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We consider the evolution equations for the bulk viscous pressure, diffusion current, and shear tensor
derived within second-order relativistic dissipative hydrodynamics from kinetic theory. By matching the
higher-order moments directly to the dissipative quantities, all terms which are of second order in the
Knudsen number Kn vanish, leaving only terms of order O(Re™'Kn) and O(Re™?) in the relaxation
equations, where Re™! is the inverse Reynolds number. We therefore refer to this scheme as the inverse-
Reynolds-dominance (IReD) approach. The remaining (nonvanishing) transport coefficients can be
obtained exclusively in terms of the inverse of the collision matrix. This procedure fixes unambiguously
the relaxation times of the dissipative quantities, which are no longer related to the eigenvalues of the
inverse of the collision matrix. In particular, we find that the relaxation times corresponding to higher-order
moments grow as their order increases, thereby contradicting the separation of scales paradigm. The formal
(up to second order) equivalence with the standard DNMR approach is proven and the connection between
the IReD transport coefficients and the usual DNMR ones is established.
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I. INTRODUCTION

Formulating a causal and stable framework for relativistic
dissipative hydrodynamics has been a long-standing issue
that has seen a series of improvements in the last decade
[1-3]. This problem is not merely academic, as dissipative
fluid dynamics has been proven to be a powerful effective
theory in relativistic systems, such as heavy-ion collisions
[4—7] and relativistic astrophysical processes [8—10].

While the relativistic Euler equations describing the
dynamics of the perfect fluid are unambiguously formu-
lated, their generalization to relativistic dissipative fluids
proves to be a formidable problem. In the nonrelativisic case,
the leading-order contribution to the Chapman-Enskog
expansion, i.e., the Navier-Stokes equations, yield a suitable
theory for viscous hydrodynamics which has seen tremen-
dous success [11]. At this level, the dissipative quantities,
otherwise known as thermodynamic fluxes [12], are fixed
by constitutive equations to the thermodynamic forces
(expressed as gradients of the fluid properties), thereby
implying an instantaneous response and an infinite infor-
mation propagation speed, thus violating causality [12—15].
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An approach attracting much interest in recent years is to
abandon the traditional (Landau or Eckart) matching con-
ditions, by which the energy and particle number density of
the system are equated to their fictitious local-equilibrium
counterparts. In contrast, general matching conditions can be
exploited in the frame of a first-order-like theory closely
resembling the Navier-Stokes formulation in a way that
guarantees causality and stability [2,3,16,17].

In this paper, we focus on the more traditional approach
of formulating a causal and stable theory of dissipative
hydrodynamics in the form of relaxation equations for
the dissipative quantities appearing in the particle current
and stress-energy tensor decompositions, namely the bulk-
viscous pressure I1, the particle diffusion current n#, and the
shear-stress tensor 7. Such second-order theories introduce
relaxation times governing the response of the dissipative
quantities with respect to changes in the fluid properties (e.g.,
pressure P, ratio @ = u/T between the chemical potential y
and temperature 7, and four-velocity u*). This procedure
sets finite relaxation timescales of the approach towards the
corresponding asymptotic Navier-Stokes limits, thereby
rendering the formulation causal [18].

Naturally, due to the microscopic nature of the coef-
ficients involved in second-order theories, an underlying
formulation has to be provided. Most works employ kinetic
theory, since it provides a suitable limit of quantum field
theories in the semiclassical limit [19]. From a thermody-
namical perspective, the entropy current describing the
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entropy flow in second-order hydrodynamics exhibits sec-
ond-order terms, which are in principle calculable from
kinetic theory [19-21] or can be postulated within the frame
of extended irreversible thermodynamics [22-27].

Even though the second-order formalism by Miiller,
Israel and Stewart [20,28] has long been the most widely
used second-order theory, its equations of motion were
obtained by employing a nonorthogonal momentum space
basis which cannot be used to systematically account for all
second-order terms, leading to inaccurate expressions for
the transport coefficients. This issue can be resolved by
considering the exact equations of motion for the irreduc-
ible moments of the Boltzmann equation, as has been done
in the celebrated DNMR formulation of relativistic dis-
sipative hydrodynamics [1,29-31]. In addition, this formu-
lation provided a way to improve the truncation by
increasing the number of moments considered for a given
tensor rank, thereby moving from the (lowest-order)
14-moment approximation to 23 moments and beyond.

In the DNMR formulation [1,32], the main idea consists
of obtaining a system of relaxation equations for the
eigenmodes of the linearized collision kernel, which can
then be related to the irreducible moments and thus to the
dissipative quantities. The evolution equations for the
dissipative quantities obtained in this procedure read

Il +1I=-0+ T + K+ R, (1a)
1%+ nf = kI* + JF + KF + RE, (1b)
T, 4 gt = 2ot 4+ T+ K R, (1c)

where 7y, 7, and 7, are the relaxation time corresponding
to II, n* and #**, respectively, while ¢, x and 7 are the
bulk viscosity, diffusivity and shear viscosity coefficients,
constituting the so-called first-order (Navier-Stokes) trans-
port coefficients. In this procedure, the relaxation equa-
tions for the dissipative quantities are derived on the basis
of a hierachical truncation with respect to the inverse
Reynolds number Re™!, related to the magnitude of the
dissipative quantities (Re™!' ~ |T1|/ Py, |n#|/ng, |7**|/ Py),
as well as to the Knudsen number Kn, which can be
related to the magnitude of gradients (Kn~ £VA/A,,
where 7 is a characteristic microscopic scale and A is a
fluid property) or to the microscopic mean free path
(Kn~1ty/L,t,/L,t,/L, where L is a macroscopic length
scale). By the above definitions, the second-order terms
JHiHe  JCHiHe and RAHe collect all contributions that
are of orders O(Re~'Kn), O(Kn?) and O(Re™?), respec-
tively. All third-order terms with respect to Kn and
Re7!, ie., the terms of orders O(Re™3), O(Re 2Kn),
O(Re~'Kn?), and O(Kn?), are neglected. It is thus implied
that, besides the requirement that both Re™! and Kn are
small, the above power-counting scheme also assumes
that they are of the same magnitude, i.e., Kn ~ Re L It

should be noted that in general the magnitudes of Kn and
Re™! need not be the same, hence the regimes where only
one of these quantities is small and the other one is large lie
outside the domain of applicability of second-order hydro-
dynamics. Such regimes may be probed using third-
order hydrodynamics [33,34] or directly kinetic theory
[15,35-40], however in this paper we focus only on the
second-order theory.

The R*#s terms, derived in Ref. [29], arise due to
quadratic terms appearing in the collision term. These terms
will not be discussed further in this work. The ¥t # terms
involve quadratic terms in the first-order gradients of the
flow properties (e.g., 6*#6*);) or second-order gradients
(e.g., AY V,6*). Their transport coefficients were derived in
Ref. [29], however they are usually disregarded because
they give rise to parabolic equations [39]. On the other
hand, the terms in J#1*#¢ are hyperbolic in nature and are
fully compatible with special relativity.

In this paper we show that it is possible to formulate a
theory of dissipative relativistic hydrodynamics setting the
noncausal contribution C#1*#¢ to zero by construction. The
basis of our analysis is the asymptotic matching scheme
proposed in Ref. [39] in the context of multiple dynamical
moments, as well as in Ref. [41] for the case of multi-
component fluids. The scheme finds its nonrelativistic
analogue in the work of Struchtrup [42], and it is sometimes
called the order of magnitude approach.

Except in the case of the lowest-order truncation, the
transport coefficients and the relaxation times obtained in
this scheme are different compared to those obtained in
DNMR. The two theories thus seem to yield, in general,
different equations. In this paper we establish the con-
nection between the two schemes and show that they are
equivalent up to second order in Kn and Re~!. By
consistently using the matching conditions to express
thermodynamic forces in terms of dissipative quantities,
we show that all terms contained in K#1~*#¢ in DNMR can
be reabsorbed into the transport coefficients in J#1"*#¢ and
the relaxation times, thus modifying the usual DNMR
transport coefficients. We therefore call our approach the
inverse-Reynolds-dominance (IReD) approach, as it con-
sists, effectively, in replacing (’)(an) terms in favor of
O(Re~'Kn), making the inverse Reynolds number “dom-
inant” over the Knudsen number. The IReD equations are
formally equivalent to the DNMR ones. We will show this
by analytically establishing the connection between the
transport coefficients appearing in the two formulations.

The outline of this paper is as follows. In Sec. II,
we review the DNMR formalism introduced in Ref. [1],
while in Sec. III we discuss the IReD scheme, leading to
vanishing K#1# terms [41]. Section IV addresses the
connection between the transport coefficients arising in the
IReD approach compared to the DNMR ones (technical
details are relegated to Appendix A). Section V discusses the
connection between the approach introduced in Ref. [39] for
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the case of 23 dynamical moments and our proposed IReD
approach. In Sec. VI we list the explicit values for the
transport coefficients in the limit of an ultrarelativistic ideal
gas of hard spheres, demonstrating the convergence of the
method when including higher-order moments. The general
expressions for the transport coefficients in the IReD
approach are summarized in Appendix B. Section VII
concludes this paper. Throughout this paper, we use
Planck units (¢ = # = kg = 1) and the (+ , —) metric
convention. Our analysis is restricted to second order with
respect to Kn and Re™! and we work under the assumption
that Kn ~ Re™!

II. DNMR APPROACH

In this section, we review the DNMR formalism intro-
duced in Ref. [1]. The starting point of the analysis is the
Boltzmann equation,

ko, fi = CIf]. (2)

where f) = f\(x) is the one-particle distribution function,
k* = (k° k) is the on-shell four-momentum (k> =
(k°)? — k* = m?), while C[f] is the collision term. By
the H-theorem [19,43,44], C[f] acts by drawing the system
towards local thermodynamic equilibrium, described by the
equilibrium distribution fy.

The deviation from equilibrium §f = fx
characterized in terms of its irreducible moments p’,"
defined as

— fok can be
“Hg
b

where dK = gd®k/[(27)3k°] is the Lorentz-invariant inte-
gration measure (g is the number of internal degrees of
freedom), while A#1#) = Al Av1-e is the symmetrized
and (for Z > 1) traceless projection of the tensor A#1"#¢ with
respect to the fluid four-velocity u#. In particular, the r = 0
moments can be related to the bulk pressure I, diffusion
current n* and shear stress 7** as follows:

3

= ——1I,
Po m2

Po=nt's  py =" (4)

In the Landau frame, the charge current N and stress-energy
tensor 7+ admit the following decomposition:

N* = nu* + n*,

T = eutu? — (P + T A™ + 7, (5)

where A* = g™ — u#u”. Since the particle-number den-
sity n and energy density e are equal to their fictitious
equilibrium values (n = ng, € = &;), the moments p; = én
and p, = ¢ both vanish. In addition, the heat flow W* =
Alu, T = p/ also vanishes by the Landau matching con-
dition, Thu* = eut. Summarizing, in the Landau frame the
following moments are automatically zero:

pr=p2=p,=0. (6)

Starting from the Boltzmann equation (2) and defining
V¥ = AY¢¥ and f = Df = u - of for an arbitrary function

e — / dKE, K ) S Fis 3) f, the equations of motion for the irreducible moments p,.,
Py and p)” can be derived as shown in Ref. [1], leading to
|
. (0) G2r G2r v
pr—Co_y =y 0 ——"T10 + o r—10)pl 0, + rpl_ i, =V,
1 Dy Da Dy = U015 1 = Vb
1
- 5 [(r + 2)pr - (r - 1)m2ﬂ,~_2]9, (73)
L 1 v -
P = O = a1 oty 5 (= my = (r - 3)p10 = MV + i,
1 1 .
+52r=2)m*pl_y = (2r 4 3)pilol + S [m?rp,y = (r 4+ 3)pp i
Jr
+ﬂ€ _:jol (Mt — VAL + Ajoa™) ——V"(m prot = Prit) + (r = D505, (7b)
2
o =t =200 o 22+ 5)p " ~2m? (r=D)p) %)} 4207 ),

2 ((rA)pa— 2t B)mp, 4 (r

15
2 ( (

—1)mp, alot 45 2V, =t

h 1 v v 12 v Q VA
= S)pl =l Jit) = [(r+ Aol = (= 1)pp)0-+ (r= 1) H s = Mg T2} + iy, (7€)
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where [* = V*q. Furthermore, o, =V,u,, o, =
1 (0,u, —0,u,) and @ = d,u* denote the shear tensor,
vorticity tensor and expansion scalar, respectively, while
C i’i e ) represents an irreducible moment of tensor-rank #
of the collision term, defined in analogy to Eq. (3):

clene) _ / dKEKY - kIClfl. (8)

Furthermore, Gnm = JnOJmO - Jn—l,OJn1+1,0’ an =
Jns190n-1.4 — J2,, while Jng = (01,,/0a) 4 represents the
derivative of 1,, with respect to a =u/T at constant
inverse temperature p, with

nq-

1 -2
I, =——— [ dKE, " (=A%k k)9 fox.
= G | KET A o (9)

The first terms appearing on the right-hand sides of Egs. (7)
are given as

1
0
a = (1=l — 1y —D—N[Gzr(f‘f'P) — G311,
1 n
Olg) :Jr+l,1 _£+P-Ir+2,l’
2
o =Ly + (r=Dlpann. (10)

The relations (7) constitute a system of infinitely many
coupled equations, where the unknowns are the irreducible
moments p;'"#/. In order to extract from here the equa-
tions of motion for the dissipative quantities I1, n* and 7,

the collision term C¥'"**/

must be expressed in terms of
Pyt*  This can be achieved by introducing a decompo-

sition of §f) with respect to the irreducible moments,

5fk—f0kf0kZZH aPn e k. (10)

=0 n=

where fo, = 1 — afox (a = 1 for fermions, —1 for bosons
and O for classical particles) and N, represent truncation
orders which in principle should be taken to infinity. The
functions an) are polynomials of order N, in Ey and are
defined such that Eq. (3) holds exactly for 0 < n < N, [1].

Ignoring quadratic or higher-order terms in deviations
from equilibrium, the collision term can be represented (to
linear order) as

Ny
ST A

(12a)
n=0212
Ny :
Cffi)l = - Z As‘n)pli;» (12b)
n=0,#1
ch) == AR, (12¢)
n=0

where A%) can be interpreted as the collision matrix. The
sums appearing above skip the moments which vanish due
to the Landau matching, as shown in Eq. (6).

The final step is to relate the irreducible moments p}"*
to those of order r = 0. This is the branching point between
the DNMR approach and the IReD approach presented in
Sec. III. In the DNMR approach, the basis of this

construction is to seek a diagonalization of A%) ensured
by the matrix of eigenvectors Q%), such that

(Q)TADQ = diag(ry” A7), (13)

where the columns of the diagonalization matrix Q%) are

chosen such that the eigenvalues ;((f)

order,

appear in ascending

<< (14)

With the above convention, it is possible to enforce a
separation of scales by which only the eigenvectors

N¢

= Z(QM))EJ’I (A (15)

J=0

M1 He
XO

corresponding to the slowest scale ;(((f) remain in the

@)

transient regime (the normalization of €;;" is such that

Qgg) =1). The eigenvectors X% *“, corresponding to

larger eigenvalues )(530, are approximated by their asymp-

totic (Navier-Stokes) values

r>0

(0) (1) (2)
Pr Pr v BT
Xso2=gr0, Xpox—mlt  Xlox—Fz0",  (16)
r Xr Xr
where
0 = 0
A= S @
J=0.#1.2
1 5 1
AV =3 @)zl (17b)
j=0.#1
2 2 2
pY = 2Z(Q(2))l—]1a5 ) (17¢)
=0

By this approximation, the irreducible moments p' ™ =
SN QU XM take the following form:
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p=-Sen-G-0l00. (8
Pl = Q)+ (k= Qg )1, (18b)
P = Q) 4 2(n; - Qo (18c¢)

P ~ O(Kn?, KnRe™), (184)

where the property X' ™ = ppt Zn>0 Qll) xu#t
was employed. In the above, the first-order transport
coefficients {;, x; and #; are computed via

Ny
:% Z; rn,ar , (19a)
N,
ko= > way), (19b)
r=0.#1
N,
no= mal, (19¢)
r=0

with { =y, k =Ky and n =1ny. The inverse collision
@)

matrix 7,,/ appearing above satisfies
@) ZNf () 1
— (A1 — -1
Trn = (-A( ))rn - m:()Qrm )(Snf) (Q( ))mn' (20)

In what concerns the moments of negative order p2, "/

(with r > 0), they can also be related to the dissipative
quantities via

Ne
p/i]r'uﬂf _ Zf‘%)p/’;r“ﬂf’ (21)
n=0

where the functions F <ri> are defined as
() 7! —r aff 3
frn - W d fOkakE H (A k(zkﬂ) ’ (22)

which follows after introducing Eq. (11) into Eq. (3). Using
now the asymptotic matching in Eqs. (18), we arrive at

3 5
b= GO0, (3
Py =i+, (23b)
=y + 29 o (23¢)

(#) @)

The coefficients y, ' and 7, ° can be computed using the
functions F %),
Sy 0) (0
SooFwaey. =Y FRC.-eg0).
n=0,#1,2 n=0,#1,2
W_ N> £g S
= 30 Fae. n= 3 Ful -9k,
n=0,#1 n=0,#1

N, N
=Y FRR. =Y FR -0, (@)
=0 n=0

At this point, we remark that in the DNMR approach [1]

and in later papers [29], the terms 77(,0 are neglected, such

that the O(Kn) contributions to p2, " that should later
appear in the [C#1# terms are disregarded completely [29].
In order to conform with the DNMR notation and still stay

accurate at first order with respect to both Kn and Re™!, the
(@)

coefficient y; ’ should be replaced by

Ny
20— 0 Lo _ Fael,  (25a)
n=0,#1,2
}75” = 7/ Z frn Vl ) (25b)
n=0,#1
, N,
VLR VI o e
=0

where we introduced the notation (also to be used in the
following section)

A T L
0 Ko Mo

The same quantities are denoted in Ref. [41] by Zjn = Cflo) ,
g, =CY and 7, =C?
Egs. (23) becomes

. With the above convention,

_(1 v = v
p_,:—ﬁ}’r I1, p’irzy(r )I’l”, r—ys )77"” (27)

which is similar, but not identical,
Ref. [1].
Finally, the evolution equations (1) for I, »# and #** can

be obtained by multiplying Eqgs. (7) by r((f:) and summing

over r. The relaxation times 7, 7, and 7, are given by the

inverse of the smallest eigenvalues )(f)f)

to Eq. (67) in

of the collision
matrices A%) [see Eq. (13)]:
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1 ON(0)60)
n = “0) = Tor QrO ’ (28&)
Xo r=0,#1,2
1 (o)
T, = W = TOr QrO s (28b)
Xo r=0,#1
I R2 260
Tp = W = Tor QrO s (ZSC)
)(0 r=0

where we remind that the normalization of Q(ri) is such that

Qg{;) = 1. For completeness and for future reference, we
display below the complete expressions for the JH1#¢
terms [1],

j: —fn,ZV'n—Tnnn‘F—énnne—ﬂHnn‘I

+ A1 0,0 (29a)
JH = —t,n,0* = 8,,n0 — €, V1
+ €, AN 1t + T gl IFF — 1, 7" F,
Y STy B | | O T (29b)

JH = 21,[7151” " — Oppt* 0 — 1',[,,71"“"0;> + A nllet”

— T W) 4 £,V + ) n# 1Y), (29c¢)

where F¥ = V¥P and I* = VF¥a. We also display the
KHi-He terms, following the conventions of Ref. [29]:

K= w,w" + 80,0 + 560 + 8yl -1+ {F - F

+ 8l - F+5V - I1+5V-F, (30a)
K = ®,0"1, + Ry6"F, + &3 1"0 + R4 F*0
+ Rsa1, + gAYV 6" + & VHO, (30b)
K = i@t a?) , + i, 00t + 7”736’1<”oj>
+ ﬁwﬁl‘wv)ﬂ + ﬁ5[<ll[l'> + ,~16F<ﬂFv>
+ i I FY) 4 VI 4 g VEFY) (30c)

To understand the origin of the O(Re~'Kn) and O(Kn?)
terms, we note that the asymptotic matching in Eqs. (18)
replaces the irreducible moments [originally of order
O(Re™")] with O(Re™!) and O(Kn) terms proportional to
(I, n#, 7#**) and (0, I*,0*"), respectively. At the level of
Egs. (1), the former terms make O(Re~'Kn) contributions,
while the latter ones give rise to O(Kn?) terms. This can be
easily seen in what concerns the terms appearing on the right-
hand side of Egs. (7), since there the irreducible moments
always come with O(Kn) coefficients. Additional contribu-
tions arise from the comoving derivative of the irreducible

moments appearing on the left-hand side of Egs. (7). We
illustrate this by considering the particular example of the

tensor moments pﬁ” V)

Eq. (18c¢) leads to

. Taking the comoving derivative of

P = Qi) 4 Q@ o 4 2D - QF))]om
+29(C? - Q)5 + O(Re 'Kn?), (31)

where ng) = 5,/nwas introduced in Egs. (26). The first term
in Eq. (31) gives rise to the relaxation time 7, via Eq. (28c¢).

To leading order, the comoving derivative Df = f of a
thermodynamic function f = f(a,f) is of order O(Kn),
since

. of . of., (., of -of -
T =5 05"~ (Haa+Haﬂ>9+O(Re o

where H and H are defined in Eq. (A2b), while & andﬁ are
given in Egs. (Ala) and (Alb). Thus, the second term of
Eq. (31) is of order O(Re~'Kn), contributing to J*. In
contrast, the third and fourth terms are of order O(Kn?), thus
contributing to M.

As mentioned in the introduction, the KCF1"#¢ terms are
traditionally ignored in the literature, either because they
vanish in the 14 moment limit, or because they lead to
parabolic equations of motion [39]. In the following
section, we rederive the evolution equations (1) such that
JCHr#e vanish identically by construction.

III. INVERSE-REYNOLDS-DOMINANCE (IRED)
APPROACH

In this section, we discuss the derivation of the evolution
equations (1) for the case when the terms of second order
with respect to Kn vanish, fC#1#s = (. The derivation is
identical to that presented in the previous section, up to
Egs. (12). The main difference compared to the DNMR
approach is at the level of the asymptotic matching. In this

section, we bypass the diagonalization of the collision
matrix via the matrix Q. Multiplying Egs. (7) by %) and

summing over r, we arrive at [41]

N(}

_ 3
S alp 4oy =500+ OKnRe),  (33a)
r=0,#12 m
N,
S sl 4 ph = k" + O(KnRe™),  (33b)
r=0,#1
Ny
Do 4 plt = 20" + O(KnRe).  (33¢)
r=0
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where the first-order transport coefficients ¢, x,, and 7,
were introduced in Eqs. (19). Note that the comoving
derivatives on the left-hand sides of Eqgs. (33) are of order
O(KnRe™!) as well. Neglecting terms of this order, we
obtain straightforwardly from Eqgs. (33)

3
Pn=—5 0, w0, = 2,0, (34)
m

while p*" ~ O(Kn?, KnRe™"). The above relations estab-
lish the correspondence between quantities of orders
O(Re™!) and O(Kn) appearing on the left- and right-hand
sides, respectively. We now exploit this correspondence in
order to eliminate the O(Kn) terms appearing in the DNMR
matching prescription shown in Egs. (18). Specializing the
above relations to the case n = 0 and using Eqgs. (4) allows
the thermodynamic forces 8, n* and ¢** to be replaced by
the dissipative quantities II, n* and #**, leading to the
asymptotic matching equations

3
P ——C0 L pheC e =P, (35)
m

where the coefficients Cﬁlf) were introduced in Egs. (26).
Equations (35) naturally hold also when n = —r < 0 by
identifying

Ne
¢ =70 =" FOc0), (36)
n=0
where 7&‘” was introduced in Egs. (25) and the function

F Si) is defined in Eq. (22). Equations (35) relate the higher-
order moments p.!** to the zeroth-order ones. As men-
tioned in the introduction, a similar approach was proposed
under the name of the order of magnitude approach in
Ref. [42] in the case of nonrelativistic fluids, as well as in
Ref. [41] for multicomponent relativistic fluids. In the
following, we will refer to this approach as the inverse-
Reynolds-dominance (IReD) approach, for reasons that will
become apparent.

We first remark that Egs. (35) is equivalent to the original
DNMR matching in Eqs. (18). This can be seen by
replacing 0 = —I1/¢, I* = n#/k and o** = 7**/(2n) and
noting that the error introduced by these replacements can
be neglected since it is of higher order than the terms shown
in Egs. (18). By using the relations (35) in the equations of
motion (33), we can replace all irreducible moments
appearing on the right-hand side by the dissipative quan-
tities I, n#, and 7#*, with the neglected terms being of order
O(Kn’Re™!). Furthermore, setting the index n =0 in
Egs. (33), we obtain the relaxation equations (1) with
JCHr#e = (), The J#1#¢ terms retain the form in Eqs. (29)
and the transport coefficients arising there are identical in
form to those derived in the DNMR formalism and reported

in Ref. [1], with the exception that all instances of QY
)

should be replaced by c£””> (also y; ’ should be replaced by
() _ C(f))l.
Yro=0L-r)
(DNMR)  (IReD)
) 0 - (372)
QrO - C”
A (37b)
Krvte  — 0. (37¢)

The expressions for the transport coefficients obtained using
the IReD approach are summarized in Appendix B. The
above prescription holds also for the computation of the
relaxation times. Replacing Q%) with C&f) in Egs. (28), we
arrive at

= e (38a)
r=0,#1,2
N,
7, =Y 70", (38b)
r=0,#1
Ny
T, = Z 182,)052> (38¢c)
r=0

Upon performing the replacements in Egs. (37), the values of
the transport coefficients arising in the IReD approach will be
different from those computed using the DNMR approach.
This is clearly the case for the coefficients of the O(Kn?)
terms, which vanish identically in the IReD approach. We
will come back to the relation between the IReD and DNMR
transport coefficients in the next section.

The matching procedure in Egs. (35) eliminates the KCF1#¢
terms which are of order O(Kn?), retaining the J*1*# terms
of order O(KnRe™") and thereby trading one power of Kn for
a power of Re™!. This is clear when considering the terms
appearing on the right-hand side of Eqgs. (7) [see also the
discussion before Eq. (31)]. The comoving derivatives of the
irreducible moments appearing on the left-hand side of
Egs. (7) make only O(Re~'Kn) contributions. To see this,
we reconsider the comoving derivative of the tensor moments
with the asymptotic matching in Egs. (35),

pﬁﬂl/} _ ng)”(;w) + ng)”lﬂ/ + O(Re_lan). (39)

The first term contributes to the relaxation time 7, via
Eq. (38c). As indicated in Eq. (32), ng) is of order

'See Appendix C of Ref. [41] for explicit expressions in the
case of a multicomponent fluid.
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O(Kn), such that the second term is of order O(KnRe™!),
contributing only to J**. We have thus established that the
O(Kn?) terms vanish identically under the asymptotic
matching in Egs. (35). For this reason, we refer to this
approach as the inverse-Reynolds-dominance approach.
The connection between the IReD relaxation times in
Eqgs. (38) and the eigenvalues of A%) is lost, therefore one
may wonder about the fate of the separation of scales. In
order to analyze the timescales associated with higher-order
moments, it is convenient to introduce the coefficients

Cﬁfr) via

= op=" (40)

K, un

1
’ Cn;

N —
A
3

Sl

such that Cgfg = €\ reduces to the coefficients introduced
in Egs. (26). To obtain the evolution equations for the
irreducible moments p}L,", all the other irreducible
moments should be written in terms of these ones via

formulas analogous to Egs. (35),
P = Ol (41)

With these relations, we can apply the same procedure that
was employed to yield Egs. (1) and obtain

Pn= C;?Zpr, Ph CEleﬂ’:,

3
b+ pr = —5 4,0+ O(KnRe ™), (42a)
m
TP+ pft =Kk, + O(KnRe™!),  (42b)
a4 Pl = 20,0" + O(KnRe ™), (42¢)

TABLE I

where the omitted terms on the right-hand side are of the
same structure as Egs. (29). The relaxation times appearing
above are given by equations analogous to Egs. (38), with

) = Cfo) replaced by C&QI

Ny

T = T,(fi)cﬁ?,z, (43a)
r=0,#1.2
Ny
T = Y T CL (43b)
r=0.41
Ny
Tom = T,(,Z,)Cf,g. (43c¢)
r=0

Setting n = 0 in the above equations reproduces Eqgs. (38).
The ordering of the relaxation times thus obtained clearly
depends on the details of the (inverse of the) collision
matrix. For definiteness, we report in Table I the first four

relaxation times in comparison to the first four eigenvalues

)(fﬁ obtained for the case of an ultrarelativistic ideal gas

interacting via a constant cross section o (to be discussed in
Sec. VI). It can be seen that the separation of scales
principle invoked in the DNMR approach no longer holds,
being in fact reversed. The relaxation times obey the
inequality 7, <7, <--- for all x € {n,z} (the bulk
sector does not contribute to the dynamics for a gas of
massless particles).

Based on the above analysis, it becomes evident that
demanding that the O(Kn?) terms vanish gives relaxation
times which are not compatible with the separation of

(left) Relaxation times 7, and 7., corresponding to the vector and tensor moments p and p}*, respectively, obtained for

various values of the truncation orders Ny and N, = N| — 1. (right) Inverse eigenvalues b{ﬁ”}‘l and b(@ ]=! shown in descending order.
The relaxation times and inverse eigenvalues are expressed in units of the mean free path Ay = 1/ (no), where n is the local particle-

number density and ¢ is the (constant) collision cross section.

[IReD] Diffusion: Relaxation times [DNMR] Diffusion: Inverse eigenvalues

_ 17— _ 1)
Ny Tno Mmfp} Tn,Z[/Imfp] Tn3 Mmfp} Tn.4[/1mfp] Ny b((()l)] IMmfp} b(g >] 1[’1mfp] b((;)] 1[’1mfp} b(z(t )] 1Mmfp]
1 9/4 1 9/4 e
2 2.076 2.419 e 2 2.59 1.629 e
3 2.076 2.435 2.565 3 2.575 1.961 1.413 e
4 2.079 2.438 2.568 2.680 4 2.573 1.85 1.597 1.304
00 2.084 2.440 2.570 2.681 0 2.572 1.847 1.586 1.451
[IReD] Shear: Relaxation times [DNMR] Shear: Inverse eigenvalues

2)— 2)q— 2)— 2)q—
R Y e L e B P e I e e e
0 5/3 0 5/3 e
1 1.649 1.785 e 1 2 1.364 e
2 1.654 1.788 1.902 e 2 2 1.646 1.241 e
3 1.655 1.789 1.902 2.001 3 2 1.650 1.477 1.176
oo 1.656 1.789 1.902 2.001 00 2 1.650 1.484 1.386
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scales concept. Conversely, enforcing the separation of

scales as done in DNMR (by setting 7y = b(o ] I etc.)
introduces in principle terms of order O(Kn?) in the
evolution equations for the dissipative quantities. Despite
this difference, the DNMR and the IReD approaches are
equivalent, as we will show in the next section.

IV. CONNECTION TO DNMR

As discussed in Secs. II and III, the IReD approach
yields relaxation equations for Il, n* and #** for which
JCHr#e = (. Since the DNMR and IReD approaches are
both exact to second order in Kn and Re™!, they must
coincide up to (and including) terms of second order. In
order to distinguish between the transport coefficients
arising in the two approaches, we will use a tilde ~ to
denote transport coefficients computed in the DNMR
approach. Keeping in mind that the first-order transport
coefficients {,, x, and 7, are exactly the same in the two
approaches, being given by Egs. (19), the goal of this
section is to prove the following equivalence:

oIl = J =7l - 7 - K, (44a)
—JH =70 — TF - KH, (44b)
— JW = F5m) - T K (44c)

where the O(Kn?) terms are absent on the left-hand side by
virtue of the IReD asymptotic matching.

The detailed comparison will be carried out in
Appendix A. Here we will put forth the key points and
focus on the modification of the relaxation times. This
modification arises due to terms in K*1"#* that originate

from p¥". Focusing on the DNMR asymptotic match-

ing for the case of the tensor moments, we multiply Eq. (31)

by rf)zr) and sum with respect to r:

Ny
o3 el
r=0

N,
Z Orpr
r=0

N
Y-y ... (45)

2
N alle

r=0

where we omitted second-order terms proportional to z*¥
and ¢* that lead to contributions to J** and K*. The
summation with respect to r can be performed in favor of
the DNMR and IReD relaxation times 7, and 7, introduced
in Egs. (28¢) and (38c¢), respectively. Performing the same
steps for the scalar and vector moments, we arrive at

Ny

Z Tgi)/'), =

3. .
_W[THH_C(TH_TH)Q_F"'L
r=0,#1,2

dp¥ =7 AW 4 k(z, — )% + -
1
D8 = 7 ) 4 op(z, —)6W) - (46)

Ny
r=0,#

N,

r=0

Employing now the first-order (Navier-Stokes) relations

o =11+ O(an, KnRe_l), (47a)
k" = n + O(Kn?, KnRe ™), (47b)
2ot = 7 + O(an, Kl’lRe_1>, (47C)

to eliminate the thermodynamic forces in favor of the
corresponding fluxes, it can be seen that the second terms in
Egs. (46) lead to the replacement of the DNMR relaxation
times (7, 7,,%,) by the IReD ones (7, 7, 7,), €.2-,

7,7 4 (1, — 7,) 6

O R O

=g,z —

where the neglected terms are of third order.

The above discussion hints that the key to connecting
the DNMR transport coefficients to the IReD ones is to
look at the comoving derivatives of 0, I* and ¢**. The full
expressions are derived in Appendix A. Here we just
reproduce the terms that hold the key to establishing the
connection between the DNMR and IReD relaxation times,
namely

0 = W w, (49a)
I = —, + -, (49b)
) = —Mig?) ) 4 ... (49¢)

The terms shown on the right-hand sides have no cor-
respondent in the J*"*#¢ terms (except for the case of
@**I,, which can be related to @w**n,/k), therefore the
coefficients of these terms appearing in JCHke will modify
the relaxation times appearing on the left-hand side of
Egs. (1). Focusing on the tensor sector, one can use
Eq. (49¢) together with ¢ ~ 7#* /21 to establish

m .

ﬁlwgwwwiz_zﬁ i

(uv)
T +2’7

T (5())
where the dots indicate the O(Kn?) terms which were
omitted in Eq. (49c). The coefficient i,/2n of —z)
represents exactly the difference between the IReD and
DNMR relaxation times. Performing the same steps for the
scalar sector, we arrive at
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TH—TH+—, (513.)
¢
r,,:%,,+g—’17. (51b)

In the case of the vector relaxation time, the term Ksw**1,
must simultaneously account for the change of the relax-
ation time on the left-hand side (in the term 7,72)), as well
as in the first term appearing in 7#, namely #,@**n,. Since
both terms have equal weights, they get one half of &s&/“1,
each, such that

(51c¢)

Likewise, the term 7740/<1” W

term 2%,[7r/<1"(1)”>’1 appearing in 7**. The resulting relaxation

time is indeed equal to 7, given in Egs. (51) by virtue of the
equality 77, = 2#; established by Eq. (122) of Ref. [29].

The relations in (51) can be explicitly checked by noting
that [29]

in K* acts by changing 7, in the

Ny
L= Y (-0 =l —F).  (52a)
r=0,#1,2
Ny
Rs =23 75k, = Qi) = 2x(r, = %,),  (52b)
r=0,#1
Ny
=2 1y (n,— Q) = 2n(z, — 7). (52c)
r=0

where the DNMR (with tilde) and IReD (without tilde)
relaxation times arise by virtue of Egs. (28) and (38),
respectively.

Table II summarizes the connection between the transport
coefficients appearing in the IReD and DNMR formulations.
While in this section we focused the discussion only on the
relaxation times, the procedure to obtain the results reported
in Table II is similar in spirit, involving straightforward but
tedious algebra, which is sketched in Appendix A.

V. CONNECTION TO DENICOL et al. [39]

In this section, we discuss the connection with Ref. [39],
where the parabolic X#1*#¢ are eliminated in the context of
multiple dynamic moments. Without reviewing all the
details of this work, we recall only the matching formulas
given in Eq. (20) of Ref. [39],

P = gl + 3k,
g = 2 B
which address only the vector and tensor moments, since

the work is focused on massless constituents for which the
scalar moments are irrelevant. Equations (53a) and (53b)

(53a)

(53b)

TABLE II. Comparison between the transport coefficients
arising in the IReD approach (left column) and those arising
in the DNMR approach. The partial derivatives are taken by
considering a = pu and f as independent variables and h =
(e + P)/n is the specific enthalpy. The notation H and H is
introduced in Eq. (A2b).

IReD DNMR
T " g’
T]'["—Nzl
T, ~n+§_5
K
Ty i
n+2,7
fl'[n ~ 57
2 =21
3 l'In~ P .
iin t = P2 &6 & ok
fn K(6+P)3 K (8+P)01nﬁ
Orn 3 ¢ 0C % NG
-G (n 29
m =z (M5t M55 73) 1%
Atin ~ Z, 4’7 ok 1ok
/1Hn_ ( )
hop
Mz ;.LH”+€1 +C2
2y
¢ . g Ry  HRs+2&, (0 10
Sun +=4 2lp——+—= (= 2
m 7+ Al 5""+K’l"“ « " \oa hop
- 0 d
H_K K H+ (kH) «
op  hop oa 3
z/ﬂn ~ HK +2k
11 an_'—%
2 ~ Ke
nr Z =6
mr+2’7
Tumt . Ky HEs + 2k, ks/2{ 0(fH)
My 20%(e+P)olnf e+ P op
Tna SN RS
o 2P (e—i—P)aln/i
2n . 2n « KK on 1lon
Ann + ?)’I’U[ j'lm + ? nw T + 2’5(_ ( E@)
¢ % C~ M i, 0 9
e e SR ()
””+2;7/1” ””+2 +311 2n 2;1 Haﬁ
Trn = 1 — 73
i+ 12’7 3
T __— mDyH 7; s oK
" k(e+P)} k K*e+P)olng
flm 2 +@
n a,( la
ﬂ” ~ 77]5 K K
" oot
nt K hdﬂ

can be supplemented naturally with an equivalent equation
for the scalar moments,

3
pr== Wflgg)n + 49, (53¢)

The coefficients /1%) appearing above are given in Eq. (21)
of Ref. [39] for # =1, 2 as
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TABLE III.  Transport coefficients for the diffusion current n* arising in the IReD approach for an ultrarelativistic
ideal gas interacting via a constant cross section ¢ for various truncation orders. We use the convention Ny =
N{+ 1 =N, +2 and the total number of moments is SN, + 3N; + Ny + 9.

PHYS. REV. D 106, 016013 (2022)

Number of
moments K 7’-I’L Mmfp] 5"[’1 [Tn] j’l‘t’l [T"l:| Anﬂ I:Tﬂ:| f’lﬂ [T"l:| T}’lﬂ [Tll]
14 3/(160) 9/4 1 3/5 8/20 8/20 B/80P
23 21/(1280) 2.0759 1 0.85806 0.067742p 0.030645p 0.0076613p4/P
32 0.16054/c 2.0761 1 0.88847 0.0690604 0.029064p 0.00726615/P
41 0.15959/¢ 2.0794 1 0.89501 0.0692404 0.028677p 0.00716925/P
0 0.158925/¢0 2.0838 1 0.89862 0.069273p 0.028371p 0.00709275/ P
TABLE IV. Same as Table III for the shear stress z*.
Number of
moments n Tx Mmfp} Tan [Tﬂ] Azn [Tﬂ] Orn [Tﬂ] Cen [th] Trn [Tﬂ]
14 4/(30p) 5/3 10/7 0 4/3 0 0
23 14/(1168)  1.6494  1.6850 0.23622/p  4/3  —047244/8  —0.47244/(BP)
32 12685/(cf)  1.6540  1.6936  0.21580/f  4/3  —0.54342/8  —0.54342/(BP)
41 12678/(cf)  1.6552  1.6944 020890/  4/3  —0.56014/p  —0.56014/(BP)
o0 1.2676/(op3) 1.6557 1.6945  0.20503/p 4/3 —0.56960/5  —0.56960/(pP)
oW _ oWy QWi _x VI. EXPLICIT VALUES IN THE
1 1
g =R ) = (S4a) ULTRARELATIVISTIC LIMIT
QKo = K2 Q5 Ko = K2 . .
We now explicitly evaluate the IReD transport coefficients
o - o? o®, _ . reported in Appendix B for an ultrarelativistic ideal fluid of
/l(r(z)) = w, /1(%) = W. (54b) hard spheres, interacting via a constant cross section . The
QoMo — M QoMo —m procedure for performing the calculations is identical to the

In the case of the scalar moments, the relevant coefficients
read

Ve -¢,

0 0
20 _ ng)C r— 950)53 20 _ ‘
Q¢ — ¢

r0 3 (54¢)

Q¢ - ¢ '
As shown in Ref. [39], the above matching prescription
succeeds in reproducing K = K# = K =0, which is
identical to the desideratum of our IReD approach. The
connection with the current approach can be established by
downgrading the moments p3, p5 and pf* from being
dynamical (i.e., separate degrees of freedom) by using
the matching formulas py = —(3/m?)CTL, ph = CVnr

and p}* = C(lz) 7" given in Egs. (35). Noting that

one introduced in Ref. [1] and will therefore not be repeated
here. Following Ref. [1], we report the values of the
coefficients obtained by employing 14, 23, 32 and 41
moments. In addition, we report convergence (co0) values
for the transport coefficients, which are obtained by employ-
ing high-precision arithmetics using MATHEMATICA [45] with
Ny—2=N;—1= N, =100. The values of the transport
coefficients related to the diffusion current #* and shear stress
7 are reported in Tables III and IV, respectively. The tables
showing these transport coefficients for 0 < N, < 100, as
well as the relaxation time and inverse eigenvalues listed in
Table I, can be accessed as Supplemental Material [46].
Naturally, we do not report transport coefficients for the bulk
viscous pressure I1, since, for massless particles, the bulk
sector does not make any contribution.

VII. CONCLUSION

0 0),(0 0
’1<r0) + Cg )’1£3) - Cg )’ (55a) In this paper, we considered the connection between
W W 4(1) W the transport coefficients arising in the standard DNMR
Ao +C5 A, =C, (55b)  and the IReD approach. We show that the transport
coefficients appearing in the J#1"*#¢ terms [accounting
i%) +C(12)/1(rzl> = CSZ), (55¢) for all O(KnRe™!) contributions] receive modifications

it is clear that Egs. (53) reduce to Egs. (35) for all values
of r.

coming from the original K#1"*#¢ terms. Moreover, the
relaxation times in the IReD approach differ from the
DNMR ones, being given as a combination of the DNMR
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relaxation time and a second-order transport coefficient
coming from the K#1"# terms.

In the process of absorbing the KHi#¢ terms, we
obtained relaxation times which are no longer constrained
to satisfy the separation of scales. In particular, for the case
of the ultrarelativistic hard sphere ideal gas, we found that
the relaxation times of the dissipative quantities I1, n* and
7 are smaller than those corresponding to higher-order
moments. For the same system, we also reported accurate
values for all transport coefficients (corresponding to the
limits Ny, Ny, N, — o0) appearing in the vector and tensor
sectors.

Due to their parabolic nature, the K#1*#¢ terms which are
quadratic in Kn may lead to violations of causality, as
pointed out in Refs. [1,39], and are therefore customarily
omitted. Our work provides the foundation for hydrody-
namical theories which are free of such terms, while
retaining second-order accuracy with respect to Kn and
Re~!. The absence of parabolic terms in the IReD approach
may help in deriving the entropy current from kinetic
theory. Such an analysis was performed in the 14-moment
approximation [19-21,23], where the parabolic terms are
absent also in the DNMR approach. Extending the analysis
beyond 14 moments (e.g., when N, — oo0) remains an open
problem representing an interesting avenue for future
research.
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APPENDIX A: EQUIVALENCE BETWEEN
IReD AND DNMR

In this appendix we report the calculations leading to
Table II. We will manipulate the terms appearing in the iC,
K* and £* terms (30) with the purpose of absorbing them
into the corresponding J*1"*#¢ terms, thus inferring the
connection to the coefficients obtained in the IReD

approach. We will employ the same notation as in
Sec. IV, by which the DNMR quantities will be denoted
with a tilde ™. The main idea is to trade one power of Kn for
one power of Re~!. This is done using the Navier-Stokes
asymptotic matching (47) between the thermodynamic
fluxes II, n* and #** and the thermodynamic forces 6,
I* and o*.

As already mentioned in Sec. IV, all terms appearing in
C#1#¢ can be related to those appearing in 7*1*# with the
exception of ¢ 10, " and 7w, (¥ appearing in K and

KC*, respectively. We also include here the &5@** 1, term for
reasons that will become apparent. These terms can be
related with the comoving derivatives of the thermody-
namic forces, as suggested in Eqgs. (49). We start this
section by deriving this latter equation.

We first recall Egs. (39)—(41) from Ref. [1],

Jz()ne - J306”n” _ @ﬂ'ﬂ”

a="Ho+ O Ala
Dy Dy~ " (Al2)
. - J1ol10 — Jygo, 0" J
p= 7—(9_‘_“)—20/"1_&”/4#6””’ (A1b)
Dy Dy
F# 4 VAT = ALY 2 — Ttk — i,
= ﬁﬂ' u T u ’ (Alc)

e+ P

where H [introduced in Eq. (I18) of Ref. [29]] and 7 are
defined as

B J20(€+P) —J30n

H
D»

(A2a)
J10(€+ P) - Jzon

H =
Dy

(A2b)

while J,,, and D, are introduced above Eq. (9).
The comoving derivative of § = d,u* can be computed
as follows:
0 = 0,i" — (0,u;)(du). (A3)

Noting that d,u* = Vi — iy, i and (9,u;)(d'u*) =
(V,u;)(VAur), we find
0 = —it- it + Vit — (Vo) (V,u®). (A4)
In the case of I* = V¥qa, the comoving derivative gives
1" = Ao+ VEa — (VHur)(0,). (A5)

Projecting the above using A% and noting that A¥A} =
—i*u,, we arrive at

I = e+ Vre — (VHuM)I,,. (A6)
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Finally, the comoving derivative of 6** = A} 9"u” can be
written as

o' = Ayoul + Vie) — A (omut) (0,uP). (A7)
Using V*u” = 6% + o™ + %GA"/’, the last term can be
expressed as

2
AL (0 ut) (o) = 66 + attar), + 100, (A8)

Projecting Eq. (A7) using AY op and using Aflﬂ> =

117%
A(Mu ug + A/Mu U,, We arrive at

Y 2
G = ) L ) — O—Mﬂg/{) — et _504”/9’ (A9)

where we also used the
Ag;vauﬂ — g,
Using Egs. (A1) to leading order in Kn and Re™! leads to

property Afi’/“,()” u =

~ 1 20e+P)+pJ
gzw””wﬂy—aﬂ”aﬂy—_az_wp'ly
3 (e+ P)
D .
_ DyH P \Y% F’
(e + P)? e+ P
; oH 10H 1 F*0 0(H)
I<>__}41./I 140 orn 1y
o (0 Thop 3> e+ P op
- "1, +HVHO,
s = —Met), — %.90-1“’ — gy
_wFW}W}_M[(ﬂFW
(e +P)° (€ + P)3
Vi)
: (A10)
£+P

Using Egs. (A10) to replace " w,,,, ©*“1,, and @ Megh),
in Egs. (30) gives

- 1~
K= 519‘1’@24‘51)0 o + <§3+§C1>92

~ ~ ~2(8+P)+ﬂ.]30
+ &yl -1+ <§5+§1W>F-F

20H
<§6+C1( P )I F+ &V I

+<Zg ip)v F,

(Alla)

R =-Si g <f<1 - ’;—5> oI, + Ryo"F,

(amz@_z)],ﬂg

hop 3
n [’?4 LS 8(,57'()]

S FrO+ 2 oM,
2e+P) op +3

2
+ kA, 6% + (1?7 + fH) VHo, (A11b)
N 2

K™ = —ij 64 + <’72 —5771>90’”'

+ (if3 — ﬁl)aﬂﬂaj) + ﬁwﬁ"wm + ijs [ 1Y)
- - 2(8+P)+ﬂ.]30>
+ —p s 7 P00 plupy)
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Using the relations (I5) and (I8) in Ref. [29] relating Z 5
and Cg to &, one can see that the coefficients in front of
F - F and V - F vanish identically. Similarly, the relations
(I24) and (127) in Ref. [29] between 74, 79 and 77; imply that
the coefficients in front of F*F*) and V¥ F*) also vanish.
This is consistent with, and indeed required by, the
equivalence between the IReD and DNMR approaches,
since no such terms appear in either J or J**. For this
reason, the coefficients s, Cg, 7 and 7jo do not appear in
Table II.

Comparing the above to Egs. (30), it can be seen that
aside from the new terms proportlonal to @, I and 6,
the coefficients of these terms (C;, &5 and 7;) appear in
several other terms. To compare with the coefficients
obtained in the IReD approach, the thermodynamic forces
0, I" and ¢ can be expressed in terms of the thermody-
namic fluxes I1, n# and #** via the asymptotic Navier-
Stokes constitutive relations in Eqgs. (47). During this
procedure, the comoving derivatives of the thermodynamic
forces give rise to comoving derivatives of the thermody-
namic fluxes, as well as to derivatives of the transport
coefficients:

1. IT1 .
6= ZH+E§, (A12a)
. 1 nt
W = Zpl - — & Al2b
e 2 ( )
1 W
) = 5 —; S, (A12¢)
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where the comoving derivative of a function depending on
the fluid properties  and a can be computed via Eq. (32).

The emergence of comoving derivatives of the thermo-
dynamic forces in Egs. (A12) leads to modifications of the
relaxation times 7y, 7, and 7, as indicated in Egs. (51).
Furthermore, since the quantities in K*1"#¢ are of second
order in Kn, the matching in Eqs. (47) reduces them to
quantities of order O(KnRe™!), which are then absorbed
into the J*'# terms. By this procedure, the original
transport coefficients appearing in J** are modified.
Since the procedure stays accurate at second order with
respect to Kn and Re™!, the modified transport coefficients
must exactly agree with those obtained in the IReD
approach. To illustrate the connection between the original
and the modified transport coefficients, let us focus on
some examples concerning the terms in K*. Starting from

~ s

ReAH,V oM o ;767 AN 7 — R 2 Vi, (A13)

it can be seen that the first term is of the same form as

£, AV, 7% and will thus lead to the following modifi-
cation of this transport coefficient:

~ K
Con = Com + 2—; (A14)
The relation above can be validated using the explicit

expressions for 7Z,, and X, which we reproduce from
Eq. (C9) in Ref. [1] and Eq. (I15) in Ref. [29], respectively,

w0, N~ b
;ﬂmr -z + z r+2,1
0071 r:z().;él o L p
= o0
- Z 7042824100 (Al5a)
r=0
Ni-1 1 )
Ro=—2)_ 70, (n, = 3n). (A15b)
r=1
Replacing y(lz) in the expression for Z,,, with 7(12) defined in

Eqgs. (25) (see also the discussion around this equation), we
arrive at

- Ke 1)-(2) al (1) B 21
£ 90 _ = Fervsl
nﬂ+277 Too V1 +r:()Z¢1T0r e+ P
=0 0
- Z TO,H—ZCH—I’ (A16)
r=0

which is exactly the expression for £,, following the
identification given in Egs. (37) applied to Eq. (Al5a)
[see also Eq. (B8)].

The second term in Eq. (A13) gives rise to

on lopy
Il —+-—=—1. (Al7
tr ”<0a+haﬂ> (A17)

o F, on
e+ Polnp

ﬂ-ﬂvvvr] _ —

The terms on the right-hand side have the same form as the
terms —A,,7**I, and —7%,,7**F, appearing in [J*, thus
leading to a modification to these latter two transport
coefficients (4,, and 7,,).

It is worth noting that using the above procedure may
lead to ambiguities. To illustrate such situations, let us
focus on the term &,6**I,, which can contribute to both
eI, and to —2,,n,0", since

7

/4 n
Wl o —], =~ o' Al8
ol Gl o (A18)

Taking the first equality would modify only 4,,, whereas
taking the second equality modifies 4,,. The decision on
how to distribute the contribution from &, to 4,,, and 4,,, can
in principle be made by looking at the explicit expres-
sion for &, reported in Eq. (I10) of Ref. [29]. Another
possibility is to acknowledge that this apparent ambi-
guity can be identified also in the form of 7*, allowing

the two terms 4,,7#I, and ,,6"n, to be merged into a
single one:

;lnnaﬂ”n,, + ;1,,,,71'””11, o~ <2£ ;I,M + EM> a1,
n
~ 2;7 ~
< (s 23, )on,

Choosing to express all terms in the form ¢#“n,, we obtain

2n « Ke (On 10
Ly B
nk \oa  hap

(A19)

(A20)

The above discussion summarizes the key points
required to obtain the relations presented in Table II.
While Egs. (A14) and (A20) refer only to the modifications
of the Z,,, 4,, and 1, coefficients, the relations involving
the other coefficients can be derived following the same
steps using straightforward but lengthy algebra, which we
do not present here explicitly.

APPENDIX B: SECOND-ORDER TRANSPORT
COEFFICIENTS IN THE IReD APPROACH

In this appendix we give the transport coefficients of the
IReD formalism. In what follows, we identify C(_";) =¥, as
in Eq. (36). For the bulk pressure we have
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(B2)

(B9)
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Finally, for the shear-stress tensor we have

N, 2)
@|r +4 aC _ dCy
Opr = g Ty, [ c? 4 'H +H
o 3 ap
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