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The LHCb Collaboration discovered a double-charm tetraquark Tþ
cc with a very small width. We

investigate the Tþ
cc as aDD� molecule with JP ¼ 1þ in the framework of the one-boson-exchange potential

model. The isospin breaking effect and S −D wave coupling are taken into account carefully. We adopt
the complex scaling method to study the DD� system and obtain a quasibound state corresponding to
the Tþ

cc. Its binding energy relative to the D0D�þ and width are −354 keV and 61 keV respectively. The
isospin breaking effect is found to be enormous, and the S-wave D0D�þ and DþD�0 components give
dominant contributions with the probabilities of 72.1% and 27.1% respectively. In addition, we do not find

any resonances in the DD� system. As a by-product, we study the Xð3872Þ as a ðDD̄� −D�D̄Þ= ffiffiffi
2

p

molecule with JPC ¼ 1þþ. We also find a quasibound state corresponding to the Xð3872Þ. Its binding
energy relative to the D0D̄�0 threshold and width are −111 keV and 26 keV, respectively. The S-wave

ðD0D̄�0 −D�0D̄0Þ= ffiffiffi
2

p
component dominates this state with the probability of 92.7%.

DOI: 10.1103/PhysRevD.106.016012

I. INTRODUCTION

Recently, the LHCb Collaboration reported the obser-
vation of a double-charm tetraquark Tþ

cc in the D0D0πþ

mass distribution [1]. The mass relative to the D0D�þ
threshold and the width extracted from the Breit-Wigner
fit are

δmBW ¼ −273� 61 keV=c2 and

ΓBW ¼ 410� 165 keV: ð1Þ

Obviously, the mass is just below theD0D�þ threshold, and
the width is quite narrow, which indicates a DD� molecule
structure. Subsequently, the LHCb Collaboration also
analyzed the pole mass relative to the D0D�þ threshold
and width in Ref. [2], and gave

δmpole ¼ −360� 40þ4
−0 keV=c2 and

Γpole ¼ 48� 2þ0
−14 keV: ð2Þ

The theoretical investigations on the double-charm tetra-
quark have been going on for 40 years [3–24]. In 2017, the

LHCb Collaboration observed the first double-charm
hadron Ξþþ

cc [25], and this discovery encouraged the
research on other double-heavy hadrons, especially the
double-charm tetraquark [26–34]. Until very recently,
the discovery of the Tþ

cc have ignited a new round of
passion for the investigation of the double-charm tetraquark
state [35–56]. Besides, one can get more information from
the extensive reviews in recent years [57–63].
In the aforementioned theoretical studies, the

molecule and compact tetraquark pictures obtain most
of the attention. In the compact tetraquark picture
[5,8,10,12,14,16,20,26,27,31–34,41,52], the double-heavy
systems have a heavy diquark-antiquark symmetry, which
can contribute a deep attractive force. Therefore, this
scheme may generate a bound state relative to the corre-
sponding dimeson threshold. On the other hand, when the
molecule picture is taken into account, the one-boson-
exchange (OBE) potential may also provide an attractive
potential to form a bound state. For instance, the work in
[21] gave a prediction on the molecule Tþ

cc with IðJPÞ ¼
0ð1þÞ quantum number, and the binding energy is
−0.47 MeV, which is very close to the experimental value.
Besides, the recent work in [35] considered the isospin
breaking effect and predicted a new resonance T 0þ

cc .
In this work, we investigate the Tþ

cc and Xð3872Þ in the
molecule picture. Indeed, these two exotic hadrons have
some similar features. Besides the small binding energy and
narrow width, one can get a quite similar OBE potential.
However, they also have some evident differences. For
instance, the Xð3872Þ has some hidden-charm decay pat-
terns, such as the J=ψρ and ηcω. By comparison, the Tþ

cc has
only the open-charm decay channelsDDπ and DDγ, which
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provides us convenience when investigating the dimeson
molecule.
In fact, compared with the general system like the B̄B̄�

or B̄D�=B̄�D, the DD� has a unique behavior. The 0th
component of transferred momentum is larger (smaller)
than the mass of π for theDD� (B̄B̄� or B̄D�=B̄�D) system.
This difference will induce an effect—the pole location
of the one-pion-exchange (OPE) effective potential will
move from the imaginary axis (general) to the real axis
(DD�) in the complex transferred momentum plane. In the
Lippmann-Schwinger equation (LSE) or the momentum
space Schrödinger equation, one will get an imaginary part
and reach a pole when integrating the OPE potential along
the real momentum axis. In other words, the calculation is
divergent. Some works [35,64] took the Cauchy principal
(PV) value for the OPE potential to deal with this problem.
However, we tend to get over it in a different way.
In our framework, we use the complex scaling method

(CSM) [65,66] to study the DD� molecule system. We will
retain the imaginary contribution from the OPE potential.
After a complex scaling operation, the pole of OPE
potential would be rotated from the real axis to the upper
half of the momentum plane. The integral along the real
momentum axis would bypass the pole and avoid diver-
gence. In this way, we could solve the problem and get the
bound states and resonances directly. As a by-product,
we also discuss the Xð3872Þ as a molecule with the
JPC ¼ 1þþ, and consider the isospin breaking effect.
This paper is organized as follows. In Sec. II, we will

introduce our framework explicitly. In Sec. III, we present
the effective potentials. In Sec. IV, we solve the complex
scaled Schrödinger equation and give the results of the Tþ

cc
and Xð3872Þ by adopting the OBE potential. The last
section V is a brief summary.

II. FRAMEWORK

In this work, we assume that the Tþ
cc is a molecule with

the quantum number JP ¼ 1þ. The mass of the Tþ
cc is very

close to the threshold of the D0D�þ=DþD�0, and the
interactions between these two channels are similar.
Thus the isospin breaking effect should be considered.
The masses of theDð�Þ mesons and exchanged light mesons
are shown in Table I. To deal with the isospin breaking
effect, we take into account the channels D0D�þð3S1; 3D1Þ
and DþD�0ð3S1; 3D1Þ, see Table II. We do not consider the
channels D�D�ð3S1; 3D1; 5D1Þ. Their thresholds are evi-
dently higher than the mass of the Tþ

cc, indicating very
small contributions.
We first consider the OPE potential. As mentioned

above, the DD� system is unique in contrast to the B̄B̄�

or B̄D�=DB̄� system—the 0th component of transferred
momentum is larger than the mass of π, which provides an
imaginary part in the OPE potential. To study the influence
of the imaginary part, we could adopt one of the following
equations:
(1) The coordinate space Schrödinger equation

�
−

1

2m
d2

dr2
þ lðlþ 1Þ

2mr2
þ VðrÞ

�
ψ lðrÞ ¼ Eψ lðrÞ: ð3Þ

(2) The momentum space Schrödinger equation

p2

2m
ϕlðpÞ þ

1

ð2πÞ3
Z

p02dp0Vl;l0 ðp; p0Þϕl0 ðp0Þ ¼ EϕlðpÞ:

ð4Þ
These two equations are equivalent, one could find more
details of the first case in our another work [68]. In this
paper, we only consider the first case.

A. A brief introduction to the CSM

Before discussing the analyticity of the OPE potentials,
we give a brief introduction to the CSM herein. This
method was proposed by Aguilar, Balslev, and Combes
[65,66] and the corresponding conclusion is called the
ABC theorem. This powerful tool could directly and
simultaneously provide the solutions of the bound states
and resonances. In this method, the resonances can be
solved in the same way as the bound states. In the CSM, a

TABLE I. The masses of the charmed mesons and exchanged
light mesons in the OBE potential, which are taken from the
PDG [67].

Mesons Mass(MeV) Mesons Mass(MeV)

D0 1864.84 π� 139.57
Dþ 1869.66 π0 134.98
D�0 2006.85 η 547.86
D�þ 2010.26 ρ 775.26

σ 600 ω 782.66

TABLE II. The channels of the double-charm system DD� and hidden-charm system ½DD̄�� under the isospin
breaking effect. We adopt the following shorthand notations for simplicity, ½D0D̄�0� ¼ 1ffiffi

2
p ðD0D̄�0 −D�0D̄0Þ and

½DþD̄�−� ¼ 1ffiffi
2

p ðDþD�− −D�þD−Þ.

System JPC 1 2 3 4

Tþ
cc 1þ D0D�þð3S1Þ D0D�þð3D1Þ DþD�0ð3S1Þ DþD�0ð3D1Þ

Xð3872Þ 1þþ ½D0D̄�0�ð3S1Þ ½D0D̄�0�ð3D1Þ ½DþD�−�ð3S1Þ ½DþD�−�ð3D1Þ
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simple transformation UðθÞ for the radial coordinate r and
its conjugate momentum k is introduced as:

UðθÞr ¼ reiθ; UðθÞk ¼ ke−iθ: ð5Þ

Then the radial Schrödinger equation is transformed as

�
1

2m

�
−

d2

dr2
þ lðlþ 1Þ

r2

�
e−2iθ þ VðreiθÞ

�
ψθ
l ðrÞ

¼ EðθÞψθ
l ðrÞ: ð6Þ

As explained in the ABC theorem, one could find
resonances after making a rotation on the momentum k.
If the rotation angle θ is large enough, the resonance pole
will cross the branch cut into the first Riemann sheet, as
shown in Fig. 1. The details can be seen in Ref. [69,70].
In this work, we adopt the Gaussian expansion method

(GEM) [71] to solve the complex scaled Schrödinger
equation. The radial wave function can be expanded as

ψθ
l ðrÞ ¼

XN
i

ciðθÞulði; rÞ: ð7Þ

where the ciðθÞ are the rotational angle θ dependent
coefficients. And ulði; rÞ are the θ independent radial
Gaussian basis functions with the form

ulði; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ2ð2νiÞlþ3=2ffiffiffi
π

p ð2lþ 1Þ!!

s
rlþ1e−νir

2

;

νi ¼
1

r2i
; ri ¼ r1ai−1ði ¼ 1; NÞ; ð8Þ

The concrete application could also see in Ref. [69].

B. Analyticity of the OPE potentials for the DD� system

In fact, the authors of Ref. [19] used the CSM to discuss
the double-heavy tetraquark system. They took an

instantaneous approximation and ignored the 0th compo-
nent of the transferred momentum. However, this treatment
may change the analyticity of the OPE potential. In this
framework, we retain the 0th component of the transferred
momentum and find some different features from the
situation in the general dimeson systems. We consider
the B̄B̄� andDD� cases to show these differences. The OPE
potentials of the process B̄B̄� → B̄�B̄ and DD� → D�D
have the same form as follows

Vπ ¼
g2

2f2π

ðϵ� · qÞðϵ · qÞ
q2 −m2

π
τ1 · τ2; ð9Þ

where the ϵ is the polarization vector of the B̄� or D�

meson, the τ1 and τ2 are the isospin operators of the B̄ð�Þ

or Dð�Þ meson. The q is the transferred momentum of
propagator, and the q0 is its 0-th component. The denom-
inator above gives q2 −m2

π ¼ −ðq2 þm2
π − q20Þ, where the

q0 is approximately equal to mB� −mB or mD� −mD.
For the B̄B̄� case, we have q0 ≈mB� −mB < mπ .

Therefore, the poles are located on the imaginary axis of
the transferred momentum jq⃗j. When making the Fourier
transformation to get the potential VπðrÞ in coordinate
space, we need to take a contour integral in the upper half of
the transferred momentum plane. The pole inside the
contour will provide a contribution to this integral, as
illustrated in Fig. 2(a). In addition, this situation can also
occur in the one-σ=η=ρ=ω-exchange potentials for the B̄B̄�
and DD� systems.
However, the OPE potential for theDD� case is different.

We take the processD0D�þ → D�þD0 as an example. Since
the q0 ≈mD�þ −mD0 > mπþ , one could get a denominator

−ðq2 −m2
effÞ, where the shorthand meff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 −m2

πþ

q
.

Obviously, the poles are located on the real transferred
momentum axis, and the ambiguity emerges. In this sit-
uation, different contour integral schemes may lead to
different results. One of the schemes is to take the Cauchy
principal (PV) value. The OPE potential in the PV scheme is
proportional to

P

�
1

p2 −m2
eff

�
¼ 1

2

�
1

p2 −m2
eff þ iϵ

þ 1

p2 −m2
eff − iϵ

�
:

The contour integral is illustrated in Fig. 2(b). However, we
will adopt another scheme—contour integral under the
Feynman prescription (FP), see Fig. 2(c). The corresponding
OPE potential is proportional to

1

p2 −m2
eff − iϵ

:

Obviously, these two schemes will lead to different results.
One can get a purely real potential in the PV scheme and a

FIG. 1. The eigenvalue distribution of the complex scaled
Schrödinger equation for two-body systems.
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complex potential in the FP scheme. In other words, theOPE
potential will contribute an imaginary part in the latter case.
Then we explore the analyticity of the OPE potential in

the CSM. As introduced in II A, the CSM will rotate the
propagator momentum k with the angle θ, and the poles of
the transferred momentum become �eiθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 −m2

π

p
. The

pole on the positive real axis can be naturally moved into

the contour region under this operation, while the other one
is moved outside the region, as illustrated in Fig. 2(d). It can
be seen that the CSM coincides with the FP scheme shown
in Fig. 2(c). In other words, they both choose the pole on
the positive real axis, which leads to an extra imaginary
potential.
In addition, when using themomentum space Schrödinger

equation (3) to handle the OPE case for the DD� system,
we will reach a pole located on the real axis of momentum.
This pole will lead to the divergence in numerical calcu-
lations. In fact, the CSM could also handle this problem.
Similar to the situation in the Fourier transformation, the
poles will be moved from the real axis to the complex region
of themomentumplane under the complex scalingoperation.
Then the integral along the real momentum axis will bypass
the pole, and the divergence disappears.

C. Three-body intermediate coupled channel

As discussed in the previous subsection, the additional
imaginary contribution in the DD� case is from the decay
process D� → Dπ. Therefore, the three-body coupled
channel effect of DDπ cannot be neglected. In Sec. II B,
we use an approximate expression q0 ≈mD� −mD for the
DD� case. However, this approximation is kind of rough
since the q0 is quite close to the mπ . Therefore, we should
make a careful discussion on the q0 herein. For simplicity,
we take the D0D�þ → D0D�þ case as an example.
As illustrated in Fig. 3, we denote the total energy of

the D0D�þ as E and assume the D0 meson to be on shell.

Then the q0 ¼ E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D0 þ p2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D0 þ p02
q

. Obviously,

this diagram contains a three-body effect—the intermediate
coupled channel D0D0πþ. When we make a nonrelativis-
tic approximation q0 ¼ E − 2mD0 − p2=2mD0 − p02=2mD0 ,
one can get a similar propagator as shown in Ref. [44].
They use the time-ordered perturbation theory with the
non-relativistic propagator. By contrast, we only make a
nonrelativistic approximation for the charmed meson

FIG. 2. For the B̄B̄�=DD� systems, we show the poles of the
OPE potential in the momentum space, and the corresponding
contour integral (red dashed lines). We plot (a) the B̄B̄� case
(b) the DD� case in the Cauchy principal (PV) value scheme
(c) theDD� case in the Feynman prescription (FP) scheme (d) the
DD� case in the complex scaling method.

FIG. 3. Three-body intermediate diagram in the process
D0D�þ → D0D�þ. The total energy of the D0D�þ is E, and
the D0 is assumed to be on shell.
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D=D� propagator, and keep a relativistic form for the π
meson propagator.
In fact, we will neglect the kinetic energy terms

p2=2mD0 and p02=2mD0 of the charmed mesons due to
the heavy quark approximation. Then we make an energy
shift E → EþmD0 þmD�þ , and the potential for the
D0D�þ → D0D�þ process gives

VD0D�þ→D0D�þ
π ðqÞ ¼ −2

g2

2f2π

ðϵ� · qÞðϵ · qÞ
q2 þm2

πþ − q20
;

q0 ¼ EþmD�þ −mD0 : ð10Þ

Therefore, we could get a high precision solution by
iterating the Schrödinger equation in coordinate space.

III. POTENTIALS

The effective Lagrangians to describe the interactions
for the DD� system are constructed in terms of the
heavy quark symmetry and chiral symmetry. The concrete
expressions of the OBE Lagrangians can be seen
from Ref. [21].

The other OPE potentials in momentum space are

VDþD�0→DþD�0
π ðqÞ ¼ −2

g2

2f2π

ðϵ� · qÞðϵ · qÞ
q2 þm2

πþ − q20
; with

q0 ¼ EþmD0 þmD�þ − 2mDþ ; and ð11Þ

VD0D�þ→DþD�0
π ðqÞ ¼ g2

2f2π

ðϵ� · qÞðϵ · qÞ
q2 þm2

π0
− q20

; with

q0 ¼ EþmD�þ −mDþ : ð12Þ
We add a monopole form factor at each vertex

FðqÞ ¼ Λ2 −m2
π

Λ2 − q2
; ð13Þ

where the q2 ¼ q20 − q2, and the Λ is a cutoff parameter.
After the Fourier transformation

VðrÞ ¼ 1

ð2πÞ3
Z

dq3e−iq·rVðqÞF2ðqÞ; ð14Þ

we can get the coordinate space potentials

VD0D�þ→D0D�þ
π ðrÞ ¼ 2

g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπþ ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπþ ; rÞ�; ð15Þ

VDþD�0→DþD�0
π ðrÞ ¼ 2

g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπþ ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπþ ; rÞ�; ð16Þ

VD0D�þ→DþD�0
π ðrÞ ¼ −

g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπ0 ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπ0 ; rÞ�; ð17Þ

where the q0s of Eqs. (15)–(17) are listed in the Eqs. (10)–
(12) respectively. In the above equations, Sða;bÞ ¼ a · b
and Tða;bÞ ¼ 3ða · rÞðb · rÞ=r2 − a · b. The matrix ele-
ments are given in Table III. The Y3, H3 functions and
relevant Y, H functions are defined as

YðxÞ ¼ e−x

x
; HðxÞ ¼

�
1þ 3

x
þ 3

x2

�
YðxÞ;

Y0ðΛ; q0; m; rÞ ¼ u
4π

�
YðurÞ − χ

u
YðχrÞ − β2

2χu
e−χr

�
;

Y3ðΛ; q0; m; rÞ ¼ u3

12π

�
YðurÞ − χ

u
YðχrÞ − β2χ

2u3
e−χr

�
;

H3ðΛ; q0; m; rÞ ¼ u3

12π

�
HðurÞ −

�
χ

u

�
3

HðχrÞ

−
β2

2χu
χ2

u2
YðχrÞ − β2

2χu
χ2

u2
e−χr

�
; ð18Þ

where the

u ¼ Sign
h
Re

	
eiθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q20

q 
i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q20

q
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −m2

p
; χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − q20

q
: ð19Þ

The factor Sign½Reðeiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q20

p
Þ� can be deduced from

the DD� potentials in Sec. II B. The CSM rotation angle θ
is in the region 0 ≤ θ ≤ π=2. We take the YðurÞ function as

TABLE III. The matrix elements of the operators Sðϵ†3; ϵ2Þ,
Sðϵ†4; ϵ2Þ and Tðϵ†3; ϵ2Þ.

Δ Sðϵ†3; ϵ2Þ Sðϵ†4; ϵ2Þ Tðϵ†3; ϵ2Þ
h3S1jΔj3S1i 1 1 0
h3D1jΔj3S1i 0 0 −

ffiffiffi
2

p
h3S1jΔj3D1i 0 0 −

ffiffiffi
2

p
h3D1jΔj3D1i 1 1 1

DOUBLE-CHARM TETRAQUARK UNDER THE COMPLEX SCALING … PHYS. REV. D 106, 016012 (2022)

016012-5



an example to discuss the behavior of the potentials. One
can get

YðurÞ ¼
�
e−jujr=ðjujrÞ m2 − q20 ≥ 0;

e−ijujr=ð−ijujrÞ m2 − q20 < 0:

Obviously, the YðurÞ can contribute an imaginary part to
the OPE potential when m2 − q20 < 0.

We also consider the short- and medium-range one-σ, η,
ρ, ω-exchange potentials from the OBE interactions.
The corresponding potentials are given in Eqs. (20)–(23).
These potentials have no imaginary contributions due to the
large exchanged meson mass, and the isospin breaking
effects barely have influence on the one-σ, η, ρ,
ω-exchange potentials.

VD0D�þ→DþD�0
η ðrÞ ¼ 1

3

g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; qC0 ; mη; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; qC0 ; mη; rÞ�; ð20Þ

VD0D�þ→D0D�þ
σ ðrÞ ¼ VDþD�0→DþD�0

σ ðrÞ ¼ −g2σSðϵ†4; ϵ2ÞY0ðΛ; qD0 ; mσ; rÞ; ð21Þ

VD0D�þ→D0D�þ
ρ ðrÞ ¼ VDþD�0→DþD�0

ρ ðrÞ ¼ −
1

4
β2g2VSðϵ†4; ϵ2ÞY1ðΛ; qD0 ; mρ; rÞ

þ 2λ2g2V ½2Sðϵ†3; ϵ2ÞY3ðΛ; qC0 ; mρ; rÞ − Tðϵ†3; ϵ2ÞH3ðΛ; qC0 ; mρ; rÞ�;

VD0D�þ→DþD�0
ρ ðrÞ ¼ 2

1

4
β2g2VSðϵ†4; ϵ2ÞY1ðΛ; qD0 ; mρ; rÞ − λ2g2V ½2Sðϵ†3; ϵ2ÞY3ðΛ; qC0 ; mρ; rÞ

− Tðϵ†3; ϵ2ÞH3ðΛ; qC0 ; mρ; rÞ�; ð22Þ

VD0D�þ→D0D�þ
ω ðrÞ ¼ VDþD�0→DþD�0

ω ðrÞ ¼ 1

4
β2g2VSðϵ†4; ϵ2ÞY1ðΛ; qD0 ; mω; rÞ;

VD0D�þ→DþD�0
ω ðrÞ ¼ λ2g2V ½2Sðϵ†3; ϵ2ÞY3ðΛ; qC0 ; mω; rÞ − Tðϵ†3; ϵ2ÞH3ðΛ; qC0 ; mω; rÞ�: ð23Þ

So, we ignore the mass difference between the D0ðD�0Þ
and DþðD�þÞ herein. Then the 0th components of the
transferred momenta have simple forms

qD0 ¼ 0; qC0 ¼ mD�þ −mD0 ; ð24Þ
where the qD0 and qC0 correspond to the direct and cross
diagrams in the processes DD� → DD�.
So far, we get all the OBE potentials in Eqs. (15)–(17)

and Eqs. (20)–(23). In addition, we give the adopted
parameter value in the OBE potentials. The fπ¼132MeV
is the pion decay constant. The coupling constants for the π
and σ exchange are g ¼ 0.59� 0.07� 0.01 [72] and gσ ¼
3.73=2

ffiffiffi
6

p
[73] respectively. And we adopt the coupling

constants related to the vector meson exchange, gV ¼ 5.8,
gβ ¼ 0.9 and gλ ¼ 0.56 GeV−1 [74,75].

IV. NUMERICAL RESULTS

A. The OPE potential results for the DD� system

We first introduce the OPE potentials to study the DD�
system. In this calculation, to determine the only unknown
parameter Λ, we take the mass of the Tþ

cc as an input.
Then we get the cutoff Λ ¼ 1602 MeV, and illustrate the
CSM eigenvalue distribution in Fig. 4. We plot two lists of
eigenvalues obtained from rotational angles θ ¼ 15°; 25°.
Only one pole is found with the energy E ¼ −364 −
31i keV relative to the threshold of D0D�þ. This pole

could be interpreted as a quasibound state corresponding to
the Tþ

cc.
Considering the coupled channels D0D�þ and DþD�0

(D0D0πþ andD0Dþπ0), we could find the branch cuts with
their branch point at the two-body (three-body) thresholds.
Obviously, the quasibound state pole in Fig. 4 is located on
the first Riemann sheets (physical sheets) corresponding to
the D0D�þ and DþD�0 channels and the second Riemann
sheets (unphysical sheets) corresponding to the D0D0πþ

FIG. 4. The eigenvalue distribution for the OPE potential case
with the Λ ¼ 1602 MeV. The red (green) points (square point)
and lines correspond to the situation with the complex rotation
angle θ ¼ 15°ð25°Þ.
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and D0Dþπ0 channels. In Fig. 5, we choose θ ¼ 15° and
present the real and imaginary part of its wave function.
The probabilities of the channels D0D�þð3S1; 3D1Þ and
DþD�0ð3S1; 3D1Þ are shown in Table IV. Obviously, the
S-wave D0D�þ and DþD�0 channels dominate this quasi-
bound state, which is similar to the result of Ref. [35].
However, we do not find the resonance predicted in
their work.

B. The OBE potential results for the DD� system

In this part, we further employ the OBE potential to
include the short- and medium-range contribution. When

taking the mass of the Tþ
cc as an input, we use the cutoff

Λ ¼ 1170 MeV and get the CSM eigenvalue distribution as
illustrated in Fig. 6. Similar to the OPE potential case, no
resonance is found herein. The only pole of the quasibound
state has the energy E ¼ −354 − 31i keV relative to the
threshold of the D0D�þ. The wave functions with θ ¼ 15°
are also shown in Fig. 7. The probabilities for the four
channels are also shown in Table IV. One can see that the
S-wave D0D�þ and DþD�0 channels still dominate this
quasibound state. We interpret this pole as the Tþ

cc, and its
width also coincides with the experimental data nicely.
Interestingly, after we take the binding energy as input,

the OPE and OBE cases give quite similar results, including
the width, constituent and size. When we consider the long-
range behavior of the Tþ

cc, such a similarity turns out to be
reasonable. In our framework, the Tþ

cc is assumed to be a
molecule with a very small binding energy, which has a
very large size. The RMS in Table IV also supports this
speculation. Therefore, the long-range OPE interactions
should be dominant in this system, and we should obtain
similar results with these two schemes.
In addition, we adjust the cutoff Λ and get a list of

eigenvalues to see the correlation between the binding
energy and width of this pole. As presented in Fig. 8, the
width decreases rapidly as the binding energy becomes
deeper. And the width vanishes when the energy is smaller
than the thresholds of D0D0πþ and D0Dþπ0. This thresh-
old effect is reasonable since we do not consider the
electromagnetic decay process in this work. Thus, when
the DDπ channel is closed, the imaginary part disappears,
and the pole becomes a stable bound state.

C. The OBE potential results for the ½DD̄�� system
TheDD� channel is almost elastic, besides theD� → Dπ

decay. For the Xð3872Þ, there is the possibility of internal
annihilation, which is seemingly neglected. This is just
evoked later in this section.
We discuss the molecule system ½DD̄�� with JPC ¼ 1þþ,

where the shorthand notation ½DD̄�� is 1ffiffi
2

p ðDD̄� −D�D̄Þ.
Considering the isospin breaking effect, we adopt the
channels ½D0D̄�0�ð3S1;3D1Þ and ½DþD�−�ð3S1;3 D1Þ, see
Table II. The OPE potentials of the ½DD̄�� are given in
Eq. (26), and the other terms of the OBE potential can be

D0D*+(3S1)

D0D*+(3D1)

D+D*0(3S1)

D+D*0(3D1)

0 10 20 30 40
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e(
u i
)
[f
m
–1
/2
]

D0D*+(3S1)

D0D*+(3D1)

D+D*0(3S1)

D+D*0(3D1)

0 10 20 30 40

–0.04

–0.02
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(u
i)
[f
m
–1
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]

FIG. 5. The wave functions uiðrÞ (i ¼ 1, 2, 3, 4) for the OPE
potential case. The rotation angle θ ¼ 15° and the cutoff
Λ ¼ 1602 MeV. The two diagrams correspond to: (a) the real
part of the uiðrÞ (b) the imaginary part of the uiðrÞ.

TABLE IV. The numerical results for the DD� and ½DD̄�� systems with the OPE and OBE potentials, and the
rotation angle is θ ¼ 15°. The E is the quasibound state energy of the DD� (½DD̄��) system relative to the threshold
of D0D�þ (D0D̄�0). The probabilities correspond to the channels presented in Table II. The RMS is the root-mean-
square radius in the CSM, which has been discussed in the Ref. [76]. Its real part is interpreted as an expectation
value, and the imaginary part corresponds to a measure of the uncertainty in observation.

System JPC Potentials Λ (MeV) E (keV) Probabilities RMS (fm)

DD� 1þ OPE 1602 −364 − 31i (72.6, 0.8, 26.0, 0.6)% 4.9 − 0.1i
1þ OBE 1170 −354 − 31i (72.1, 0.5, 27.1, 0.3)% 5.0 − 0.1i

½DD̄�� 1þþ OBE 1155 −111 − 13i (92.7, 0.3, 6.6, 0.3)% 7.3 − 0.2i

DOUBLE-CHARM TETRAQUARK UNDER THE COMPLEX SCALING … PHYS. REV. D 106, 016012 (2022)

016012-7



found in Ref. [64]. The matrix elements Sðϵ†3; ϵ2Þ, Sðϵ†4; ϵ2Þ,
Tðϵ†3; ϵ2Þ can also be obtained from Table III.
In this work, we need the mass of the Xð3872Þ as

input. Recently, the LHCb Collaboration studied the
lineshape by a Flattè inspired model [77] and gave a
new result, mmode ¼ 3871.69þ0.00þ0.05

−0.04−0.13 MeV=c2;

ΓFWHM ¼ 0.220.06þ0.25
−0.08−0.17 MeV: ð25Þ

One can see the mass of the Xð3872Þ is extremely close to
the D0D̄�0 threshold, so the accurate binding energy
relative to the latter is hard to be determined. We take a
binding energy −111 keV relative to the ½D0D̄�0� as input
within the experimental error, and the corresponding cutoff
is Λ ¼ 1155 MeV. Then we get the CSM eigenvalue
distribution as illustrated in Fig. 9.
Similar to the DD� system, we only find a quasibound

state with energy E ¼ −111 − 13i keV. The pole is located
on the first Riemann sheets (physical sheets) corresponding
to the ½D0D̄�0� and ½DþD�−� channels and the second

FIG. 6. The eigenvalue distribution in the OBE potential case
with the Λ ¼ 1170 MeV. The red (green) points (square point)
and lines correspond to the situation with the complex rotation
angle θ ¼ 15°ð25°Þ.

FIG. 9. The eigenvalue distribution in the OBE potential case
with the Λ ¼ 1155 MeV. The red (green) points (square point)
and lines correspond to the case with the complex rotation
angle θ ¼ 15°ð25°Þ.

FIG. 8. The dependence of the width of DD� system on the
binding energy relative to the D0D�þ threshold in the OBE
potential case. The width is equal to −2ImðEnergyÞ, and the
complex rotation angle is θ ¼ 15°. The pole in this figure
corresponds to the Tþ

cc with the Λ ¼ 1170 MeV.

FIG. 7. The wave functions uiðrÞ (i ¼ 1, 2, 3, 4) in the OBE
potential case. The rotation angle θ ¼ 15° and the cutoff
Λ ¼ 1170 MeV. The two diagrams correspond to: (a) the real
part of the uiðrÞ (b) the imaginary part of the uiðrÞ.
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Riemann sheet (physical sheets) corresponding to the
D0D̄0π0 channel. The probabilities for the ½DD̄�� channels
are shown in Table IV, and the S-wave ½D0D̄�0� dominates
the system.
The width value is smaller than the central value in

Eq. (25) given by the LHCb Collaboration. However, our
width value is still consistent with the new measurement
within one standard deviation if one considers the large
experimental errors. This possible difference may arise
from the neglect of the other channels such as the
hidden-charm channels J=ψρ, ηcω and the electromag-
netic channel D0D̄0γ, which may provide a considerable
contribution.
For the Xð3872Þ, the error of the binding energy given

by LHCb Collaboration is significant compared with the
binding energy value. Thus, we also give a list of eigen-
values with different binding energies corresponding to
the pole in Fig. 10. One notices that the width will vanish
when the pole energy is less than the D0D̄0π0 threshold
and reach the largest value ≈30 keV when the binding
energy is around −300 keV.

V ½D0D̄�0�→½D0D̄�0�
π ðrÞ ¼ g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπ0 ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπ0 ; rÞ�

V ½D0D̄�0�→½DþD�−�
π ðrÞ ¼ 2

g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπþ ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπþ ; rÞ�

V ½DþD�−�→½DþD�−�
π ðrÞ ¼ g2

2f2π
½Sðϵ†3; ϵ2ÞY3ðΛ; q0; mπ0 ; rÞ þ Tðϵ†3; ϵ2ÞH3ðΛ; q0; mπ0 ; rÞ� ð26Þ

V. SUMMARY

In 2021, the LHCb Collaboration observed a double-
charm tetraquark Tþ

cc [1] with a very small binding energy
relative to the D0D�þ threshold and a narrow width, which
indicates a molecule structure. This discovery encourages
us to make a careful analysis of this exotic state. We use
the complex scaling method to investigate the possibility
of the Tþ

cc as a JP ¼ 1þ molecule with both the OPE and
OBE potential. To see the influence of the isospin brea-
king, we take into account the channels D0D�þð3S1; 3D1Þ
and DþD�0ð3S1; 3D1Þ.
The OPE potentials for theDD� system are unique. They

have two poles located on the real transferred momentum
axis. Some previous works chose the PV contour integral
scheme, which leads to a real OPE potential. However, as
shown in Fig. 2(c), we adopt the FP contour integral
scheme, which can provide an imaginary contribution. This
imaginary part comes from the process D� → Dπ, which
can be naturally understood in the framework of the CSM.
When adopting the OBE potential, we get a pole corres-

ponding to the Tþ
cc, whose binding energy relative to the

D0D�þ is −354 keV, and the width is 61 keV. The S-wave

D0D�þ andDþD�0 components dominate the system,whose
probabilities are 72.1% and 27.1% respectively. One can see
that the isospin breaking effect plays an important role in this
quasibound state. Interestingly, the OPE and OBE potential
cases almost give the same results, which indicates a
domination of the long-range OPE dynamics. Since our
approach could give the energy and width simultaneously
with only one parameter (Λ), one can predict the width once
the energy is determined. Therefore, this method can provide
a satisfactory description of the Tþ

cc observed in the experi-
ment. The energy-width dependence in the DD� system is
presented in Fig. 8. Besides,we do not find theT 0þ

cc resonance
predicted in the Ref. [35] in this framework.
We also study the Xð3872Þ with the same method.

Similarly, we find a quasibound statewith the binding energy
−111 keV relative to the ½D0D̄�0�, and the corresponding
width around 26 keV. The dominant channel is the S-wave
½D0D̄�0� with the probability 92.7%. Apparently, the isospin
breaking effect is significant. The numerical results are
in Table IV.
It is helpful to make a simple analysis of the decay

behavior of the Tþ
cc. In this work, the Tþ

cc is interpreted
as a molecule with the constituents D0D�þ and DþD�0.

FIG. 10. The dependence of the width of the ½DD̄�� system on
the binding energy relative to the D0D̄�0 threshold in the OBE
potential case. The width is equal to −2ImðEnergyÞ, and the
complex rotation angle is θ ¼ 15°. The pole in this figure
corresponds to the Xð3872Þ with the Λ ¼ 1155 MeV.
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Since the channels DþDþπ− and DþD−πþ are kinetically
forbidden, the primary decay channels are theD0D0πþ and
D0Dþπ0. In addition, the D0D0πþ is expected to be the
more important channel due to the larger isospin factor.
On the other hand, the long-range OPE interactions play

an important role in both Tþ
cc and Xð3872Þmolecules in our

framework. The obtained sizes of the Tþ
cc and Xð3872Þ are

around 5 fm and 7 fm, respectively. Therefore, a similar
long-range electromagnetic interaction may also provide a
non-negligible partial width. Thus, it is very interesting to

study the three-body electromagnetic decay partial widths
of the Tþ

cc and Xð3872Þ. We may make a detailed inves-
tigation of these topics in the coming future.
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