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We investigate the existence of vortex configurations in two gauged-CPð2Þ models extended via the
inclusion of magnetic impurities. In particular, we consider both the Maxwell-CPð2Þ and the Chern-
Simons-CPð2Þ enlarged scenarios, separately. We choose a CPð2Þ-field configuration with a null
topological charge not only in the simplest (free) case, but also when coupled to an Abelian gauge
field. The implementation of the Bogomol’nyi-Prasad-Sommerfield (BPS) formalism shows that the
effective models for such a configuration possess a self-dual structure which looks like those inherent to the
gauged sigma models. Therefore, when the CPð2Þ field is coupled to the Maxwell term, the corresponding
total energy possesses both a well-defined Bogomol’nyi bound and a quantized magnetic flux. Further,
when the CPð2Þ scenario is gauged with the Chern-Simons action, the total electric charge is verified to be
proportional to the quantized magnetic flux. In addition, the analysis verifies that the magnetic impurity
contributes to the BPS potentials and appears in both of the models’ BPS equations. Next, we introduce a
Gaussian-type impurity and solve the self-dual equations via a finite-difference scheme. The resulting
solutions present a nonmonotonic behavior that flips both the magnetic and electric fields. Finally, we
discuss the topologically trivial solutions in the limit for which the impurity becomes a Dirac δ function.
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I. INTRODUCTION

Configurations with nontrivial topology are usually
achieved as the solutions of the Euler-Lagrange equations
which appear in the context of nonlinear field theories [1].
In this case, the nonlinearity originates from a potential
term that promotes the spontaneous breaking of the original
model’s symmetry. However, the resulting second-order
Euler-Lagrange equations are highly nonlinear and usually
quite hard to solve.
Under exceptional circumstances, topological solu-

tions can also be obtained via a particular set of first-order

differential equations, the so-called Bogomol’nyi-Prasad-
Sommerfield (BPS) ones. It is interesting to note that these
equations emerge as a result of the implementation of the
Bogomol’nyi technique, which stands for the minimization
of the total energy inherent to the field model [2]. Among
the algorithms that lead to the BPS equations, we can
include the study of the conservation of the corresponding
energy-momentum tensor [3] and the on-shell method [4].
In such a scenario, the simplest BPS gauged vortices occur
in the Maxwell-Higgs [5], Chern-Simons-Higgs [6], and
Maxwell-Chern-Simons-Higgs [7] theories.
More recently, it was shown that first-order or BPS

vortices also exist in a gauged scenario that describes the
interaction between the Maxwell and the CPð2Þ fields [8,9].
Besides that, some of us have also studied the existence of
BPS vortices in the Chern-Simons-CPð2Þ [10], and in the
Maxwell-Chern-Simons-CPð2Þ [11] models. BPS vortices
also arise in the context of extended scenarios based on a
gauged-CPð2Þ model, as the Maxwell-CPð2Þ vortices satu-
rated by a nontrivial dielectric function [12] and the
Maxwell-CPð2Þ vortices with internal structures due to
the presence of an additional scalar field [13].
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The interactions between vortices and impurities have
beenobserved invariousphysical systems (such as condensed
matter [14], Bose-Einstein condensates [15], and neutron
stars [16]), with their dynamics explored, for instance, in
Refs. [17,18]. More recently, a systematic way to introduce
impurities into BPS systems (which leads to the preservation
of half of the BPS equations) was developed in Refs. [19,20].
Such a procedure allows the detailed investigation of, for
example, the scatteringof a kink by a kinkwhich is trapped by
an impurity; see also the Ref. [21] for an earlier study.
Moreover, an open question is how the impurities affect the
Manton-Schrödinger-Chern-Simons model [22] and its inter-
esting vortex dynamics [23,24].
On the other hand, a promising physical issue is the

search for regular solitons inherent to enlarged field theories
whichmimic condensedmatter phenomena. In this sense, the
first studies about the existence of BPS vortices in a
Maxwell-Higgs scenario enlarged by impurities (both mag-
netic and electric) were done by Tong and Wong [25] and
showed how the presence of impurities affects the corre-
sponding moduli space. Moreover, in Ref. [26], the authors
proposed existence theorems for both vortices and antivor-
tices in the presence of magnetic impurities. In the sequence,
first-order vortices inherent to a Chern-Simons-Higgs model
extended to include impurities were obtained in Ref. [27].
Furthermore, some of us investigated the interaction between
a moving Maxwell-Higgs vortex and a static magnetic
impurity; see Refs. [28,29].
We now go further and study the occurrence of BPS

vortex-like solutions in the context of gauged CPð2Þ
models in the presence of magnetic impurities. More
specifically, we consider those topological structures
engendered by the following CPð2Þ configuration:

ϕ ¼

0
BB@

ð−1Þkψ
ψ�

ϕ3

1
CCA; jϕj2 ¼ h; ð1Þ

where k ∈ Z, with ψ ∈ C and ϕ3 ∈ R. The configura-
tion above is related to the CPð2Þ solutions studied in
Refs. [8–11] (in particular, the configuration with β1 ¼
π
4
þ πk

2
considered there). It is easy to verify that the

configuration (1) has a null CPð2Þ topological charge;
see Eqs. (4) and (7) below. In addition, this CPð2Þ
configuration, when minimally coupled to the Abelian
gauge field, possesses a well-defined BPS structure (see
Secs. II and IV below) which supports the vortex-like
solutions studied in Refs. [8–11].
Here, it is worthwhile to point out that the CPðNÞ field

describes topological excitations in some cold atomic
systems. For example, in the s ¼ 1=2 fermion case, the
CPð1Þ model describes the spin dynamics [30], whereas
the CPð3Þ model can be used to study the s ¼ 3=2 case
[31]. We then expect that the CPð2Þ configuration (1)

would describe excitations of a spin-1 Bose-Einstein
condensate such as vortices or monopoles [32–34].
The present manuscript considers those effective scenar-

ios for the configuration (1) which arise from both the
Maxwell-CPð2Þ and the Chern-Simons-CPð2Þmodels now
enlarged to include a localized impurity, which is rotation-
ally symmetric. We organize our work as follows. In Sec. II,
we study the BPS structure of the effective Maxwell-CPð2Þ
model for the configuration (1). In Sec. III, we introduce an
extended Maxwell-CPð2Þ theory saturated by an additional
term which stands for the impurity itself. We then look for
vortex-like solutions which minimize the total energy via
the implementation of the so-called BPS prescription, from
which we obtain not only a well-defined energy lower
bound, but also the self-dual equations whose solutions
saturate that bound. We point out the main differences
between the resulting solutions and the ones obtained
without impurities by discussing how the impurity affects
the formation of the corresponding vortices. In Sec. IV, the
BPS structure of the effective Chern-Simons-CPð2Þ model
engendered by the configuration (1) is analyzed. In
addition, Sec. V is dedicated to the study of the enlarged
Chern-Simons-CPð2Þ scenario. Here, for the sake of
convention, we discuss the theoretical construction in detail
by comparing it to the case considered in the previous
Sec. III. Finally, Sec. VI contains our conclusions and
perspectives regarding future contributions.

II. EFFECTIVE MAXWELL-CPð2Þ MODEL

TheMaxwell-CPð2Þmodel is described by the following
Lagrangian density [35]:

L ¼ −
1

4
FμνFμν þ ð∇μϕÞ†ð∇μϕÞ − UðϕÞ; ð2Þ

where ϕ is the CPð2Þ field, which possesses three complex
components which satisfy the normalization condition
ϕ†ϕ ¼ h. The topological current density inherent to the
CPð2Þ field is given by

τμ ¼
1

2πih
εμνρðDνϕÞ†ðDρϕÞ; ð3Þ

whereDμϕ ¼ ∂μϕ − h−1ðϕ†
∂μϕÞϕ, with the resulting topo-

logical charge being expressed as

q ¼
Z

d2x τ0 ∈ Znf0g: ð4Þ

Moreover, in Eq. (2), Fμν ¼ ∂μAν − ∂νAμ stands for the
usual field-strength tensor of the Uð1Þ gauge field Aμ,
which is minimally coupled to the CPð2Þ sector via the
covariant derivative ∇μϕ ¼ Dμϕ − h−1ðϕ†DμϕÞϕ. Here,
Dμϕ is given by
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Dμϕ ¼ ∂μϕ − igAμQϕ; ð5Þ

where g represents an electromagnetic coupling constant
and Q stands for a real charge matrix (diagonal and
traceless). The topological current density of the gauged
CPð2Þ reads

Tμ ¼
1

2πih
εμνρ

h
ð∇νϕÞ†ð∇ρϕÞ − ig

2
Fνρðϕ†QϕÞ

i
; ð6Þ

with its topological charge being given by

Q ¼
Z

d2xT0 ∈ Znf0g: ð7Þ

As mentioned previously, the CPð2Þ configuration (1)
possesses a null topological charge in both the free case (4)
and the gauged case (7) where the charge matrix Q is given
by [8]

Q ¼ 1

2
diagð1;−1; 0Þ; ð8Þ

which is related to the matrix λ3 ¼ diagð1;−1; 0Þ, i.e.,
one of the Gell-Mann matrices which represent the
SUð3Þ group.
In the remainder of the present section, we will show

that the effective model for the configuration (1) obtained
from the original theory (2) supports a well-defined BPS
structure. Thus, the Lagrangian density that describes the
effective model is

L ¼ −
1

4
FμνFμν þ ðDμϕÞ†Dμϕ

−U0ðϕ3Þ − λðh − ϕ†ϕÞ; ð9Þ

where ϕ represents the configuration (1) and the covariant
derivative Dμϕ is defined in Eq. (5). Also, λ stands for
a Lagrange multiplier which guarantees the condition
h ¼ ϕ†ϕ ¼ 2jψ j2 þ ðϕ3Þ2.
The field equation for the gauge sector reads

∂νFνμ ¼ Jμ; ð10Þ

where Jμ is the conserved current density related to the
charged field ψ , with its expression being

Jμ ¼ ig½ðD̂μψÞ�ψ − ψ�D̂μψ �; ð11Þ

with the quantity D̂μψ standing for the corresponding
covariant derivative, i.e.,

D̂μψ ¼ ∂μψ −
ig
2
Aμψ : ð12Þ

On the other hand, the field equation for the charged
sector ψ itself is

D̂μD̂
μψ − λψ ¼ 0; ð13Þ

while that for the neutral field ϕ3 reads

∂μ∂
μϕ3 þ

1

2

∂U0

∂ϕ3

− λϕ3 ¼ 0: ð14Þ

Via the combination between the last two equations and
the relation h ¼ 2jψ j2 þ ðϕ3Þ2, we additionally attain the
following expression for the Lagrange multiplier λ:

hλ ¼ −2jD̂μψ j2 − ð∂μϕ3Þ2 þ
1

2
ϕ3

∂U0

∂ϕ3

: ð15Þ

We now write down the equations for stationary fields. In
this sense, Eq. (10) leads to the Gauss law

∂k∂kA0 ¼ g2A0jψ j2; ð16Þ

which is identically satisfied by the gauge condition
A0 ¼ 0. This condition therefore stands for the gauge
choice that we use throughout the rest of this section.
Hence, we conclude that the stationary solutions inherent to
the model (9) present zero total charge and carry only
magnetic flux.
Ampère’s law becomes

ϵkj∂jB ¼ −Jk; ð17Þ

while the stationary equations for the fields ψ and ϕ3 are

D̂kD̂kψ þ λψ ¼ 0; ð18Þ

∂k∂kϕ3 −
1

2

∂U0

∂ϕ3

þ λϕ3 ¼ 0; ð19Þ

with λ now written as

hλ ¼ 2jD̂kψ j2 þ ð∂kϕ3Þ2 þ
1

2
ϕ3

∂U0

∂ϕ3

: ð20Þ

A. BPS structure of the model described
by the configuration (1)

The stationary energy density of the model (9) is

ε ¼ 1

2
B2 þ ðDkϕÞ†Dkϕþ U0ðϕ3Þ; ð21Þ

where we have used the gauge condition A0 ¼ 0. The
corresponding total energy is given by

E ¼
Z

d2xε: ð22Þ

In order to implement the BPS formalism, we consider
the relations
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1

2
B2 ¼ 1

2
ðB ∓ ffiffiffiffiffiffiffiffiffi

2U0

p
Þ2 � B

ffiffiffiffiffiffiffiffiffi
2U0

p
; ð23Þ

and

jDkϕj2 ¼
1

2
jDjϕ� ih−1=2ϵjkðϕ ×DkϕÞ�j2

∓ ih−1=2ϵjkϕ · ðDjϕ ×DkϕÞ; ð24Þ

via which we rewrite the total energy in the form

E ¼
Z

d2x

�
1

2
jDjϕ� ih−1=2ϵjkðϕ ×DkϕÞ�j2

þ 1

2
ðB ∓ ffiffiffiffiffiffiffiffiffi

2U0

p
Þ2 � Bð

ffiffiffiffiffiffiffiffiffi
2U0

p
− h1=2gϕ3Þ

∓ i

h1=2
½ϵjkϕ · ðDjϕ ×DkϕÞ þ ihgϕ3B�

�
: ð25Þ

Now, if we consider B ¼ −F12 ¼ −ϵjk∂jAk,
the last term in the equation above can be related to the
zeroth component of the topological current density of the
model, i.e.,

q̄μ ¼
ϵμνλ

i2πh3=2

�
ϕ · ðDνϕ ×DλϕÞ − ih

g
2
ϕ3Fνλ

�
; ð26Þ

whose integration provides the topological charge

Z
d2xq̄0 ∈ Znf0g; ð27Þ

from which we conclude that the integration of the term in
the third row of Eq. (25) provides the system’s BPS energy
in terms of the topological charge, i.e.,

Ebps ¼ �2πh
Z

d2xq̄0 > 0: ð28Þ

In the second row of Eq. (25), we choose the factor
which multiplies the magnetic field as zero, from which we
obtain the BPS potential

U0 ¼
1

2
hg2ðϕ3Þ2: ð29Þ

In view of the two last equations, the total energy then
becomes

E ¼ Ebps þ
1

2

Z
d2xðB ∓ h1=2gϕ3Þ2

þ 1

2

Z
d2xjDjϕ� ih−1=2ϵjkðϕ ×DkϕÞ�j2; ð30Þ

from which we see that the total energy satisfies

E ≥ Ebps; ð31Þ

with the equality being satisfied when the quadratic terms
which appear within the integrals are chosen to be zero.
This choice provides the BPS or self-dual equations of the
system, i.e.,

B ¼ �h1=2gϕ3; ð32Þ

Djϕ ¼∓ ih−1=2ϵjkðϕ ×DkϕÞ�; ð33Þ

which resemble those obtained in the context of the gauged
Oð3Þ sigma model. Indeed, the BPS configurations can be
considered as the classical solutions related to an extended
supersymmetric version [36,37] of the model (9).
In particular, the second BPS equation can be rewritten

in terms of the field components which appear in Eq. (1).
We then get

D̂jψ ¼∓ ih−1=2ϵjkðψ∂kϕ3 − ϕ3D̂kψÞ; ð34Þ

∂jϕ3 ¼ �h−1=2g−1ϵjkJk; ð35Þ

where Jk is the conserved current density defined previ-
ously in Eq. (11).
In the BPS limit, the self-dual equations recover

the stationary Ampère’s law (17) and the stationary
Euler-Lagrange equations for the fields ψ [Eq. (18)] and
ϕ3 [Eq. (19)].
On the other hand, the solutions of the BPS equations

describing radially symmetric vortices were recently stud-
ied in Refs. [8,9], for the case β ¼ β1.

III. MAXWELL-CPð2Þ VORTEX-LIKE SOLITONS
IN THE PRESENCE OF A MAGNETIC IMPURITY

We begin this work by defining the first model we will
investigate. It consists of a Maxwell-CPð2Þ theory
extended to include an additional term representing the
presence of a magnetic impurity. The resulting Lagrange
density describing the enlarged model is

L ¼ −
1

4
FμνFμν þ ðDμϕÞ†ðDμϕÞ −Uðϕ3;ΔÞ þ ΔB; ð36Þ

where ϕ stands for the CPð2Þ field configuration defined
in Eq. (1).
The third term in Eq. (36) is the potential U ¼ Uðϕ3;ΔÞ

which also depends on the function Δ (the so-called
magnetic impurity). The last term couples the magnetic
field B to the impurity Δ which, in our analysis, depends
explicitly on the spatial coordinates [i.e., Δ ¼ ΔðjxjÞ] and
therefore breaks the translational invariance of the model.
This breaking is not a problem if we consider the model
(36) as an effective one. The point here is that the function
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Δ represents a magnetic impurity in a medium where
vortices exist; see the arguments in Ref. [25].
The equation for the gauge field is given by

∂νFνμ þ ðδμ2∂1Δ − δμ1∂2ΔÞ ¼ Jμ; ð37Þ
where Jμ is the current density (11).
We highlight that the presence of the termΔB in Eq. (36)

does not change the structure of the Gauss law obtained in
the context of the usual Maxwell-CPð2Þ model (9) without
the magnetic impurity; see Ref. [9]. In this sense, the
stationary Gauss law is still given by Eq. (16). As a
consequence, we conclude that the stationary solutions
inherent to the model (36) also present no electric charge
and only carry magnetic flux.
We thus focus our attention on those time-independent

configurations with rotational symmetry which transport
only magnetic flux, from which we use the map

Ai ¼ −
ϵijxj
gr2

AðrÞ; ð38Þ

ψ ¼
ffiffiffi
h
2

r
eimθ sinαðrÞ and ϕ3 ¼

ffiffiffi
h

p
cosαðrÞ; ð39Þ

where ϵij stands for the two-dimensional Levi-Civita
symbol (with ϵ12 ¼ þ1), r and θ represent the polar
coordinates, and m ∈ Znf0g is the winding number of
the resulting configuration.
Under the parametrization (38) the magnetic field reads

BðrÞ ¼ −
1

gr
dA
dr

: ð40Þ

Both profile functions AðrÞ and αðrÞ, which depend only
on the radial coordinate, must describe regular configura-
tions with finite energy, from which they are supposed to
satisfy the usual boundary conditions, i.e.,

αðr ¼ 0Þ ¼ 0 and Aðr ¼ 0Þ ¼ 0; ð41Þ

αðr → ∞Þ → π

2
and Aðr → ∞Þ → 2m: ð42Þ

We now look for the first-order framework inherent to
the model (36) through the standard BPS prescription, i.e.,
via the minimization of the enlarged model’s total energy.
The starting point is the expression for the corresponding
energy distribution. In this sense, given the rotationally
symmetric map (38) and (39) and all of the conventions
introduced above, the time-independent energy density can
be written in the form

ε ¼ 1

2
B2 þUðα;ΔÞ − ΔB

þ h

�
dα
dr

�
2

þ h
ð2m − AÞ2

4r2
sin2 α; ð43Þ

from which one gets the total energy E as

E
2π

¼
Z

∞

0

�
1

2
B2 þ Uðα;ΔÞ − ΔB

þh

�
dα
dr

�
2

þ h
ð2m − AÞ2

4r2
sin2α

�
rdr: ð44Þ

After some algebra, the implementation of the BPS
formalism leads to the following expression for the total
energy:

E
2π

¼
Z

∞

0

�
h

�
dα
dr

� ð2m − AÞ
2r

sin α

�
2

þ 1

2
ðB ∓ ffiffiffiffiffiffiffi

2U
p

Þ2 � 2πhq̄0

�Bð
ffiffiffiffiffiffiffi
2U

p
− gh cos α ∓ ΔÞ

�
rdr; ð45Þ

in which we have used the expression (40) for the magnetic
field to attain the third and fourth terms. The quantity q̄0 is
the topological charge density defined from Eq. (26), which
expressed in polar coordinates reads

q̄0 ¼
1

2πr
d
dr

½ð2m − AÞ cos α�: ð46Þ

To complete the implementation of the BPS prescription,
we set to zero the expression multiplying the magnetic field
in the third row of Eq. (45). It fixes the BPS potential of the
enlarged model, in terms of both the profile αðrÞ and the
impurity ΔðrÞ itself, as

Uðα;ΔÞ ¼ g2h2

2

�
cos α� Δ

gh

�
2

; ð47Þ

where both the potential and the function Δ vanish
when r → ∞.
Thus, by considering the relation (47), we then write the

total energy (45) as

E
2π

¼ Ebps

2π
þ 1

2

Z
∞

0

�
B ∓ gh

�
cos α ∓ Δ

gh

��
2

rdr

þ h
Z

∞

0

�
dα
dr

� ð2m − AÞ
2r

sin α

�
2

rdr; ð48Þ

where Ebps is defined by Eq. (28) with q̄0 given in Eq. (46).
So, the quantity Ebps stands for the lower bound (i.e., the
Bogomol’nyi bound) of the total energy of the rotationally
symmetric configurations. The particular value of the
Bogomol’nyi bound can be calculated by using the boun-
dary conditions (41) and (42). Therefore, the BPS energy
for the model (36) becomes
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Ebps ¼∓ 4πhm > 0; ð49Þ

where the upper (lower) sign holds for negative (positive)
values of the winding number m.
Therefore, from Eq. (48), it is possible to note that the

total energy of the system satisfies the inequality

E ≥ Ebps; ð50Þ

with the lower bound attained when the fields satisfy the so-
called BPS equations, i.e.,

B ¼ �gh

�
cos α� Δ

gh

�
; ð51Þ

dα
dr

¼∓ ð2m − AÞ
2r

sin α; ð52Þ

whose solutions are rotationally symmetric structures with
total energy equal to

E ¼ Ebps ¼ 4πhjmj: ð53Þ

Note that the value in Eq. (53) is quantized according to
the winding number m, which is expected for topological
configurations. We also highlight that the Bogomol’nyi
bound is not affected by the presence of the magnetic
impurity.
In the BPS limit, the energy density (43) can be rewritten

in the form

εbps ¼
� ffiffiffiffiffiffiffi

2U
p ∓ Δ

2

�
2

−
Δ2

4
þ 2h

�
dα
dr

�
2

; ð54Þ

where U stands for the BPS potential in Eq. (47).
The potential can also be written as a function of ϕ3

and Δ,

Uðϕ3;ΔÞ ¼
g2h
2

�
ϕ3 �

Δ
g

ffiffiffi
h

p
�

2

; ð55Þ

which spontaneously breaks the SUð3Þ symmetry inherent
to the model (36), as expected. Also, the expression
in Eq. (55) reveals that the presence of the magnetic
impurity in the original Lagrangian density (36) requires
an adjustment of the potential (in comparison to the model
without the impurity) to support the existence of first-order
configurations.
In the next section, we consider a localized magnetic

impurity of the Gaussian type, from which we solve the
BPS equations (51) and (52) numerically by means of a
finite-difference scheme according to the boundary con-
ditions (41) and (42).

A. Maxwell-CPð2Þ vortex-like solitons:
Numerical analysis

In order to continue, we need to choose an explicit
expression for the localized magnetic impurity. For the sake
of convenience, we prefer to work with a Gaussian profile
centered at the origin, i.e.,

ΔðrÞ ¼ ce−dr
2

; ð56Þ

where both c and d ∈ R, with d > 0. In this case, the
parameters c and d control the height and width of the
impurity, respectively.
Now, given the impurity (56), the first-order potential

(47) can be written as

U ¼ g2h2

2

�
cos α� c

gh
e−dr

2

�
2

; ð57Þ

in which the upper (lower) sign holds for negative (positive)
values of m (the winding number). In this manuscript, we
consider the case with d ¼ 1 and different values for c
given that, as we explain later below, this case gives rise to
interesting modifications of the profiles of the resulting
first-order solutions.
In view of the potential (57), the first-order equations (51)

and (52) take the form

1

r
dA
dr

¼∓ g2h

�
cos α� c

gh
e−dr

2

�
; ð58Þ

dα
dr

¼∓ ð2m − AÞ
2r

sin α; ð59Þ

which must be solved according the boundary conditions
(41) and (42). Here, we have also used Eq. (40) for the
magnetic field.
In order to solve the above first-order equations numeri-

cally, we fix g ¼ h ¼ 1, for simplicity. Furthermore, we
choose m ¼ 1 (i.e., lower signs in the first-order expres-
sions) and d ¼ 1 (a fixed value for the width of the
impurity). We then study the resulting first-order equations
through a finite-difference algorithm for different values of
c (the height of the impurity). Subsequently, we depict the
numerical profiles for the profile functions αðrÞ and AðrÞ,
the magnetic field BðrÞ and the energy density εbpsðrÞ.
Figure 1 shows the field profiles αðrÞ and AðrÞ for c ¼

−5 (dashed orange line), c ¼ −4 (dashed red line), c ¼ −2
(dashed blue line), c ¼ 0 (usual solution, no impurity, solid
black line), c ¼ þ2 (solid blue line), and c ¼ þ4 (solid red
line). It is important to point out that the field profiles lose
the original monotonicity (attained in the absence of
impurity) as the value of jcj increases. As a consequence,
the profiles for α and A present a global maximum for
c ¼ −4 and c ¼ −5, while A presents a global minimum
for c ¼ 2 and c ¼ 4.
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In Fig. 2, we depict the solutions for both the magnetic
field BðrÞ and the BPS energy density εbps. The profiles
suggest that the parameter c (the height of the impurity)
induces an inversion of the sign of both the magnetic field
and the BPS energy density as these solutions approach the
origin. In particular, for c > 0, the BPS energy density
reaches negative values within a finite spatial region
beginning at r ¼ 0. The negative values arise due to the
magnetic impurity which avoids to express the BPS energy
density (43) as a sum of positive terms only; see Eq. (54).

1. Behavior of the solutions near the origin

To explain the sign inversion of the magnetic field and
the BPS energy density near the origin, we first study the
behavior of the profile functions αðrÞ and AðrÞ themselves.
In this sense, for m > 0, the field profiles when r → 0
behave as (here, C0 > 0 ∈ R)

αðrÞ ≈ C0rm; ð60Þ

AðrÞ ≈ g2h
2

�
1 −

c
gh

�
r2; ð61Þ

which promptly recover the usual results for c ¼ 0 (i.e., in
the absence of the magnetic impurity).

We see that the impurity does not change the behavior of
the scalar profile function αðrÞ near the origin. However,
the impurity (via its height parameter c) changes the factor
which multiplies the relevant term in the approximate
solution for the gauge profile function AðrÞ.
In order to present the behavior of both the magnetic

field and the BPS energy density near the origin, we
consider g ¼ h ¼ 1, m ¼ 1, and d ¼ 1 (i.e., the values of
the parameters used to obtain the numerical solutions).
Then, we get the following behavior for the magnetic field:

BðrÞ ≈ c − 1þ C2
0 − 2c
2

r2: ð62Þ

For the BPS energy density, we obtain

εbpsðrÞ ≈ −cþ 1þ 2C2
0 þ

C1

6
r2; ð63Þ

where C1 ¼ 3cð3C2
0 þ 2Þ − 4C2

0ðC2
0 þ 3Þ. We observe that

both of these expressions reflect the behavior presented in
Fig. 2, for r → 0.

2. Behavior of the solutions in the asymptotic limit

We also present the behavior of the profile fields αðrÞ
and AðrÞ for large values of the radial coordinate. In the
present case, for all values of c and d in Eq. (56), we find
that the behaviors of the field profiles are

FIG. 1. Numerical solutions to αðrÞ (top) and AðrÞ (bottom)
coming from Eqs. (58) and (59) in the presence of Eqs. (41) and
(42). Here, we have fixed g ¼ h ¼ 1, m ¼ 1 (lower signs in the
first-order expressions) and d ¼ 1. This figure shows the profiles
for c ¼ −5 (dashed orange line), c ¼ −4 (dashed red line), c ¼
−2 (dashed blue line), c ¼ 0 (usual solution, no impurity, solid
black line), c ¼ þ2 (solid blue line), and c ¼ þ4 (solid red line).

FIG. 2. Numerical solutions to the magnetic field BðrÞ (top)
and the energy density εðrÞ (bottom) of the first-order BPS
Maxwell-CPð2Þ configurations. Conventions as in the Fig. 1.
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αðrÞ ≈ π

2
− C∞

exp ð−MrÞffiffiffi
r

p ; ð64Þ

AðrÞ ≈ 2m − 2MC∞
ffiffiffi
r

p
exp ð−MrÞ; ð65Þ

where C∞ stands for a positive real constant and

M ¼ g

ffiffiffi
h
2

r
; ð66Þ

which is the mass of both the scalar and gauge bosons. We
then conclude that the bosonic fields acquire the same mass
in the self-dual limit, as in the Maxwell-Higgs model.
Therefore, the expressions (64) and (65) reveal that, in

the presence of a localized magnetic impurity, the resulting
first-order vortices mimic the standard asymptotic behav-
ior, i.e., a localized impurity does not change the way the
fields behave in the asymptotic region.

B. Topologically trivial solution: The m= 0 case

We now discuss the configuration characterized by a null
topological charge in the presence of the same impurity
already defined in Eq. (56). In the limit d → ∞ and c → ∞,
with the ratio c=d ¼ γ > 0 fixed (i.e., c ¼ γd), we get that

lim
d→∞

γd exp ð−dr2Þ ¼ γπδðrÞ: ð67Þ

In the Ginzburg-Landau model, at critical coupling, with
a δ-function impurity and γ ¼ 4, the vortex with null
topological charge behaves as a charge-1 vortex at critical
coupling [28]. Surprisingly, this also remains true for
axially symmetric configurations away from critical cou-
pling [29].
Figure 3 shows the functions αðrÞ and 2þ AðrÞ for

c ¼ 4d and d ¼ 1, 2, 4, and 256. In general, as d increases,
the shape of αðrÞ approaches that of a vortex with m ¼ 1,
while the minimum of the gauge field AðrÞ tends to −2 and
moves towards the origin (see Fig. 4). This can be
compared to the gauge field of a vortex with m ¼ 1 shifted
by −2. Hence, we have showed numerically that the
δ-function impurities also “behave” like vortices in this
more sophisticated gauged-CPð2Þ scenario. Moreover,
while the profile function αðrÞ remains smooth, the gauge
function AðrÞ becomes singular in the limit d → ∞ and
develops a jump at the origin. We have also observed that,
in general, when c ¼ 4md, the limit d → ∞ corresponds
to a δ function of strength 4mπ and the corresponding
solution approaches a topological profile (in the lack of the
impurity) with winding number m. Also in this case, the
gauge profile function AðrÞ maintains the jump at r ¼ 0.
Figure 4 shows how the value of αðr ¼ 0Þ (dotted golden

line) goes to zero for large values of d, for m ¼ 0 and
c ¼ 4d. The figure also shows how the value of −AðrminÞ
approaches 2 whereas its localization rmin goes to zero
(giving rise to the jump mentioned previously) for large
values of d. This fact justifies the plot of 2þ AðrÞ in the
bottom of Fig. 3.

IV. EFFECTIVE CHERN-SIMONS-CPð2Þ MODEL

We now present the model which describes the interaction
between the CPð2Þ field and the Chern-Simons Abelian
gauge one. The model is defined by the Lagrange density

FIG. 3. Numerical solutions to αðrÞ (top) and 2þ AðrÞ (bot-
tom) for m ¼ 0 (i.e., the topologically trivial configuration).
Here, we have depicted the solutions for d ¼ 1 (c ¼ 4, black
line), d ¼ 2 (c ¼ 8, blue line), d ¼ 4 (c ¼ 16, red line), and d ¼
256 (c ¼ 1024, orange line). The dotted green line represents the
topological profile for m ¼ 1 in the absence of the impurity.

FIG. 4. TheMaxwell-CPð2Þ case withm ¼ 0: this figure shows
the behavior of −AðrminÞ (dotted red line), rmin (dotted blue line),
and αðr ¼ 0Þ (dotted golden line) versus ln(d). Here, rmin stands
for the value of the radial coordinate for which the gauge profile
function attains its minimum value, i.e., AðrminÞ.
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L ¼ −
κ

4
ϵαμνAαFμν þ j∇μϕj2 − V0ðϕ3Þ; ð68Þ

where the Chern-Simons term controls the gauge field’s
dynamics, while the parameter κ stands for the respective
coupling constant. The basic definitions, conventions
and correlated discussions introduced in Sec. II remain
the same.
For the configuration (1), the effective model then reads

L ¼ −
κ

4
ϵαμνAαFμν þ jDμϕj2 − V0ðϕ3Þ − λðh − ϕ†ϕÞ:

ð69Þ

We are interested in the BPS structure that arises from the
model above. In view of the Gauss law

κB ¼ −g2A0jψ j2 ¼ −
1

2
g2A0ðh − ϕ2

3Þ; ð70Þ

the energy density takes the form

ε ¼ κ2B2

g2ðh − ϕ2
3Þ

þ ðDkϕÞ†Dkϕþ V0: ð71Þ

After some algebraic manipulations, the total energy of
the effective system becomes

E ¼
Z

d2x

�
1

2
jDjϕ� iϵjkh−1=2ðϕ ×DkϕÞ�j2

þ
�

κB

gðh − ϕ2
3Þ1=2

∓ ffiffiffiffiffiffi
V0

p �
2

� 2πhq̄0

� B

�
2κ

ffiffiffiffiffiffi
V0

p
gðh − ϕ2

3Þ1=2
− h1=2gϕ3

��
; ð72Þ

where q̄0 is the topological charge density defined in the
previous Eq. (27). Again in this case, if we choose the
factor which multiplies the magnetic field as zero, we
determine the BPS potential of the model (69), i.e.,

V0 ¼
hg2

4κ2
ϕ2
3ðh − ϕ2

3Þ; ð73Þ

via which we complete the implementation of the BPS
formalism for the model (69) by writing the total energy as

E ¼ Ebps þ
Z

d2x

�
κB

gðh − ϕ2
3Þ1=2

∓ ffiffiffiffiffiffi
V0

p �
2

þ 1

2

Z
d2xjDjϕ� ih−1=2ϵjkðϕ ×DkϕÞ�j2; ð74Þ

where Ebps was defined in Eq. (28).
We see that total energy becomes equal to Ebps when the

quadratic terms within the integrals are assumed to be zero,

from which one gets the BPS or self-dual equations of the
system, i.e.,

B ¼ � h1=2g2

2κ2
ϕ3ðh − ϕ2

3Þ; ð75Þ

Djϕ ¼∓ ih−1=2ϵjkðϕ ×DkϕÞ�; ð76Þ

which mimic those inherent to the Chern-Simons-Oð3Þ
sigma model. Furthermore, according to Refs. [36,37], the
BPS system above is related to an extended supersym-
metric version of the model (68).
In Ref. [10], the authors studied the rotationally sym-

metric solutions of the BPS system (75) and (76), for the
case β ¼ β1. In the next section, we investigate the effects
of a magnetic impurity on the BPS solitons supported by
the model (69).

V. CHERN-SIMONS-CPð2Þ VORTEX-LIKE
SOLITONS IN THE PRESENCE
OF A MAGNETIC IMPURITY

We now consider a second enlarged model which
describes the interaction between the CPð2Þ-field and a
Chern-Simons Abelian gauge one [i.e., a Chern-Simons-
CPð2Þ model]. The resulting model is defined by the
Lagrange density

L ¼ −
κ

4
ϵαμνAαFμν þ jDμϕj2 − Vðϕ3;ΔÞ þ ΔB: ð77Þ

Also in this section, our study focuses on those time-
independent configurations with radial symmetry. With
such a purpose in mind, we again use the map defined by
Eqs. (38) and (39) for the profile functions αðrÞ and AðrÞ
that still obey the boundary conditions (41) and (42).
Besides, the scalar potential A0 is also supposed to depend
on the radial coordinate r only,

A0 ¼ A0ðrÞ; ð78Þ
while the expressions for the magnetic and electric fields
are

BðrÞ ¼ −
1

gr
dA
dr

and EðrÞ ¼ −
dA0

dr
; ð79Þ

respectively.
Here, as in the previous model, the term ΔB does not

change the Gauss law (70) which comes from the Lagrange
density (68) when considered in the absence of the
impurity. So, one gets the Gauss law as

κB ¼ −
g2h
2

A0 sin2 α; ð80Þ

from which we get that the new model possesses configu-
rations which carry both magnetic flux and electric charge
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simultaneously, a well-known effect caused by the presence
of the Chern-Simons term itself (see Ref. [10] and the
discussion therein).
In what follows, we again focus our attention on those

first-order solutions which minimize the total energy of
the model. With such a purpose in mind, we implement the
Bogomol’nyi prescription, the starting point being the
radially symmetric expression for the energy density, which
we write in a more convenient form as

ε ¼ κ2B2

g2hsin2α
þ Vðα;ΔÞ − ΔB

þ h

��
dα
dr

�
2

þ ð2m − AÞ2
4r2

sin2α

�
; ð81Þ

where we have used the Gauss law (80) to express the scalar
potential A0ðrÞ as a function of the magnetic field BðrÞ.
Now, from Eq. (81), we initiate the implementation of

the BPS technique providing, after some algebra, the
following expression for the total energy:

E
2π

¼
Z

∞

0

�
h

�
dα
dr

� ð2m − AÞ
2r

sin α

�
2

þ
�

κB

g
ffiffiffi
h

p
sin α

∓ ffiffiffiffi
V

p �
2

� 2πhq̄0

� B

�
2κ

ffiffiffiffi
V

p

gh1=2 sin α
− hg cos α ∓ Δ

��
rdr; ð82Þ

where the quantity q̄0 is the topological charge density of
the model, being the same as that given in Eq. (46).
In order to complete the minimization of the total energy

according to the Bogomol’nyi prescription, we set to zero
the expression that multiplies the magnetic field in the third
row of Eq. (82) it allow us to determine the BPS potential
Vðα;ΔÞ as

Vðα;ΔÞ ¼ g4h3

4κ2

�
cos α� Δ

gh

�
2

sin2 α; ð83Þ

where both the potential and the function Δ go to zero
when r → ∞.
This way, the total energy becomes

E
2π

¼ Ebps

2π
þ
Z

∞

0

��
κB

g
ffiffiffi
h

p
sin α

∓ ffiffiffiffi
V

p �
2
�
rdr

þ h
Z

∞

0

�
dα
dr

� ð2m − AÞ
2r

sin α

�
2

rdr; ð84Þ

where we have introduced the energy Ebps defined in
Eq. (28) and whose value is the same one which appears
in Eq. (49). Furthermore, from Eq. (84), we write the
inequality

E ≥ Ebps; ð85Þ

from which we clearly see that Ebps stands for the
Bogomol’nyi bound which can be calculated in the very
same way as before [i.e., via the use of the boundary
conditions (41) and (42)]. The inequality (85) reveals that
the Bogomol’nyi bound is saturated when the fields which
appear in Eq. (84) satisfy the BPS equations:

B ¼ � g3h2

2κ2

�
cos α� Δ

gh

�
sin2 α; ð86Þ

dα
dr

¼∓ ð2m − AÞ
2r

sin α; ð87Þ

whose solutions describe time-independent configurations
with total energy given by E ¼ Ebps ¼ 4πhjmj, which is
equal to the energy inherent to theBPS structures obtained in
the previous Maxwell-CPð2Þ case (see Sec. III and the
discussion therein).
Furthermore, the BPS energy density obtained from

Eq. (81) is

εbps ¼
� ffiffiffiffiffiffi

2V
p ∓ Δ

2

�
2

−
Δ2

4
þ 2h

�
dα
dr

�
2

; ð88Þ

with the BPS potential V given by Eq. (83). The latter can
be rewritten in terms of ϕ3 as

Vðϕ3;ΔÞ ¼
g4h
4κ2

�
ϕ3 �

Δ
g

ffiffiffi
h

p
�

2

ðh − ϕ2
3Þ; ð89Þ

which allows the spontaneous breaking of the SUð3Þ
symmetry inherent to the original Chern-Simons-CPð2Þ
model, as expected.
Below, we investigate the first-order equations (86) and

(87) numerically. In the sequence, we plot the resulting
BPS profiles and comment on their main properties
engendered by the presence of a localized impurity.

A. Chern-Simons-CPð2Þ vortex-like solitons:
Numerical results

In the sequence, we choose the localized magnetic
impurity as in Eq. (56), i.e.,

ΔðrÞ ¼ ce−dr
2

; ð90Þ

via which we rewrite the potential (83) in the form

Vðα;ΔÞ ¼ g4h3

4κ2

�
cos α� c

gh
e−dr

2

�
2

sin2 α: ð91Þ

In this sense, the BPS equations (86) and (87) become

1

r
dA
dr

¼∓ g4h2

2κ2

�
cos α� c

hg
e−dr

2

�
sin2 α; ð92Þ
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dα
dr

¼∓ ð2m − AÞ
2r

sin α; ð93Þ

whose solutions must satisfy the boundary conditions (41)
and (42). As in Sec. II, we only consider the lower signs
in the BPS equations in order to describe the first-order
solutions for m > 0.
We again implement a finite-difference algorithm in

order to solve the first-order equations (92) and (93)
numerically. In this sense, we choose κ ¼ h ¼ 1, g ¼ ffiffiffi

2
p

,
m ¼ 1, d ¼ 1 (the impurity’s “width”), from which we
study the BPS configurations for the same values of c (the
impurity’s “height”) already considered in Sec. III, i.e.,
c ¼ −4 (dashed red line), c ¼ −2 (dashed blue line), c ¼ 0
(usual solution, no impurities, solid black line), c ¼ þ2
(solid blue line), and c ¼ þ4 (solid red line). We depict the
numerical solutions for the relevant fields in Figs. 5–7.
Here, it is important to say that the solution for c ¼ −5 is
not shown because the effects caused by the impurity can
be seen clearly in the profile for c ¼ −4.
Figure 5 shows the solutions to the profile functions αðrÞ

and AðrÞ, from which one notes that the same effects are
again present when the values of jcj increase, i.e., the
profiles lose their monotonicity because of the presence of
the magnetic impurity. In particular, due to the loss of
monotonicity, the αðrÞ profiles can assume values that are
eventually bigger than π=2.

Figure 6 depicts the magnetic field BðrÞ and the energy
density εbps. For increasing values of jcj, we again identify
an inversion on the sign (i.e., a flip) of the magnetic field as
already observed in the previous model, such an effect is

FIG. 5. Numerical solutions to αðrÞ (top) and AðrÞ (bottom)
coming from Eqs. (92) and (93) in the presence of Eqs. (41) and
(42). The results hold for κ ¼ h ¼ m ¼ 1, g ¼ ffiffiffi

2
p

, d ¼ 1, and
c ¼ −4 (dashed red line), c ¼ −2 (dashed blue line), c ¼ 0
(solution without magnetic impurity, solid black line), c ¼ þ2
(solid blue line), and c ¼ þ4 (solid red line).

FIG. 6. Numerical solutions to the magnetic field BðrÞ (top)
and the energy density εbpsðrÞ (bottom) of the first-order Chern-
Simons-CPð2Þ configurations. Conventions are as in Fig. 5.

FIG. 7. Numerical solutions to the scalar potential A0ðrÞ (top)
and the electric field EðrÞ (bottom) of the first-order Chern-
Simons-CPð2Þ configurations. Conventions are as in Fig. 5.
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caused by the magnetic impurity which gives rise to a
gauge field with a nonmonotonic shape. Moreover, despite
the effects caused by the impurity, the energy density
remains localized and well behaved along the radial
coordinate, as expected.
Finally, we plot the profiles for the scalar potential A0ðrÞ

and the electric field EðrÞ ¼ −dA0=dr in Fig. 7. The Gauss
law (80) defines a linear dependence between the scalar
potential and the magnetic field, which means that the
flipping of B (see Fig. 5) leads to an inversion of the sign of
A0, and vice versa. Hence, the scalar potential’s non-
monotonic behavior also produces the sign inversion of
the electric field itself.

1. Behavior of the solutions near the origin

We now investigate the way that the profile fields αðrÞ
and AðrÞ approach the values (41) and (42). Without loss of
generality, we consider only those configurations with
positive values of the winding number m. Thus, the
behaviors of the profile functions near the origin are

αðrÞ ≈ C0rm; ð94Þ

AðrÞ ≈ C20g
3hðhg − cÞ

4κ2ðmþ 1Þ r2ðmþ1Þ; ð95Þ

where C0 stands for a positive real constant.
We write below the behaviors near the origin for the

magnetic field, the BPS energy density, the scalar potential,
and the electric field. For such a purpose, we consider
κ ¼ h ¼ 1, g ¼ ffiffiffi

2
p

,m ¼ 1, and d ¼ 1, i.e., the same values
used to obtain the previous numerical solutions. Then,we get
the following behavior for the magnetic sector:

BðrÞ ≈ C20ðc −
ffiffiffi
2

p
Þr2: ð96Þ

For the BPS energy density, we obtain

εbpsðrÞ ≈ 2C20 −
C1
3
r2; ð97Þ

where C1 ¼ C20ð3
ffiffiffi
2

p
cþ 2C20 − 6Þ.

As a result, the expressions above offer an explanation in
terms of thevalues of c about the behavior of the correspond-
ing sectors near the origin which appear in Fig. 6.
Further, the behaviors of the scalar potential and electric

field become

A0ðrÞ ≈
ffiffiffi
2

p
− cþ

�
c −

ffiffiffi
2

p

2
C20

�
r2; ð98Þ

EðrÞ ≈ ð
ffiffiffi
2

p
C20 − 2cÞr −

ffiffiffi
2

p
C40 − 6c
3

r3; ð99Þ

respectively. These approximate solutions also explain the
behaviors near r ¼ 0 depicted in Fig. 7.

2. Behavior of the solutions in the asymptotic limit

On the other hand, in the asymptotic limit r → ∞, the
fields behave as

αðrÞ ≈ π

2
− C∞

exp ð−MrÞffiffiffi
r

p ; ð100Þ

AðrÞ ≈ 2m − 2MC∞
ffiffiffi
r

p
exp ð−MrÞ; ð101Þ

for all of the values of c and d in Eq. (90), where C∞ stands
for a positive real constant and

M ¼ g2h
2κ

ð102Þ

represents the mass of both of the bosons in the
Bogomol’nyi limit. As in the Maxwell-CPð2Þ case, it is
also possible to conclude in the present Chern-Simons
scenario that a localized impurity does not change the way
that the profile functions approach their asymptotic values.

B. Topologically trivial solution: m = 0 case

We finally end this section by considering the non-
topological (m ¼ 0) configuration engendered by the
δ-function impurity given in Eq. (67); see Sec. III B and
the discussion therein.

FIG. 8. Numerical solutions to αðrÞ (top) and 2þ AðrÞ (bot-
tom) for m ¼ 0 (i.e., the vacuum configuration). The impurity is
still given by Eq. (90). Here, we depict the solutions for d ¼ 1
(c ¼ 4, black line), d ¼ 2 (c ¼ 8, blue line), d ¼ 4 (c ¼ 16, red
line), and d ¼ 256 (c ¼ 1024, orange line). Again, the dotted
green line stands for the topological profile with m ¼ 1 in the
absence of impurities.
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The numerical results for the profile functions αðrÞ and
2þ AðrÞ are shown in Fig. 8, again for γ ¼ 4 and
d ¼ 1,2,4, and 256. We observe that in the present case
the m ¼ 0 solution does not mimic the behavior previously
found in the Maxwell-CPð2Þ scenario, i.e., the profile for
αðrÞ does not approach that of a m ¼ 1 topological vortex
as d increases. At the same time, the minimum of AðrÞ does
not saturate to the value −2, but rather moves towards the
origin; see Fig. 9. As a consequence, in the present Chern-
Simon-CPð2Þ case, the topologically trivial configuration
does not behave as a m ¼ 1 vortex, which arises in the
absence of the impurity.

VI. FINAL COMMENTS AND PERSPECTIVES

We have performed the construction of BPS vortices in
the context of two different gauged-CPð2Þ scenarios that
were enlarged via an additional term which represents a
magnetic impurity. With such an aim in mind, we chose a
specific CPð2Þ configuration [Eq. (1)] as being coupled to
both the Maxwell and Chern-Simons fields, separately.
Here, it is worth noting that such a configuration presents a
CPð2Þ topological charge which equals zero not only in the
simplest (free) scenario, but also when the CPð2Þ field is
coupled to an Abelian gauge one. However, the BPS
formalism shows that the effective models for Eq. (1)
possess a self-dual structure which looks like that of the
gauged sigma models. Moreover, the full implementation
of the BPS technique allows us to fix the self-dual
potentials in both the Maxwell and Chern-Simons cases;
see Eqs. (47) and (83), respectively. In this sense, we have
verified that the magnetic impurity contributes explicitly to
the self-dual potentials and appears in both models’ BPS

equations. The interesting point is that the impurity does
not change the Bogomol’nyi bounds saturated by the BPS
configurations, i.e., the corresponding self-dual energies
remain quantized according to the winding number m, as
expected for topological structures.
In order to study the effects caused by the magnetic

impurity on the solutions of the BPS systems, we have
particularized our analysis by choosing a Gaussian (local-
ized) impurity controlled by two real parameters, c and d
(which control the “height” and the “width” of the impurity,
respectively). For a fixed value of d and different values of
c, the numerical analysis demonstrated how the parameter c
induces not only the loss of monotonicity of the profile
functions αðrÞ and AðrÞ, but also the flipping of both the
magnetic and electric fields. The analysis of the behavior
near the origin explained both peculiarities. In addition,
we verified that the impurity does not change the manner
in which these fields behave in the asymptotic region
(i.e., r → ∞).
Based on the results that we have introduced in this

work, an interesting issue to be studied in the future is
the effect eventually caused by a localized impurity on the
shape of nontopological BPS Chern-Simons-CPð2Þ vorti-
ces. Another point which claims for a future analysis
includes the study of the interaction between a moving
gauged-CPð2Þ vortex and a static magnetic impurity. The
results of these topics, currently under investigation, will be
reported elsewhere.
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FIG. 9. The Chern-Simons-CPð2Þ case: this figure shows the
behavior of −AðrminÞ (dotted red line), rmin (dotted blue line), and
αðr ¼ 0Þ (dotted golden line) versus ln(d). As in the previous
case, rmin is the value of r for which the gauge profile function
attains its minimum value.
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