq, while Jnq ¼ ð∂Inq=∂αÞβ represents the
derivative of Inq with respect to α ¼ μ=T at constant
inverse temperature β, with

Inq ¼
1

ð2qþ 1Þ!!
Z

dKEn−2q
k ð−ΔαβkαkβÞqf0k: ð9Þ

The first terms appearing on the right-hand sides of Eqs. (7)
are given as

αð0Þr ¼ ð1 − rÞIr1 − Ir0 −
1

D20

½G2rðεþ PÞ − G3rn�;

αð1Þr ¼ Jrþ1;1 −
n

εþ P
Jrþ2;1;

αð2Þr ¼ Irþ2;1 þ ðr − 1ÞIrþ2;2: ð10Þ
The relations (7) constitute a system of infinitely many

coupled equations, where the unknowns are the irreducible
moments ρμ1���μlr . In order to extract from here the equa-
tions of motion for the dissipative quantities Π, nμ and πμν,
the collision term Chμ1���μli

r must be expressed in terms of
ρμ1���μlr . This can be achieved by introducing a decompo-
sition of δfk with respect to the irreducible moments,

δfk ¼ f0kf̃0k
X∞
l¼0

XNl

n¼0

HðlÞ
kn ρ

μ1���μl
n khμ1 � � � kμli; ð11Þ

where f̃0k ¼ 1 − af0k (a ¼ 1 for fermions, −1 for bosons
and 0 for classical particles) and Nl represent truncation
orders which in principle should be taken to infinity. The

functions HðlÞ
kn are polynomials of order Nl in Ek and are

defined such that Eq. (3) holds exactly for 0 ≤ n ≤ Nl [1].
Ignoring quadratic or higher-order terms in deviations

from equilibrium, the collision term can be represented (to
linear order) as

Cr−1 ¼ −
XN0

n¼0;≠1;2
Að0Þ

rn ρn; ð12aÞ

Chμi
r−1 ¼ −

XN1

n¼0;≠1
Að1Þ

rn ρ
μ
n; ð12bÞ

Chμνi
r−1 ¼ −

XN2

n¼0

Að2Þ
rn ρ

μν
n ; ð12cÞ

where AðlÞ
rn can be interpreted as the collision matrix. The

sums appearing above skip the moments which vanish due
to the Landau matching, as shown in Eq. (6).
The final step is to relate the irreducible moments ρμ1���μlr≠0

to those of order r ¼ 0. This is the branching point between
the DNMR approach and the IReD approach presented in
Sec. III. In the DNMR approach, the basis of this

construction is to seek a diagonalization of AðlÞ
rn ensured

by the matrix of eigenvectors ΩðlÞ
rn , such that

ðΩðlÞÞ−1AðlÞΩðlÞ ¼ diagðχðlÞ0 ; χðlÞ1 ; � � �Þ; ð13Þ

where the columns of the diagonalization matrix ΩðlÞ are
chosen such that the eigenvalues χðlÞr appear in ascending
order,

χðlÞ0 ≤ χðlÞ1 ≤ � � � : ð14Þ

With the above convention, it is possible to enforce a
separation of scales by which only the eigenvectors

Xμ1���μl
0 ¼

XNl

j¼0

ðΩðlÞÞ−10j ρμ1���μlj ð15Þ

corresponding to the slowest scale χðlÞ0 remain in the

transient regime (the normalization of ΩðlÞ
ij is such that

ΩðlÞ
00 ¼ 1). The eigenvectors Xμ1���μl

r>0 , corresponding to

larger eigenvalues χðlÞr>0, are approximated by their asymp-
totic (Navier-Stokes) values

Xr>0 ≃
βð0Þr

χð0Þr

θ; Xμ
r>0≃

βð1Þr

χð1Þr

Iμ; Xμν
r>0≃

βð2Þr

χð2Þr

σμν; ð16Þ

where

βð0Þi ¼
XN0

j¼0;≠1;2
ðΩð0ÞÞ−1ij αð0Þj ; ð17aÞ

βð1Þi ¼
XN1

j¼0;≠1
ðΩð1ÞÞ−1ij αð1Þj ; ð17bÞ

βð2Þi ¼ 2
XN2

j¼0

ðΩð2ÞÞ−1ij αð2Þj : ð17cÞ

By this approximation, the irreducible moments ρμ1���μlr ¼PNl
n¼0Ω

ðlÞ
rn X

μ1���μl
n take the following form:
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ρi ≃ −
3

m2
½Ωð0Þ

i0 Π − ðζi −Ωð0Þ
i0 ζÞθ�; ð18aÞ

ρμi ≃ Ωð1Þ
i0 nμ þ ðκi −Ωð1Þ

i0 κÞIμ; ð18bÞ

ρμνi ≃ Ωð2Þ
i0 π

μν þ 2ðηi −Ωð2Þ
i0 ηÞσμν; ð18cÞ

ρμνλ���i ≃OðKn2;KnRe−1Þ; ð18dÞ

where the property Xμ1���μl
0 ¼ ρμ1���μl0 −

PNl
n>0Ω

ðlÞ
rn X

μ1���μl
n

was employed. In the above, the first-order transport
coefficients ζi, κi and ηi are computed via

ζn ¼
m2

3

XN0

r¼0;≠1;2
τð0Þnr α

ð0Þ
r ; ð19aÞ

κn ¼
XN1

r¼0;≠1
τð1Þnr α

ð1Þ
r ; ð19bÞ

ηn ¼
XN2

r¼0

τð2Þnr α
ð2Þ
r ; ð19cÞ

with ζ ¼ ζ0, κ ¼ κ0 and η ¼ η0. The inverse collision

matrix τðlÞrn appearing above satisfies

τðlÞrn ¼ ðAðlÞÞ−1rn ¼
XNl

m¼0

ΩðlÞ
rm

1

χðlÞm

ðΩðlÞÞ−1mn: ð20Þ

In what concerns the moments of negative order ρμ1���μl−r
(with r > 0), they can also be related to the dissipative
quantities via

ρμ1���μl−r ¼
XNl

n¼0

F ðlÞ
rn ρ

μ1���μl
n ; ð21Þ

where the functions F ðlÞ
rn are defined as

F ðlÞ
rn ¼ l!

ð2lþ1Þ!!
Z

dKf0kf̃0kE−r
k HðlÞ

kn ðΔαβkαkβÞl; ð22Þ

which follows after introducing Eq. (11) into Eq. (3). Using
now the asymptotic matching in Eqs. (18), we arrive at

ρ−r ¼ −
3

m2
ðγð0Þr Π − γ̂ð0Þr θÞ; ð23aÞ

ρμ−r ¼ γð1Þr nμ þ γ̂ð1Þr Iμ; ð23bÞ

ρμν−r ¼ γð2Þr πμν þ 2γ̂ð2Þr σμν: ð23cÞ

The coefficients γðlÞr and γ̂ðlÞr can be computed using the

functions F ðlÞ
rn ,

γð0Þr ¼
XN0

n¼0;≠1;2
F ð0Þ

rn Ωð0Þ
n0 ; γ̂ð0Þr ¼

XN0

n¼0;≠1;2
F ð0Þ

rn ðζn−Ωð0Þ
n0 ζÞ;

γð1Þr ¼
XN1

n¼0;≠1
F ð1Þ

rn Ωð1Þ
n0 ; γ̂ð1Þr ¼

XN1

n¼0;≠1
F ð1Þ

rn ðκn−Ωð1Þ
n0 κÞ;

γð2Þr ¼
XN2

n¼0

F ð2Þ
rn Ωð2Þ

n0 ; γ̂ð2Þr ¼
XN2

n¼0

F ð2Þ
rn ðηn−Ωð2Þ

n0 ηÞ: ð24Þ

At this point, we remark that in the DNMR approach [1]

and in later papers [29], the terms γ̂ðlÞr are neglected, such
that the OðKnÞ contributions to ρμ1���μl−r that should later
appear in theKμ1���μl terms are disregarded completely [29].
In order to conform with the DNMR notation and still stay
accurate at first order with respect to both Kn and Re−1, the

coefficient γðlÞr should be replaced by

γ̄ð0Þr ¼ γð0Þr þ 1

ζ
γ̂ð0Þr ¼

XN0

n¼0;≠1;2
F ð0Þ

rn C
ð0Þ
n ; ð25aÞ

γ̄ð1Þr ¼ γð1Þr þ 1

κ
γ̂ð1Þr ¼

XN1

n¼0;≠1
F ð1Þ

rn C
ð1Þ
n ; ð25bÞ

γ̄ð2Þr ¼ γð2Þr þ 1

η
γ̂ð2Þr ¼

XN2

n¼0

F ð2Þ
rn C

ð2Þ
n ; ð25cÞ

where we introduced the notation (also to be used in the
following section)

Cð0Þn ¼ ζn
ζ0

; Cð1Þn ¼ κn
κ0

; Cð2Þn ¼ ηn
η0

: ð26Þ

The same quantities are denoted in Ref. [41] by ζ̄n ¼ Cð0Þn ,

κ̄n ¼ Cð1Þn and η̄n ¼ Cð2Þn . With the above convention,
Eqs. (23) becomes

ρ−r ¼−
3

m2
γ̄ð0Þr Π; ρμ−r ¼ γ̄ð1Þr nμ; ρμν−r ¼ γ̄ð2Þr πμν; ð27Þ

which is similar, but not identical, to Eq. (67) in
Ref. [1].
Finally, the evolution equations (1) for Π, nμ and πμν can

be obtained by multiplying Eqs. (7) by τðlÞ0r and summing
over r. The relaxation times τΠ, τn and τπ are given by the

inverse of the smallest eigenvalues χðlÞ0 of the collision

matrices AðlÞ
rn [see Eq. (13)]:
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τΠ ¼ 1

χð0Þ0

¼
XN0

r¼0;≠1;2
τð0Þ0r Ω

ð0Þ
r0 ; ð28aÞ

τn ¼
1

χð1Þ0

¼
XN1

r¼0;≠1
τð1Þ0r Ω

ð1Þ
r0 ; ð28bÞ

τπ ¼
1

χð2Þ0

¼
XN2

r¼0

τð2Þ0r Ω
ð2Þ
r0 ; ð28cÞ

where we remind that the normalization of ΩðlÞ
rn is such that

ΩðlÞ
00 ¼ 1. For completeness and for future reference, we

display below the complete expressions for the J μ1���μl
terms [1],

J ¼ −lΠn∇ · n − τΠnn · F − δΠΠΠθ − λΠnn · I

þ λΠππ
μνσμν; ð29aÞ

J μ ¼ −τnnνωνμ − δnnnμθ − lnΠ∇μΠ

þ lnπΔμν∇λπ
λ
ν þ τnΠΠFμ − τnππ

μνFν

− λnnnνσμν þ λnΠΠIμ − λnππ
μνIν; ð29bÞ

J μν ¼ 2τππ
hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ þ λπΠΠσμν

− τπnnhμFνi þ lπn∇hμnνi þ λπnnhμIνi; ð29cÞ

where Fμ ¼ ∇μP and Iμ ¼ ∇μα. We also display the
Kμ1���μl terms, following the conventions of Ref. [29]:

K ¼ ζ̃1ωμνω
μν þ ζ̃2σμνσ

μν þ ζ̃3θ
2 þ ζ̃4I · I þ ζ̃5F · F

þ ζ̃6I · F þ ζ̃7∇ · I þ ζ̃8∇ · F; ð30aÞ

Kμ ¼ κ̃1σ
μνIν þ κ̃2σ

μνFν þ κ̃3Iμθ þ κ̃4Fμθ

þ κ̃5ω
μνIν þ κ̃6Δ

μ
λ∇νσ

λν þ κ̃7∇μθ; ð30bÞ

Kμν ¼ η̃1ω
λhμωνi

λ þ η̃2θσ
μν þ η̃3σ

λhμσνiλ

þ η̃4σ
hμ
λ ω

νiλ þ η̃5IhμIνi þ η̃6FhμFνi

þ η̃7IhμFνi þ η̃8∇hμIνi þ η̃9∇hμFνi: ð30cÞ

To understand the origin of the OðRe−1KnÞ and OðKn2Þ
terms, we note that the asymptotic matching in Eqs. (18)
replaces the irreducible moments [originally of order
OðRe−1Þ] with OðRe−1Þ and OðKnÞ terms proportional to
ðΠ; nμ; πμνÞ and ðθ; Iμ; σμνÞ, respectively. At the level of
Eqs. (1), the former terms make OðRe−1KnÞ contributions,
while the latter ones give rise to OðKn2Þ terms. This can be
easily seen inwhat concerns the terms appearing on the right-
hand side of Eqs. (7), since there the irreducible moments
always come with OðKnÞ coefficients. Additional contribu-
tions arise from the comoving derivative of the irreducible

moments appearing on the left-hand side of Eqs. (7). We
illustrate this by considering the particular example of the

tensor moments _ρhμνir . Taking the comoving derivative of
Eq. (18c) leads to

_ρhμνir ¼ Ωð2Þ
r0 _πhμνi þ _Ωð2Þ

r0 π
μν þ 2D½ηðCð2Þr −Ωð2Þ

r0 Þ�σμν

þ 2ηðCð2Þr − Ωð2Þ
r0 Þ _σhμνi þOðRe−1Kn2Þ; ð31Þ

whereCð2Þr ¼ ηr=ηwas introduced inEqs. (26). The first term
in Eq. (31) gives rise to the relaxation time τπ via Eq. (28c).
To leading order, the comoving derivative Df ¼ _f of a
thermodynamic function f ≡ fðα; βÞ is of order OðKnÞ,
since

_f¼ ∂f
∂α

_αþ∂f
∂β

_β¼
�
H
∂f
∂α

þ H̄
∂f
∂β

�
θþOðRe−1KnÞ; ð32Þ

whereH and H̄ are defined in Eq. (A2b), while _α and _β are
given in Eqs. (A1a) and (A1b). Thus, the second term of
Eq. (31) is of order OðRe−1KnÞ, contributing to J μν. In
contrast, the third and fourth terms are of orderOðKn2Þ, thus
contributing to Kμν.
As mentioned in the introduction, the Kμ1���μl terms are

traditionally ignored in the literature, either because they
vanish in the 14 moment limit, or because they lead to
parabolic equations of motion [39]. In the following
section, we rederive the evolution equations (1) such that
Kμ1���μl vanish identically by construction.

III. INVERSE-REYNOLDS-DOMINANCE (IRED)
APPROACH

In this section, we discuss the derivation of the evolution
equations (1) for the case when the terms of second order
with respect to Kn vanish, Kμ1���μl ¼ 0. The derivation is
identical to that presented in the previous section, up to
Eqs. (12). The main difference compared to the DNMR
approach is at the level of the asymptotic matching. In this
section, we bypass the diagonalization of the collision

matrix via the matrix ΩðlÞ
rn . Multiplying Eqs. (7) by τðlÞnr and

summing over r, we arrive at [41]

XN0

r¼0;≠1;2
τð0Þnr _ρr þ ρn ¼

3

m2
ζnθ þOðKnRe−1Þ; ð33aÞ

XN1

r¼0;≠1
τð1Þnr _ρ

hμi
r þ ρμn ¼ κnIμ þOðKnRe−1Þ; ð33bÞ

XN2

r¼0

τð2Þnr _ρ
hμνi
r þ ρμνn ¼ 2ηnσ

μν þOðKnRe−1Þ; ð33cÞ
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where the first-order transport coefficients ζn, κn and ηn
were introduced in Eqs. (19). Note that the comoving
derivatives on the left-hand sides of Eqs. (33) are of order
OðKnRe−1Þ as well. Neglecting terms of this order, we
obtain straightforwardly from Eqs. (33)

ρn ≃
3

m2
ζnθ; ρμn ≃ κnIμ; ρμνn ≃ 2ηnσ

μν; ð34Þ

while ρμνλ���n ≃OðKn2;KnRe−1Þ. The above relations estab-
lish the correspondence between quantities of orders
OðRe−1Þ and OðKnÞ appearing on the left- and right-hand
sides, respectively. We now exploit this correspondence in
order to eliminate theOðKnÞ terms appearing in the DNMR
matching prescription shown in Eqs. (18). Specializing the
above relations to the case n ¼ 0 and using Eqs. (4) allows
the thermodynamic forces θ, nμ and σμν to be replaced by
the dissipative quantities Π, nμ and πμν, leading to the
asymptotic matching equations

ρn ≃−
3

m2
Cð0Þn Π; ρμn ≃ Cð1Þn nμ; ρμνn ≃ Cð2Þn πμν; ð35Þ

where the coefficients CðlÞn were introduced in Eqs. (26).
Equations (35) naturally hold also when n ¼ −r < 0 by
identifying

CðlÞ−r ¼ γ̄ðlÞr ¼
XNl

n¼0

F ðlÞ
rn C

ðlÞ
n ; ð36Þ

where γ̄ðlÞr was introduced in Eqs. (25) and the function

F ðlÞ
rn is defined in Eq. (22). Equations (35) relate the higher-

order moments ρμ1���μlr>0 to the zeroth-order ones. As men-
tioned in the introduction, a similar approach was proposed
under the name of the order of magnitude approach in
Ref. [42] in the case of nonrelativistic fluids, as well as in
Ref. [41] for multicomponent relativistic fluids. In the
following, we will refer to this approach as the inverse-
Reynolds-dominance (IReD) approach, for reasons that will
become apparent.
We first remark that Eqs. (35) is equivalent to the original

DNMR matching in Eqs. (18). This can be seen by
replacing θ ¼ −Π=ζ, Iμ ¼ nμ=κ and σμν ¼ πμν=ð2ηÞ and
noting that the error introduced by these replacements can
be neglected since it is of higher order than the terms shown
in Eqs. (18). By using the relations (35) in the equations of
motion (33), we can replace all irreducible moments
appearing on the right-hand side by the dissipative quan-
titiesΠ; nμ, and πμν, with the neglected terms being of order
OðKn2Re−1Þ. Furthermore, setting the index n ¼ 0 in
Eqs. (33), we obtain the relaxation equations (1) with
Kμ1���μl ¼ 0. The J μ1���μl terms retain the form in Eqs. (29)
and the transport coefficients arising there are identical in
form to those derived in the DNMR formalism and reported

in Ref. [1], with the exception that all instances of Ωl
r0

should be replaced by CðlÞr (also γðlÞr should be replaced by

γ̄ðlÞr ≡ CðlÞ−r )
1:

ðDNMRÞ ðIReDÞ
ΩðlÞ

r0 → CðlÞr

; ð37aÞ

γðlÞr → CðlÞ−r ; ð37bÞ

Kμ1���μl → 0 : ð37cÞ

The expressions for the transport coefficients obtained using
the IReD approach are summarized in Appendix B. The
above prescription holds also for the computation of the

relaxation times. Replacing ΩðlÞ
r0 with CðlÞr in Eqs. (28), we

arrive at

τΠ ¼
XN0

r¼0;≠1;2
τð0Þ0r C

ð0Þ
r ; ð38aÞ

τn ¼
XN1

r¼0;≠1
τð1Þ0r C

ð1Þ
r ; ð38bÞ

τπ ¼
XN2

r¼0

τð2Þ0r C
ð2Þ
r : ð38cÞ

Upon performing the replacements in Eqs. (37), the values of
the transport coefficients arising in the IReDapproachwill be
different from those computed using the DNMR approach.
This is clearly the case for the coefficients of the OðKn2Þ
terms, which vanish identically in the IReD approach. We
will come back to the relation between the IReD and DNMR
transport coefficients in the next section.
Thematchingprocedure inEqs. (35) eliminates theKμ1���μl

terms which are of orderOðKn2Þ, retaining theJ μ1���μl terms
of orderOðKnRe−1Þ and thereby trading one power ofKn for
a power of Re−1. This is clear when considering the terms
appearing on the right-hand side of Eqs. (7) [see also the
discussion before Eq. (31)]. The comoving derivatives of the
irreducible moments appearing on the left-hand side of
Eqs. (7) make only OðRe−1KnÞ contributions. To see this,
we reconsider the comovingderivative of the tensormoments
with the asymptotic matching in Eqs. (35),

_ρhμνir ¼ Cð2Þr _πhμνi þ _Cð2Þr πμν þOðRe−1Kn2Þ: ð39Þ

The first term contributes to the relaxation time τπ via
Eq. (38c). As indicated in Eq. (32), _Cð2Þr is of order

1See Appendix C of Ref. [41] for explicit expressions in the
case of a multicomponent fluid.
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OðKnÞ, such that the second term is of order OðKnRe−1Þ,
contributing only to J μν. We have thus established that the
OðKn2Þ terms vanish identically under the asymptotic
matching in Eqs. (35). For this reason, we refer to this
approach as the inverse-Reynolds-dominance approach.
The connection between the IReD relaxation times in

Eqs. (38) and the eigenvalues of AðlÞ
rn is lost, therefore one

may wonder about the fate of the separation of scales. In
order to analyze the timescales associated with higher-order
moments, it is convenient to introduce the coefficients

CðlÞn;r via

Cð0Þn;r ¼ ζn
ζr

; Cð1Þn;r ¼ κn
κr

; Cð2Þn;r ¼ ηn
ηr

; ð40Þ

such that CðlÞn;0 ¼ CðlÞn reduces to the coefficients introduced
in Eqs. (26). To obtain the evolution equations for the
irreducible moments ρμ1���μlr≠0 , all the other irreducible
moments should be written in terms of these ones via
formulas analogous to Eqs. (35),

ρn ≃ Cð0Þn;rρr; ρμn ≃ Cð1Þn;rρ
μ
r ; ρμνn ≃ Cð2Þn;rρ

μν
r : ð41Þ

With these relations, we can apply the same procedure that
was employed to yield Eqs. (1) and obtain

τΠ;r _ρr þ ρr ¼
3

m2
ζrθ þOðKnRe−1Þ; ð42aÞ

τn;r _ρ
hμi
r þ ρμr ¼ κrIμ þOðKnRe−1Þ; ð42bÞ

τπ;r _ρ
hμνi
r þ ρμνr ¼ 2ηrσ

μν þOðKnRe−1Þ; ð42cÞ

where the omitted terms on the right-hand side are of the
same structure as Eqs. (29). The relaxation times appearing
above are given by equations analogous to Eqs. (38), with

CðlÞr ≡ CðlÞr;0 replaced by CðlÞr;n :

τΠ;n ¼
XN0

r¼0;≠1;2
τð0Þnr C

ð0Þ
r;n; ð43aÞ

τn;n ¼
XN1

r¼0;≠1
τð1Þnr C

ð1Þ
r;n; ð43bÞ

τπ;n ¼
XN2

r¼0

τð2Þnr C
ð2Þ
r;n: ð43cÞ

Setting n ¼ 0 in the above equations reproduces Eqs. (38).
The ordering of the relaxation times thus obtained clearly
depends on the details of the (inverse of the) collision
matrix. For definiteness, we report in Table I the first four
relaxation times in comparison to the first four eigenvalues

χðlÞn obtained for the case of an ultrarelativistic ideal gas
interacting via a constant cross section σ (to be discussed in
Sec. VI). It can be seen that the separation of scales
principle invoked in the DNMR approach no longer holds,
being in fact reversed. The relaxation times obey the
inequality τ�;0 ≤ τ�;1 ≤ � � �, for all � ∈ fn; πg (the bulk
sector does not contribute to the dynamics for a gas of
massless particles).
Based on the above analysis, it becomes evident that

demanding that the OðKn2Þ terms vanish gives relaxation
times which are not compatible with the separation of

TABLE I. (left) Relaxation times τn;r and τπ;r corresponding to the vector and tensor moments ρμr and ρμνr , respectively, obtained for

various values of the truncation orders N1 and N2 ¼ N1 − 1. (right) Inverse eigenvalues ½χð1Þr �−1 and ½χð2Þr �−1 shown in descending order.
The relaxation times and inverse eigenvalues are expressed in units of the mean free path λmfp ¼ 1=ðnσÞ, where n is the local particle-
number density and σ is the (constant) collision cross section.

[IReD] Diffusion: Relaxation times [DNMR] Diffusion: Inverse eigenvalues

N1 τn;0½λmfp� τn;2½λmfp� τn;3½λmfp� τn;4½λmfp� N1 ½χð1Þ0 �−1½λmfp� ½χð1Þ2 �−1½λmfp� ½χð1Þ3 �−1½λmfp� ½χð1Þ4 �−1½λmfp�
1 9=4 � � � � � � � � � 1 9=4 � � � � � � � � �
2 2.076 2.419 � � � � � � 2 2.59 1.629 � � � � � �
3 2.076 2.435 2.565 � � � 3 2.575 1.961 1.413 � � �
4 2.079 2.438 2.568 2.680 4 2.573 1.85 1.597 1.304

∞ 2.084 2.440 2.570 2.681 ∞ 2.572 1.847 1.586 1.451

[IReD] Shear: Relaxation times [DNMR] Shear: Inverse eigenvalues

N2 τπ;0½λmfp� τπ;1½λmfp� τπ;2½λmfp� τπ;3½λmfp� N2 ½χð2Þ0 �−1½λmfp� ½χð2Þ1 �−1½λmfp� ½χð2Þ2 �−1½λmfp� ½χð2Þ3 �−1½λmfp�
0 5=3 � � � � � � � � � 0 5=3 � � � � � � � � �
1 1.649 1.785 � � � � � � 1 2 1.364 � � � � � �
2 1.654 1.788 1.902 � � � 2 2 1.646 1.241 � � �
3 1.655 1.789 1.902 2.001 3 2 1.650 1.477 1.176

∞ 1.656 1.789 1.902 2.001 ∞ 2 1.650 1.484 1.386
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scales concept. Conversely, enforcing the separation of

scales as done in DNMR (by setting τΠ ¼ ½χð0Þ0 �−1, etc.)
introduces in principle terms of order OðKn2Þ in the
evolution equations for the dissipative quantities. Despite
this difference, the DNMR and the IReD approaches are
equivalent, as we will show in the next section.

IV. CONNECTION TO DNMR

As discussed in Secs. II and III, the IReD approach
yields relaxation equations for Π, nμ and πμν for which
Kμ1���μl ¼ 0. Since the DNMR and IReD approaches are
both exact to second order in Kn and Re−1, they must
coincide up to (and including) terms of second order. In
order to distinguish between the transport coefficients
arising in the two approaches, we will use a tilde ˜ to
denote transport coefficients computed in the DNMR
approach. Keeping in mind that the first-order transport
coefficients ζn, κn and ηn are exactly the same in the two
approaches, being given by Eqs. (19), the goal of this
section is to prove the following equivalence:

τΠ _Π − J ¼ τ̃Π _Π − J̃ − K̃; ð44aÞ

τn _nhμi − J μ ¼ τ̃n _nhμi − J̃ μ − K̃μ; ð44bÞ

τπ _π
hμνi − J μν ¼ τ̃π _π

hμνi − J̃ μν − K̃μν; ð44cÞ

where theOðKn2Þ terms are absent on the left-hand side by
virtue of the IReD asymptotic matching.
The detailed comparison will be carried out in

Appendix A. Here we will put forth the key points and
focus on the modification of the relaxation times. This
modification arises due to terms in K̃μ1���μl that originate

from _ρhμ1���μlir . Focusing on the DNMR asymptotic match-
ing for the case of the tensor moments, we multiply Eq. (31)

by τð2Þ0r and sum with respect to r:

XN2

r¼0

τð2Þ0r _ρ
hμνi
r ¼ _πhμνi

XN2

r¼0

τð2Þ0r Ω
ð2Þ
r0

þ 2η _σhμνi
XN2

r¼0

τð2Þ0r ðCð2Þr −Ωð2Þ
r0 Þ þ � � � ; ð45Þ

where we omitted second-order terms proportional to πμν

and σμν that lead to contributions to J̃ μν and K̃μν. The
summation with respect to r can be performed in favor of
the DNMR and IReD relaxation times τ̃π and τπ , introduced
in Eqs. (28c) and (38c), respectively. Performing the same
steps for the scalar and vector moments, we arrive at

XN0

r¼0;≠1;2
τð0Þ0r _ρr ¼ −

3

m2
½τ̃Π _Π − ζðτΠ − τ̃ΠÞ_θ þ � � ��;

XN1

r¼0;≠1
τð1Þ0r _ρ

hμi
r ¼ τ̃n _nhμi þ κðτn − τ̃nÞ_Ihμi þ � � � ;

XN2

r¼0

τð2Þ0r _ρ
hμνi
r ¼ τ̃π _π

hμνi þ 2ηðτπ − τ̃πÞ _σhμνi þ � � � : ð46Þ

Employing now the first-order (Navier-Stokes) relations

ζθ ¼ −ΠþOðKn2;KnRe−1Þ; ð47aÞ
κIμ ¼ nμ þOðKn2;KnRe−1Þ; ð47bÞ

2ησμν ¼ πμν þOðKn2;KnRe−1Þ; ð47cÞ

to eliminate the thermodynamic forces in favor of the
corresponding fluxes, it can be seen that the second terms in
Eqs. (46) lead to the replacement of the DNMR relaxation
times ðτ̃Π; τ̃n; τ̃πÞ by the IReD ones ðτΠ; τn; τπÞ, e.g.,

τ̃π _π
hμνi þ 2ηðτπ − τ̃πÞ _σhμνi

¼ τπ _π
hμνi − ðτπ − τ̃πÞπμν

_η

η
þ � � � ; ð48Þ

where the neglected terms are of third order.
The above discussion hints that the key to connecting

the DNMR transport coefficients to the IReD ones is to
look at the comoving derivatives of θ, Iμ and σμν. The full
expressions are derived in Appendix A. Here we just
reproduce the terms that hold the key to establishing the
connection between the DNMR and IReD relaxation times,
namely

_θ ¼ ωμλωμλ þ � � � ; ð49aÞ
_Ihμi ¼ −ωμνIν þ � � � ; ð49bÞ
_σhμνi ¼ −ωλhμωνi

λ þ � � � : ð49cÞ
The terms shown on the right-hand sides have no cor-
respondent in the J̃ μ1���μl terms (except for the case of
ωμνIν, which can be related to ωμνnν=κ), therefore the
coefficients of these terms appearing in K̃μ1���μl will modify
the relaxation times appearing on the left-hand side of
Eqs. (1). Focusing on the tensor sector, one can use
Eq. (49c) together with σμν ≃ πμν=2η to establish

η̃1ω
λhμωνi

λ ≃ −
η̃1
2η

_πhμνi þ η̃1 _η

2η2
πμν þ � � � ; ð50Þ

where the dots indicate the OðKn2Þ terms which were
omitted in Eq. (49c). The coefficient η̃1=2η of − _πhμνi
represents exactly the difference between the IReD and
DNMR relaxation times. Performing the same steps for the
scalar sector, we arrive at
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τΠ ¼ τ̃Π þ ζ̃1
ζ
; ð51aÞ

τπ ¼ τ̃π þ
η̃1
2η

: ð51bÞ

In the case of the vector relaxation time, the term κ̃5ω
μνIν

must simultaneously account for the change of the relax-
ation time on the left-hand side (in the term τ̃n _nhμi), as well
as in the first term appearing in J̃ μ, namely τ̃nωμνnν. Since
both terms have equal weights, they get one half of κ̃5ωμνIν
each, such that

τn ¼ τ̃n þ
κ̃5
2κ

: ð51cÞ

Likewise, the term η̃4σ
hμ
λ ω

νiλ in K̃μν acts by changing τ̃π in the

term 2τ̃ππ
hμ
λ ω

νiλ appearing in J̃ μν. The resulting relaxation
time is indeed equal to τπ given in Eqs. (51) by virtue of the
equality η̃4 ¼ 2η̃1 established by Eq. (I22) of Ref. [29].
The relations in (51) can be explicitly checked by noting

that [29]

ζ̃1 ¼
XN0

r¼0;≠1;2
τð0Þ0r ðζr − Ωð0Þ

r0 ζÞ ¼ ζðτΠ − τ̃ΠÞ; ð52aÞ

κ̃5 ¼ 2
XN1

r¼0;≠1
τð1Þ0r ðκr −Ωð1Þ

r0 κÞ ¼ 2κðτn − τ̃nÞ; ð52bÞ

η̃1 ¼ 2
XN2

r¼0

τð2Þ0r ðηr − Ωð2Þ
r0 ηÞ ¼ 2ηðτπ − τ̃πÞ; ð52cÞ

where the DNMR (with tilde) and IReD (without tilde)
relaxation times arise by virtue of Eqs. (28) and (38),
respectively.
Table II summarizes the connection between the transport

coefficients appearing in the IReD andDNMR formulations.
While in this section we focused the discussion only on the
relaxation times, the procedure to obtain the results reported
in Table II is similar in spirit, involving straightforward but
tedious algebra, which is sketched in Appendix A.

V. CONNECTION TO DENICOL et al. [39]

In this section, we discuss the connection with Ref. [39],
where the parabolic Kμ1���μl are eliminated in the context of
multiple dynamic moments. Without reviewing all the
details of this work, we recall only the matching formulas
given in Eq. (20) of Ref. [39],

ρμr ¼ λð1Þr0 n
μ þ λð1Þr2 ρ

μ
2; ð53aÞ

ρμνr ¼ λð2Þr0 π
μν þ λð2Þr1 ρ

μν
1 ; ð53bÞ

which address only the vector and tensor moments, since
the work is focused on massless constituents for which the
scalar moments are irrelevant. Equations (53a) and (53b)

can be supplemented naturally with an equivalent equation
for the scalar moments,

ρr ¼ −
3

m2
λð0Þr0 Πþ λð0Þr3 ρ3: ð53cÞ

The coefficients λðlÞrs appearing above are given in Eq. (21)
of Ref. [39] for l ¼ 1, 2 as

TABLE II. Comparison between the transport coefficients
arising in the IReD approach (left column) and those arising
in the DNMR approach. The partial derivatives are taken by
considering α ¼ βμ and β as independent variables and h ¼
ðεþ PÞ=n is the specific enthalpy. The notation H and H̄ is
introduced in Eq. (A2b).

IReD DNMR
τΠ

τ̃Π þ ζ̃1
ζ

τn τ̃n þ
κ̃5
2κ

τπ τ̃π þ
η̃1
2η

lΠn
l̃Πn −

ζ̃7
κ

τΠn
τ̃Πn −

ζ̃1D20H
κðεþ PÞ3 −

ζ̃6
κ
−

ζ̃7
κ2ðεþ PÞ

∂κ

∂ ln β
δΠΠ

δ̃ΠΠ −
ζ̃1
ζ2

�
H

∂ζ

∂α
þ H̄

∂ζ

∂β
−
ζ

3

�
þ ζ̃3

ζ
λΠn

λ̃Πn −
ζ̃4
κ
þ ζ̃7

κ2

�
∂κ

∂α
þ 1

h
∂κ

∂β

�
λΠπ

λ̃Ππ þ
ζ̃1 þ ζ̃2

2η

δnn þ
ζ

κ
λnΠ δ̃nn þ

ζ

κ
λ̃nΠ −

κ̃3
κ
þHκ̃5 þ 2κ̃7

2κζ

�
∂ζ

∂α
þ 1

h
∂ζ

∂β

�

−
κ̃5
2κ2

�
H̄

∂κ

∂β
þ κ

h
∂H
∂β

þ ∂ðκHÞ
∂α

−
κ

3

�

lnΠ l̃nΠ þHκ̃5 þ 2κ̃7
2ζ

lnπ l̃nπ þ
κ̃6
2η

τnΠ τ̃nΠ −
κ̃4
ζ
−
Hκ̃5 þ 2κ̃7
2ζ2ðεþ PÞ

∂ζ

∂ ln β
þ κ̃5=2ζ

εþ P
∂ðβHÞ
∂β

τnπ τ̃nπ −
κ̃2
2η

−
κ̃6

2η2ðεþ PÞ
∂η

∂ ln β

λnn þ
2η

κ
λnπ λ̃nn þ

2η

κ
λ̃nπ −

κ̃1
κ
þ κ̃5
2κ

þ κ̃6
ηκ

�
∂η

∂α
þ 1

h
∂η

∂β

�

δππ þ
ζ

2η
λπΠ δ̃ππ þ

ζ

2η
λ̃πΠ þ η̃1

3η
−
η̃2
2η

−
η̃1
2η2

�
H

∂η

∂α
þ H̄

∂η

∂β

�
τππ τ̃ππ þ

η̃1 − η̃3
2η

τπn τ̃πn þ
η̃1D20H
κðεþ PÞ3 −

η̃7
κ
−

η̃8
κ2ðεþ PÞ

∂κ

∂ ln β
lπn l̃πn þ

η̃8
κ

λπn λ̃πn þ
η̃5
κ
−
η̃8
κ2

�
∂κ

∂α
þ 1

h
∂κ

∂β

�
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λð1Þr0 ¼ Ωð1Þ
20 κr −Ωð1Þ

r0 κ2

Ωð1Þ
20 κ0 − κ2

; λð1Þr2 ¼ Ωð1Þ
r0 κ0 − κr

Ωð1Þ
20 κ0 − κ2

; ð54aÞ

λð2Þr0 ¼ Ωð2Þ
10 ηr −Ωð2Þ

r0 η1

Ωð2Þ
10 η0 − η1

; λð2Þr1 ¼ Ωð2Þ
r0 η0 − ηr

Ωð2Þ
10 η0 − η1

: ð54bÞ

In the case of the scalar moments, the relevant coefficients
read

λð0Þr0 ¼ Ωð0Þ
30 ζr −Ωð0Þ

r0 ζ3

Ωð0Þ
30 ζ0 − ζ3

; λð0Þr3 ¼ Ωð0Þ
r0 ζ0 − ζr

Ωð0Þ
30 ζ0 − ζ3

: ð54cÞ

As shown in Ref. [39], the above matching prescription
succeeds in reproducing K ¼ Kμ ¼ Kμν ¼ 0, which is
identical to the desideratum of our IReD approach. The
connection with the current approach can be established by
downgrading the moments ρ3, ρμ2 and ρμν1 from being
dynamical (i.e., separate degrees of freedom) by using

the matching formulas ρ3 ¼ −ð3=m2ÞCð0Þ3 Π, ρμ2 ¼ Cð1Þ2 nμ

and ρμν1 ¼ Cð2Þ1 πμν given in Eqs. (35). Noting that

λð0Þr0 þ Cð0Þ3 λð0Þr3 ¼ Cð0Þr ; ð55aÞ

λð1Þr0 þ Cð1Þ2 λð1Þr2 ¼ Cð1Þr ; ð55bÞ

λð2Þr0 þ Cð2Þ1 λð2Þr1 ¼ Cð2Þr ; ð55cÞ

it is clear that Eqs. (53) reduce to Eqs. (35) for all values
of r.

VI. EXPLICIT VALUES IN THE
ULTRARELATIVISTIC LIMIT

Wenow explicitly evaluate the IReD transport coefficients
reported in Appendix B for an ultrarelativistic ideal fluid of
hard spheres, interacting via a constant cross section σ. The
procedure for performing the calculations is identical to the
one introduced in Ref. [1] and will therefore not be repeated
here. Following Ref. [1], we report the values of the
coefficients obtained by employing 14, 23, 32 and 41
moments. In addition, we report convergence (∞) values
for the transport coefficients, which are obtained by employ-
ing high-precision arithmetics usingMATHEMATICA [45]with
N0 − 2 ¼ N1 − 1 ¼ N2 ¼ 100. The values of the transport
coefficients related to the diffusion currentnμ and shear stress
πμν are reported in Tables III and IV, respectively. The tables
showing these transport coefficients for 0 ≤ N2 ≤ 100, as
well as the relaxation time and inverse eigenvalues listed in
Table I, can be accessed as Supplemental Material [46].
Naturally, we do not report transport coefficients for the bulk
viscous pressure Π, since, for massless particles, the bulk
sector does not make any contribution.

VII. CONCLUSION

In this paper, we considered the connection between
the transport coefficients arising in the standard DNMR
and the IReD approach. We show that the transport
coefficients appearing in the J μ1���μl terms [accounting
for all OðKnRe−1Þ contributions] receive modifications
coming from the original Kμ1���μl terms. Moreover, the
relaxation times in the IReD approach differ from the
DNMR ones, being given as a combination of the DNMR

TABLE III. Transport coefficients for the diffusion current nμ arising in the IReD approach for an ultrarelativistic
ideal gas interacting via a constant cross section σ for various truncation orders. We use the convention N0 ¼
N1 þ 1 ¼ N2 þ 2 and the total number of moments is 5N2 þ 3N1 þ N0 þ 9.

Number of
moments κ τn½λmfp� δnn½τn� λnn½τn� λnπ ½τn� lnπ½τn� τnπ½τn�
14 3=ð16σÞ 9=4 1 3=5 β=20 β=20 β=80P
23 21=ð128σÞ 2.0759 1 0.85806 0.067742β 0.030645β 0.0076613β=P
32 0.16054=σ 2.0761 1 0.88847 0.069060β 0.029064β 0.0072661β=P
41 0.15959=σ 2.0794 1 0.89501 0.069240β 0.028677β 0.0071692β=P

∞ 0.158925=σ 2.0838 1 0.89862 0.069273β 0.028371β 0.0070927β=P

TABLE IV. Same as Table III for the shear stress πμν.

Number of
moments η τπ½λmfp� τππ½τπ� λπn½τπ� δππ½τπ� lπn½τπ� τπn½τπ �
14 4=ð3σβÞ 5=3 10=7 0 4=3 0 0
23 14=ð11σβÞ 1.6494 1.6850 0.23622=β 4=3 −0.47244=β −0.47244=ðβPÞ
32 1.2685=ðσβÞ 1.6540 1.6936 0.21580=β 4=3 −0.54342=β −0.54342=ðβPÞ
41 1.2678=ðσβÞ 1.6552 1.6944 0.20890=β 4=3 −0.56014=β −0.56014=ðβPÞ
∞ 1.2676=ðσβÞ 1.6557 1.6945 0.20503=β 4=3 −0.56960=β −0.56960=ðβPÞ
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relaxation time and a second-order transport coefficient
coming from the Kμ1���μl terms.
In the process of absorbing the Kμ1���μl terms, we

obtained relaxation times which are no longer constrained
to satisfy the separation of scales. In particular, for the case
of the ultrarelativistic hard sphere ideal gas, we found that
the relaxation times of the dissipative quantities Π, nμ and
πμν are smaller than those corresponding to higher-order
moments. For the same system, we also reported accurate
values for all transport coefficients (corresponding to the
limits N0; N1; N2 → ∞) appearing in the vector and tensor
sectors.
Due to their parabolic nature, theKμ1���μl terms which are

quadratic in Kn may lead to violations of causality, as
pointed out in Refs. [1,39], and are therefore customarily
omitted. Our work provides the foundation for hydrody-
namical theories which are free of such terms, while
retaining second-order accuracy with respect to Kn and
Re−1. The absence of parabolic terms in the IReD approach
may help in deriving the entropy current from kinetic
theory. Such an analysis was performed in the 14-moment
approximation [19–21,23], where the parabolic terms are
absent also in the DNMR approach. Extending the analysis
beyond 14 moments (e.g., when Nl → ∞) remains an open
problem representing an interesting avenue for future
research.
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APPENDIX A: EQUIVALENCE BETWEEN
IReD AND DNMR

In this appendix we report the calculations leading to
Table II. We will manipulate the terms appearing in the K̃,
K̃μ and K̃μν terms (30) with the purpose of absorbing them
into the corresponding J̃ μ1���μl terms, thus inferring the
connection to the coefficients obtained in the IReD

approach. We will employ the same notation as in
Sec. IV, by which the DNMR quantities will be denoted
with a tilde .̃ The main idea is to trade one power of Kn for
one power of Re−1. This is done using the Navier-Stokes
asymptotic matching (47) between the thermodynamic
fluxes Π, nμ and πμν and the thermodynamic forces θ,
Iμ and σμν.
As already mentioned in Sec. IV, all terms appearing in

K̃μ1���μl can be related to those appearing in J̃ μ1���μl , with the
exception of ζ̃1ωμνω

μν and η̃1ωλ
hμωνiλ appearing in K̃ and

K̃μν, respectively. We also include here the κ̃5ωμνIν term for
reasons that will become apparent. These terms can be
related with the comoving derivatives of the thermody-
namic forces, as suggested in Eqs. (49). We start this
section by deriving this latter equation.
We first recall Eqs. (39)–(41) from Ref. [1],

_α ¼ Hθ þ J20Πθ − J30∂μnμ

D20

−
J20
D20

πμνσμν; ðA1aÞ

_β ¼ H̄θ þ J10Πθ − J20∂μnμ

D20

−
J10
D20

πμνσμν; ðA1bÞ

_uμ ¼ Fμ þ∇μΠ − Δμ
α∇βπ

αβ − Π _uμ − πμν _uν
εþ P

; ðA1cÞ

where H [introduced in Eq. (I18) of Ref. [29]] and H̄ are
defined as

H ¼ J20ðεþ PÞ − J30n
D20

; ðA2aÞ

H̄ ¼ J10ðεþ PÞ − J20n
D20

; ðA2bÞ

while Jnq and Dnq are introduced above Eq. (9).
The comoving derivative of θ ¼ ∂μuμ can be computed

as follows:

_θ ¼ ∂μ _uμ − ð∂μuλÞð∂λuμÞ: ðA3Þ

Noting that ∂μ _uμ ¼ ∇μ _uμ − _uμ _uμ and ð∂μuλÞð∂λuμÞ ¼
ð∇μuλÞð∇λuμÞ, we find

_θ ¼ − _u · _uþ∇α _uα − ð∇αuρÞð∇ρuαÞ: ðA4Þ

In the case of Iμ ¼ ∇μα, the comoving derivative gives

_Iμ ¼ _Δμ
ν∂

ναþ∇μ _α − ð∇μuνÞð∂ναÞ: ðA5Þ

Projecting the above using Δμ
ν and noting that Δμ

ν _Δν
λ ¼

− _uμuλ, we arrive at

_Ihμi ¼ − _uμ _αþ∇μ _α − ð∇μuνÞIν: ðA6Þ
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Finally, the comoving derivative of σμν ¼ Δμν
αβ∂

αuβ can be
written as

_σμν ¼ _Δμν
αβ∂

αuβ þ∇hμ _uνi − Δμν
αβð∂αuλÞð∂λuβÞ: ðA7Þ

Using ∇αuρ ¼ σαρ þ ωαρ þ 1
3
θΔαρ, the last term can be

expressed as

Δμν
αβð∂αuλÞð∂λuβÞ ¼ σλhμσνiλ þ ωλhμωνi

λ þ
2

3
σμνθ: ðA8Þ

Projecting Eq. (A7) using Δμν
αβ and using _Δhμνi

αβ ¼
_Δμν
αλu

λuβ þ _Δμν
βλu

λuα, we arrive at

_σhμνi ¼− _uhμ _uνi þ∇hμ _uνi−σλhμσνiλ −ωλhμωνi
λ−

2

3
σμνθ; ðA9Þ

where we also used the property _Δμν
αβ∂

αuβ ¼
_Δμν
αβ∇αuβ − _uhμ _uνi.
Using Eqs. (A1) to leading order in Kn and Re−1 leads to

_θ ¼ ωμνωμν − σμνσμν −
1

3
θ2 −

2ðεþ PÞ þ βJ30
ðεþ PÞ3 F · F

−
D20H

ðεþ PÞ3 I · F þ ∇ · F
εþ P

;

_Ihμi ¼ −σμνIν þ Iμθ

�
∂H
∂α

þ 1

h
∂H
∂β

−
1

3

�
−

Fμθ

εþ P
∂ðβHÞ
∂β

− ωμνIν þH∇μθ;

_σhμνi ¼ −ωλhμωνi
λ −

2

3
θσμν − σλhμσνiλ

−
2ðεþ PÞ þ βJ30

ðεþ PÞ3 FhμFνi −
D20H

ðεþ PÞ3 I
hμFνi

þ∇hμFνi

εþ P
: ðA10Þ

Using Eqs. (A10) to replace ωμνωμν, ωμαIα, and ωλhμωνi
λ

in Eqs. (30) gives

K̃ ¼ ζ̃1 _θ þ ðζ̃2 þ ζ̃1Þσμνσμν þ
�
ζ̃3 þ

1

3
ζ̃1

�
θ2

þ ζ̃4I · I þ
�
ζ̃5 þ ζ̃1

2ðεþ PÞ þ βJ30
ðεþ PÞ3

�
F · F

þ
�
ζ̃6 þ ζ̃1

D20H
ðεþ PÞ3

�
I · F þ ζ̃7∇ · I

þ
�
ζ̃8 −

ζ̃1
εþ P

�
∇ · F; ðA11aÞ

K̃μ ¼ −
κ̃5
2
_Iμ þ

�
κ̃1 −

κ̃5
2

�
σμνIν þ κ̃2σ

μνFν

þ
�
κ̃3 þ

κ̃5
2

�
∂H
∂α

þ 1

h
∂H
∂β

−
1

3

��
Iμθ

þ
�
κ̃4 −

κ̃5
2ðεþ PÞ

∂ðβHÞ
∂β

�
Fμθ þ κ̃5

2
ωμνIν

þ κ̃6Δ
μ
λ∇νσ

λν þ
�
κ̃7 þ

κ̃5
2
H
�
∇μθ; ðA11bÞ

K̃μν ¼ −η̃1 _σhμνi þ
�
η̃2 −

2

3
η̃1

�
θσμν

þ ðη̃3 − η̃1Þσλhμσνiλ þ η̃4σ
hμ
λ ω

νiλ þ η̃5IhμIνi

þ
�
η̃6 − η̃1

2ðεþ PÞ þ βJ30
ðεþ PÞ3

�
FhμFνi

þ
�
η̃7 − η̃1

D20H
ðεþ PÞ3

�
IhμFνi

þ η̃8∇hμIνi þ
�
η̃9 þ

η̃1
εþ P

�
∇hμFνi: ðA11cÞ

Using the relations (I5) and (I8) in Ref. [29] relating ζ̃5
and ζ̃8 to ζ̃1, one can see that the coefficients in front of
F · F and ∇ · F vanish identically. Similarly, the relations
(I24) and (I27) in Ref. [29] between η̃6, η̃9 and η̃1 imply that
the coefficients in front of FhμFνi and ∇hμFνi also vanish.
This is consistent with, and indeed required by, the
equivalence between the IReD and DNMR approaches,
since no such terms appear in either J or J μν. For this
reason, the coefficients ζ̃5, ζ̃8, η̃6 and η̃9 do not appear in
Table II.
Comparing the above to Eqs. (30), it can be seen that

aside from the new terms proportional to _θ, _Ihμi and _σhμνi,
the coefficients of these terms (ζ̃1, κ̃5 and η̃1) appear in
several other terms. To compare with the coefficients
obtained in the IReD approach, the thermodynamic forces
θ, Iμ and σμν can be expressed in terms of the thermody-
namic fluxes Π, nμ and πμν via the asymptotic Navier-
Stokes constitutive relations in Eqs. (47). During this
procedure, the comoving derivatives of the thermodynamic
forces give rise to comoving derivatives of the thermody-
namic fluxes, as well as to derivatives of the transport
coefficients:

_θ ¼ −
1

ζ
_Πþ Π

ζ2
_ζ; ðA12aÞ

_Ihμi ¼ 1

κ
_nhμi −

nμ

κ2
_κ; ðA12bÞ

_σhμνi ¼ 1

2η
_πhμνi −

πμν

2η2
_η; ðA12cÞ
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where the comoving derivative of a function depending on
the fluid properties β and α can be computed via Eq. (32).
The emergence of comoving derivatives of the thermo-

dynamic forces in Eqs. (A12) leads to modifications of the
relaxation times τΠ, τn and τπ, as indicated in Eqs. (51).
Furthermore, since the quantities in K̃μ1���μl are of second
order in Kn, the matching in Eqs. (47) reduces them to
quantities of order OðKnRe−1Þ, which are then absorbed
into the J̃ μ1���μl terms. By this procedure, the original
transport coefficients appearing in J̃ μ1���μl are modified.
Since the procedure stays accurate at second order with
respect to Kn and Re−1, the modified transport coefficients
must exactly agree with those obtained in the IReD
approach. To illustrate the connection between the original
and the modified transport coefficients, let us focus on
some examples concerning the terms in K̃μ. Starting from

κ̃6Δμ
λ∇νσ

λν ≃
κ̃6
2η

Δμ
λ∇νπ

λν − κ̃6
πμν

2η2
∇νη; ðA13Þ

it can be seen that the first term is of the same form as
l̃nπΔμ

λ∇νπ
λν and will thus lead to the following modifi-

cation of this transport coefficient:

lnπ ¼ l̃nπ þ
κ̃6
2η

: ðA14Þ

The relation above can be validated using the explicit
expressions for l̃nπ and κ̃6, which we reproduce from
Eq. (C9) in Ref. [1] and Eq. (I15) in Ref. [29], respectively,

l̃nπ ¼ −τð1Þ00 γ
ð2Þ
1 þ

XN1

r¼0;≠1
τð1Þ0r

βJrþ2;1

εþ P

−
XN1−2

r¼0

τð1Þ0;rþ2Ω
ð2Þ
rþ1;0; ðA15aÞ

κ̃6 ¼ −2
XN1−1

r¼1

τð1Þ0;rþ1ðηr − Ωð2Þ
r0 ηÞ: ðA15bÞ

Replacing γð2Þ1 in the expression for l̃nπ with γ̄
ð2Þ
1 defined in

Eqs. (25) (see also the discussion around this equation), we
arrive at

l̃nπ þ
κ̃6
2η

¼ −τð1Þ00 γ̄
ð2Þ
1 þ

XN1

r¼0;≠1
τð1Þ0r

βJrþ2;1

εþ P

−
XN1−2

r¼0

τð1Þ0;rþ2C
ð2Þ
rþ1; ðA16Þ

which is exactly the expression for lnπ following the
identification given in Eqs. (37) applied to Eq. (A15a)
[see also Eq. (B8)].

The second term in Eq. (A13) gives rise to

πμν∇νη ¼ −
πμνFν

εþ P
∂η

∂ ln β
þ πμνIν

�
∂η

∂α
þ 1

h
∂η

∂β

�
: ðA17Þ

The terms on the right-hand side have the same form as the
terms −λ̃nππμνIν and −τ̃nππμνFν appearing in J μ, thus
leading to a modification to these latter two transport
coefficients (λ̃nπ and τ̃nπ).
It is worth noting that using the above procedure may

lead to ambiguities. To illustrate such situations, let us
focus on the term κ̃1σ

μνIν, which can contribute to both
−λ̃nππμνIν and to −λ̃nnnνσμν, since

σμνIν ≃
πμν

2η
Iν ≃ σμν

nν
κ
: ðA18Þ

Taking the first equality would modify only λ̃nπ, whereas
taking the second equality modifies λ̃nn. The decision on
how to distribute the contribution from κ̃1 to λ̃nπ and λ̃nn can
in principle be made by looking at the explicit expres-
sion for κ̃1, reported in Eq. (I10) of Ref. [29]. Another
possibility is to acknowledge that this apparent ambi-
guity can be identified also in the form of J̃ μ, allowing
the two terms λ̃nππμνIν and λ̃nnσ

μνnν to be merged into a
single one:

λ̃nnσ
μνnν þ λ̃nππ

μνIν ≃
�
κ

2η
λ̃nn þ λ̃nπ

�
πμνIν

≃
�
λ̃nn þ

2η

κ
λ̃nπ

�
σμνnν: ðA19Þ

Choosing to express all terms in the form σμνnν, we obtain

λnn þ
2η

κ
λnπ ¼ λ̃nn þ

2η

κ
λ̃nπ þ

κ̃6
ηκ

�
∂η

∂α
þ 1

h
∂η

∂β

�

−
1

κ

�
κ̃1 −

κ̃5
2

�
: ðA20Þ

The above discussion summarizes the key points
required to obtain the relations presented in Table II.
While Eqs. (A14) and (A20) refer only to the modifications
of the lnπ, λnn and λnπ coefficients, the relations involving
the other coefficients can be derived following the same
steps using straightforward but lengthy algebra, which we
do not present here explicitly.

APPENDIX B: SECOND-ORDER TRANSPORT
COEFFICIENTS IN THE IReD APPROACH

In this appendix we give the transport coefficients of the
IReD formalism. In what follows, we identify CðlÞ−n ¼ γ̄n, as
in Eq. (36). For the bulk pressure we have
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lΠn ¼ −
m2

3

XN0

r¼0;≠1;2
τð0Þ0r

�
Cð1Þr−1 −

G3r

D20

�
; ðB1Þ

τΠn ¼
XN0

r¼0;≠1;2

m2τð0Þ0r

3ðεþ PÞ
�
rCð1Þr−1 þ

∂Cð1Þr−1
∂ ln β

−
G3r

D20

�
; ðB2Þ

δΠΠ ¼
XN0

r¼0;≠1;2
τð0Þ0r

�
rþ 2

3
Cð0Þr þH

∂Cð0Þr

∂α
þ H̄

∂Cð0Þr

∂β

−
m2

3
ðr − 1ÞCð0Þr−2 −

m2

3

G2r

D20

�
; ðB3Þ

λΠn ¼ −
m2

3

XN0

r¼0;≠1;2
τð0Þ0r

�
∂Cð1Þr−1
∂α

þ 1

h
∂Cð1Þr−1
∂β

�
; ðB4Þ

λΠπ ¼ −
m2

3

XN0

r¼0;≠1;2
τð0Þ0r

�
G2r

D20

þ ðr − 1ÞCð2Þr−2

�
: ðB5Þ

For the particle-diffusion current

δnn ¼
XN1

r¼0;≠1
τð1Þ0r

�
rþ 3

3
Cð1Þr þH

∂Cð1Þr

∂α
þ H̄

∂Cð1Þr

∂β

−
m2

3
ðr − 1ÞCð1Þr−2

�
; ðB6Þ

lnΠ ¼
XN1

r¼0;≠1
τð1Þ0r

�
βJrþ2;1

εþ P
− Cð0Þr−1 þ

1

m2
Cð0Þrþ1

�
; ðB7Þ

lnπ ¼
XN1

r¼0;≠1
τð1Þ0r

�
βJrþ2;1

εþ P
− Cð2Þr−1

�
; ðB8Þ

τnΠ ¼
XN1

r¼0;≠1

τð1Þ0r

εþ P

�
βJrþ2;1

εþ P
− rCð0Þr−1

þ 1

m2
ðrþ 3ÞCð0Þrþ1 −

∂Cð0Þr−1
∂ ln β

þ 1

m2

∂Cð0Þrþ1

∂ ln β

�
; ðB9Þ

τnπ ¼
XN1

r¼0;≠1

τð1Þ0r

εþ P

�
βJrþ2;1

εþ P
− rCð2Þr−1 −

∂Cð2Þr−1
∂ ln β

�
; ðB10Þ

λnn ¼
XN1

r¼0;≠1

τð1Þ0r

5
½ð2rþ 3ÞCð1Þr − 2m2ðr − 1ÞCð1Þr−2�; ðB11Þ

λnΠ ¼
XN1

r¼0;≠1
τð1Þ0r

��
∂Cð0Þr−1
∂α

þ 1

h
∂Cð0Þr−1
∂β

�
ðB12Þ

−
1

m2

�
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∂α
þ 1

h
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∂β

��
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λnπ ¼
XN1

r¼0;≠1
τð1Þ0r

�
∂Cð2Þr−1
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þ 1

h
∂Cð2Þr−1
∂β

�
: ðB14Þ

Finally, for the shear-stress tensor we have

δππ ¼
XN2

r¼0

τð2Þ0r

�
rþ 4

3
Cð2Þr þH

∂Cð2Þr

∂α
þ H̄

∂Cð2Þr

∂β

−
m2

3
ðr − 1ÞCð2Þr−2

�
; ðB15Þ

τππ ¼
2

7

XN2

r¼0

τð2Þ0r ½ð2rþ 5ÞCð2Þr − 2m2ðr − 1ÞCð2Þr−2�; ðB16Þ

λπΠ ¼ −
2

5m2

XN2

r¼0

τð2Þ0r ½ðrþ 4ÞCð0Þrþ2 −m2ð2rþ 3ÞCð0Þr

þm4ðr − 1ÞCð0Þr−2�; ðB17Þ

τπn ¼
2

5ðεþ PÞ
XN2

r¼0
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�
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−m2

∂Cð1Þr−1
∂ ln β

�
; ðB18Þ

lπn ¼
2

5

XN2

r¼0
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λπn ¼
2

5
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��
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−m2
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