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We study the potential for precision electroweak (EW) measurements and beyond-the-Standard Model
(BSM) searches using cross-section asymmetries in neutral-current deep inelastic scattering at the electron-
ion collider (EIC). Our analysis uses a complete and realistic accounting of systematic errors from both
theory and experiment and considers the potential of both proton and deuteron beams for a wide range of
energies and luminosities. We also consider what can be learned from a possible future positron beam and a
potential tenfold luminosity upgrade of the EIC beyond its initial decade of running. We use the SM
effective field theory (SMEFT) framework to parametrize BSM effects and focus on semileptonic four-
fermion operators, whereas for our precision EW study, we determine how well the EIC can measure the
weak mixing angle. New features of our study include the use of an up-to-date detector design of the EIC
Comprehensive Chromodynamics Experiment and accurate running conditions of the EIC, the simulta-
neous fitting of beam polarization uncertainties and Wilson coefficients to improve the sensitivity to
SMEFT operators, and the inclusion of the weak mixing angle running in our fit template. We find that the
EIC can probe BSM operators at scales competitive with and in many cases exceeding LHC Drell-Yan
bounds while simultaneously not suffering from degeneracies between Wilson coefficients.
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I. INTRODUCTION

The Standard Model (SM) of particle physics currently
describes all known laboratory phenomena. All particles
predicted by the SMhave now been found after the discovery
of the Higgs boson at the Large Hadron Collider (LHC). No
new particles beyond those present in the SM have been
discovered and no appreciable deviation from SM predic-
tions has been conclusively observed. Despite the enormous
success of this theory, it contains numerous shortcomings. It
does not contain an explanation of the dark matter observed
in the universe or of the baryon-antibaryon asymmetry, and it
does not describe neutrino masses. It additionally suffers
from several aesthetic issues, such as the hierarchy problem
and an extreme hierarchy of fermion Yukawa couplings.
Even the sectors of the theory that have been experimentally
successful still contain unsatisfying and poorly understood
features. For example, the exact composition of the proton

spin in terms of the spin and orbital angular momentum of its
constituent quarks and gluons is still poorly known.
Numerous experimental programs that attempt to address

these residual issues in our understanding of nature are either
running or being designed. Our focus in this manuscript
will be on the Electron-Ion Collider (EIC) to be built at
Brookhaven National Laboratory in Upton, New York. The
EIC will be a particle accelerator that collides electrons with
protons and nuclei in the intermediate-energy range between
fixed-target scattering facilities and high-energy colliders. It
will provide luminosity orders of magnitude higher than
HERA, the only electron-proton collider operated to date. It
will also be the first lepton-ion collider with the ability to
polarize both the electron and the proton (ion) beams and the
first collider with a fast spin-flip capacity. These unique
design featureswill allowdirect extraction of parity-violating
(PV) asymmetries in the electroweak neutral-current (NC)
scattering cross section associated with either the electron,

AðeÞ
PV, or the proton (ion) spin flip, AðpðDÞÞ

PV . Experimental
uncertainties from effects such as luminosity measurement
and detector acceptance or efficiency will be substantially
reduced due to these capabilities.
Although the EIC was designed primarily to explore out-

standing issues in QCD such as the proton spin mentioned
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above, it also has a strong potential to probe several aspects
of precision electroweak (EW) and beyond-the-SM (BSM)
physics. It can measure the value of the weak mixing angle
over a wide range of momentum transfer complementary to
Z-pole measurements and low-energy determinations. The
possibility of polarizing both electron and proton/ion
beams gives it unique handles on BSM physics. Our goal
in this manuscript is to provide a detailed accounting of the
EW and BSM potential of the EIC with a realistic
simulation of anticipated experimental uncertainties. We

explore the use of the asymmetries AðeÞ
PV and AðpðDÞÞ

PV . In
addition to determining the BSM reach of PVobservables,
we consider the reach of the lepton-charge asymmetry

AðpðDÞÞ
LC at the EIC for the first time, assuming a positron

beam will become available in the future.
Since no new particles beyond the SM have so far been

discovered, we adopt the Standard Model effective field
theory (SMEFT) for our BSM studies (for a review
of the SMEFT, see Ref. [1]). The SMEFT contains
higher-dimensional operators formed by using SM fields,
assuming all new physics is heavier than both SM states
and the accessible collider energy. The leading dimension-
six operator basis of SMEFT for on-shell fields has been
completely classified (there is a dimension-five operator
that violates the lepton number, which we do not consider
here) [2–4]. We find that the EIC can probe the full
spectrum of SMEFT operators to the few-tera-electron-volt
level or beyond. The wide variety of observables possible at
the EIC, which include several asymmetries with either
proton or ion beams, ensure that no flat directions remain in
the Wilson coefficient parameter space, unlike at the LHC
in the neutral-current Drell-Yan process [5–7]. Our analysis
of the determination of the weak mixing angle, assuming a
realistic annual luminosity and accounting for experimental
and theoretical uncertainties to the best level that can be
reached at the pre-EIC running stage, finds good precision
for this fundamental SM parameter in a kinematic region
not explored before. The precision will continue to improve
as data are accumulated from decades-long running of
the EIC.
Our paper is organized as follows. In Sec. II, first we

provide a complete description of deep inelastic scattering
(DIS) that includes both SM contributions and the SMEFT
extensions. The DIS cross sections that account for both
electron and hadron polarizations are provided in both
structure-function and parton-model languages. We follow
this theoretical framework by presenting a basic strategy to
measure different polarization components of the cross
sections and to form PV asymmetries at the EIC.
Measurement of the lepton-charge (LC) asymmetry is also
discussed. In Sec. III, we present data simulation based on
the design of the EIC Comprehensive Chromodynamics
Experiment (ECCE) detector (recently endorsed as the
reference design for EIC detector 1 by the EIC Detector
Proposal Advisory Panel [8]) using a fast-smearing method

and event-selection criteria, followed by projections of
statistical precision for PV and LC asymmetries based on
the planned annual luminosity of the EIC. The generation
of pseudodata, as well as the uncertainty matrix, is
presented in Sec. IV, followed by extractions of the EW
mixing angle in Sec. V. In Sec. VI, we provide an extensive
description of our SMEFT analysis framework, with
representative results on the fits of single and two
Wilson coefficients given in Sec. VII. We also show an
example fit in which six Wilson coefficients are turned on
simultaneously, in order to demonstrate that EIC data are
capable of removing all degeneracies in the semileptonic
four-fermion operator parameter space. We conclude in
Sec. VIII. In Appendix A, we present novel analysis
methods to simultaneously fit PV asymmetries and the
beam polarization or LC asymmetries and the luminosity
difference between eþ and e− runs. A complete collection
of all the SMEFT fit results of single and two Wilson
coefficients from this study is given in Appendix B.

II. NEUTRAL-CURRENT DIS MEASUREMENTS
AT THE EIC

A. Deep inelastic scattering and the SMEFT formalism

In this section, we give a brief overview of the formalism
of DIS and the SMEFT. In particular, we generalize the SM
DIS cross-section and asymmetry formulas to include
contributions from SMEFT operators, which encode new
physics at an energy level Λ that lies well beyond the
electroweak scale. We denote a lepton scattering off a
nucleus as

lðkÞ þHðPÞ → lðk0Þ þ X; ð1Þ

where l stands for an electron or positron, the hadron H
stands for either the proton (p) or the deuteron (D), and X
denotes the final-state hadronic system. The four-momenta
of the initial and final leptons and the initial hadron are
denoted as k, k0, and P, respectively. Using the momenta of
the initial- and final-state leptons and the initial-state
hadron, one can define the following Lorentz-invariant
kinematic variables:

s ¼ ðPþ kÞ2; ð2Þ

Q2 ¼ −ðk − k0Þ2; ð3Þ

x ¼ Q2

2P · ðk − k0Þ ; ð4Þ

y ¼ P · ðk − k0Þ
P · k

; ð5Þ

W2 ¼ ðPþ k − k0Þ2; ð6Þ
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where s is the center-of-mass energy squared, Q2 is the
negative of the lepton four-momentum transfer squared, the
Bjorken-x variable is the longitudinal hadron momentum
fraction carried by the struck parton, the inelasticity
parameter y gives the fractional energy loss of the lepton
in the hadron rest frame, and W gives the invariant mass of
the final-state hadronic systemX. The kinematic variables x,
y, s, and Q2 are related to each other via Q2 ¼ xyðs −M2Þ,
where M is the mass of the proton or deuteron.
The diagrams in Fig. 1 show the partonic tree-level

processes that contribute to Eq. (1). These are the con-
tributions to the total tree-level amplitude from the single-
photon exchange, the single-Z-boson exchange, and the
SMEFT contact interactions. The SMEFT Lagrangian that
describes these contact interactions has the form

LSMEFT ¼ 1

Λ2

X
r

CrOr þ � � � ; ð7Þ

where the summation index r runs over the set of
dimension-six SMEFT operators and the ellipsis denotes
SMEFT operators of a mass dimension greater than 6. We
restrict our analysis to include only the effects of dimen-
sion-six SMEFT operators since the higher-dimensional
operators are formally suppressed by additional powers of
E2=Λ2, where E is the typical energy scale of the scattering
process. Although these effects can be important for Drell-
Yan production at the LHC [9,10], the low energy of the
EIC renders them negligible in this analysis.Or denotes the
rth dimension-six operator and Cr is the corresponding
(dimensionless) Wilson coefficient arising from integrating
out the new-physics degrees of freedom at the scale Λ.
These Wilson coefficients can be constrained through a
comparison of SMEFT predictions with precision mea-
surements of various processes studied in a variety of
experiments across a wide range of energy scales.
The subset of dimension-six operators that we consider

in our analysis of DIS is given in Table I. We note that there
are additional SMEFT operators but they are known to be
far better bounded through other datasets such as precision
Z-pole observables [11–13], and we neglect them here. The
above assumptions leave us with the seven Wilson coef-
ficients associated with the listed operators that enter the
predictions for DIS cross sections and asymmetries.

As seen in Table I, the SMEFToperatorsOr are expressed
in terms of the basis of SM fields before electroweak
symmetry breaking. For the purposes of DIS phenomenol-
ogy below the electroweak scale, it is useful to rewrite these
SMEFT operators in the vector and axial-vector basis using
Dirac fields that describe themassive electrons (e) and quarks
(qf) after electroweak symmetry breaking, which is a
customary parametrization (see, e.g., [14]):

LSMEFT ¼ 1

Λ2

X
r

C̃r

�X
f

ē γμðceVr
− ceAr

γ5Þe q̄fγμ

× ðcfVr
− cfAr

γ5Þqf
�
þ � � � ; ð8Þ

where the specific values of the vector and axial-vector
couplings—ce;qVk

and ce;qAk
, respectively—for the rth SMEFT

operator follow from the corresponding chiral and flavor
structure of the SMEFT operators. The coefficients C̃r are
related to the Cr by an overall factor and can be fixed by
comparing Eqs. (7) and (8). There is freedom to always
redefine the C̃r by absorbing an overall factor into the
couplings ce;qVr

and ce;qAr
. We specify in Table I the exact

definitions that we use. These couplings are analogous to the
vector and axial-vector couplings, ge;qV and ge;qA , of the Z-
boson but are instead generated from integrating out UV
physics associated with the scale Λ.
As seen in Fig. 1, the total tree-level amplitude can be

decomposed into three contributions:

M ¼ Mγ þMZ þMr; ð9Þ

where Mγ, MZ, and Mr denote the contributions from
the single-photon exchange, the single-Z-boson exchange,
and the SMEFT operators, respectively. In particular,
Mr ¼

P
i Mi, where the summation index i runs over

the amplitudes arising from the SMEFT operators listed in
Table I. Up to leading order in the SMEFT power counting,
where only dimension-six SMEFT operators that scale as
1=Λ2 are kept, the total amplitude squared can be written as

jMj2 ¼ Mγγ þ 2MγZ þMZZ þ 2Mγr þ 2MZr; ð10Þ

whereMγγ ¼ jMγj2,MZZ ¼ jMZj2, 2MγZ ¼ M�
γMZþ

MγM�
Z, 2Mγr ¼ M�

γMr þMrM�
γ , and 2MZr ¼

M�
ZMr þMrM�

Z. These denote the amplitudes of the
single-photon exchange, single-Z-boson exchange, the
interference between the single-photon and the single-Z-
boson exchange, the interference between the single-
photon exchange and the SMEFT, and the interference
between the single-Z-boson exchange and the SMEFT,
respectively. Here, we ignore the jMrj2 contribution since
it scales as 1=Λ4, formally the same size as contributions
from dimension-eight SMEFT operators interfering with
the SM.

FIG. 1. The Feynman diagrams for lþH → lþ X at the
parton level from one-boson exchange (left) and SMEFT contact
interactions (right).
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For the hadron-level cross sections and asymmetries,
these different contributions will give rise to corresponding
structure functions. In particular, in addition to the usual
structure functions encountered in the SM DIS, new
structure functions corresponding to SMEFT contributions
arise. Thus, including the SMEFT contributions, the DIS
differential cross section takes the general form

d2σ
dxdy

¼ 2πyα2

Q4

�
ηγLγ

μνW
μν
γ þ ηγZLγZ

μνW
μν
γZ þ ηZLZ

μνW
μν
Z

þ
X
r

ξγrLγr
μνW

μν
γr þ

X
r

ξZrLZr
μνW

μν
Zr

�
; ð11Þ

where α is the electromagnetic fine structure constant and
Lγ;γZ;Z;γr;Zr
μν and Wγ;γZ;Z;γr;Zr

μν are the leptonic and hadronic
tensors, respectively. The first three terms on the right-hand
side (RHS) correspond to the SM contributions from Mγγ ,
2MγZ, and MZZ, respectively, and the last two sets of
terms correspond to the contributions from the SMEFT
operators, i.e., 2Mγr and 2MZr, respectively. For com-
pleteness, below we collect some useful results to make the
form of the cross section explicit. The dimensionless
coefficients ηγ;γZ;Z, ξγr, and ξZr are given by

ηγ ¼ 1;

ηγZ ¼ GFM2
Z

2
ffiffiffi
2

p
πα

Q2

Q2 þM2
Z
;

ηZ ¼ ðηγZÞ2;

ξγr ¼ C̃r

4πα

Q2

Λ2
;

ξZr ¼ ηγZ
C̃r

4πα

Q2

Λ2
; ð12Þ

where GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 is the Fermi
constant and MZ ¼ 91.1876� 0.0021 GeV [14] is the
mass of the Z boson. The leptonic tensors in Eq. (11) are

Lγ
μν ¼ 2½kμk0ν þ k0μkν − k · k0gμν − iλeϵμναβkαðk0Þβ�;

LγZ
μν ¼ −ðgeV − λegeAÞLγ

μν;

LZ
μν ¼ ðgeV − λegeAÞ2Lγ

μν;

Lγr
μν ¼ ðceVr

− λeceAr
ÞLγ

μν;

LZr
μν ¼ −ðceVr

− λeceAr
ÞðgeV − λegeAÞLγ

μν; ð13Þ

where λe ¼ �1 denotes the lepton helicity. For positrons,
one flips the sign of all the geA and ceAr terms and the overall
sign of LγZ and Lγr above. Using these identities for the
leptonic tensors, Eq. (11) can be written more explicitly as

d2σ
dxdy

¼ 2πyα2

Q4
Lγ
μν

�
ηγWμν

γ − ηγZðgeV − λegeAÞWμν
γZ

þ ηZðgeV − λegeAÞ2Wμν
Z þ

X
r

ξγrðceVr
− λeceAr

ÞWμν
γr

−
X
r

ξZrðceVr
− λeceAr

ÞðgeV − λegeAÞWμν
Zr

�
: ð14Þ

Based on the general Lorentz-tensor structure, the available
four-momenta, and the nucleus spin vector, Sμ, numerous
hadronic tensors are parametrized in terms of structure
functions as

Wj
μν ¼

�
−gμν þ

qμqν
q2

�
Fj
1 þ

P̂μP̂ν

ðP · qÞF
j
2

þ iϵμναβ
2ðP · qÞ ½P

αqβFj
3 þ 2qαSβgj1�

−
S · q
ðP · qÞ

�
P̂μP̂ν

P · q
gj4 þ

�
gμν −

qμqν
q2

�
gj5

�
; ð15Þ

where P̂μ ≡ Pμ − qμðP · qÞ=q2. The index j denotes the

possibilities fγ; γZ; Z; γr; Zrg, and Fj
1;2;3 and gj1;4;5 denote

various unpolarized and polarized nuclear structure func-
tions, respectively. We omit two additional possible

TABLE I. List of SMEFT operators relevant to DIS in the basis of SM fields before electroweak symmetry
breaking and reexpressed in the vector and axial-vector current basis after electroweak symmetry breaking:
CrOr ¼ C̃r

P
f ēγ

μðceVr
− ceAr

γ5Þe q̄fγμðcfVr
− cfAr

γ5Þqf þ � � �. The coefficients cfV;A give the chiral structure of each
operator.

Cr Or C̃r ceVr
ceAr

cuVr
cuAr

cd;sVr
cd;sAr

Cð1Þ
lq Oð1Þ

lq ¼ ðL̄Lγ
μLLÞðQ̄LγμQLÞ Cð1Þ

lq =4 1 1 1 1 1 1

Cð3Þ
lq Oð3Þ

lq ¼ ðL̄Lγ
μτILLÞðQ̄Lγμτ

IQLÞ Cð3Þ
lq =4 1 1 −1 −1 1 1

Ceu Oeu ¼ ðēRγμeRÞðūRγμuRÞ Ceu=4 1 −1 1 −1 0 0
Ced Oed ¼ ðēRγμeRÞðd̄RγμdRÞ Ced=4 1 −1 0 0 1 −1
Clu Olu ¼ ðL̄Lγ

μLLÞðūRγμuRÞ Clu=4 1 1 1 −1 0 0
Cld Old ¼ ðL̄Lγ

μLLÞðd̄RγμdRÞ Cld=4 1 1 0 0 1 −1
Cqe Oqe ¼ ðQ̄Lγ

μQLÞðēRγμeRÞ Cqe=4 1 −1 1 1 1 1
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Lorentz structures in the hadronic tensor, typically denoted
as the polarized structure functions g2 and g3, since these
terms give a contribution to the cross section that is
suppressed by M2=Q2 when contracted with the leptonic
tensor. Therefore, we do not consider the structure func-
tions g2;3 in the rest of our analysis. The nucleus spin vector
Sμ satisfies the constraints S2 ¼ −M2 and S · P ¼ 0. For
longitudinal polarization, it takes the canonical form
Sμ ¼ λHðjpj; E p

jpjÞ, where λH ¼ �1 is the nucleon helicity
and Pμ ¼ ðE;pÞ is the nucleon four-momentum.
Based on the structure of the cross section in Eq. (14), in

conjunction with the form of the hadronic tensor in
Eq. (15), it becomes useful to define the following
combinations of structure functions that also include the
SMEFT contributions

Fi ¼ FSM;NC
i þ FSMEFT

i ;

gi ¼ gSM;NC
i þ gSMEFT

i ; ð16Þ

where the SM contributions are given by the commonly
known NC structure functions

FSM;NC
i ¼ Fγ

i − ηγZðgeV − λegeAÞFγZ
i þ ηZðgeV − λegeAÞ2FZ

i ;

gSM;NC
i ¼ gγi − ηγZðgeV − λegeAÞgγZi þ ηZðgeV − λegeAÞ2gZi ;

ð17Þ

and the SMEFT contributions are given by

FSMEFT
i ¼

X
r

ξγrðceVr
− λeceAr

ÞFγr
i −

X
r

ξZrðceVr
− λeceAr

ÞðgeV − λegeAÞFZr
i ;

gSMEFT
i ¼

X
r

ξγrðceVr
− λeceAr

Þgγri −
X
r

ξZrðceVr
− λeceAr

ÞðgeV − λegeAÞgZri : ð18Þ

The parton-model expressions for the SM structure functions are summarized below. We also provide the corresponding
expressions for the structure functions arising from the interference of the SM with the SMEFT operators:

½Fγ
2; F

γZ
2 ; FZ

2 ; F
γr
2 ; F

Zr
2 � ¼ x

X
f

½Q2
f; 2Qfg

f
V; g

f
V
2 þ gfA

2; 2Qfc
f
Vr
; 2ðgfVcfVr

þ gfAc
f
Ar
Þ�ðqf þ q̄fÞ;

½Fγ
3; F

γZ
3 ; FZ

3 ; F
γr
3 ; F

Zr
3 � ¼

X
f

½0; 2Qfg
f
A; 2g

f
Vg

f
A; 2Qfc

f
Ar; 2ðgfVcfAr

þ gfAc
f
Vr
Þ�ðqf − q̄fÞ;

½gγ1; gγZ1 ; gZ1 ; g
γr
1 ; g

Zr
1 � ¼ 1

2

X
f

½Q2
f; 2Qfg

f
V; g

f
V
2 þ gfA

2; 2Qfc
f
Vr
; 2ðgfVcfVr

þ gfAc
f
Ar
Þ�ðΔqf þ Δq̄fÞ;

½gγ5; gγZ5 ; gZ5 ; g
γr
5 ; g

Zr
5 � ¼

X
f

½0; Qfg
f
A; g

f
Vg

f
A;Qfc

f
Ar
; gfVc

f
Ar
þ gfAc

f
Vr
�ðΔqf − Δq̄fÞ; ð19Þ

where qfðx;Q2Þ and Δqfðx;Q2Þ are unpolarized and
polarized parton distribution functions (PDFs) of quark
flavor f, respectively, and Qf denotes the electric charge in
units of the proton charge e. In the parton model, at leading
order (LO), one has for the structure functions the
Callan-Gross relations Fi

2 ¼ 2xFi
1 and gi4 ¼ 2xgi5 for

i ¼ γ; γZ; Z; γr; Zr. For an ion beam (or nuclear target),
the neutron PDFs can be related to the proton PDFs by
assuming isospin symmetry for the valence quarks

qu=nðx;Q2Þ ¼ qd=pðx;Q2Þ;
qd=nðx;Q2Þ ¼ qu=pðx;Q2Þ;

Δqu=nðx;Q2Þ ¼ Δqd=pðx;Q2Þ;
Δqd=nðx;Q2Þ ¼ Δqu=pðx;Q2Þ; ð20Þ

while the charm and strange sea quark PDFs are assumed to
be identical for the proton and the neutron:

qs=nðx;Q2Þ ¼ qs=pðx;Q2Þ;
qc=nðx;Q2Þ ¼ qc=pðx;Q2Þ;

Δqs=nðx;Q2Þ ¼ Δqs=pðx;Q2Þ;
Δqc=nðx;Q2Þ ¼ Δqc=pðx;Q2Þ: ð21Þ

For the deuteron, an isoscalar bound state of a proton and a
neutron, the PDFs can be constructed from the proton and
neutron PDFs as

qf=Dðx;Q2Þ ¼ 1

2
½qf=pðx;Q2Þ þ qf=nðx;Q2Þ�;

Δqf=Dðx;Q2Þ ¼ 1

2
½Δqf=pðx;Q2Þ þ Δqf=nðx;Q2Þ�; ð22Þ

for quark flavor f.
In terms of the generalized structure functions in

Eq. (16), which include dependence on the electron
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helicity, λe, as seen in Eqs. (17) and (18), one can write the
cross section for given electron and nucleon helicities,
including SMEFT operator contributions, as

d2σðλe; λHÞ
dxdy

¼ 4πα2

xyQ2

�
xy2F1 þ ð1 − yÞF2

− λe
y
2
ð2 − yÞxF3 þ λeλHð2 − yÞxy g1

− λHð1 − yÞg4 − λH xy2 g5

�
; ð23Þ

where we ignore the electron mass and all target-mass
correction terms that are proportional to M2=Q2.

To connect to experimentally measured observables, it is
convenient to write the scattering cross section of Eq. (23)
as the sum of four components that depend on the spin
direction of the initial electron and hadron: dσ0, dσe, dσH,
and dσeH, where each dσ represents the differential cross
section as d2σ=ðdxdyÞ. The quantity dσ0 is the unpolarized
cross section, dσe and dσH denote the cross-section
differences between initial electron and hadron states of
opposite helicity, respectively, and dσeH is the cross-section
difference between initial electron and hadron states with
the same and opposite helicities defined in the center-of-
mass frame. These quantities can be formed by using
Eq. (23) as

dσ0 ¼
1

4
½dσjλe¼þ1;λH¼þ1 þ dσjλe¼þ1;λH¼−1 þ dσjλe¼−1;λH¼þ1 þ dσjλe¼−1;λH¼−1�;

dσe ¼
1

4
½dσjλe¼þ1;λH¼þ1 þ dσjλe¼þ1;λH¼−1 − dσjλe¼−1;λH¼þ1 − dσjλe¼−1;λH¼−1�;

dσH ¼ 1

4
½dσjλe¼þ1;λH¼þ1 − dσjλe¼þ1;λH¼−1 þ dσjλe¼−1;λH¼þ1 − dσjλe¼−1;λH¼−1�;

dσeH ¼ 1

4
½dσjλe¼þ1;λH¼þ1 − dσjλe¼þ1;λH¼−1 − dσjλe¼−1;λH¼þ1 þ dσjλe¼−1;λH¼−1�; ð24Þ

and can be computed in conjunction with Eqs. (16), (17), and (18).
The SM contributions to the DIS cross sections with the target-mass terms omitted are

d2σ0
dxdy

¼ 4πα2

xyQ2

�
xy2½Fγ

1 − geVηγZF
γZ
1 þ ðgeV2 þ geA

2ÞηZFZ
1 �

þð1 − yÞ½Fγ
2 − geVηγZF

γZ
2 þ ðgeV2 þ geA

2ÞηZFZ
2 �

−
xy
2
ð2 − yÞ½geAηγZFγZ

3 − 2geVg
e
AηZF

Z
3 �
�
;

d2σe
dxdy

¼ 4πα2

xyQ2

�
xy2½geAηγZFγZ

1 − 2geVg
e
AηZF

Z
1 � þ ð1 − yÞ½geAηγZFγZ

2 − 2geVg
e
AηZF

Z
2 �

þ xy
2
ð2 − yÞ½geVηγZFγZ

3 − ðgeV2 þ geA
2ÞηZFZ

3 �
�
;

d2σH
dxdy

¼ 4πα2

xyQ2
fð2 − yÞxy½geAηγZgγZ1 − 2geVg

e
AηZg

Z
1 �

þð1 − yÞ½geVηγZgγZ4 − ðgeV2 þ geA
2ÞηZgZ4 �

−xy2½geVηγZgγZ5 − ðgeV2 þ geA
2ÞηZgZ5 �g;

d2σeH
dxdy

¼ 4πα2

xyQ2
fð2 − yÞxy½gγ1 − geVηγZg

γ
1
Z þ ðgeV2 þ geA

2ÞηZgZ1 �

−ð1 − yÞ½geAηγZgγ4Z − 2geVg
e
AηZg

Z
4 � − xy2½geAηγZgγ5Z − 2geVg

e
AηZg

Z
5 �g: ð25Þ
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The SMEFT contributions are

d2σSMEFT
0

dxdy
¼ 4πα2

xyQ2

X
r

�
xy2ðceVr

ξγrF
γr
1 − ðceVr

geV þ ceAr
geAÞξZrFZr

1 Þ

þ ð1 − yÞðceVr
ξγrF

γr
2 − ðceVr

geV þ ceAr
geAÞξZrFZr

2 Þ

þ xy
2
ð2 − yÞðceAr

ξγrF
γr
3 − ðceVr

geA þ ceAr
geVÞξZrFZr

3 Þ
�
;

d2σSMEFT
e

dxdy
¼ −

4πα2

xyQ2

X
r

�
xy2ðceAr

ξγrF
γr
1 − ðceVr

geA þ ceAr
geVÞξZrFZr

1 Þ

þ ð1 − yÞðceAr
ξγrF

γr
2 − ðceVr

geA þ ceAr
geVÞξZrFZr

2 Þ

þ xy
2
ð2 − yÞðceVr

ξγrF
γr
3 − ðceAr

geA þ ceVr
geVÞξZrFZr

3 Þ
�
;

d2σSMEFT
H

dxdy
¼ −

4πα2

xyQ2

X
r

½xyð2 − yÞðceAr
ξγrg

γr
1 − ðceVr

geA þ ceAr
geVÞξZrgZr1 Þ

þ ð1 − yÞðceVr
ξγrg

γr
4 − ðceAr

geA þ ceVr
geVÞξZrgZr4 Þ

þxy2ðceVr
ξγrg

γr
5 − ðceAr

geA þ ceVr
geVÞξZrgZr5 Þ�;

d2σSMEFT
eH

dxdy
¼ 4πα2

xyQ2

X
r

½xyð2 − yÞðceVr
ξγrg

γr
1 − ðceAr

geA þ ceVr
geVÞξZrgZr1 Þ

þ ð1 − yÞðceAr
ξγrg

γr
4 − ðceVr

geA þ ceAr
geVÞξZrgZr4 Þ

þxy2ðceAr
ξγrg

γr
5 − ðceVr

geA þ ceAr
geVÞξZrgZr5 Þ�: ð26Þ

If a positron beam becomes available at the EIC, one can measure both eþH and e−H cross sections and study the
differences. Neglecting target-mass terms again and writing the SM and SMEFT contributions all together, we have

d2σe
þ
0

dxdy
−
d2σe

−

0

dxdy
¼ 4πα2

xyQ2
geA½xyð2 − yÞðηγZFγZ

3 − 2geVηZF
Z
3 Þ�

−
8πα2

xyQ2

X
r

xy
2
ð2 − yÞceAr

ðξγrFγr
3 þ 2geVξZrF

Zr
3 Þ;

d2σe
þ
e

dxdy
−
d2σe

−
e

dxdy
¼ −

4πα2

xyQ2
geA½2ð1 − yÞðηγZFγZ

2 − 2geVηZF
Z
2 Þ þ 2xy2ðηγZFγZ

1 − 2geVηZF
Z
1 Þ�

þ 8πα2

xyQ2

X
r

½ð1 − yÞceAr
ðξγrFγr

2 þ 2geVξZrF
Zr
2 Þ þ xy2ceAr

ðξγrFγr
1 þ 2geVξZrF

Zr
1 Þ�;

d2σe
þ
H

dxdy
−
d2σe

−

H

dxdy
¼ −

4πα2

xyQ2
geA½2xyð2 − yÞðηγZgγZ1 − 2geVηZg

Z
1 Þ�

þ 8πα2

xyQ2

X
r

xyð2 − yÞceAr
ðξγrgγr1 − 2geVξZrg

Zr
1 Þ;

d2σe
þ
eH

dxdy
−
d2σe

−

eH

dxdy
¼ 4πα2

xyQ2
geA½2ð1 − yÞðηγZgγZ4 − 2geVηZg

Z
4 Þ þ 2xy2ðηγZgγZ5 − 2geVηZg

Z
5 Þ�

−
8πα2

xyQ2

X
r

½ð1 − yÞceAr
ðξγrgγr4 þ 2geVξZrg

Zr
4 Þ þ xy2ceAr

ðξγrgγr5 þ 2geVξZrg
Zr
5 Þ�: ð27Þ

In this study, we focus on measurements of both parity-violating and lepton-charge asymmetries. The parity-violating
asymmetry can be formed either by comparing right-handed and left-handed electron scattering from unpolarized hadrons,
referred to as the “unpolarized PV asymmetry,”
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AðeÞ
PV ≡ dσe

dσ0
; ð28Þ

or by comparing unpolarized electron scattering off right-
handed and left-handed hadrons, referred to as the “polar-
ized PV asymmetry,”

AðHÞ
PV ≡ dσH

dσ0
: ð29Þ

If a positron beam becomes available in the future, the
lepton-charge asymmetry, defined as the unpolarized DIS
cross-section asymmetry between electron and positron
beams,

AðHÞ
LC ¼ dσe

þ
0 − dσe

−

0

dσe
þ
0 þ dσe

−

0

; ð30Þ

will provide additional constraints on SMEFT interac-
tions. On the other hand, the double-spin asymmetry,

AðeHÞ
PV ≡ dσeH=dσ0, is the primary observable to study

the nucleon spin structure but is not within the scope of
this work. Similarly, a complete list of lepton-charge
asymmetries that includes lepton-polarization dependence
can be found in [15], but they provide similar constraints to
SM and SMEFT studies as the unpolarized asymmetry
defined in Eq. (30) and are not discussed in this work.

B. Measurement of parity-violating asymmetries
at the EIC

In DIS experiments utilizing an electron beam of
polarization Pe and a hadron beam of polarization PH,
the measured differential cross section is

dσ ¼ dσ0 þ Pedσe þ PHdσH þ PePHdσeH; ð31Þ

where Pe and PH have the same sign as the respective beam
helicities, λe and λH, and can take the values −1 ≤ Pe,
PH ≤ 1. The various cross-section components in Eq. (31)
are given in Eqs. (25).
The PVDIS asymmetry can be formed by flipping the

spin direction of either the electron beam or the ion beam.
For the EIC, beams of opposite polarizations will be
injected into the storage rings alternately, and thus each
of the signs of both electron and ion polarizations is flipped
periodically on a short timescale. This is in contrast to
HERA, where data were taken with positive then negative
electron polarization, with such long time intervals in
between that runs with opposite electron polarizations
are essentially two independent experiments.
We express the measured DIS event counts during a

certain beam-helicity state as

Nþþ ¼ adetLþþðdσ0 þ jPþþ
e jdσe þ jPþþ

H jdσH
þ jPþþ

e jjPþþ
H jdσeHÞ; ð32Þ

Nþ− ¼ adetLþ−ðdσ0 þ jPþ−
e jdσe − jPþ−

H jdσH
− jPþ−

e jjPþ−
H jdσeHÞ; ð33Þ

N−þ ¼ adetL−þðdσ0 − jP−þ
e jdσe þ jP−þ

H jdσH
− jP−þ

e jjP−þ
H jdσeHÞ; ð34Þ

N−− ¼ adetL−−ðdσ0 − jP−−
e jdσe − jP−−

H jdσH
þ jP−−

e jjP−−
H jdσeHÞ; ð35Þ

where Lij stands for the integrated luminosity, and Pij
e and

Pij
H are the electron and the proton (or ion) beam polar-

izations during the corresponding helicity bunch ij. The
superscripts ij ¼ þþ;þ−;−þ;−− represent the electron
and the proton helicity states with their time sequence
depending on the helicity pattern of the beam injection. The
adet factor represents the detector phase space, acceptance,
and efficiency. In the simplest case, if we assume both beam
polarizations, the luminosity, and detector efficiency and
acceptance do not vary with time, then

dσ0 ¼
1

4
ðdσþþ þ dσþ− þ dσ−þ þ dσ−−Þ; ð36Þ

dσe ¼
1

4jPej
ðdσþþ þ dσþ− − dσ−þ − dσ−−Þ; ð37Þ

dσH ¼ 1

4jPHj
ðdσþþ − dσþ− þ dσ−þ − dσ−−Þ; ð38Þ

dσeH ¼ 1

4jPejjPHj
ðdσþþ − dσþ− − dσ−þ þ dσ−−Þ; ð39Þ

where we define the experimentally measured cross section
by dσij ≡ Nij=Lij=adet. The PVDIS asymmetry due to the
electron spin flip can be extracted from data by taking the
ratio of the cross sections. Because spin flips of both
electron and hadron beams will be carried out at a very
short timescale, the factor adet can be assumed constant and
cancels out when forming the asymmetry, and we can
extract the asymmetry from experimentally measured
yields, defined by Yij ≡ Nij=Lij, as

AðeÞ
PV ≡ dσe

dσ0
¼ 1

jPej
Yþþ þ Yþ− − Y−þ − Y−−

Yþþ þ Yþ− þ Y−þ þ Y−− ; ð40Þ

and that due to proton (ion) spin flip can be similarly
extracted as

AðHÞ
PV ≡ dσH

dσ0
¼ 1

jPHj
Yþþ − Yþ− þ Y−þ − Y−−

Yþþ þ Yþ− þ Y−þ þ Y−− : ð41Þ

The design of the EIC requires that the point-to-point
luminosity uncertainty be at the 10−4 level. Therefore, the
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dominant experimental uncertainty would come from

electron and proton (ion) polarimetry for AðeÞ
PV and AðHÞ

PV ,
respectively.

C. Measurement of lepton-charge asymmetries
at the EIC

Unlike PV asymmetries, which can be formed by
comparing scattering yields of right-handed vs left-handed
electron or hadron scattering on a short timescale, the
measurement of the LC asymmetry requires comparison
between electron and positron runs and thus relies on two
independent cross-section measurements. To reduce the

uncertainty in the measurement of AðHÞ
LC , we can reverse the

polarity of the magnet to minimize the systematic uncer-
tainty due to differences in e− and eþ detection. In this
case, the main experimental systematic uncertainty will
come from the luminosity difference between e− and eþ
runs, which is assumed to be 2% (relative in luminosity,

absolute in AðHÞ
LC ) in this analysis.

III. PROJECTION OF PARITY-VIOLATION
AND LEPTON-CHARGE ASYMMETRY DATA

A. ECCE detector configuration
for inclusive neutral-current study

The ECCE detector concept [16] addresses the full EIC
science mission as described in the EIC community white
paper [17] and the 2018 National Academies of Science
(NAS) report [18]. It is simultaneously fully capable, low
risk, and cost effective. ECCE strategically repurposes
select components of existing experimental equipment to
maximize its overall capabilities within the envelope of
planned resources. For example, the central barrel of the
detector incorporates the storied 1.4-T BABAR supercon-
ducting solenoid and the sPHENIX barrel hadronic calo-
rimeter, currently under construction.
For EWNC physics studied in this work, we focus on the

detection and identification of inclusive scattered electrons,
provided by ECCE’s tracking system [19] combined with
electromagnetic calorimetry [20] in a nearly hermetic cover-
age. ECCE features a hybrid tracking detector design using
three state-of-the-art technologies to achieve high-precision
primary and decay-vertex determination, fine momentum
tracking, and distance-of-closest-approach resolution in the
region jηj ≤ 3.5 with full azimuth coverage. The ECCE
tracking detector consists of the Monolithic Active Pixel
Sensor (MAPS)–based silicon vertex/tracking subsystem,
the μRWELL tracking subsystem, and the AC-LGAD outer
tracker, which also serves as the time-of-flight detector, all
optimized by artificial intelligence. For the electromagnetic
calorimeter, the system employed by ECCE consists of the
PbWO4-based electron endcap EM calorimeter (EEMC) for
the region−3.7 < η < −1.8, the SciGlass-based barrel ECal
for the region −1.7 < η < 1.3, and the Pb-scintillator

shashlike-type forward ECal (FEMC, hadron beam direc-
tion) that covers roughly 1.3 < η < 4.
For the inclusive DIS kinematics determination, we use

single-electron simulations in the full detector to study the
measurement of the electron momentum and trajectory, and
we characterize the difference between detected and true
values as smearing in the electron momentum and polar and
azimuthal angles. The smearing can then be applied to
simulated events without involving the full detector. This
is referred to as fast smearing and is the simulation method
adopted here that yields all physics projections provided in
this work. On the other hand, other methods that can be used
to identify DIS kinematics, such as detecting all hadrons in
the final state or detecting both the scattered electron and all
hadrons, are not investigated here. Similarly, the use of the
electromagnetic calorimeter can improve track identification
in part of the phase space, but is not included in this work.

B. Simulation with fast smearing

We use the DJANGOH event generator [21] (version 4.6.16
[22]) that includes full electromagnetic and electroweak
radiative effects to generate Monte Carlo (MC) events for
each of the four beam-energy and two beam-type combi-
nations: 18 × 275ð137Þ, 10 × 275ð137Þ, 10 × 100, and 5 ×
100 GeV for ep (eD) collisions, respectively. For the
deuterium ion beam, the energy specified is per nucleon.
The fast-smearing method is applied to inclusive electron
events in the DJANGOH output, and the physics cross section
and parity-violating asymmetries are calculated event by
event using a modified user routine of DJANGOH. The
number of scattered DIS electrons is then calculated using
the cross-section information and the expected integrated
luminosity after correcting for bin migration.
The detector fast smearing is obtained from a single-

electron gun simulation. Resolution spectra are determined
for 57 evenly spaced bins for the pseudorapidity range
η ¼ ð−3.5625; 3.5625Þ and 1 GeV wide bins in the trans-
verse momentum, pT . For each DJANGOH-simulated event,
smearing in the electron momentum, p, and polar and
azimuthal angles θ and ϕ are randomly picked from the
corresponding spectrum and applied to the event, which are
used to determine the detected kinematics of the event.
While the smearing spectra are not exactly Gaussian-
shaped, they are fitted with a Gaussian function. The fitted
root-mean-square (RMS) values extracted for illustration
purposes are displayed in Fig. 2.
Using the fast-smearing method, we generate 20 M total

MC events for each of the beam-energy combinations. Of
these 20 M, 10 M events are generated to study the
kinematic coverage over the full phase space. The remain-
ing 10 M events are generated with Q2

min ¼ 50 GeV2 for
which DIS events have the most impact on the extraction of
the weak mixing angle. The drawback of the fast-smearing
method is that no selection of the hadronic state is
implemented. Methods utilizing hadronic final states such
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as the double-angle method may provide better DIS event
identification for a certain kinematic range and thus
improve the precision of the analysis.
Bin migration of inclusive scattering electrons due to

internal and external radiative effects is studied with fast-
smearing simulation and treated using the “R matrix”
unfolding method [23]. Background reactions are studied
using the hadronic final state generated by DJANGOH (with
Q2

min ¼ 1.0 GeV2), and another Monte Carlo simulation of
photoproduction events are generated by PYTHIA (version
6.428, with Q2

min ¼ 0). All events are passed through the
full ECCE simulation. We find that the highest background
events occur at high y values. These events are rejected at
the event-selection stage; see the next section.
We have also studied how our results change if a simple

“theory-only” simulation without a detailed detector sim-
ulation is performed. We find two major differences with
respect to the current analysis:

(i) As mentioned in the next section, we use the
inelasticity constraint 0.1 < y < 0.9 in our current
simulation. We find that the regions 0.1 < y < 0.2

and 0.8 < y < 0.9 are not reliably modeled without
a detailed detector simulation. Our theory-only
simulation cannot accurately reproduce the expected
event counts in this region due to missing detector
response effects. We therefore must remove these
regions, leading to an effective reduction of statistics
for the theory-only simulation.

(ii) Second, in the 0.2 < y < 0.8 region considered, the
total error is relatively 10% to 30% more optimistic
in each bin compared to the full detector simulation,
with the 30% differences occurring near the boun-
daries of the y region.

The net result of these two competing effects is that theory-
only bounds are up to 10% more optimistic than those
found with a full detector simulation.

C. Event selection

For the 20M fast-smearing events, event-selection criteria
are applied to choose DIS events (Q2

det > 1.0 GeV2) in
order to avoid regions with severe bin migration and
unfolding uncertainty (ydet > 0.1), to avoid regions with

FIG. 2. RMS values for fast-smearing spectra obtained from single electron-gun simulation of the July 2021 concept of ECCE. The
unit for σθ and σϕ is radians.
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high photoproduction background (ydet < 0.90), to restrict
events in the main acceptance of the ECCE detector where
the fast-smearing method is applicable (ηdet > −3.5 and
ηdet < 3.5625), and to ensure high purity of electron samples
(E0 > 2.0 GeV). Here, the subscript “det” implies the
variables are calculated using the detected information of
the electron. The projected values and statistical uncertainties

for AðeÞ
PV and AðHÞ

PV after unfolding are shown in Figs. 3 and 4,
respectively, for 18 × 275 GeV ep collisions with an inte-
grated luminosity of 100 fb−1.

D. Integrated luminosity

To account for realistic running conditions, the annual
luminosity—the “high-divergence configuration” value as
shown in Table 10.1 of the EIC yellow report (YR) [24],
multiplied by 107 s—are used. These values are shown in
Table II and will be referred to as “nominal luminosity

(NL)” hereafter. As a comparison with the weak mixing
angle extraction presented in the YR, we also carry out
projections for 100 fb−1 18 × 275 GeV ep and 10 fb−1

18 × 137 GeV eD collisions as the “YR reference point.”
We abbreviate the ep pseudo-datasets as P1, P2, P3, P4,
and P5 and the eD pseudo-datasets as D1, D2, D3, D4, and
D5; see Table II. The YR reference point is denoted by P6.
Simulated pseudo-datasets with polarized hadrons are
indicated as ΔD1–5 and ΔP1–6, while positron datasets
are referred to as LD1–5 and LP1–6 (with “L” for lepton
charge).
As an exercise, we consider the additional statistical

power that could be obtained by a hypothetical future high-
luminosity upgrade to the EIC (HL-EIC) that delivers a
tenfold increase in the integrated luminosity (10× higher
than those in Table II) for these measurements. As the EIC
is not yet built, there is no technical basis to assume that
such an upgrade is possible. We choose the factor of 10×
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applied. An integrated luminosity of 100 fb−1 and an electron polarization of 80% are assumed.

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

4−10 3−10 2−10 1−10

1
 X

1

10

210

310

410

 Q
2

EIC/ECCE Preliminary

-1Djangoh e+p 18x275 GeV, 100 fb

 = 70%
p

 e’ (+X);  P→e+p 

with event selection

Apv(H)

2−10

1−10

1

10

210

4−10 3−10 2−10 1−10

1
 X

1

10

210

310

410

 Q
2

EIC/ECCE Preliminary

-1Djangoh e+p 18x275 GeV, 100 fb

 = 70%
p

 e’ (+X);  P→e+p 

with event selection

dApv(H)/Apv(H) (unfolded)

FIG. 4. Projection for AðpÞ
PV (left) and dAðpÞ

PV;stat=A
ðpÞ
PV after unfolding (right) for 18 × 275 GeV ep collisions, with event-selection criteria

applied. An integrated luminosity of 100 fb−1 and a proton polarization of 70% are assumed.

NEUTRAL-CURRENT ELECTROWEAK PHYSICS AND SMEFT … PHYS. REV. D 106, 016006 (2022)

016006-11



luminosity increase to explore the sensitivity of the
measurements we study in this paper, without making a
comment as to the feasibility of such an upgrade. These
projections will be denoted with a “high luminosity (HL)”
label hereafter.

E. Statistical uncertainty projection
for parity-violating asymmetries

For a given value of integrated luminosity, the statistical
uncertainty of an asymmetry measurement is

dAstat;measured ¼
1ffiffiffiffi
N

p ; ð42Þ

where N is the total number of events detected, assumed to
be approximately equally divided between the two scatter-
ing types—between left- and right-handed electron beams,
between left- and right-handed proton (ion) beams, or
between positron and electron runs. The unfolding process
increases the statistical precision only slightly for the region
where the relative statistical uncertainty on the asymmetry
is most precise.
If the asymmetry originates from polarization (as for the

case of PV asymmetries), one must correct for the beam
polarization:

dAðeÞ
PV;stat ¼

1

jPej
1ffiffiffiffi
N

p and dAðHÞ
PV;stat ¼

1

jPHj
1ffiffiffiffi
N

p : ð43Þ

For AðeÞ
PV projections, an electron beam polarization of Pe ¼

80% with relative 1% systematic uncertainty from the

electron polarimetry is assumed. Similarly, for AðHÞ
PV pro-

jections, a proton (ion) beam polarization of PH ¼ 70%
with relative 2% systematic uncertainty from the proton
(ion) polarimetry is used. An illustration of the relative
precision of PV asymmetries is provided in Figs. 3 and 4.

The statistical uncertainty of AðHÞ
PV is rather large because of

the much smaller size of AðHÞ
PV than AðeÞ

PV.

F. Statistical and QED uncertainty projection for
lepton-charge asymmetries

As described in Sec. II C, to measure the lepton-charge

asymmetry AðHÞ
LC , one can reverse the polarity of the magnet

to minimize the systematic uncertainty due to differences in

e− and eþ detection. In this case, the main experimental
systematic uncertainty would come from the luminosity
difference between e− and eþ runs, which is assumed to be
2% (relative in luminosity, absolute inALC) in this analysis. If
the detector magnet polarity is reversed, then the detection of
DIS positrons would be very similar to that of DIS electrons
and all the data simulations, event selections, unfolding, etc.,
described in Sec. III B apply. The statistical uncertainty in
ALC is thus determined by the luminosity of theeþ run,which
we assume to be one-tenth of that of the electron beam. Note
that beam polarization and thus polarimetry uncertainties do
not affect ALC measurements.
The EW physics reach of ALC is further clouded by the

difference in e− vs eþ DIS cross sections due to higher-
order QED effects. We calculate the value of ALC using
DJANGOH version 4.6.19 in both the Born LO (that includes
one-boson exchange only) and next-to-leading-order
(NLO) radiated mode (that includes higher-order EW
and QED effects); see Fig. 5. The difference of NLO
minus Born values is taken as an estimate of QED NLO
effects, and the uncertainty is assumed to be 5% relative.
Because of the moderate Q2 reach of the EIC, the 2%

absolute uncertainty from luminosity measurement is a

dominating systematic effect for the uncertainty of AðHÞ
LC . In

Appendix A 1, we present a method to simultaneously fit
the luminosity term with SMEFT coefficients; however, we
find this method yields 15% to 20% weaker SMEFT
constraints.

G. Projection for high-luminosity EIC

In addition to the nominal luminosity expected for theEIC,
we also carry out projections considering the possibility of an
additional tenfold increase in the annual luminosity beyond
EIC’s initial phase of running, the so-called HL-EIC.
Assuming all experimental systematic effects remain the
same, we scale the projected statistical uncertainty of
asymmetry observables described in the previous section
by a factor of 1=

ffiffiffiffiffi
10

p
. For beam energies with lower

luminosity (hence larger statistical uncertainty) or asymme-

tries of smaller sizes such as AðHÞ
PV , the tenfold increase in

luminosity will push the physics reach one step further. On
the other hand, for beam energies with already high lumi-
nosity and for observableswhere systematic effects dominate

over the statistical ones, such as AðeÞ
PV for 10 × 275 GeV ep

TABLE II. Beam energy, beam type, and the corresponding nominal annual luminosity assumed for the EIC in our
analysis. P6 is the YR reference setting.

D1 5 GeV × 41 GeV eD, 4.4 fb−1 P1 5 GeV × 41 GeV ep, 4.4 fb−1

D2 5 GeV × 100 GeV eD, 36.8 fb−1 P2 5 GeV × 100 GeV ep, 36.8 fb−1

D3 10 GeV × 100 GeV eD, 44.8 fb−1 P3 10 GeV × 100 GeV ep, 44.8 fb−1

D4 10 GeV × 137 GeV eD, 100 fb−1 P4 10 GeV × 275 GeV ep, 100 fb−1

D5 18 GeV × 137 GeV eD, 15.4 fb−1 P5 18 GeV × 275 GeV ep, 15.4 fb−1

P6 18 GeV × 275 GeV ep, 100 fb−1
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and 10 × 137 GeV eD collisions and AðHÞ
LC , the impact from

the luminosity increase of HL-EIC on the physics reach is
marginal.

IV. PSEUDODATA GENERATION AND THE
UNCERTAINTY MATRIX

A. Pseudodata for parity-violating asymmetries

We discuss first the case of the two PV asymmetries:
polarized electron asymmetries with unpolarized hadrons,

AðeÞ
PV, and polarized hadron asymmetries with unpolarized

electrons, AðHÞ
PV . The experimental uncertainties are from

three sources: statistical, σstat; experimental systematic,
σsys, which is mainly due to particle background, also
including other imperfections of the measurement, and is
assumed to be fully uncorrelated; and beam polarimetry,
σpol, which is assumed to be fully correlated within data of
the same

ffiffiffi
s

p
and beam type.

For the bth bin, with given
ffiffiffi
s

p
, x, and Q2 values and

using the nominal PDF set under consideration, first we
compute the theoretical SM prediction, ðAPVÞtheoSM;0;b.
Combining the given uncertainties in quadrature separately
for uncorrelated and correlated ones, we obtain a pseu-
doexperimental asymmetry value by

ðAPVÞpseudob ¼ ðAPVÞtheoSM;0;b þ rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2stat;b þ

�
ðAPVÞtheoSM;0;b

�
σsys
A

�
b

�
2

s
þ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðAPVÞtheoSM;0;b

�
σpol
A

�
b

�
2

s
; ð44Þ

where rb and r0 are random numbers chosen from a normal
distribution of mean 0 and standard deviation 1. Note that
the correlated errors are incorporated using a single random
number, r0, across all the bins. The systematic uncertainties

are σsys=A ¼ 1%, σpol=A ¼ 1% for AðeÞ
PV, and σpol=A ¼ 2%

for AðHÞ
PV .

B. Pseuddata for lepton-charge asymmetries

We consider next unpolarized electron-positron asymme-
tries with unpolarized hadrons, namely the LC asymmetries.

The uncertainties used in the data generation are from three
sources: statistical, σstat; experimental systematic, σsys, which
is mainly due to background and is assumed to be fully
uncorrelated; luminosity difference between eþ and e− runs,
σlum, which is fully correlatedwithin data of the same

ffiffiffi
s

p
and

ion beam type; and higher-order QED effects, σQED NLO,
taken as 5% of the difference between the calculated NLO
and Born (LO) ALC values.
In analogy with Eq. (44), for the LC asymmetries,

we write

ðALCÞpseudob ¼ ðALCÞtheoSM;0;b þ rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2stat þ

�
ðALCÞSM;0;b

�
σsys
A

�
b

�
2

þ σ2QED NLO;b

s
þ r0σlum;b: ð45Þ
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FIG. 5. Calculation for ALC at the Born (LO) (left) and NLO (right) levels for eþp vs e−p collisions at 18 × 275 GeV. The LO
calculation includes only the γZ interference term, which is of main interest of this study. The NLO calculation includes box diagrams,
which introduces a large QED effect to the asymmetry and is effectively a background to the EW and SMEFT study presented here.
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C. Uncertainty matrix

The uncertainty matrix, Σ2, for a given dataset with Nbin
bins is an Nbin × Nbin symmetric matrix. It consists of two
parts, which we call Σ2

0 and Σ2
pdf :

ðΣ2Þbb0 ¼ ðΣ2
0Þbb0 þ ðΣ2

pdfÞbb0 : ð46Þ

The first part of the matrix, Σ2
0, is constructed using all

the uncertainty components (statistical, systematic, polar-
imetry or luminosity, and QED NLO if present) other than
the PDF uncertainties. All the uncertainties that enter Σ2

0

must be absolute; relative uncertainties are converted to
absolute ones by multiplying with the theoretical SM
prediction, Atheo

SM;0;b, computed using the central member
of the PDF set taken into account. The first part of the
matrix then takes the form

Σ2
0 ¼

0
BBBBB@

σ21 ρ12σ̃1σ̃2 � � � ρ1Nbin
σ̃1σ̃Nbin

σ22 � � � ρ2Nbin
σ̃2σ̃Nbin

. .
. ..

.

σ2Nbin

1
CCCCCA

sym

; ð47Þ

where, for the PV asymmetries, we have for the diagonal
elements

σ2b ¼ σ2stat;b þ
�
ðAPVÞtheoSM;0;b

�
σsys
A

�
b

�
2

þ
�
ðAPVÞtheoSM;0;b

�
σpol
A

�
b

�
2

; ð48Þ

and for the off-diagonal elements

σ̃b ¼ ðAPVÞtheoSM;0;b

�
σpol
A

�
b
: ð49Þ

For the LC asymmetries, we have for the diagonal elements

σ2b ¼ σ2stat;bþ
�
ðALCÞtheoSM;0;b

�
σsys
A

�
b

�
2

þ σ2lum;bþ σ2QED NLO;b;

ð50Þ

and for the off-diagonal elements

σ̃b ¼ σlum;b: ð51Þ

Here, b and b0 are bin numbers, and we assume full
correlation for uncertainties originating from beam polar-
imetry or luminosity: ρbb0 ¼ 1 for all b and b0.
The second part of the uncertainty matrix, Σ2

pdf , is built
using the same procedure for both PVand LC asymmetries
by taking into account differences between the theoretical

SM asymmetry prediction computed at the nominal PDF
member, Atheo

SM;0, and theoretical SM asymmetry predictions
evaluated at all other members of the PDF set under
consideration, Atheo

SM;m, where m ¼ 1; 2;…; NPDF with
NPDF the total number of PDF sets or replicas available.
For Hessian-based PDF sets, the diagonal and off-diagonal
elements can be collectively written as

ðΣ2
PDFÞHessianbb0 ¼ 1

4

XNPDF=2

m¼1

ðAtheo
SM;2m;b − Atheo

SM;2m−1;bÞ

× ðAtheo
SM;2m;b0 − Atheo

SM;2m−1;b0 Þ: ð52Þ

For replica-based PDF sets, this expression becomes

ðΣ2
PDFÞreplicabb0 ¼ 1

NPDF

XNPDF

m¼1

ðAtheo
SM;m;b − Atheo

SM;0;bÞ

× ðAtheo
SM;m;b0 − Atheo

SM;0;b0 Þ: ð53Þ

D. Comparison of uncertainty components

We present in this section the various uncertainty compo-
nents that enter the SMEFTanalysis. We also investigate the
total uncertainties combined in quadrature that contribute to
the diagonal entries of the uncertainty matrix.

1. Individual uncertainty components

Webegin by considering the individual components of the
uncertainties. We investigate the effects of sea quarks in
the analysis by defining a valence-only approximation for the
PDFs. The tag ud in the plot labels implies the valence-only
approximation, in which only up- and down-quark contri-
butions are considered in the hadronic cross section, whereas
uds indicates that up, down, strange, and their antiquarks are
taken into account. Note that for the datasets involving
unpolarized deuteron with the ud tag, there will be no
uncertainty from PDFs since deuteron PDFs, defined in
terms of proton and neutron PDFs using isospin symmetry,
cancel when analytically forming asymmetries in the
valence-only approximation. Note also that for experimental
systematic uncertainties other than those from beam polar-
imetry, both 1%and 2%values are shown in all figures of this
section, although the 1% value is used in the results
presented.
Figure 6 shows the comparison of the uncertainty

components for the dataset D4 in the ud and uds
scenarios. As for the PDFs, we use NNPDF3.1 NLO
[25] in the unpolarized case and NNPDFPOL1.1 [26] in
the polarized case throughout. Only the ðx;Q2Þ region
relevant for SMEFT analysis is shown, although the full
region is used for the extraction of the weak mixing angle.
The x axis of these plots is ordered by bin number; these are
ordered first from low to high Q2, and then from small to
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large x within each Q2 bin, leading to the observed
oscillatory behavior. When we turn on the sea quark
contributions, the unpolarized deuteron datasets receive
nonzero but highly suppressed PDF uncertainties, indicat-
ing that the assumption of deuteron PDFs completely
canceling is a reasonably good approximation. The right
panel shows that even after including sea quarks, the PDFs
are still the smallest uncertainty component. This indicates
that potentially poorly determined sea quark and strange
quark distributions have little effect on this analysis. The
largest single uncertainty component is the statistical
uncertainty (shown as a dark red line). This is larger than
both the 1% beam polarization uncertainty (light blue line)
and either of the 1% or 2% uncorrelated systematic
uncertainty assumptions (solid and dotted blue lines,
respectively). When we switch to the high-luminosity
(HL-EIC) scenario (dotted red line), the statistical uncer-
tainty becomes comparable to the systematic ones. All
uncertainties are significantly smaller than the predicted
values of the asymmetry, shown as the solid black line in
the plots.
In Fig. 7, we display the different contributions to the

diagonal entries of the uncertainty matrix of the datasets P5
and ΔP5. The pattern of uncertainties for P5 is very similar
to that observed for D4. The statistical ones are the largest
single uncertainty source, while the PDFs are the smallest.

Assuming high luminosity, the statistical uncertainties
become comparable to the anticipated systematic ones.
The pattern is different for ΔP5: the statistical uncertainties
are largest for all bins, even assuming high luminosity. The
PDF uncertainties are also non-negligible, consistent with
the expectation that spin-dependent PDFs are not known as
precisely as the spin-independent ones. The anticipated
experimental systematic uncertainties are negligible for
all bins.
Finally, we show in Fig. 8 the individual uncertainties for

the electron-positron asymmetry dataset LP5. The error
budget is different for this scenario compared to PV
asymmetries. Since both beams are unpolarized, there is
no uncertainty related to beam polarization. However, since
electron and positron runs occur with different beams, there
is the possibility of a significant overall luminosity differ-
ence between the two runs that can lead to an apparent
asymmetry. We assume an absolute 2% uncertainty, 2 times
the luminosity uncertainty requirement of [27]. Finally, we
consider the possible errors arising from higher-order QED
corrections that may differentiate between electron and
positron scattering. We estimate this uncertainty by taking
5% of the difference between the Born-level and NLOQED
results, obtained by using DJANGOH. The two largest
sources of uncertainty throughout the entire kinematic
range are the luminosity and statistical uncertainties.

FIG. 6. Comparison of the uncertainty components for the dataset D4 in the valence-only scenario (ud) and with the contributions
from the sea quarks (uds). Here, “NL” refers to the currently planned annual luminosity of the EIC, while “HL” refers to a potential
tenfold luminosity upgrade.
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PDFs, higher-order QED, and anticipated systematic uncer-
tainties are all significantly smaller.
Summarizing all the figures presented in this section, we

can make the following main points:
(i) The expected statistical uncertainties are the dom-

inant ones for the nominal EIC luminosity. If a high-
luminosity (HL-EIC) upgrade becomes realistic,
they become comparable to experimental systematic
uncertainties for PV asymmetries of the unpolarized

hadron, AðeÞ
PV.

(ii) PDF uncertainties are nearly irrelevant for the

asymmetries of unpolarized hadrons, AðeÞ
PV. They

become significant, second to statistical uncertain-

ties, for PV asymmetries of polarized hadrons, AðHÞ
PV .

(iii) The luminosity effect dominates over the statistical
uncertainty for the majority of the phase space in the

case of electron-positron asymmetries, AðHÞ
LC , par-

ticularly at low x and low Q2. On the other hand,
uncertainties from missing higher-order QED cor-
rections are expected to be small.

2. Total uncertainties for nominal luminosity
vs high luminosity

We now investigate the total uncertainties for the
datasets D4, ΔD4, P5, and ΔP5. We consider four
different scenarios: the nominal annual luminosity
planned for the EIC or a potential high-luminosity
upgrade beyond the initial phase of the EIC run,
combined with 1% or 2% relative experimental system-
atic uncertainties due to particle background. We show
the results in Figs. 9 and 10. We observe first that the
dominant uncertainty component in all cases is the
statistical one. The four uncertainty scenarios, namely
1% or 2% systematic uncertainties combined with nomi-
nal or high luminosity, can, in fact, be reduced to just the
luminosity comparison, i.e., nominal vs high. Next, for

both D4 and P5, the asymmetry AðeÞ
PV is measured to

percent level throughout the considered phase space. This
is not the case for the polarized sets ΔD4 and ΔP5.
Particularly in the ΔP5 scenario at low Q2, the antici-
pated errors are larger than the asymmetry for all choices
of systematic error and luminosity. Only in the very highFIG. 8. The same as in Fig. 7 but for LP5.

FIG. 7. Uncertainty components for the datasets P5 and ΔP5.
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FIG. 9. Total uncertainties combined in quadrature for the datasets D4 and ΔD4 in the uds scenario.

FIG. 10. The same as in Fig. 9 but for P5 and ΔP5.
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Q2 bins does a measurement of the asymmetry AðHÞ
PV

become meaningful.
Our evaluation of the uncertainties indicates that using

1% or 2% relative systematic uncertainties makes practi-
cally no difference, as the total errors are mostly dominated
by the statistical uncertainties for the PVasymmetries or the
luminosity difference for the LC asymmetries. We also
show that one can take into account the contribution of only
the valence quarks to the asymmetries or include the sea
quarks up to strange flavor and its antiquark, both of which
lead to the same size of PDF errors for the datasets under
consideration. In our best-fit analyses, we thus focus on the
datasets with 1% relative systematic uncertainty and
nominal luminosity in the uds scenario as our main
datasets. Comparisons are performed to the ones having
high luminosity, keeping the rest of the configuration
the same.
An important issue to address is whether a joint fit of

PDFs and Wilson coefficients would change the potential
of the EIC to probe the SMEFT parameter space that we
find in this draft. This issue has been studied for both
HERA and LHC datasets in the literature [28,29], where it
is found that the interplay between PDFs and Wilson
coefficients can become a significant challenge for some
future high-luminosity measurements at the LHC. It is
beyond the scope of this paper to consider such a joint fit,
so we can only speculate regarding the exact answer to this
question. However, we can make the following points that
are supported by the uncertainty plots in this section of this
manuscript:

(i) For the unpolarized deuteron datasets, the PDF
uncertainties are an order of magnitude smaller
than the statistical uncertainties for the nominal
luminosity and 3 to 5 times smaller than the high-
luminosity statistical uncertainties, as shown in
Fig. 6. We therefore expect that a joint fit of the
PDFs and Wilson coefficients would not greatly
affect the bounds obtained here. The PDFs are

already determined sufficiently well from other
experiments for the purposes of this analysis.

(ii) The same statement holds for the P5 unpolarized
datasets for both nominal and high luminosities, as
shown in the left panel of Fig. 7. This plot indicates
that taking ratios to form asymmetries, as we do in
this study, greatly reduces the dependence on PDFs.

(iii) Looking at the right panel of Fig. 7, we see that the
polarized proton PDF error becomes comparable to
the statistical error at high Q2 for the high-luminos-
ity dataset. In this case, a joint fit of polarized PDFs
and Wilson coefficients will be especially important.
We note that the bounds from the polarized hadron
datasets are generically much weaker than those for
the unpolarized hadron sets (see Fig. 13 for exam-
ple), since the polarized asymmetry is much smaller
than the polarized one. We believe that our main
point regarding the EIC sensitivity to SMEFTWilson
coefficients is mostly unaffected by this point.

V. EXTRACTION OF THE SM WEAK
MIXING ANGLE

The weak mixing angle, often written as sin2 θW , is a
fundamental parameter of the SM and has been measured in
experiments ranging from atomic parity violation at elec-
tron volt energy levels to high-energy colliders at the Z pole
[30–32]. The EIC will provide constraints on sin2 θW in the
intermediate-energy range that resides between the reach of
fixed-target and collider facilities.
For the extraction of the weak mixing angle, we focus on

AðeÞ
PV, where sin2 θW enters through the electron coupling

geV;A and the corresponding quark couplings in the structure
functions. We also include the one-loop renormalization
group evolution [33] of sin2 θW in the MS scheme,
including the relevant particle thresholds that arise between
μ ¼ MZ and μ ¼

ffiffiffiffiffiffi
Q2

p
. Including target-mass correction

terms, we can write

AðeÞ
PV ¼

jPejηγZ½geA2yFγZ
1 þ geAð 2xy − 2

x −
2M2xy
Q2 ÞFγZ

2 þ geVð2 − yÞFγZ
3 �

2yFγ
1 þ ð 2xy − 2

x −
2M2xy
Q2 ÞFγ

2 − ηγZ½geV2yFγZ
1 þ geVð 2xy − 2

x −
2M2xy
Q2 ÞFγZ

2 þ geAð2 − yÞFγZ
3 �

; ð54Þ

whereM is the nucleon mass. Note that given the moderate
Q2 values of the EIC, the pure-Z contribution to the
structure functions is omitted for the precision relevant
to our analysis.
A single pseudo-dataset is generated using a reference

value of sin2 θW ¼ 0.231 at the Z pole, and the uncertain-

ties in AðeÞ
PV in each ðx;Q2Þ bin are obtained from simulation

studies. Comparing the theory prediction to the pseudodata,
a best-fit value and uncertainty projection for sin2 θW at

the Z pole are obtained by minimizing the χ2 function
defined as

χ2 ¼ ½Apseudodata −Atheory�T½ðΣ2Þ−1�½Apseudodata −Atheory�;
ð55Þ

where A is a dimension-Nbin vector with Nbin the total
number of ðx;Q2Þ bins, Σ2 is the uncertainty matrix of
dimension Nbin × Nbin, described in Sec. IV C, and sin2 θW
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to be fitted enters Atheory. The PDF portion of the uncert-
ainty matrix is evaluated using the PDF sets CT18NLO [34]
(LHAPDF [35] ID 14400-14458), MMHT2014nlo_68cl
[36] (ID 25100-25150), and NNPDF31_nlo_as_0118
[25] (ID 303400-303500).
Our results for sin2 θW are shown in Tables III and IV for

five energy and nominal-annual-luminosity combinations

of ep and eD collisions, respectively. These results are
illustrated in Fig. 11. The inner error bars show the
combined uncertainty from statistical and 1% uncorrelated
experimental systematics (due to particle background); the
median error bars show the experimental uncertainty that
includes statistical, 1% uncorrelated experimental system-
atics, and 1% electron polarimetry. The outermost error

TABLE III. Projected PVDIS asymmetry and fitted results for sin2 θW using ep collision data and the nominal annual luminosity.
Here, hQ2i denotes the value averaged over all ðx;Q2Þ bins, weighted by ðdA=AÞ−2stat for each bin. The electron beam polarization is
assumed to be 80% with a relative 1% uncertainty. The total (“tot”) uncertainty is from combining all of statistical, 1% systematic
(background), 1% beam polarization, and PDF uncertainties evaluated using three different PDF sets. The rightmost column is for
comparison with the YR.

Beam type and energy ep 5 × 100 ep 10 × 100 ep 10 × 275 ep 18 × 275 ep 18 × 275

Label P2 P3 P4 P5 P6

Luminosity [fb−1] 36.8 44.8 100 15.4 (100 YR ref)
hQ2i [GeV2] 154.4 308.1 687.3 1055.1 1055.1
hAPVi (Pe ¼ 0.8Þ −0.00854 −0.01617 −0.03254 −0.04594 −0.04594

ðdA=AÞstat 1.54% 0.98% 0.40% 0.80% (0.31%)
ðdA=AÞstatþsystðbgÞ 1.55% 1.00% 0.43% 0.81% (0.35%)
ðdA=AÞ1%pol 1.0% 1.0% 1.0% 1.0% (1.0%)
ðdA=AÞtot 1.84% 1.42% 1.09% 1.29% (1.06%)

Experimental
dðsin2θWÞstatþsystðbgÞ 0.002032 0.001299 0.000597 0.001176 0.000516

dðsin2θWÞstatþsystþpol 0.002342 0.001759 0.001297 0.001769 0.001244

With PDF
dðsin2θWÞtot;CT18NLO 0.002388 0.001807 0.001363 0.001823 0.001320
dðsin2θWÞtot;MMHT2014 0.002353 0.001771 0.001319 0.001781 0.001270
dðsin2θWÞtot;NNPDF31 0.002351 0.001789 0.001313 0.001801 0.001308

TABLE IV. Projected PVDIS asymmetry and fitted results for sin2 θW using eD collision data and the nominal annual luminosity. The
uncertainty evaluation is the same as Table III.

Beam type and energy eD 5 × 100 eD 10 × 100 eD 10 × 137 eD 18 × 137 eD 18 × 137

Label D2 D3 D4 D5 N=A

Luminosity [fb−1] 36.8 44.8 100 15.4 (10 YR ref)
hQ2i [GeV2] 160.0 316.9 403.5 687.2 687.2
hAPVi (Pe ¼ 0.8) −0.01028 −0.01923 −0.02366 −0.03719 −0.03719

ðdA=AÞstat 1.46% 0.93% 0.54% 1.05% (1.31%)
ðdA=AÞstatþbg 1.47% 0.95% 0.56% 1.07% (1.32%)
ðdA=AÞsyst;1%pol 1.0% 1.0% 1.0% 1.0% (1.0%)
ðdA=AÞtot 1.78% 1.38% 1.15% 1.46% (1.66%)

Experimental
dðsin2 θWÞstatþbg 0.002148 0.001359 0.000823 0.001591 0.001963
dðsin2θWÞstatþbgþpol 0.002515 0.001904 0.001544 0.002116 0.002414

With PDF
dðsin2θWÞtot;CT18 0.002558 0.001936 0.001566 0.002173 0.00247
dðsin2θWÞtot;MMHT2014 0.002527 0.001917 0.001562 0.002128 0.002424
dðsin2θWÞtot;NNPDF31 0.002526 0.001915 0.001560 0.002127 0.002423
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bars, which almost coincide with the median error bars,
include all the above and the PDF uncertainty evaluated
using the set CT18NLO. Results evaluated with the sets
MMHT2014 and NNPDF31NLO are similar. Along with our
projection with the EIC annual nominal luminosity, we
show the “YR reference point” (blue diamond), obtained
from combining 100 fb−1 18 × 275 GeV ep and 10 fb−1

18 × 137 GeV eD pseudodata. Also shown are the
expected precisions from near-future P2 [37], MOLLER
[38], SoLID [39], and PVDIS [40,41] experiments, respec-
tively, that will dominate the landscape of low- to medium-
energy scales.
We note that our results have larger uncertainties than in

the YR [24], which fits PDFs and sin2 θW simultaneously
using the Jefferson Lab Angular Momentum (JAM)

framework [42], possibly due to using realistic detector
simulation and accurate running conditions. On the other
hand, we find that PDF uncertainties are likely not the
dominant ones for the EIC projections, but the electron
polarization is, for the settings where the integrated
luminosity approaches 100 fb−1. Consequently, upgrading
the luminosity of the EIC does not bring significant
improvement on the uncertainty of sin2 θW , and therefore
we do not show our fitting results for the tenfold luminosity
upgrade.
Our results show that the EIC will provide a determi-

nation of sin2 θW at an energy scale that bridges higher-
energy colliders with low- to medium-energy SM tests.
Additionally, data points of different

ffiffiffi
s

p
values of the EIC

can be combined or the Q2 dependence of the EW
parameter can be explored, depending on the run plan of
the EIC. Furthermore, one could study the exploratory
potential of the EIC beyond the scope of a single SM
parameter, and we provide results using the SMEFT
framework in the next section.

VI. FRAMEWORK FOR THE SMEFT ANALYSIS

A. Data generation and selection

We use the procedure described in Sec. III to determine
the uncertainty of our data projection and the uncertainty
matrix. We consider both ep and eD collisions and
concentrate on the two highest-energy settings listed in
Table II. Because collisions with higher center-of-mass
energy are more sensitive to SMEFT operators, we choose
four data families with the two highest

ffiffiffi
s

p
to focus on:

10 GeV × 137 GeV eD 100 fb−1∶D4;ΔD4;LD4;

18 GeV × 137 GeV eD 15.4 fb−1∶D5;ΔD5;LD5;

10 GeV × 275 GeV ep 100 fb−1∶P4;ΔP4;LP4;

18 GeV × 275 GeV ep 15.4 fb−1∶P5;ΔP5;LP5:

For the highest
ffiffiffi
s

p
but lower-luminosity set D5, ΔD5, P5,

and ΔP5, we consider two scenarios: the nominal lumi-
nosity as indicated above and in Table II, and the high
luminosity option denoted with an “HL” label with tenfold
higher statistics.
We use Eq. (44) to generate Nexp ¼ 1000 pseudo-

datasets for each of the data families. We then impose
the following selection criteria on the bin points, x and Q2,
and the inelasticity, y:

x < 0.5; Q2 > 100 GeV2; 0.1 < y < 0.9: ð56Þ

These restrictions are designed to remove large uncertain-
ties from nonperturbative QCD and nuclear dynamics that
occur at low Q2 and high x, where sensitivity to SMEFT
effects is anyway expected to be reduced. We note that the
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FIG. 11. Projected results for sin2 θW using ep (top, solid
magenta markers) and eD (bottom, solid cyan markers) collision
data and the nominal annual luminosity given in Table 10.1 of the
yellow report [24], along with existing world data (red solid
circles) and near-future projections (green diamonds); see text for
details. Data points for Tevatron and LHC are shifted horizontally
for clarity. The script used to produce this plot is inherited from
[43]. The scale dependence of the weak mixing angle expected in
the SM (blue curve) is defined in the modified minimal
subtraction scheme (MS scheme) [33].
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condition on y is already applied in the data generation and
unfolding stages described in Sec. III C.

B. Structure of the SMEFT asymmetry corrections

In the computation of SMEFT asymmetry values,
ASMEFT, we use the central member of the PDF set under
consideration. We use the PDF sets NNPDF31_nlo_as_
0118 [25] and NNPDFpol11_100 [26] for the compu-
tation of unpolarized and polarized PV asymmetries,

namely AðeÞ
PV and AðHÞ

PV , respectively. We factor out the
UV cutoff scale from all the seven Wilson coefficients,
Cr → Cr=Λ2, and set Λ ¼ 1 TeV. We turn on only one or
twoWilson coefficients at a time and set the remaining ones
to zero and linearize the SMEFTexpressions with respect to
the Wilson coefficient(s) of interest. SMEFT asymmetry
expressions then generically take the form

ASMEFTðx;Q2; CÞ ¼ Atheo
SM;0ðx;Q2Þ þ Cδðx;Q2Þ ð57Þ

or

ASMEFTðx;Q2; C1; C2Þ ¼ Atheo
SM;0ðx;Q2Þ þ C1δ1ðx;Q2Þ

þ C2δ2ðx;Q2Þ: ð58Þ

Comparing Eq. (57) to (44) or (45), we see that at the end of
a multirun analysis, the distribution of the best-fit values for
any single Wilson coefficient should be a Gaussian cen-
tered at the origin.

C. Best-fit analysis of Wilson coefficients

Generating pseudodata values, Apseudo
SM , and obtaining the

SMEFT asymmetry expressions, ASMEFT, we define a χ2

test statistic as

χ2 ¼
XNbin

b¼1

XNbin

b0¼1

½ASMEFT;b − Apseudo
SM;b �½ðΣ2Þ−1�bb0

× ½ASMEFT;b0 − A0pseudo
SM;b �; ð59Þ

where Nbin is the number of bins in a given dataset.
Generically, it looks like

χ2ðCÞ ¼ k0 þ k1Cþ k2C2 ð60Þ

for a single-parameter fit of Wilson coefficient C or

χ2ðC1; C2Þ ¼ k00 þ k10C1 þ k01C2 þ k11C1C2

þ k20C2
1 þ k02C2

2 ð61Þ

for a two-parameter fit of Wilson coefficients C1 and C2.
The χ2 function is minimized with respect to C or to C1

and C2. This gives us the best-fit values, C̄ or C̄1 and C̄2.

We obtain the inverse square of the error of the single-
parameter best-fit value via

1

σ2C
¼ 1

2

d2χ2

dC2
ð62Þ

evaluated at C̄. The inverse covariance matrix, V−1, of the
two-parameter fit is constructed in such a way that its ijth
component is given by

ðV−1Þij ¼
1

2

∂χ2

∂Ci∂Cj
ð63Þ

for i, j ¼ 1, 2, evaluated at the best-fit values of C1 and C2.
Inverting V−1, we obtain the individual errors and the
correlation of the fit:

V ¼
�
σ21 ρ12σ1σ2

σ22

�
sym

: ð64Þ

1. Averaging over multiple pseudo-datasets

When we repeat Nexp times the single-parameter best-fit
analysis described in Sec. VI C, we obtain Nexp best-fit
values, C̄e, with corresponding uncertainties, σC;e, for each
pseudoexperiment e. The mean of the best-fit values is
obtained by averaging individual best-fit values weighted
by the inverse square of the uncertainties,

C̄ ¼
�XNexp

e¼1

1

σ2C;e

�−1�XNexp

e¼1

1

σ2C;e
C̄e

�
; ð65Þ

and the average uncertainty of this mean value is obtained
via

1

σ2C
¼ 1

Nexp

XNexp

e¼1

1

σ2C;e
: ð66Þ

When we repeat Nexp times the two-parameter best-fit
analysis on Wilson coefficients described in Sec. VI C,
we obtain Nexp pairs of best-fit values, C̄1;e and C̄2;e, and
inverse covariance matrices, ðV−1Þe, for each pseudoex-
periment, e. The best-fit values are averaged similarly to
the one-dimensional case but with the inverse square of
uncertainties replaced by inverse covariance matrices:

�
C̄1

C̄2

�
¼

�XNexp

e¼1

ðV−1Þe
�−1�XNexp

e¼1

ðV−1Þe
�
C̄1;e

C̄2;e

��
: ð67Þ

The average inverse covariance matrix of the resulting best
fit is calculated using

V−1 ¼ 1

Nexp

XNexp

e¼1

ðV−1Þe: ð68Þ
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We note the presence of the factor 1=Nexp in Eqs. (66)
and (68). Without it, we would be effectively increasing the
luminosity of the corresponding central dataset by a factor
Nexp. We avoid this by including this factor in computing
the average uncertainty or inverse covariance matrix.

2. Definition of confidence intervals

The result of a single-parameter multirun fit can be
expressed as

ðC − C̄Þ2
σ2C

¼ Δχ2; ð69Þ

and hence we can express the fitted result and the
uncertainty of coefficient C as

C ¼ Cbest �
ffiffiffiffiffiffiffiffi
Δχ2

q
σC: ð70Þ

For a two-parameter multirun fit, the ellipse equation reads

�
C1 − C̄1

C2 − C̄2

�T

V−1
�
C1 − C̄1

C2 − C̄2

�
¼ Δχ2 ð71Þ

in the ðC1; C2Þ plane.
The Δχ2 values that determine the size of the best-fit

region for an arbitrary confidence level are well-known.
For 95% C.L., we have Δχ2 ¼ 3.841, 5.991, and 7.815 for
one-, two-, and three-parameter fits, respectively.

3. Combination of best fits from distinct datasets

Suppose we have two datasets, say T1 and T2, from
which we obtain the single-parameter best-fit values of
Wilson coefficient,C, written as C̄T1 and C̄T2, together with
the errors σC;T1 and σC;T2. Assuming these datasets can be
treated as uncorrelated to a good approximation, we obtain

the combined best-fit value and the corresponding uncer-
tainty by using Eqs. (65) and (66) with slight modifications.
First, the summation index e now runs from 1 to 2,
representing the number of datasets combined. Second,
the factor 1=Nexp should be removed from Eq. (66) because
we now have indeed two independent, uncorrelated mea-
surements. This method can be generalized to the combi-
nation of the best-fit values from more than two datasets,
such as different beam energies, and to the case of multi-
parameter fits in a straightforward manner.

4. Simultaneous fit of Wilson coefficients and beam
polarization or luminosity difference

We observe in Sec. IV D that experimental uncertainties
such as the beam polarization and luminosity difference
between eþ and e− runs can be limiting factors for some of
the datasets. When the data statistical uncertainty is very
precise, there is the possibility that one can use the data
themselves to constrain these systematic effects. We present
in Appendix A 1 a method to simultaneously fit the SMEFT
coefficient(s) and the luminosity difference for the LC
asymmetries and in Appendix A 2 a method to simulta-
neously fit the SMEFT coefficient(s) and the beam polari-
zation for PV asymmetries.

VII. SMEFT FIT RESULTS

A. Fits of single Wilson coefficients

In this section, we discuss the 95% C.L. intervals for the
Wilson coefficients in single-parameter fits averaged over
1000 pseudoexperiments. The bounds on the Wilson
coefficient Ceu across numerous datasets are representative
and exhibit the common features of fits of single Wilson
coefficients. We therefore show only the bounds on Ceu to
illustrate the main observations and include the remaining
Wilson coefficients in Appendix B 1. Figure 12 displays the

FIG. 12. The 95% C.L. bounds of Ceu from single-parameter fits (darker) and from the (1þ 1)-parameter fits with beam polarization
as an additional fitting parameter (lighter) using the families of datasets D4, D5, P4, and P5 at Λ ¼ 1 TeV.
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95% C.L. intervals of Ceu for the four data families in which
we are primarily interested in this paper. The intervals are
grouped by asymmetries, namely electron PV asymmetries,

AðeÞ
PV, of unpolarized hadrons (“unpolarized APV”); hadron

PV asymmetries, AðHÞ
PV , with unpolarized electrons (“polar-

ized APV”); and unpolarized electron-positron asymmetries,

AðHÞ
LC , of unpolarized hadrons (“lepton-charge A”). PV

asymmetries are then grouped into two, showing the fits
in the nominal- and high-luminosity scenarios. In each block
of intervals, there are four double lines in the case of PV
asymmetries and four single lines in LC asymmetries. These
four lines correspond to the data families D4 (black and its
shade), D5 (red), P4 (blue), and P5 (orange), respectively.
The darker of the two lines indicates the bounds from single-
parameter fits with the Wilson coefficient Ceu, whereas the
lighter ones show the bounds on the Wilson coefficient from
simultaneous (1þ 1)-parameter fits with Ceu and the beam
polarization. We describe the details of the fits involving the
beam polarization as an additional free parameter in
Appendix A 2.
From Fig. 12, we can extract the following main points:
(i) Proton asymmetries of all the three types, namely

unpolarized and polarized PV asymmetries and LC
asymmetries, impose considerably stronger bounds
than deuteron.

(ii) High-energy low-luminosity datasets D5 and P5
lead to slightly weaker bounds than the less-
energetic but higher-luminosity ones, D4 and P4,
respectively.

(iii) Unpolarized PV asymmetries, AðeÞ
PV, offer much

stricter bounds than the polarized ones AðHÞ
PV ; how-

ever, it should be noted that for some Wilson
coefficients, unpolarized proton asymmetries yield
nearly the same bounds as the corresponding polar-
ized ones.

(iv) Datasets in the high-luminosity scenario make a
noticeable difference in the size of bounds. The

improvement due to increased luminosity is
slightly more significant for polarized deuteron
asymmetries.

(v) Bounds from electron-positron asymmetries, AðHÞ
LC ,

are comparable to or looser than the ones from
polarized hadron asymmetries. They never offer
stricter bounds than high-luminosity hadron PV
asymmetries.

(vi) If the beam polarization is introduced as a new
fitting parameter, unpolarized hadron asymmetries
give considerably stronger bounds. The improve-
ment is more significant in the high-luminosity
scenario. However, the same fitting method yields
weaker bounds with polarized hadron asymmetries.
We explain this finding in Appendix A 2.

Assuming weak correlations, one can also combine the
bounds within a given family of datasets, e.g., D4, ΔD4,
and LD4. We find that the resultant bound is never stronger
than the strongest one obtained from the individual family
members, which is always from the electron PVasymmetry
dataset. We note that this observation holds for other
Wilson coefficient choices and for the two-dimensional
fits in the next section, as well.
In Fig. 13, we present the effective UV cutoff scales,

Λ=
ffiffiffiffiffiffiffi
Ceu

p
, with Λ ¼ 1 TeV, corresponding to the bounds

shown in Fig. 12. The organization of this plot in terms of
asymmetries and datasets is the same as in Fig. 12.
Improved bounds on Ceu with the addition of the beam
polarization to the fits are equivalent to higher-energy
scales in the unpolarized PV asymmetries, which are
indicated by the lighter columns in the background; on
the other hand, weaker bounds from the fits with beam
polarization are depicted by the lighter columns in the
foreground for the polarized PV asymmetries.
One can observe that scales reaching 3 TeV can be

probed with nominal luminosity, while scales exceeding
4 TeV can be probed for other luminosities. We remark that
care must be taken in comparing these mass limits with

FIG. 13. Effective UV cutoff scales, Λ=
ffiffiffiffiffiffiffiffi
Ceu

p
, defined in terms of the 95% C.L. bounds on the Wilson coefficient Ceu and with

Λ ¼ 1 TeV.
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others found in the literature, which sometimes assume a
strong coupling limit, equivalent to setting Cr ¼ 4π, and
also maximally constructive interference between different
quark contributions. For example, converting our results to
the notation of [44] would yield a bound on Λ=

ffiffiffiffiffiffiffi
Ceu

p
of

19 TeV, instead of 3 TeV quoted here, which is only very
approximate and is calculated by multiplying 3 TeV byffiffiffiffiffiffi
4π

p
and

ffiffiffiffiffiffiffiffiffiffi
5

pp
, where the latter is to account for the

constructive interference between quark contributions, and
by another factor to convert 90% C.L. to 95% C.L.

B. Fits of two Wilson coefficients

In this section, we discuss fits on pairs of Wilson
coefficients in order to determine how well the EIC can
break degeneracies between parameters that occur in the
LHC Drell-Yan data [6,45]. We emphasize that the repre-
sentative examples shown in this section are the results of
the simultaneous fits with beam polarization in light of the
significantly improved results of the (1þ 1)-parameter fits
in the previous section. The description of the beam-
polarization fits is presented in Appendix A 2. The com-
plete set of plots of confidence ellipses is given in
Appendix B 2.
In Fig. 14, we compare the 95% C.L. ellipses for the pair

ðCeu; CqeÞ between the data families D4 and P4. Each
asymmetry type gives a distinct correlation pattern, com-
plementary to one another. Electron-positron asymmetries
give rise to wide and elongated bandlike ellipses compared
to PVasymmetries. As in the case of (1þ 1)-parameter fits,
electron PV asymmetries of unpolarized hadrons offer the
strongest bounds on the pairs of Wilson coefficients.
Comparing deuteron to proton, one can see that proton
data are significantly more constraining.

Figure 15 shows the comparison of the simultaneous fit
of the Wilson coefficients ðCeu; CluÞ projected for the EIC
to the corresponding fit with the LHC data adapted
from [45]. The LHC fit exhibits a flat direction; i.e., a
particular linear combination of the two coefficients
cannot be determined. A similar comparison is given in

Fig. 16 for the pair ðCeu; C
ð1Þ
lq Þ, using the nominal- and

high-luminosity P4 set of the EIC. We observe that in both

FIG. 14. The 95% C.L. ellipses for the Wilson coefficients Ceu and Cqe using the families of datasets D4 and P4 in the simultaneous
(2þ 1)-parameter fits that include the beam polarization as an additional fitting parameter.

FIG. 15. The 95% C.L. ellipses for the Wilson coefficients Ceu
and Clu using the datasets D4 and P4 in the (2þ 1)-parameter fit
that includes the beam polarization as an additional fitting
parameter, compared with the corresponding two-parameter fit
from the LHC data [45].
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figures, projected EIC fits have different correlation
patterns from the LHC. More importantly, the EIC
projected data show the capability of resolving flat
directions and significantly constraining the aforemen-
tioned pairs of Wilson coefficients.
Finally, in Fig. 17, we present the fits from the P4 dataset

and the LHC adapted from [6] for the pair ðCð1Þ
lq ; C

ð3Þ
lq Þ. This

figure shows that when the LHC data impose tight bounds
on a pair of Wilson coefficients, the EIC preliminary data
can introduce far stronger bounds on the same pair of
Wilson coefficients. Moreover, the fits from EIC and LHC
have distinct correlations, which indicate the complemen-
tarity of the EIC to the LHC as a future collider. Treating
the projected EIC and the LHC data to be uncorrelated, we
also plot the combined fit of the two, which turns out to
even more strongly constrain the chosen pair of Wilson
coefficients. We remark that the effective UV scales probed
with the combined dataset exceed 2 TeV.
It should be noted that there appear flat directions in the

fits of certain pairs of Wilson coefficients with the projected
EIC data that utilize the deuteron beam. Examples include
ðCeu; CedÞ and ðClu; CldÞ. We can explain these observa-
tions analytically. We find that these pairs always appear in
a specific way in asymmetry expressions, for example,
2Ceu − Ced for electron PV asymmetries with unpolarized
deuteron. In all such cases, only one of the data families
exhibits this behavior, with the degeneracy broken by
another data family.
Our results on the bounds from Wilson coefficients

in simultaneous (2þ 1)-parameter fits with the beam

polarization as an additional parameter can be summarized
as follows:

(i) Proton asymmetries impose much stricter bounds
than deuteron.

(ii) Unpolarized hadron asymmetries lead to stronger
correlations than the polarized ones.

(iii) The three types of asymmetries of deuteron and
proton considered in this work, together with the
LHC data, are complementary to each other in the
sense that they offer distinct correlation patterns.

(iv) The projected EIC data are capable of resolving all
flat directions that appear in the LHCDrell-Yan data.

(v) The bounds from the projected EIC data can be
much stronger than the LHC data, indicating that the
EIC has an important role to play in future probes of
the SMEFT.

We can ask what happens when more than two Wilson
coefficients are turned on simultaneously. We study this in
Sec. B 3, where we turn on six Wilson coefficients. The
resulting bounds are 20% to 30% weaker than the ones
found here in the 2d case. We note that no flat directions
appear in these fits, indicating that the EIC can fully probe
this parameter space without degeneracies.

VIII. CONCLUSIONS

In this manuscript, we have analyzed the potential of
testing the electroweak SM and exploring BSM physics
with the future EIC. We have focused on the precision
determination of the weak mixing angle over a wide range
of momentum transfer and on probes of heavy new physics.

FIG. 16. The 95% C.L. ellipses for the Wilson coefficients Ceu

and Cð1Þ
lq using the nominal- and high-luminosity dataset P4 in the

(2þ 1)-parameter fit that includes the beam polarization as an
additional fitting parameter, compared with the corresponding
two-parameter fit from the LHC data [6].

FIG. 17. The 95% C.L. ellipses for the Wilson coefficients Cð1Þ
lq

and Cð3Þ
lq using the nominal-luminosity dataset P4 in the (2þ 1)-

parameter fit that includes the beam polarization as an additional
fitting parameter, compared with the corresponding fit from the
LHC data [6] and the combined fit of the two.
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We have provided all the formulas for neutral-current DIS
and simulation details that will be needed for future studies
of these areas. Our BSM analysis utilizes the model-
independent SMEFT framework and focuses on the semi-
leptonic four-fermion operator sector of the theory. We
translate our formalism into the DIS language in terms of
parity-violating couplings and structure functions to facili-
tate crosstalk between the high-energy-physics and nuclear
communities. We provide a detailed accounting of uncer-
tainties from statistics, experimental systematic effects,
beam polarimetry for parity-violating asymmetries,
higher-order QED corrections for lepton-charge asymme-
tries, and finally PDFs. Additionally, we explore simulta-
neously fitting the beam polarization with the anticipated
high-precision parity-violating asymmetry data as a pos-
sible analysis technique to improve upon the experimental
limitation from beam polarimetry.
Our BSM analysis finds that UV scales in excess of

3 TeV can be probed with the currently planned (nominal)
annual luminosity of the EIC, with scales above 4 TeV
possible if a tenfold luminosity upgrade becomes available
beyond EIC’s initial decade of running. For the latter, we
focus on studying the physics reach and limitations from
sources other than statistical, without comment as to the
feasibility of such an upgrade. The most stringent bounds
come from polarized electron scattering off of unpolarized
protons. Constraints from polarized hadrons, deuterons,
and from a possible future positron beam provide important
complementary probes. Our complete study of correlations
between Wilson coefficients finds that no degeneracies
remain upon combining all EIC datasets. This is not the
case with LHC Drell-Yan measurements, in which numer-
ous degeneracies exist, and will continue to occur even after
LHC’s high luminosity running.
This demonstrates that the EIC polarization provides a

powerful probe of BSM effects. Although the EIC is
primarily thought of as a QCD machine, it is also a
powerful probe of potential new physics, in many ways
complementary to the higher-energy LHC. We note that
current global fits of LHC data, for example to top-quark
and Higgs data, probe orthogonal sets of Wilson coeffi-
cients [46]. However, the strongest LHC constraints on the
semileptonic four-fermion sector of the SMEFT come from
the Drell-Yan data. Given that LHC Drell-Yan cross
sections are blind to certain combinations of Wilson
coefficients, we envision that high-precision EIC data will
help remove these degeneracies in global fits, both at the
present moment and at the time when high-luminosity LHC
Drell-Yan data become available. We hope that our work
motivates future studies of the unexpected power of the EIC
for new-physics searches.
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APPENDIX A: ADDITIONAL FITS

1. Luminosity difference fits

Since electron and positron data would be taken at
different times with different beam configurations, there is
the possibility of a significant offset between the absolute
luminosities of the two datasets. In the main text, we
include this uncertainty in the error matrix as the luminosity
error, σlum ¼ 0.02, which is assumed absolute. We study
here the possibility of simultaneously fitting this luminosity
difference together with the Wilson coefficients.
We fit the pseudodata for the LC asymmetries with

an overall shift, Alum, added to the pseudodata. Then, we
define the χ2 test statistics as

χ2 ¼
XNbin

b¼1

XNbin

b0¼1

½ASMEFT;b − Apseudo
SM;b �½ðΣ̃2Þ−1�bb0

× ½ASMEFT;b0 − Apseudo
SM;b0 �; ðA1Þ

where we omit the uncertainty in the luminosity difference
between eþ and e− runs from the uncertainty matrix:

Σ̃2 ¼ Σ2jσlum→0: ðA2Þ

However, we keep the luminosity uncertainty in the
pseudodata generation. By introducing the luminosity
difference, Alum, as a new parameter, we extend our one-
parameter and two-parameter Wilson-coefficient fits to
(1þ 1)- and (2þ 1)-parameter fits.
We find that there are mild correlations, jρrj≲ 0.4,

between Alum and any Cr in the (1þ 1)- and (2þ 1)-
parameter fits. In addition, the fitted results for Wilson
coefficients have slightly larger uncertainties when the
luminosity difference is treated as a fitting parameter. In
Fig. 18, we show the 95% C.L. intervals with and without
Alum for the Wilson coefficient Ceu in all the four LC
asymmetry datasets of interest. In Fig. 19, we compare the
95% C.L. ellipses of the Wilson coefficients ðCeu; CqeÞ
between the datasets LD4 and LP5 with and without the
luminosity difference as a fitted parameter. From these
figures, we see that the 95% C.L. bounds on Ceu become
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15% to 20% weaker. The difference is less noticeable in the
confidence ellipses.

2. Beam polarization fits

In the same spirit as the previous section, we now
consider fitting the beam polarization simultaneously with
the Wilson coefficients in an attempt to reduce the
uncertainty associated with the experimental limitation
from beam polarimetry. We fit the pseudodata for the
PV asymmetries by including a factor of P in the SMEFT
asymmetries. We then define a χ2 test statistics as

χ2 ¼
XNbin

b¼1

XNbin

b0¼1

½PASMEFT;b − Apseudo
SM;b �½ðΣ̃2Þ−1�bb0

× ½PASMEFT;b0 − Apseudo
SM;b0 � þ

ðP − P̄Þ2
δP2

: ðA3Þ

In this approach, we omit the beam polarization uncer-
tainty, σpol, from the uncertainty matrix because it is now
treated as a fitting parameter,

Σ̃2 ¼ Σ2jσpol→0; ðA4Þ

but not during pseudodata generation. The second term on
the RHS of Eq. (A3) is added by hand, where P̄ and δP are
the beam polarization value and its uncertainty provided
by the polarimetry, respectively, presumably uncorrelated
with the asymmetry measurements. The logic behind this
addition is that experimentally, the polarimetry does pro-
vide knowledge on the beam polarization, but we hope to
obtain a better determination of the polarizations within the
uncertainty provided by the polarimetry by fitting data with
high statistical precision. As for the beam polarization
itself, we use a normalized value of P̄ ¼ 1 in this study for
simplicity. Treating the new term to be the contribution of a
new observable, we increase the degrees of freedom of the
χ2 distribution by 1. As in the case of luminosity difference
fits, we extend our one- and two-parameter fits of Wilson
coefficients to (1þ 1)- and (2þ 1)-parameter simultaneous
fits by including the beam polarization as a new parameter.
From (1þ 1)-parameter fits, we find that P and any Cr

are rather weakly correlated, jρrj≲ 0.1, in the polarized
hadron datasets, whereas there are strong correlations,
jρrj≳ 0.7, in the unpolarized hadron asymmetries. We
observe similar correlations in the (2þ 1)-parameter fits.
In Fig. 20, we present the allowed intervals of the Wilson

coefficient Ceu for the nominal- and high-luminosity data-
sets P4 and ΔP4, while Fig. 21 displays the 95% C.L.
ellipse of the Wilson coefficients ðCeu; CqeÞ for the same
datasets in the nominal-luminosity scenario. We find that

FIG. 18. Comparison of the bounds on the Wilson coefficient
Ceu with all the LC asymmetry datasets of interest in the absence
and presence of the luminosity difference as a new free fitting
parameter.

FIG. 19. Comparison of the 95% C.L. ellipses for the Wilson
coefficients ðCeu; CqeÞ with the datasets LD4 and LP5 in the
absence and presence of the luminosity difference as an addi-
tional fitting parameter.

FIG. 20. The 95% C.L. bounds on the Wilson coefficient Ceu
with the nominal- and high-luminosity datasets P4 andΔP4 in the
absence and presence of the beam polarization, P, as an addi-
tional parameter in the fits.
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bounds from unpolarized hadron datasets become stronger
by 30% to 50%, yet the ones from polarized hadron
asymmetries become 15% to 20% weaker. The improve-
ment is sharper in the high-luminosity unpolarized hadron
sets, whereas the worsening is significant for the nominal-
luminosity polarized hadron sets.
One can explain why the bounds become weaker in the

polarized hadron sets by referring to the correlations. Since
in these datasets, the beam polarization and the Wilson
coefficients are found to be weakly correlated, one would
naively expect the bounds obtained from single-parameter
fits of Wilson coefficients to roughly remain the same on
the grounds that P and Ck can be thought of as almost fully
independent so that they will not affect each other in the
fits. Thus, any increase in the allowed limits of the Wilson
coefficient can be attributed to the increase in the number of

parameters fitted, which is reflected as the normalization of
the uncertainties of the fit.

APPENDIX B: COMPLETE SET OF FITTED
RESULTS ON WILSON COEFFICIENTS

1. Fits of single Wilson coefficients

In this section, we present the 95% C.L. intervals and the
corresponding effective UV cutoff scales for all the seven
Wilson coefficients in single-parameter fits averaged over
1000 pseudoexperiments. We recall the following abbre-
viations for the EIC preliminary datasets:
(1) electron PV asymmetries of unpolarized deuteron,

AðeÞ
PV:

(a) D4: eD 10 GeV × 137 GeV, 100 fb−1

(b) D5: eD 18 GeV × 137 GeV, 15.4 fb−1

(2) electron PV asymmetries of unpolarized proton,

AðeÞ
PV:

(a) P4: ep 10 GeV × 275 GeV, 100 fb−1

(b) P5: ep 18 GeV × 275 GeV, 15.4 fb−1

(3) hadron PV asymmetries with unpolarized electron,

AðHÞ
PV : ΔD4, ΔD5, ΔP4, and ΔP5 with the same

energy and luminosity configuration as the corre-
sponding D- and P-sets.

(4) unpolarized electron-positron asymmetries of unpo-

larized hadrons, AðHÞ
LC : LD4, LD5, LP4, and LP5 with

the same energy configuration as the corresponding
D- and P-sets, but with the luminosity of the positron
beam assumed to be 10 times smaller than that of the
electron beam.

Figures 22–28 display the 95% C.L. bounds of eachWilson
coefficient for the four primary data families. As in the
main part of the manuscript, the intervals are grouped by
asymmetries, namely electron PV asymmetries of unpolar-

ized hadrons, AðeÞ
PV (“unpolarized APV”), hadron PV asym-

metries with unpolarized electrons, AðHÞ
PV (“polarized APV”),

FIG. 21. The 95% C.L. ellipse of the Wilson coefficients Ceu
and Cqe for the datasets P4 and ΔP4 in the absence and presence
of the beam polarization, P, as a new parameter in the fits.

FIG. 22. The 95% C.L. bounds of Ceu from one-parameter fits (darker) and from simultaneous (1þ 1)-parameter fits with beam
polarization (lighter) using the families of datasets D4, D5, P4, and P5.
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and unpolarized electron-positron asymmetries of unpolar-

ized hadrons, AðHÞ
LC (“lepton-charge A”). PV asymmetries

are then grouped into two, showing the fits in the nominal-
and high-luminosity scenarios. The NL refers to the annual
integrated luminosity of Table 10.1 of the YR [24]. The HL
is assumed to be 10 times higher than the nominal one

and requires a luminosity upgrade of the EIC. In each block
of intervals, there are four double lines in the case of PV
asymmetries and four single lines in LC asymmetries.
These four lines correspond to the data families D4 (black
and its shade), D5 (red), P4 (blue), and P5 (orange).
The darker of the two lines indicates the bounds from

FIG. 23. The same as in Fig. 22 but for Ced.

FIG. 24. The same as in Fig. 22 but for Cð1Þ
lq .

FIG. 25. The same as in Fig. 22 but for Cð3Þ
lq .
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FIG. 26. The same as in Fig. 22 but for Clu.

FIG. 27. The same as in Fig. 22 but for Cld.

FIG. 28. The same as in Fig. 22 but for Cqe.
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FIG. 29. Effective UV cutoff scales, Λ=
ffiffiffiffiffiffiffiffi
Ceu

p
, defined in terms of the 95% C.L. bounds on the Wilson coefficient Ceu with

Λ ¼ 1 TeV. The darker columns in the foreground of unpolarized PVasymmetries and in the background of polarized PVasymmetries
indicate the results of single-parameter fits on the Wilson coefficient, Ceu. The lighter columns in the background of unpolarized PV
asymmetries and in the foreground of polarized PVasymmetries denote the results of simultaneous (1þ 1)-parameter fits ofCeu with the
beam polarization, P.

FIG. 30. The same as in Fig. 29 but for Ced.

FIG. 31. The same as in Fig. 29 but for Cð1Þ
lq .
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FIG. 32. The same as in Fig. 29 but for Cð3Þ
lq .

FIG. 33. The same as in Fig. 29 but for Clu.

FIG. 34. The same as in Fig. 29 but for Cld.

FIG. 35. The same as in Fig. 29 but for Cqe.
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single-parameter fits with the Wilson coefficient Cr,
whereas the lighter ones show the bounds on the Wilson
coefficient from simultaneous two-parameter fits with Cr
and the beam polarization. The details of the fits involving

the beam polarization as an additional parameter are
described in Appendix A 2.
In Figs. 29–35, we present the effective UV cutoff scales,

Λ=
ffiffiffiffiffi
Cr

p
, with Λ ¼ 1 TeV, corresponding to the bounds

TABLE V. The 95% C.L. bounds of all the seven Wilson coefficients around zero at Λ ¼ 1 TeV with the four families of datasets, D4,
D5, P4, and P5 in various configurations.

eD Ceu Ced Cð1Þ
lq Cð3Þ

lq Clu Cld Cqe

10 GeV × 137 GeV, 100 fb−1 Unpol. APV NL Without P 0.21 0.38 0.54 0.14 0.47 0.75 1.06
With P 0.15 0.27 0.39 0.10 0.37 0.60 0.87

HL Without P 0.16 0.31 0.44 0.12 0.28 0.47 0.61
With P 0.09 0.16 0.23 0.06 0.21 0.34 0.47

Pol. APV NL Without P 0.90 1.82 1.98 0.61 2.08 4.02 4.24
With P 1.08 2.20 2.40 0.74 2.57 4.97 5.26

HL Without P 0.69 1.42 1.41 0.46 0.85 1.69 1.69
With P 0.83 1.70 1.70 0.56 1.06 2.11 2.11

Lepton-charge A 1.16 2.28 2.54 0.70 0.95 1.84 1.81

18 GeV × 137 GeV, 15.4 fb−1 Unpol. APV NL Without P 0.25 0.45 0.73 0.17 0.62 0.96 1.41
With P 0.23 0.42 0.68 0.16 0.60 0.92 1.37

HL Without P 0.17 0.32 0.50 0.12 0.36 0.56 0.78
With P 0.10 0.18 0.30 0.07 0.26 0.40 0.58

Pol. APV NL Without P 1.17 2.36 2.89 0.82 3.41 6.55 7.05
With P 1.43 2.89 3.55 1.00 4.23 8.12 8.75

HL Without P 0.75 1.52 1.71 0.51 1.39 2.72 2.78
With P 0.89 1.82 2.06 0.62 1.72 3.37 3.46

Lepton-charge A 1.92 3.78 4.32 1.11 1.39 2.68 2.53

ep Ceu Ced Cð1Þ
lq Cð3Þ

lq Clu Cld Cqe

10 GeV × 275 GeV, 100 fb−1 Unpol. APV NL Without P 0.13 0.47 0.19 0.12 0.32 0.63 0.43
With P 0.09 0.28 0.14 0.07 0.24 0.48 0.38

HL Without P 0.09 0.40 0.13 0.09 0.19 0.44 0.24
With P 0.06 0.20 0.09 0.05 0.15 0.33 0.22

Pol. APV NL Without P 0.28 1.70 0.23 0.35 0.60 3.79 0.54
With P 0.33 2.03 0.27 0.42 0.74 4.72 0.68

HL Without P 0.24 1.39 0.20 0.29 0.25 1.48 0.22
With P 0.28 1.63 0.23 0.35 0.31 1.85 0.28

Lepton-charge A 0.62 3.15 0.74 0.47 0.46 2.17 0.60

18 GeV × 275 GeV, 15.4 fb−1 Unpol. APV NL Without P 0.15 0.51 0.26 0.14 0.44 0.79 0.63
With P 0.14 0.41 0.24 0.11 0.39 0.71 0.61

HL Without P 0.09 0.39 0.15 0.09 0.25 0.50 0.31
With P 0.06 0.21 0.11 0.06 0.19 0.37 0.27

Pol. APV NL Without P 0.34 2.27 0.28 0.45 1.01 6.85 0.96
With P 0.42 2.77 0.34 0.55 1.24 8.53 1.19

HL without P 0.24 1.54 0.20 0.31 0.40 2.46 0.37
With P 0.29 1.83 0.23 0.37 0.50 3.07 0.46

Lepton-charge A 1.09 5.69 1.25 0.78 0.70 3.19 0.92
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shown in Figs. 22–28. The organization of these plots in
terms of asymmetries and datasets is the same as in
Figs. 22–28. Improved bounds on Cr with the addition
of the beam polarization to the fits are equivalent to higher-
energy scales in the unpolarized PVasymmetries, which are
indicated by the lighter columns in the background; on the
other hand, weaker bounds from the fits with beam
polarization are depicted by the lighter columns in the
foreground for the polarized PV asymmetries.

For completeness, we summarize in Table V the fitting
results of all the seven Wilson coefficients with the four
families of datasets of interest. The values indicated in this
table are the 95% C.L. bounds around zero.

2. Fits of two Wilson coefficients

In this section, we present the complete set of confidence
ellipses for all possible pairs of the sevenWilson coefficients

FIG. 36. The 95% C.L. ellipses for the Wilson coefficients Ceu and Ced using the families of datasets D4, D5, P4, and P5 at
Λ ¼ 1 TeV.
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that we consider in this work. The ellipses displayed in
Figs. 36–56 are plotted at 95% C.L. and Λ ¼ 1 TeV.
As before, we refer to electron PV asymmetries collec-

tively as unpolarized APV, hadron PV asymmetries as
polarized APV, and electron-positron asymmetries as
lepton-charge A. Datasets with the label NL or HL indicate
the luminosity: The NL refers to the annual integrated
luminosity of Table 10.1 of YR [24]. The HL is assumed to
be 10 times higher than the nominal one and requires a
luminosity upgrade of the EIC.

Each figure consists of four panels, containing one of the
four families of datasets, namely D4, D5, P4, and P5. We
show the fits from polarized and unpolarized PV asymme-
try datasets in both nominal- and high-luminosity scenarios
for comparison. We remark that the ellipses for the
polarized and unpolarized PV asymmetry datasets indicate
the results of simultaneous fits on Wilson coefficients with
the beam-polarization parameter, P, in light of significant
improvements in the results with unpolarized PV asymme-
tries. Moreover, we include for some representative

FIG. 37. The same as in Fig. 36 but for Ceu and Cð1Þ
lq .
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examples fitted results for the LHC Drell-Yan data, adapt-
ing from [6] and [45].
For completeness, we show the correlations of Wilson

coefficients in Figs. 57–60.

3. Six-dimensional fits

In this section, we discuss projected bounds arising
from a fit of six Wilson coefficients. We show projec-
tions onto one and two Wilson coefficients from the full
6d hyperellipse. The computational power required for

higher-dimensional fits increases because we increase
the number of pseudoexperiments to reflect the
required statistics for the fits. We find that Nexp ¼ 103

pseudoexperiments for 2d fits lead to stable results,
meaning the best-fit values and the corresponding
bounds do not change for Nexp ≥ 103. This number
becomes Nexp ¼ 104 for 3d fits, Nexp ¼ 105 for 4d fits,
Nexp ¼ 106 for 5d fits, and Nexp ¼ 107 for 6d fits. We
note that starting from 3d fits, the size and character-
istics of multidimensional fits stabilize as we increase

FIG. 38. The same as in Fig. 36 but for Ceu and Cð3Þ
lq .
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the number of fitted parameters, in the sense that the
bounds do not change further. This indicates that the 6d
fits stand as a useful indicator of what happens in the
complete 7d fit of the Wilson coefficients.
To illustrate our discussion, we pick the representative

Wilson coefficients Ceu, Ced, C
ð1Þ
lq , C

ð3Þ
lq , Clu, and Cqe and

consider the data from ep collisions in the configuration
10 GeV × 275 GeV with 100 fb−1, which is the nominal-
luminosity P4 dataset. In Fig. 61, we compare the bounds

from the original 1d fits to the projected bounds from the

6d fit of the Wilson coefficients Ceu, Ced, C
ð1Þ
lq , C

ð3Þ
lq , Clu,

and Cqe. We observe that the bounds become 25% to 40%
weaker as we increase the number of Wilson coefficients
fitted. This is due to an interplay between the increased
number of fitted parameters and correlations among them.
In Figs. 62–66, we compare the confidence ellipses from
the initial 2d fits to the ones in the two-parameter
projections of the 6d fit of the aforementioned Wilson

FIG. 39. The same as in Fig. 36 but for Ceu and Clu.
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coefficients. We find that the bounds become 20% to 30%
weaker as in the case of the comparison of the one-
parameter fits and projections, which can be explained
by the same reasoning as mentioned above. The other

choices of six Wilson coefficients lead to similar results.
We note that no flat directions appear in these fits,
indicating that the EIC can fully probe this parameter
space without degeneracies.

FIG. 40. The same as in Fig. 36 but for Ceu and Cld.
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FIG. 41. The same as in Fig. 36 but for Ceu and Cqe.
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FIG. 42. The same as in Fig. 36 but for Ced and Cð1Þ
lq .
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FIG. 43. The same as in Fig. 36 but for Ced and Cð3Þ
lq .
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FIG. 44. The same as in Fig. 36 but for Ced and Clu.
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FIG. 45. The same as in Fig. 36 but for Ced and Cld.
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FIG. 46. The same as in Fig. 36 but for Ced and Cqe.
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FIG. 47. The same as in Fig. 36 but for Cð1Þ
lq and Cð3Þ

lq .
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FIG. 48. The same as in Fig. 36 but for Cð1Þ
lq and Clu.
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FIG. 49. The same as in Fig. 36 but for Cð1Þ
lq and Cld.
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FIG. 50. The same as in Fig. 36 but for Cð1Þ
lq and Cqe.
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FIG. 51. The same as in Fig. 36 but for Cð3Þ
lq and Clu.
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FIG. 52. The same as in Fig. 36 but for Cð3Þ
lq and Cld.
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FIG. 53. The same as in Fig. 36 but for Cð3Þ
lq and Cqe.
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FIG. 54. The same as in Fig. 36 but for Clu and Cld.
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FIG. 55. The same as in Fig. 36 but for Clu and Cqe.
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FIG. 56. The same as in Fig. 36 but for Cld and Cqe.
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FIG. 57. The correlation table of Wilson coefficients in the D4 data family. The off-diagonal entries are from the results of
simultaneous fits of the (2þ 1)-parameter fit of two Wilson coefficients plus the beam-polarization parameter P.
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FIG. 58. The same as in Fig. 57 but for D5.
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FIG. 59. The same as in Fig. 57 but for P4.
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FIG. 60. The same as in Fig. 57 but for P5.

RADJA BOUGHEZAL et al. PHYS. REV. D 106, 016006 (2022)

016006-58



FIG. 61. Comparison of the 95% C.L. bounds on single Wilson coefficients from one-parameter fits to the projections in the 6d fit
using the nominal-luminosity dataset P4 at Λ ¼ 1 TeV.

FIG. 62. Comparison of the 95% C.L. ellipses for the Wilson-coefficient pairs ðCeu; CedÞ, ðCeu; C
ð1Þ
lq Þ, and ðCeu; C

ð3Þ
lq Þ between the

original 2d fits and the projections from the simultaneous fit of Ceu, Ced, C
ð1Þ
lq , C

ð3Þ
lq , Clu, and Cqe using the dataset P4 at Λ ¼ 1 TeV.

FIG. 63. The same as in Fig. 62 but for ðCeu; CluÞ, ðCeu; CqeÞ, and ðCed; C
ð1Þ
lq Þ.
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FIG. 64. The same as in Fig. 62 but for ðCed; C
ð3Þ
lq Þ, ðCed; CluÞ, and ðCed; CqeÞ.

FIG. 65. The same as in Fig. 62 but for ðCð1Þ
lq ; C

ð3Þ
lq Þ, ðCð1Þ

lq ; CluÞ, and ðCð1Þ
lq ; CqeÞ.

FIG. 66. The same as in Fig. 62 but for ðCð3Þ
lq ; CluÞ, ðCð3Þ

lq ; CqeÞ, and ðClu; CqeÞ.
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