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We consider the problem of soft scattering for the analogue of pion states in gauge-fermion theories
which approach a conformal fixed point in the infrared limit. Introducing a fermion mass into such a theory
will explicitly break both scale invariance and chiral symmetry, leading to confinement and a spectrum of
bound states. We argue that in such a theory, the pion scattering length diverges in the limit of zero fermion
mass, in sharp contrast to QCD-like theories where the chiral Lagrangian predicts a vanishing scattering
length. We demonstrate this effect both with a simple dimensional argument, and in a generalized linear
sigma model which we argue can be used to describe the interactions of light scalar and pseudoscalar bound
states in the soft limit of a mass-deformed infrared-conformal theory. As a result, lattice calculations of pion
scattering lengths could be a sensitive probe for infrared scale invariance in gauge-fermion theories.
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I. INTRODUCTION

With few light fermion degrees of freedom, strongly
coupled gauge-fermion theories such as QCD exhibit a rich
set of physical phenomena including confinement and
spontaneous chiral symmetry breaking. As additional
massless fermions are added to such a theory, eventually
a transition will occur to the “conformal window,” in which
the theory has an infrared fixed point (IRFP) and confine-
ment and chiral symmetry breaking are lost. The interacting
conformal field theories which exist in the conformal
window are interesting in their own right; they also appear
as important ingredients in proposals for new physics
beyond the Standard Model, such as composite Higgs
models [1–3].
Studying the transition to the conformal window is an

active research topic in lattice field theory [4–8], but even
for SU(3) gauge theory with Nf Dirac fermions in the
fundamental representation, the extent of the conformal
window is not well established. Diagnosing whether a
given theory has an infrared-conformal phase is a difficult
task, often leading to ambiguous results.
For example, one common method is to use lattice

simulations to perform scaling tests [9–18]: varying a

perturbation such as a finite box size or an explicit fermion
mass and looking for the expected power-law dependence
due to the influence of the IRFP. This is straightforward in
principle, but in practice distinguishing power-law from
linear behavior with a limited range of numerical data is
often challenging.
One aspect where we might expect to see sharp quali-

tative differences is in the behavior of the pionlike states π,
i.e., the lightest pseudoscalar mesonic bound states. In a
QCD-like theory, the pions are pseudo-Nambu-Goldstone
bosons associated with spontaneous chiral symmetry
breaking. In the massless limit, their Goldstone nature
manifests as a shift symmetry π → π þ c which ensures
that only derivative interactions are allowed: schematically,

LQCD-like ∼
1

2
ð∂μπÞ2 þ

C
Λ4

ð∂μπÞ4 þ… ð1Þ

This means that in the soft scattering limit of a massless
QCD-like theory, the interactions between pions will
vanish and the theory will become effectively free.
On the other hand, in a mass-deformed theory in the

conformal window, breaking of chiral symmetry is purely
explicit and spontaneous scale generation does not occur. In
this scenario, we will argue that instead of vanishing, the
scattering length aππ and thus the soft scattering cross
section σ ¼ 4πa2ππ diverges in the massless limit.

II. PION SCATTERING IN THE SOFT LIMIT
AND IR-CONFORMAL THEORIES

We begin with an introduction to the basic physical
scenario of introducing mass to an infrared-conformal

*dhackett@mit.edu
†ethan.neil@colorado.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 016007 (2022)

2470-0010=2022=106(1)=016007(11) 016007-1 Published by the American Physical Society

https://orcid.org/0000-0002-4915-3951
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.016007&domain=pdf&date_stamp=2022-07-14
https://doi.org/10.1103/PhysRevD.106.016007
https://doi.org/10.1103/PhysRevD.106.016007
https://doi.org/10.1103/PhysRevD.106.016007
https://doi.org/10.1103/PhysRevD.106.016007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


theory. We then compare the expected behavior of pion
scattering properties in this scenario to their behavior in
chiral perturbation theory, finding a qualitative difference in
their dependence on the fermion mass m.

A. Mass-deformed infrared conformal theories

We are interested in studying the infrared physics of a
mass-deformed infrared-conformal gauge-fermion theory
(“mass-deformed conformal theory” or “MDCT” for short).
The basic physical picture for such a theory is as follows
[12,19–21]: if the fermions are exactly massless, then the
theory runs to an infrared fixed point with gauge coupling
g ¼ g⋆, with associated mass anomalous dimension
γ⋆ ¼ γðg⋆Þ. We may introduce an ultraviolet cutoff ΛUV
such that gðΛUVÞ ≈ g⋆; i.e., the theory below ΛUV is
approximately scale invariant.
If we now introduce an explicit fermion mass at the UV

cutoff m≡mðΛUVÞ, then the mass will run to larger values
in the infrared, eventually reaching the scale ΛC ≈mðΛCÞ.
The fermions decouple completely from the theory below
ΛC, leaving a pure-gauge theory which rapidly confines,
so that ΛC may be approximately identified as an induced
confinement scale. The relationship between m and ΛC is
determined by the mass anomalous dimension,

ΛC ∝ m1=ð1þγ⋆Þ: ð2Þ

Physical quantities associated with confining physics, e.g.,
hadron masses, are then expected to be of order ΛC.
Because ΛC is the only dimensionful infrared scale, all
dimensionful infrared quantities are necessarily propor-
tional to ΛC raised to the appropriate power (up to
corrections proportional to m ≪ ΛC, as discussed in [12]).
More complicated dynamics arises if only some of the
fermions are given a heavy mass, giving an infrared theory
with both an induced confinement scale and dynamical
fermions [22–25]; we will not explore this possibility here.
Although this basic framework is predictive and useful,

going beyond simple dimensional arguments requires the
construction of an effective description of the low-energy
degrees of freedom. In the case of QCD, the appropriate
particle degrees of freedom are readily identified as the
pions, which are much lighter than all other hadrons due to
their Nambu-Goldstone nature. However, in an MDCT
there is no obvious hierarchy to the spectrum since there are
no pseudo-Nambu-Goldstone bosons. Worse yet, the
masses of all hadronic states in the spectrum collapse
together in the chiral limit m → 0.
However, as we argue in Sec. III below, we can construct

a tree-level semiclassical model for the interactions of
pionlike states in an MDCT, governed by the same
symmetries as the MDCT itself. We find that the require-
ment of recovering conformal symmetry in them → 0 limit
gives powerful constraints on the allowed interactions,
leading to a predictive model under certain assumptions.

B. Pion scattering

We now turn to the main problem of interest, soft elastic
scattering of the π fields. We focus only on S-wave
scattering, since scattering into partial waves with angular
momentum will be suppressed at low momentum. We
further specialize to the case of “maximal isospin” scatter-
ing, πþπþ → πþπþ, where πþ is an analogue of the QCD
charged pion within an SU(2) subgroup of the full SUðNfÞ
vector symmetry. (In QCD, this is the “I ¼ 2” scattering
channel.) This is the simplest π − π scattering process to
study with lattice methods due to the lack of fermion-line
disconnected diagrams. The combination of maximal-
isospin scattering and the soft limit also yields the most
robust results for the model presented in Sec. III C below.
Two-to-two particle scattering at low momenta is often

described in terms of the scattering phase shifts δl and the
initial three-momentum in the center of mass frame k.
Specifically, at small k the S-wave (l ¼ 0) π − π scattering
process can be captured by the standard effective range
expansion,

k cot δ0 ¼ −
1

aππ
þ 1

2
r ππk2 þOðk4Þ; ð3Þ

where aππ and r ππ are known as the scattering length and
effective range, respectively. This expansion is valid so long
as the scattering amplitude is a smooth function at small k.
In chiral perturbation theory, the formulas for these

quantities at leading order in the chiral expansion are [26]

aππ;χPT ¼ Mπ

16πF2
; ð4Þ

r ππ;χPT ¼ 48πF2

M3
π

: ð5Þ

In the soft-scattering limit k2 → 0, the scattering cross
section is σ ¼ 4πa2ππ . Taking the chiral limit m → 0, in
which Mπ → 0 but F remains finite, we see that aππ → 0
and the scattering cross section vanishes as the theory
becomes noninteracting. As described in the Introduction,
this reflects the fact that as m → 0, only interactions
involving the derivative ∂μπ are allowed, which will vanish
at zero momentum.
The physical picture is very different in the mass-

deformed conformal theory. Up to multiplicative constants,
we can simply use dimensional analysis: both of the
distance scales associated with π − π scattering must be
determined by the hadronic scale ΛC. In other words, we
must have

aππ;MDCT ∼ r ππ;MDCT ∼ Λ−1
C ∼m−1=ð1þγ⋆Þ: ð6Þ

This is sharply different from the chiral perturbation theory
behavior. In particular, we see that in the m → 0 limit, the

DANIEL C. HACKETT and ETHAN T. NEIL PHYS. REV. D 106, 016007 (2022)

016007-2



scattering length aππ → ∞, diverging rather than going
to zero.
This divergence occurs because there is only one scale in

the theory, the fermion mass m, which breaks both chiral
and scale symmetry. Shift symmetry cannot arise when
chiral symmetry is explicitly broken so, when m > 0,
nonderivative interactions lead to a nonzero soft-scattering
cross section σ ∼ Ck0 þOðk2Þ with C ≠ 0. The coefficient
C is dimensionful, and in an MDCT its dimensions must be
given in terms of the only existing infrared scale, ΛC. We
must therefore have C ∝ Λ−2

C ∼m−2=ð1þγ⋆Þ, which diverges
as m → 0.
To be more concrete, we can explicitly compare the

scaling with the fermion mass m in the χPT and MDCT
scenarios. In chiral perturbation theory we haveMπ ∼m1=2

and F ∼m0, yielding

aππ;χPT ∼m1=2; r ππ;χPT ∼m−3=2; ð7Þ

showing explicitly the form under which aππ → 0 as
m → 0. One may also compare the ratio r ππ=aππ , which
diverges as m−2 in the χPT case but is constant at leading
order in the MDCT case.
In χPT at somewhat heavier values of the fermion mass,

particularly if Nf is large [27,28], F can become dominated
by its next-to-leading order correction linear inm whileMπ

continues to follow its leading-order scaling to good
approximation. In such a mass regime, the apparent mass
dependence will be Mπ ∼m1=2, F ∼m1, yielding the
scaling aππ ∼m−3=2, r ππ ∼m1=2. Thus at heavy mass, the
scattering length can also appear to diverge as m → 0 in
the χPT scenario, although the specific mass dependence is
different from both the light-mass χPT and MDCT scaling
behaviors.1 In particular, we can take the dimensionless
combination,

Mπaππ ∼

8><
>:

m1 ðlight χPTÞ;
m−1 ðheavy χPTÞ;
m0 ðMDCTÞ:

ð8Þ

We emphasize that the scaling relations above assume that
corrections due to finite lattice spacing and finite volume
are negligible, or at least small enough not to significantly
distort the pion mass or scattering properties.
Quantities likeMπaππ can show qualitative differences in

behavior as a function of m in different physical scenarios,
providing a powerful discriminator. However, we caution
that misleading behavior can arise in lattice studies of any
quantity in an MDCT directly as a function of a

dimensionless ratio like Mπ=F, instead of as a function
of the fermion massm. In an MDCT, the same dimensional
reasoning indicates that Mπ=F is constant in m at leading
order; any variation seen is due to subleading scaling, finite
volume effects, and lattice artifacts. Generally, any func-
tional relations between infrared quantities may be difficult
to interpret when leading scaling dominates and all massive
quantities vary with m together in fixed ratios.
As an example, we consider the recent lattice results

from [29] for I ¼ 2 π − π scattering in a near-conformal
theory, SU(3) with Nf ¼ 8 fermions in the fundamental
representation. In Fig. 1, we replot their tabulated results
against the fermion mass in lattice units am. The leading
dependence on the mass is clearly most consistent with the
m0 scaling of the MDCT case and does not obviously show
the scaling expected in χPT in either the light-mass or
heavy-mass regimes.2 However, this does not conflict with
the hypothesis of a dilaton effective theory considered in
the reference. Using the formula Eq. (32) from [29],
together with the mass dependences M2

π ∼m, F2
π ∼m

observed in [30], we find that also in the dilaton EFT
case the leading behavior is Mπaππ ∼m0. We emphasize
that this is an empirical argument valid only for this specific
theory; in general, the leading mass scaling in the dilaton
EFT scenario likely depends on the value of the mass
anomalous dimension γ⋆ and on the form of the dilaton
potential.

FIG. 1. Lattice data for the I ¼ 2 pion scattering length in
SU(3) gauge theory with Nf ¼ 8 fermions in the fundamental
representation, from [29]. We have replotted results for the
combination Mπaππ against the fermion mass in lattice units
am, where a is the lattice spacing. The relatively mild depend-
ence on am is most consistent with the low-energy description
being a mass-deformed conformal or near-conformal system, as
discussed in the text.

1Of course, if the mass m is scaled properly towards the limit
m → 0, this scaling must give way to the expected light-mass
scaling predicted by χPT. The meaning of “takingm → 0” here is
extrapolation from data exclusively obtained in the heavy-mass
regime.

2We are assuming weak dependence of the lattice spacing on
the mass in this discussion. The lattice data shown are from
staggered fermion simulations at a single bare coupling, so there
is no hidden additional dependence of a on other parameters.
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III. SCALAR INFRARED MODEL FOR MASS-
DEFORMED CONFORMAL THEORIES

The dimensional argument of the previous section is
robust but does not provide predictions beyond scaling
relations. As discussed above, near-conformal systems can
demonstrate similar scaling to what dimensional analysis
predicts for an MDCT, making it difficult to discriminate
between these scenarios on scaling arguments alone. In this
section we construct a model to study the physics of soft
pion interactions in a more quantitative way.
The ideal approach would be to construct an EFT based

on the weakly broken chiral and scale symmetries of the
theory, then compute in the framework of that effective
theory. However, when m → 0 such that scale symmetry is
restored, the UV theory recovers conformality and the
spectrum collapses. This presents a formal obstacle: a
collapsed spectrum cannot be cut off, so the standard
procedure of constructing an invariant Lagrangian then
implementing explicit breaking with spurions cannot be
applied.
We instead settle for building a semiclassical tree-level

model for the low-lying scalars and pseudoscalars of the
MDCT with the same symmetries as the UV theory. The
construction proceeds similarly to that of an EFT but does
not provide a controlled approximation. We will treat
weakly broken scale invariance by constructing a theory
which recovers classical conformality as m → 0 and by
assuming that m scales with its anomalous dimension, so
our model is only applicable at tree level.
We make two assumptions about the physics of the UV

theory: that the pseudoscalar mesons π, as well as the flavor
singlet and nonsinglet scalars σ and a, are still among the
lightest states in the spectrum, and that there is a spectral
gap above the lightest scalar and pseudoscalar mesons.
These assumptions are supported by mass inequalities
which ensure the π are the lightest flavor-nonsinglet
mesons [31–34], as well as by lattice spectroscopy for
various theories which are candidates for infrared-
conformal behavior [13,16,35–41]. Note that the spectral
gap will vanish in absolute terms as m → 0, but the relative
size of the gap (i.e., mass ratios between the lightest mesons
that we keep and the heavier ones integrated out of the
theory) will remain constant as a result of mass
hyperscaling.
To simplify the modeling task, we restrict our consid-

eration to a particular physical process, soft π − π scatter-
ing in the “maximal isospin” channel, i.e., soft scattering
of the π mesons in the channel with highest weight under
the flavor symmetry. For a tree-level model, these two
conditions will greatly restrict any possible contribution
from intermediate states of higher spin in particular,
meaning momentum-independent predictions of our
model rely only on the weaker condition of a gap in
the spectrum of spin-zero states, rather than a gap in the
overall spectrum. Given a gapped scalar spectrum,

working near the soft limit (i.e., holding the scattering
momentum k small compared to ΛC) will allow us to
ignore corrections from heavier scalars.

A. Building the model

We describe the 2N2
f lowest-lying scalar and pseudo-

scalar composite mesonlike states3 using a single complex
Nf × Nf matrix scalar field Φ ¼ Φi

j ∼ hq̄iRqLji. The most
general Lagrangian for these modes consistent with chiral
and scale symmetries is a generalized linear sigma model,

L ¼ Tr½∂μΦ†
∂
μΦ� þ LSB þ Lint; ð9Þ

where LSB denotes the symmetry-breaking part of the
Lagrangian which vanishes in the limit m → 0, and

Lint ¼ −
1

4
uTr½Φ†Φ�2 − 1

4
vTr½ðΦ†ΦÞ2�: ð10Þ

In the limit m → 0, the Lagrangian is classically conformal
because all couplings in Lint are dimensionless, and
invariant under the full SUðNfÞL × SUðNfÞR chiral sym-
metry, under which the scalar fields transform as

Φ → U†
RΦUL: ð11Þ

As typically done in chiral perturbation theory, to
determine the form of LSB we introduce a spurion field
χ which transforms as a scalar current under the chiral
symmetry: χ → U†

RχUL. Chiral symmetry dictates how χ
may appear in the chirally symmetric Lagrangian. Setting
χ ¼ m1 once the Lagrangian is constructed will explicitly
break the chiral symmetry to the subgroup SUðNfÞV and
yield the dependence of the theory on the fermion mass m.
In this case, we impose an additional restriction on χ: it

should act as a spurion field for scale symmetry as well.
This is motivated by the physics of the MDCT, where we
know that the fermion mass m is responsible for breaking
both chiral and scale symmetry. Since the mass m rescales
nontrivially under dilatation, this means that any terms in
LSB will include a factor of the form Tr½χ†χ�p with p
chosen to “correct” the scaling of the associated operator.4

Absent other constraints, an infinite number of operators
may be included in LSB. However, as stated before, we
require that LSB → 0 as m → 0 so that our model recovers
classical scale invariance when the explicit breaking is
removed. We impose one further physically motivated
constraint,

3Note that this spurion construction in terms of fermion fields
does not preclude the possibility of mixing with purely gluonic
states with identical quantum numbers. The σ state in particular
has been observed to have significant overlap with a 0++ glueball
state in lattice studies of near-conformal theories [42].

4Contributions of the form χp inside of traces cannot be
included because they are not invariant under chiral symmetry.
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lim
χ→0

∂LSB

∂χ
¼ lim

χ→0
hψ̄ψi ¼ 0; ð12Þ

i.e., the chiral condensate (an order parameter for chiral and
scale symmetry breaking) should also vanish at m ¼ 0.
We note in passing that for any terms in LSB that depend

on noninteger powers of Tr½χ†χ�, higher derivatives of the
form ∂

nLSB=∂χn will necessarily be divergent as χ → 0 for
n sufficiently large. However, in the underlying MDCT
such a derivative corresponds to n insertions of the ðψ̄ψÞ
operator at the same space-time point. In the m → 0 limit,
we expect power-law dependence on the separation
between operators in the underlying conformal field theory,
which diverges if evaluated at the same space-time point.
With these conditions, and using the fact that under a

passive coordinate transformation x → eλx the mass trans-
forms as m → eð1þγ⋆Þλm, we find the form (up to redun-
dancies which do not affect our physics of interest,
discussed below) for the symmetry-breaking part of the
Lagrangian,

LSB ¼ B̃1Tr½χ†χ�ð3−yÞ=ð2yÞTr½χ†ΦþΦ†χ�
− B̃2Tr½χ†χ�1=yTr½Φ†Φ�
− B̃3Tr½χ†χ�ð1−yÞ=yTr½ðχ†ΦÞ2 þ ðΦ†χÞ2�
− B̃4Tr½χ†χ�ð1−yÞ=yjTr½χ†Φ�j2
− B̃5Tr½χ†χ�ð1−yÞ=yðTr½χ†Φ�2 þ Tr½χΦ†�2Þ; ð13Þ

where y≡ 1þ γ⋆ is the full scaling dimension of m. We
observe that the trace structure of B̃3 and B̃4; B̃5 is similar to
the next-to-leading order terms L8 and L6, L7 in the usual
chiralLagrangian[26].Because there isno limitof this theory
in which m (and thus χ) will scale without an anomalous
dimension, the couplings B̃1−5 are dimensionless.5

There are, of course, other states in the spectrum of an
MDCT that interact with the low-lying scalars, and our
model should include them if these interactions are impor-
tant to the physics. We can divide these states into heavier
scalars and higher-spin states; we first consider the latter. In
this work we restrict our consideration to one particular
physical process, soft π − π scattering in the maximal
isospin channel. The requirement of maximal isospin
prevents any intermediate state from contributing in the
s-channel at tree level. This amounts to a statement of
flavor number conservation: none of the quarks in the initial
“ðudÞ2” state may annihilate, so there is always more than
one composite particle in the intermediate state. In the t and
u channels, the coupling of any higher-spin state to a pair of
scalar particles must involve at least one derivative by

Lorentz symmetry; the resulting (tree-level) scattering
amplitude will be proportional to t or u and therefore
vanish in the soft scattering limit. We conclude that the
contributions of higher-spin states can be safely neglected
for study of our process of interest at leading order, Oðk0Þ,
although neglecting them at Oðk2Þ requires the further
assumption of a spectral gap.
On the other hand, heavier scalar modes may contribute

to soft π − π scattering without this derivative suppression.
As stated above, we assume there is a gap in the spectrum
of scalar and pseudoscalar modes above the lowest-lying
states. In the soft-scattering limit where k ≪ ΛC, this
assumed gap means that heavier scalar modes will con-
tribute as a subleading effect, and we may choose to simply
ignore them.
To be more quantitative about the approximation of

neglecting heavier scalars, we can in principle treat their
effects by extending the model to include them, adding
additional fields and constructing an extended Lagrangian
by applying the same constraints to the corresponding new
terms in Lint and LSB. After setting χ ¼ m1, we tune the
couplings of the resulting model Lagrangian to reproduce
the observed scalar spectrum.We may then insert a cutoffΛ
in the gap in the spectrum of the model and integrate these
additional modes out. The leading-order corrections are
absorbed into a redefinition of the couplings u, v, and B̃1−5.
Because the cutoff Λ breaks scale symmetry explicitly, this
process also induces an infinite number of new, previously
forbidden terms suppressed by powers of 1=Λ. These
operators may contribute to the tree-level scattering of
process of interest after reexpanding around the vacuum;
choosing to neglect them amounts to working at leading
order in MS=Λ and k=Λ, where S denotes any of the scalar
or pseudoscalar states in our theory. These corrections are
small so long as we work near the soft limit, and there is a
sufficiently large gap in the scalar spectrum. The gap will
shrink in absolute magnitude asm → 0, and all states in the
MDCT spectrum collapse together; we may still integrate
out the heavier scalars as long as we adjust the cutoff Λ
downwards with the mass as well, holding the ratio MS=Λ
fixed. In either case, the Lagrangian we compute with is the
same, up to how we interpret the couplings.
Taking advantage of χ ∼m1, we may rewrite the

symmetry-breaking terms in a more convenient form,

LSB ¼ B1Tr½ΦþΦ†� − B2Tr½Φ†Φ�
− B3Tr½Φ2 þΦ†2� − B4Tr½Φ�Tr½Φ†�
− B5ðTr½Φ�2 þ Tr½Φ†�2Þ; ð14Þ

where the definitions of the dimensionful Bi may be read
off by comparison with Eq. (13). The potential defined by
these couplings and Lint may have multiple minima;
however, this does not correspond to spontaneous

5Renormalization of the low-energy theory itself would induce
additional anomalous dimensions on these couplings, but our
model is explicitly tree-level and does not account for quantum
corrections.
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symmetry breaking in the UV theory because LSB and
thus hΦi vanishes with m.
Note that from above the scaling of the dimensionful Bi

couplings with m is

B1 ∝ m3=y; B2−5 ∝ m2=y: ð15Þ

This scaling behavior matches on to what one would infer
from hyperscaling arguments using engineering dimen-
sions, i.e., identifying B1 ∼ Λ3

C and B2−5 ∼ Λ2
C. Thus, our

spurionic construction has successfully reproduced the
desired mass hyperscaling.
In Eq. (13), we have chosen to write each term with a

prefactor ∼B̃ðTr½χ†χ�Þp. However, in full generality, we
should write each prefactor as a sum over all operators
constructed from χ consistent with chiral symmetry and
scale invariance. There are an infinite family of such
operators, constructed from products of Tr½ðχ†χÞn� and
ðdet χn þ ðc:c:ÞÞ (with n ∈ Zþ) with each factor in the
operator raised to the appropriate power to make LSB scale
invariant. Each operator in each prefactor is accompanied by
an independent dimensionless coupling. However, this
ambiguity is only in the Φ-independent prefactors; the
Φ-dependent parts of the terms in LSB are the only permitted
structures. As a consequence, when making the replacement
χ → m1, all terms in LSB will collapse to the simple
structure of Eq. (14), leaving a finite number of dimensionful
couplings. Further study of physical quantities that depend
on χ beyond the leading-order replacement with its vacuum
expectation value (VEV), e.g., calculation of scalar form
factors, may be able to distinguish between the additional
possible structures in χ. This ambiguity has no effect on pion
scattering, so we do not pursue the question further here.
We stress that scale invariance is a strong constraint on

LSB: after absorbing redundancies into dimensionful cou-
plings and along with the requirement that LSB vanishes as
m → 0, we find that LSB admits only these five operators
when Nf ≥ 4. There are additional symmetry-breaking
terms including determinants which may be added to
LSB for smaller values of Nf, for example the operator,

Tr½χ†χ�ð4−NfÞ=2yðdetΦþ detΦ†Þ; ð16Þ

which vanishes in the limitm → 0 so long as Nf < 4. Such
determinant operators cannot contribute to tree-level π − π
scattering for Nf ≥ 2, so we do not consider them further in
this work.
So far, this construction has been for the continuum limit

of an MDCT, but any numerical study is necessarily carried
out at finite lattice spacing a. Introducing the new scale a
into the theory will allow for additional symmetry-breaking
operators. We defer any detailed study of such lattice-
dependent operators to future work and present continuum
formulas that are applicable so long as lattice artifacts
are small.

B. Determining the VEV and particle masses

Setting χ ¼ m1, the explicit symmetry breaking due to
LSB will induce a VEV hΦi ¼ ðF=2Þ1. This F is readily
identified as the pion decay constant Fπ defined in the usual
way in terms of an external axial vector current. For
comparison with chiral perturbation theory, note that our
F corresponds to Fπ in the 93 MeV convention. We work
with individual fields embedded in Φ using the standard
nonlinear representation,

Φ ¼ Σ exp

�
i

ffiffiffi
2

p

F
Π
�
; ð17Þ

where Σ and Π are Hermitian scalar and pseudoscalar
matrix fields, respectively. These fields may be further split
into trace and traceless modes,

Σ ¼ 1ffiffiffi
2

p
�

σffiffiffiffiffiffi
Nf

p 1þ aaXa

�
þ F

2
1;

Π ¼ η0ffiffiffiffiffiffi
Nf

p 1þ πaXa; ð18Þ

where Xa are the generators of the suðNfÞ algebra,
normalized such that Tr½XaXb� ¼ δab. For convenience,
we define the matrix fields a ¼ aaXa and π ¼ πaXa. The
various factors accompanying the fields give canonically
normalized kinetic terms for the (real) σa, aa, and πa fields.
We expand around the VEV by including the term ∼F in Σ.
The η0 mode is generally much heavier than the other states
due to the Uð1ÞA anomaly; we integrate it out “by hand” by
simply setting η0 ¼ 0, as in [43]. (This amounts to
replacing Π → π.)
We rewrite our Lagrangian in terms of the σ, a, and π

fields and only retain terms relevant to tree-level π − π
scattering, obtaining our working Lagrangian LW ¼
L1 þ L2 þ L3 þ L4. We retain interactions with deriva-
tives arising from the Φ kinetic term, which give non-
vanishing contributions to s channel processes. The
resulting noninteracting part of the Lagrangian is

L2 ¼
1

2
ð∂μσÞ2 þ

1

2
Trð∂μaÞ2 þ

1

2
Trð∂μπÞ2

−
1

2
M2

σσ
2 −

1

2
M2

aTr a2 −
1

2
M2

πTrπ2; ð19Þ

with

M2
σ ¼ B2 þ 2B3 þ NfB45 þ

3F2

8
ðNfuþ vÞ;

M2
a ¼ B2 þ 2B3 þ

F2

8
ðNfuþ 3vÞ

¼ M2
σ −

1

4
NfuF2 − NfB45;

M2
π ¼

2B1

F
− 4B3 − NfB45; ð20Þ

DANIEL C. HACKETT and ETHAN T. NEIL PHYS. REV. D 106, 016007 (2022)

016007-6



where the two couplings B4 and B5 always occur in the
characteristic combination,

B45 ≡ B4 þ 2B5: ð21Þ
The three-point part of the Lagrangian pertinent to tree-
level π-π scattering is

L3 ¼ gaπTr½aπ2� þ ga∂Tr½að∂μπÞ2�
þ gσπσTr½π2� þ gσ∂σTr½ð∂μπÞ2�; ð22Þ

where the couplings are given by

gaπ ¼ −
1ffiffiffi
2

p
F
½M2

π − 4B3�;

ga∂ ¼
ffiffiffi
2

p

F
;

gσπ ¼ −
1ffiffiffiffiffiffiffiffiffi
2Nf

p
F
½M2

π − 4B3 − NfB45�;

gσ∂ ¼
ffiffiffiffiffiffi
2

Nf

s
1

F
: ð23Þ

The pertinent four-point part of the Lagrangian is

L4 ¼
1

6F2
Tr½ðπ∂μπÞ2 − π2ð∂μπÞ2�

þ 1

12F2
½ðM2

π − 12B3ÞTr½π4� − 3B45Tr½π2�2�; ð24Þ

and the one-point coupling for the σ is

L1 ¼
ffiffiffiffiffiffi
Nf

2

r �
2B1 − FB2 − 4FB3 − FNfB45

−
1

8
F3ðNfuþ vÞ

�
σ: ð25Þ

Solving hΣi ¼ F
2
1 using the one-point coupling for σ gives

a cubic equation for F in terms of the couplings in the
original Lagrangian (neglecting Λ-suppressed contribu-
tions from Lint, if these are included). The full solution
for F is complicated and unenlightening, but it is straight-
forward to verify based on the mass dependence of the
parameters Bi that F ∝ m1=y as expected for a hadronic
scale. As discussed above, because LSB → 0 as m → 0, we
do not require the system to be in any particular vacuum
or make any further restrictions on the parameters from
the potential.
Note that the interactions of pions arise entirely fromLSB

and the kinetic term for Φ, and the couplings u and v from
Lint appear only in the masses. This is because the operators
associated with u and v in Lint do not involve derivatives
and thus, due to chiral symmetry, only involve the scalar
fields Σ.

For the calculations to follow, we will trade the set of
Lagrangian couplings fu; v; B1; B2g for the more physical
set fMπ;Mσ;Ma; Fg, all of which scale asm1=y as expected
from dimensional analysis. The dependence on B3 and B45

unavoidably remains; removing them in favor of more
physical couplings would require additional measurements
to match.

C. Scattering lengths of pseudoscalar mesons

Determining the scattering length and effective range in a
given theory requires calculating the Feynman amplitude
M for the process of interest, performing a partial-wave
expansion of the amplitude, converting the partial-wave
amplitude to a phase shift by including kinematic factors,
and finally expanding at small k. There are multiple
conventions in the literature for carrying out this procedure
in full; we attempt to gather and reconcile the conventions
we are aware of in the Appendix.
We find the tree-level maximal-isospin π-π scattering

amplitude to be

MMDCTðs; t; uÞ ¼ 2
M2

π

F2

�
1 −

s
2M2

π
−
4B3 þ 2B45

M2
π

�

−
�
2

�
1 −

2

Nf

� ½M2
π þ 4B3 − t�2
t −M2

a

þ 4
½M2

π þ 4B3 þ NfB45 − t�2
t −M2

σ

þ ðt ↔ uÞ
�
: ð26Þ

In the limit where Ma;Mσ → ∞ and B3 ¼ B45 ¼ 0, our
theory becomes identical to the leading-order χPT
Lagrangian. Taking this limit can thus provide a simple
check of our results. We find the result,

lim
Ma;Mσ→∞

MMDCTðs; t; uÞjB3;B45¼0 ¼
M2

π

F2

�
2 −

s
M2

π

�
; ð27Þ

which exactly matches the amplitude6 obtained in [44] at
leading order for the same chiral symmetry breaking
pattern, SUðNfÞ × SUðNfÞ → SUðNfÞ. If this result holds,
the caveats discussed at the end of Sec. II especially apply
about studying aππ as a function of Mπ=F (which is
identical χPT and MDCT cases), instead of as a function
of the fermion mass m (which will show strongly different
behavior in the two cases). Given the expected lightness of
the dilatonic σ in an MDCT, and the absence of any reason
for B3 and B45 to be small, this limit is unlikely to be a good
description of the MDCT on physical grounds.

6Note that the maximal-isospin scattering amplitude in the
representation theory of the reference is denoted as “SS”.
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Going back to the full amplitude and taking the limit as k2 → 0, we obtain7

MMDCTðs; t; uÞ ¼ −2
M2

π

F2

�
1þ 4B3 þ 2B45

M2
π

�
þ 2

Nf − 2

Nf

ðM2
π þ 4B3Þ2
M2

aF2
þ 4

Nf

ðM2
π þ 4B3 þ NfB45Þ2

M2
σF2

þOðk2Þ: ð28Þ

Expanding in k2 as described in the Appendix, this leads to

aππ;MDCT ¼ 1

16π

Mπ

F2

�
1þ 4B3 þ 2B45

M2
π

−
Nf − 2

NfM2
πM2

a
ðM2

π þ 4B3Þ2 −
2

NfM2
πM2

σ
ðM2

π þ 4B3 þ NfB45Þ2
�
: ð29Þ

The expression for r ππ;MDCT is more complicated, and its
validity relies on the stronger assumption of a gap in the
overall spectrum, so we do not provide it here. We
emphasize again that this is a tree-level result. We see
that the corrections to the scattering length due to the
presence of the scalars (the last two terms) are manifestly
negative, regardless of the signs of the individual couplings.
A possible intermediate scenario is that some of the

scalars included in the theory are relatively heavy, and a
more consistent description is given by integrating them
out. For example, lattice spectroscopy for SU(3) with
Nf ¼ 12 fermions (summarized in [23]) indicates that
Mπ;Mσ < Ma ∼Mρ, where ρ is the lightest vector meson.
We can obtain a simplified tree-level result with the
flavored a scalars removed by taking Ma → ∞ in our
formulas above. In this limit, we find

lim
Ma→∞

aππ;MDCT¼
Mπ

16πF2

�
1þ4B3þ2B45

M2
π

−
2

NfM2
πM2

σ
ðM2

πþ4B3þNfB45Þ2
�
: ð30Þ

It is straightforward to verify that both the simplified
heavy-scalar expression Eq. (30) and the full tree-level
result Eq. (29) (as well as the corresponding expressions
for r ππ;MDCT which are not shown explicitly) yield precisely
the mass dependence that was argued for on dimensional
grounds in Eq. (6).
In both the full tree-level result Eq. (29) and the

simplified heavy-scalar expression Eq. (30), we find differ-
ent leading-order dependence of aππ on Mπ than in chiral
perturbation theory. Additionally, unlike in χPT, we find
leading-order dependence on Mσ and Ma. It may be
possible to differentiate between chiral and conformal
scenarios by examining this dependence, especially if B3

and B45 can be constrained using independent physical
measurements. However, we note that this model does not
treat subleading scalings, finite volume effects, or lattice

artifacts. We refer again to the caveats discussed at the end
of Sec. II about difficulties using discriminators based on
functional relationships between infrared quantities and
the related problems with studying quantities like aππ as a
function of Mπ=F instead of m.

IV. CONCLUSION

We have studied the scattering of pseudoscalar mesons in
mass deformations of gauge-fermion theories which are
conformal in the infrared limit. Focusing on the soft
scattering limit, our analysis finds that the scattering length
aππ in an MDCT diverges as m−1=y in the m → 0 limit,
qualitatively different from chiral perturbation theory
where aππ → 0. Thus, using lattice methods to measure
the dependence of the scattering length on the quark mass
should allow these two cases to be easily distinguished.
On the contrary, studies of Mπaππ vs M2

π=F2 may give
misleading conclusions as the leading dependence in both
the MDCT and χPT cases is similar. (The primary differ-
ence is that in the MDCT caseM2

π=F2 will be constant, but
this may be obscured by corrections due to finite lattice
spacing and volume or working at relatively heavy m.)
An important caveat is that for theories which are

confining but just below the edge of the conformal window,
the low-energy regime may be described by an effective
theory such as a linear sigma model [43,45,46] or a dilaton
EFT [30,47–53]. In the latter case especially, it has been
pointed out that the spectrum in the large-mass regime can
show the same power-law scaling withm as expected for an
MDCT [53], and recent results [29] found that aππ is
constant at leading order in m in this regime. Comparison
of more detailed predictions of dilaton EFTs versus those of
MDCT-specific models like the one presented here may
allow disambiguation beyond what is possible from simple
scaling arguments.
Although our key results depend mainly on dimensional

arguments,wehave also constructed a tree-level semiclassical
model in which soft π-π scattering can be studied, based on
the strong assumption that the spectrum of the MDCT has a
gap above the lowest-lying scalar and pseudoscalar modes.
Even if this assumption does not hold, so long as the scalar
part of the spectrum is gapped, our analysis may still be

7Note that cos θ dependence appears at Oðk4Þ. One may check
that computing k cot δ0 from Eq. (26) and then expanding in small
k2 yields the same results.
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applied as a model for maximal isospin π-π scattering in the
soft limit as contributions from higher-spin states can be
argued to vanish on general grounds. It may be interesting to
consider the calculation of other quantities within this low-
energy theory, such as scalar and vector form factors for the
light scalar states for which there are some existing predic-
tions from scaling arguments [21,54].
Extending the model to include finite lattice spacing

effects could provide a more powerful discriminator. As
discussed in Sec. II, hyperscaling means dimensionful
quantities vary in fixed ratios near the chiral limit, com-
plicating the use of relations between infrared quantities to
discriminate between conformal and other scenarios, but
corrections due to lattice artifacts could disambiguate this
relationship. However, finite lattice spacing corrections add
an additional scale which may significantly complicate the
construction of the model.
It may be possible that our tree-level model can be

extended to include quantum corrections. The requirement
used here that, in the symmetric limit LSB → 0, the model
recovers classical conformality becomes a requirement that
the theory sits at a fixed point when LSB → 0. If the scalar
fields themselves can acquire large anomalous dimensions,
additional operators may be allowed in the symmetry-
breaking Lagrangian Eq. (13). Given these complications,
it may not be possible to neglect higher-spin and heavier
scalar modes as in the tree-level approach. We leave the
necessary further formal work to this end for future studies.
The formulas presented here for the low-energy model

assume the chiral symmetry breaking pattern SUðNfÞ×
SUðNfÞ → SUðNfÞ, corresponding to fermions charged in
a complex representation of the underlying gauge theory.
Different symmetry breaking patterns are known to occur if
the fermion representation is instead real or pseudoreal, or
in the case of mixed fermion representations; we leave the
study of these possibilities to future work. Changing the
chiral symmetry breaking pattern will modify the detailed
formulas for aππ and r ππ but not the qualitative dependence
on the fermion mass.
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APPENDIX: CONVENTIONS FOR PION
SCATTERING AMPLITUDES AND FINITE

RANGE EXPANSION

Determining the scattering phase shifts begins with
partial-wave expansion of the Feynman amplitude M
for the two-particle scattering process,

Mðk; θÞ ¼ N
X∞
l¼0

AlðkÞð2lþ 1ÞPlðcos θÞ; ðA1Þ

where Pj is the jth Legendre polynomial and the amplitude
has been integrated over the azimuthal angle ϕ. We leave
the normalization N arbitrary for now, to elucidate how it
affects the partial wave expansion; it will cancel out in the
final expression for the phase shift. Our conventions for the
Feynman amplitude M are such that for elastic 2 → 2
scattering in the CM frame, the differential cross section is

dσ
dΩ

¼ 1

64π2s
jMðk; θÞj2; ðA2Þ

where s ¼ 4ðk2 þM2
πÞ.

To relate the partial wave amplitudes AlðkÞ to scattering
phase shifts δlðkÞ, we match on to textbook quantum
mechanical scattering theory in which the latter are defined.
The phase shifts are defined from the partial wave ampli-
tudes fðk; θÞ satisfying

fðk; θÞ≡ 1

k

X∞
l¼0

ð2lþ 1Þ e
2iδl − 1

2i
Plðcos θÞ; ðA3Þ

where the 1=k comes from the identification of fðk; θÞ as
the amplitude of an outgoing spherical wave which dies off
with the distance r from the origin as 1=r.
With identical bosons in the final state, which is always

the situation if we consider elastic scattering of isospin
eigenstates, the quantum mechanical differential cross
section given in terms of the partial-wave amplitudes must
explicitly include an exchange symmetry, which leads to
the form,

dσ
dΩ

¼ jfðk; θÞ þ fðk; π − θÞj2: ðA4Þ

If f is independent of θ, as for the S-wave, then we pick up
a factor of 4 in dσ=dΩ.
Matching together Eqs. (A2) and (A4),8 we find that they

are equivalent if we make the identification,

8Note that the QFT expression requires no modification for
identical particles—that is accounted for in the amplitude already.
However, for both QFT and QM there will be an extra factor of
1=2 if we go on to compute the total cross section, since dΩ
should be integrated only over half of phase space with identical
particles.
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AlðkÞ ¼
32π

N

ffiffiffi
s

p
2k

e2iδlðkÞ − 1

2i
¼ 32π

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
k cot δlðkÞ − ik

: ðA5Þ

This equation for AlðkÞ and the partial wave expansion
Eq. (A1) match the corresponding equations in the chiral
perturbation theory literature [26,44] with the choice
N ¼ 32π.
Focusing on S-wave scattering, using the orthogonality

relation between the Legendre polynomials,Z
1

−1
Pjðcos θÞPkðcos θÞd cos θ ¼ 2

2jþ 1
δjk; ðA6Þ

we find the partial wave amplitude,

A0ðkÞ ¼
1

2N

Z
1

−1
Mðk; θÞd cos θ: ðA7Þ

The phase shift in the usual form is equal to

k cot δ0 ¼ ikþ 32π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
NA0ðkÞ

: ðA8Þ

The presence of the purely imaginary term ik is somewhat
odd-looking, but the optical theorem gives the relationship,

ImA0 ¼
2kffiffiffi
s

p jA0j2: ðA9Þ

In particular, this indicates that for a tree-level calculation
in perturbation theory, the imaginary part begins at second-
order. Therefore at leading order, A0 will be real and we
should work only with the real part of the formula,

k cot δ0 ¼
64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

pR
1
−1Mtreeðk; θÞd cos θ

þ ðhigher-orderÞ: ðA10Þ

Because it can be somewhat confusing, we emphasize
once more that these formulas apply for indistinguishable

particles in the final state. If the final-state particles are
distinguishable, then the quantum mechanical cross section
Eq. (A4) should be replaced with simply jfðk; θÞj2, which
reduces the partial wave amplitude Eq. (A5) by a factor
of 2. This factor of 2 will reappear when converting
between scattering amplitudes in the isospin basis and
charged pion basis [55,56]. For example, the S-wave
amplitude Að0þÞ

0 ðkÞ for scattering π0πþ → π0πþ is equal
to half of the isospin-2 amplitude, Að0þÞ

0 ¼ AðI¼2Þ
0 =2.

Expanding the quantity k cot δ0 directly at small momen-
tum k gives the standard effective range expansion for S-
wave scattering,

k cot δ0 ¼ −
1

aππ
þ 1

2
r ππk2 þOðk4Þ: ðA11Þ

A common alternative used in chiral perturbation theory
[26,44] is to series expand the partial-wave amplitude
AlðkÞ itself as

ReAlðkÞ ¼ k2l½al þ k2bl þOðk4Þ�: ðA12Þ

Setting l ¼ 0 and expanding out eq. (A5) gives the result,

k cot δ0 ¼
Mπ

a0
þ
�
a0 − 2b0M2

π

2a20Mπ
−
2a0
Mπ

�
k2 þOðk4Þ: ðA13Þ

Comparing to the standard effective-range expansion, we
find the relations,

aππ ¼ −
a0
Mπ

; ðA14Þ

r ππ ¼
a0 − 2b0M2

π

a20Mπ
−
2a0
Mπ

; ðA15Þ

which have been noted before in the χPT literature [57].
These expressions can be used with the results of e.g., [26]
to reproduce the formulas Eqs. (4) and (5).
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