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Near the critical point in the QCD phase diagram, hydrodynamics breaks down at a momentum where
the frequency of the fastest hydrodynamic mode becomes comparable with the decay rate of the slowest
nonhydrodynamic mode. Hydroþ was developed as a framework which extends the range of validity of
hydrodynamics beyond that momentum value. This was achieved through coupling the hydrodynamic
modes to the slowest nonhydrodynamic mode. In this work, analyzing the spectrum of linear perturbations
in Hydroþ, we find that a slow mode falls out of equilibrium if its momentum is greater than a
characteristic momentum value. That characteristic momentum turns out to be set by the branch points of
the dispersion relations. These branch points occur at the critical momenta of so-called spectral curves and
are related to the radius of convergence of the derivative expansion. The existence of such a characteristic
momentum scale suggests that a particular class of slow modes has no remarkable effect on the flow of the
plasma. Based on these results, we show that there is an enhancement of the speed of sound due to the
Hydroþ corrections compared to the known thermodynamic corrections near the critical point. This
enhancement can not exceed a temperature-dependent upper bound which we derive near the critical point
in the QCD phase diagram.
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I. INTRODUCTION

In the previous 15 years, most of the heavy-ion-collision
experiments have been set for high collision energies at
RHIC and LHC. In these experiments, the nonvanishing net
baryon charge coming from the incident nuclei mostly ends
up at high rapidity. Meanwhile, the quark-gluon-plasma
(QGP) forming at midrapidity carries nearly no baryon
charge, i.e., μB ¼ 0. In order to study the QGP at nonzero
μB, one requires heavy ion collisions at lower collision
energies. This is the goal of the ongoing Beam Energy Scan
(BES) program at RHIC [1,2] (see also [3] for a compre-
hensive review).1 The BES program provides us with the
opportunity to detect signatures of the QCD critical point, if
such a point exists within the region of the phase diagram
which is accessible to experiment [4,5].

In order to maximize the discovery potential of the
experimental efforts, it is desirable to identify signatures
originating from the critical fluctuations appearing at all
length scales near the critical point, a behavior that is
familiar from any second order phase transition. In thermal
equilibrium, such fluctuations have been well-understood
for a long time [6]. However, during a heavy ion collision,
critical fluctuations can not possibly stay in thermal
equilibrium [7].
If there is a critical point in the equilibrium phase

diagram of QCD, the phase space trajectory of the droplet
of QGP formed in a heavy ion collision may pass near the
critical point as it expands and cools down. Near the critical
point, the equilibration time scale diverges. In other words,
the critical fluctuations fall out-of-equilibrium. One natu-
rally expects these out-of-equilibrium fluctuations to
modify the equation of state (EoS), which eventually
affects the hydrodynamic evolution. The recently devel-
oped Hydroþ framework [8] is an approach to self-
consistently study the effect of critical fluctuations on
the evolution of hydrodynamic variables such as the fluid
velocity and baryon chemical potential near the criti-
cal point.

*abbasi@lzu.edu.cn
†mski@ua.edu
1High baryon densities are also a focus of study at the

compressed baryonic matter (CBM) experiment at the FAIR
facility at GSI, the multi-purpose-detector (MPD) at the NICA
accelerator in Dubna, and the CSR-external target experiment
(CEE) at the HIAF facility in China.
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Coming closer to the critical point, there exists an
increasing number of long-lived nonhydrodynamic modes,
which we will refer to as slow modes. This effect is known
as critical slowing down. If the decay rate of these modes is
of order of the frequency of the hydrodynamic modes, i.e.,
ΓQ ∼ ω, the standard hydrodynamic approximation fails to
work. Heuristically, Hydroþ [8] couples these slow non-
hydrodynamic modes, ϕQ, to the hydrodynamic modes.
Hence, Hydroþ has a larger regime of validity than
hydrodynamics. In this way, Hydroþ is capable of describ-
ing fluctuations closer to the critical point than hydro-
dynamics is.
The spectrum of linear perturbations around thermal

equilibrium in (neutral) single-mode Hydroþ contains
three modes with momentum vector q obeying distinct
dispersion relations ωðqÞ: two sound modes together with a
single nonhydrodynamic mode, ϕQ0

. The effect of this slow
mode is more important at large values of q ¼ jqj, i.e.,
q≳ ΓQ0

=cs; the equation of state becomes stiffer2 and
consequently, the sound velocity increases at such large
momenta.
In this work, for the first time, we compute the branch

point singularities of the Hydroþ dispersion relations.
These occur at critical values of the momentum, qc, and
they can be related to the radius of convergence of
dispersion relations [9–12]. We further consider the effect
of these singularities on the observable Δc2s , the shift in the
speed of sound in QCD plasma due to the fluctuations near
the critical point. For this purpose, we explicitly compute
the spectrum of linear perturbations, ωðqÞ, in a single-mode
Hydroþ,3 and thereby we determine the critical momen-
tum qc.
We find that at q < qc, the ϕQ0

-mode is still a fast-
decaying mode, that is to say that standard hydrodynamics
continues to hold in this range. However, at q ≳ qc, the
critical slowing down phenomenon is inevitable. Our work
is guided by a recent line of research studying the radius of
convergence of hydrodynamics in holographic models [9–
27]. In the present work, however, we work entirely in field
theory while holography makes its one and only appear-
ance in Sec. VI.
In the second part of this work, we apply our single-

mode Hydroþ results to QCD plasma near the critical point
in the QCD phase diagram. We use a set of standard
assumptions from the literature (see [28] and references
therein), and extract the characteristic momentum qc near
the critical point within the kinetic framework [8]. Let us
emphasize that our goal is not to provide phenomenological
values in this work. Instead, we study qualitatively how the

existence of the characteristic momentum scale, the critical
momentum qc, affects physical predictions, especially the
effective speed of sound near the critical point of the QCD
phase diagram.
This paper is structured as follows. First, in Sec. II, we

introduce Hydroþ as well as the analysis of spectral curves
leading to the computation of the radius of convergence of
the hydrodynamic expansion when linearized in the hydro-
dynamic field variables. We close that section by elabo-
rating on the spectrum of linear perturbations in single-
mode Hydroþ. In Sec. III, we first review the effects of
fluctuations near the critical point. Then by use of the
results obtained in Sec. II, the radius of convergence as a
function of the temperature T is computed. Next, Sec. IV is
devoted to investigating the impact of convergence on the
stiffness of the equation of state near the critical point and
consequently its effect on the speed of sound. In Sec. V we
discuss the limitations of our study. We discuss a possible
gravity dual of Hydroþ in Sec. VI. Finally, in Sec. VII, we
end with the review of our results and mention some
possible follow-up directions.

II. CONVERGENCE RADIUS OF
SINGLE-MODE HYDRO+

In this section, we first present a brief overview of the
relevant aspects of Hydro+ and subsequently a brief
overview of spectral curves and how they determine the
radius of convergence of hydrodynamics. Combining these
two concepts, we then compute the radius of convergence
of single-mode Hydroþ.

A. A brief overview of Hydro+

In a system with partially equilibrated states, the evo-
lution is locally described by hydrodynamics in terms of
conserved densities which are referred to as hydrodynamic
fields, energy density ϵðt; xÞ, charge density nðt; xÞ and
momentum density wðt; xÞuμ [29]. Usually, all other micro-
scopic (nonhydrodynamic) modes, corresponding to non-
conserved quantities, decouple from these densities.
However, nearing a critical point in the phase diagram, an
increasing number of nonhydrodynamic (gapped) modes is
known to become long-lived, as their decay rate Γ decreases
and the correlation length increases. As a result the standard
hydrodynamics fails to work near the critical point. Hydroþ
is a framework that systematically combines the dynamics of
these long-lived modes with that of the conserved densities.
A detailed review of Hydroþ can be found in [8].
In order to introduce the key concepts behind Hydroþ

which are of relevance to our analysis, let us consider a
general out-of-equilibrium two-point function, Gðx1; x2Þ,
of a conserved operator, for example the energy-momen-
tum tensor. If the scale at which the midpoint ðx1 þ x2Þ=2
varies is much larger than the scale of the jx1 − x2j-
dependence, then G can be replaced with a continuous

2This terminology refers to the increasing rigidity of the QGP
near the critical point. It behaves more like an incompressible
fluid closer to the critical point.

3By a single-mode Hydroþwe mean a toy model consisting of
the coupling between hydrodynamics and ϕQ0

at a fixed Q0.
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set of local modes, GQðxÞ. Here Q is a continuous index
which denotes the momentum associated with the critical
fluctuation. The separation of scales mentioned above can
also be written as q ≪ Q where q is the momentum of the
hydrodynamic perturbation.
Among the critical fluctuations, the two-point function

of m ¼ s=n, with the entropy density s, is referred to as
Gmðx1; x2Þ, and it is special. The corresponding local
modes ϕQ are the slowest-varying nonconserved modes
in the system. The presence of such long-lived nonhydro-
dynamic modes near the critical point is what is referred to
as the critical slowing down. If the decay rate of these
modes is of order of the frequency of the conserved modes,
i.e., ΓQ ∼ ω, the standard hydrodynamic description fails to
work. Then Hydroþ comes into play. It actually extends the
regime of validity of hydrodynamics near the critical point
[8] through coupling the dynamics of ϕQ with that of the
hydrodynamic modes.

B. A brief overview of spectral curves and
hydrodynamic convergence

Recently, methods from complex analysis have been
developed in order to compute the radius of convergence of
the hydrodynamic derivative expansion from the so-called
spectral curve of a given theory [9–11]. In the present paper
we will extend these methods to Hydroþ, but before that
we start with a short review.
In hydrodynamics, the spectral curve arises from the

determinant of a system of hydrodynamic perturbation
equations that encodes the hydrodynamic dispersion rela-
tions. It is an implicit function of frequency ω and
momentum q taking the form Fðω; qÞ ¼ 0. Here we
consider rotation-invariant theories and states; hence the
dependence on q is through jqj2 ¼ q2. As an example,
consider the spectral curve Fðω; q2Þ ¼ c2sω2 − q2 ¼ 0

4 at
small momentum and frequency, corresponding to the
hydrodynamic description in the absence of any derivative
(viscous) correction; it encodes the sound dispersion
relationω ¼ �csq, with the speed of sound, cs. At arbitrary
values of the momentum and frequency, the analytic
structure of spectral curves can be very complicated. Let
us limit our discussion to a description whose spectral
curve is an analytic function, which is the case for Hydroþ
truncated at leading order.5,6

Given an analytic spectral curve, there is a relation
between the regime of validity of linear hydrodynamics and

critical points of the spectral curve.7 To elaborate on this
relation, let us recall that the critical points of spectral
curves can be computed as those points ðω�; q�Þ, which
satisfy

Fðω; qÞjðω�;q�Þ ¼ 0; ∂Fωðω; qÞjðω�;q�Þ ¼ 0: ð1Þ

Note that, in general, q� and ω� are complex-valued. In
general, solutions ωðqÞ of Eq. (1) are referred to as
dispersion relations; one example, the sound dispersion
relation was mentioned above. A subset of all critical points
are also branch points in the sense of complex analysis,
singularities of the dispersion relations. Therefore, it is no
surprise that those critical points limit the radius of
convergence of the hydrodynamic derivative expansion
in momentum space and also in position space [16].
In a gapless theory, the spectral curve encodes the

dispersion relations ωðqÞ that pass through ðω ¼ 0;
q ¼ 0Þ. These are the so-called hydrodynamic dispersion
relations. If F is analytic, such ωðqÞ can be found as a
Puiseux series about ðω ¼ 0; q ¼ 0Þ [10,11]. This series
then may have a finite radius of convergence, qc, in the
complex q–plane. This radius of convergence is set by one of
the critical points of F, namely the one closest to the origin;
i.e., it is that q� which has the minimal magnitude
qc ¼ minfjq�jg. This qc is what is referred to as the radius
of convergence of the derivative expansion of ωðqÞ. In other
words, ωðqÞ is an analytic function within the disc q < qc
and develops a nonanalyticity at q ¼ qc.
In summary, in order to determine the radius of con-

vergence of linear hydrodynamics from the spectral curve,
one has to first find all branches of Puiseux series passing
through ðω ¼ 0; q ¼ 0Þ [13]. Each of these branches
corresponds to one of the hydrodynamic dispersion rela-
tions ωðqÞ. Then for a particular ωðqÞ of interest, e.g., the
sound dispersion ωðqÞ, the convergence radius of the
derivative expansion is the distance from the nearest
singularity of ωðqÞ to the origin. That singularity may
be located at a complex-valued momentum.

C. Single-mode Hydro+ and its
characteristic momentum

As mentioned above, there are situations where one (or a
set of) nonhydrodynamic modes decays so slowly that it
couples to the hydrodynamic densities, for example, near
the critical point in the QCD phase diagram. Let us focus on
one single mode and call it ϕ. Then the partial-equilibrium
states are those not only satisfying the constraint related to
the conserved densities but also satisfying the constraint
that the expectation value of the slow mode takes on a
particular value ϕ. Accordingly, the partial equilibrium

4This is actually the general structure of the spectral curve in
gapless theories, expanded to leading order about ωð0Þ ¼ 0.

5Considering Hydroþ to subleading order can be viewed
similar to Mueller-Israel-Stewart theory (MIS). Similar to the
dissipative shear tensor in MIS, we here may interpret the slow
mode as a resummed version of contributions of all nonhydro-
dynamic modes to all orders in derivatives.

6See [12] for theories with nonanalytic spectral curve.

7These critical points of spectral curves have nothing to do
with the critical point which occurs in the QCD phase diagram.
The identical naming is a coincidence.
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entropy density sðϵ; nÞ should be modified to include the ϕ
mode as sðþÞðϵ; n;ϕÞ [8]. Then one finds

dsþ ¼ βðþÞdϵ − αðþÞdn − πdϕ; ð2Þ

with αðþÞ and βðþÞ generalizing α ¼ μ=T and β ¼ 1=T,
respectively, to the partial-equilibrium states now including
the slow mode ϕ. Here, πðϵ; n;ϕÞ is the thermodynamic
force returning ϕ to its equilibrium value. In a complete
equilibrium, where ϕ reaches its equilibrium value ϕ̄ðϵ; nÞ,

πðϵ; n; ϕ̄ðϵ; nÞÞ ¼ 0: ð3Þ

The hydrodynamic equations coupled to the relaxation
equation of ϕ are then given by

Dϵ ¼ −wðþÞθ − ∂ðμuνÞΠμν; ð4Þ

Dn ¼ −nθ − ∂ · ΔJ; ð5Þ

wðþÞDuν ¼ −∂ν⊥p − δν⊥λ∂μΠμλ; ð6Þ

Dϕ ¼ −γππ − Aϕθ þ � � � ; ð7Þ

with D ¼ u · ∂; θ ¼ ∂ · u, the fluid velocity uμ, the viscous
stress tensor Πμν, the partial equilibrium enthalpy
wðþÞ ¼ ϵþ pðþÞ, Aϕ is the compression/expansion suscep-
tibility of ϕ, γπ parametrizes the strength of the returning
force driving ϕ towards its equilibrium value, and dots
stand for the higher order derivative corrections. Imposing
the constraints induced by the second law of thermody-
namics and substituting ϕðϵ; n; πÞ into Eq. (7), this equa-
tion takes the form,

Dπ ¼ −Γππ −
βpπ

ϕπ
θ þ � � � ; ð8Þ

where the relaxation rate is defined as Γπ ≡ γπ=ϕπ , with
ϕπ ¼ ð∂ϕ

∂πÞϵ;n, and pπ ¼ ð∂p
∂πÞϵ;n.

It is easy to show that from the linearized hydrodynamic
equations the dispersion relations of the two sound modes
together with the slow mode are given as the three roots of
the following equation [8]:

Fðω; q2Þ ¼ ω2 − q2
�
c2s þ

ω

ωþ iΓπ

βpπ

ϕπw

�
¼ 0: ð9Þ

F is actually the spectral curve of Hydroþ leading order in
derivative corrections. The real part of the expression inside
the parentheses is the square of the effective velocity of
sound. Thus the presence of the slow mode leads to an
enhancement of the value of c2s given by [8]

Δc2s ¼
ω2

ω2 þ Γ2
π
Δc2sð∞Þ; Δc2sð∞Þ ¼ βpπ

ϕπw
: ð10Þ

It should be emphasized that the above correction to the
equation of state is from nonequilibrium effects [in this
case, from critical slowing down characterized by Eq. (7)].
We now define the dimensionless quantities,

w ¼ ω

Γπ
; q ¼ csq

Γπ
; α ¼ Δc2sð∞Þ

c2s
; ð11Þ

through which the spectral curve (9) simplifies to

Fðw; q2Þ ¼ w2 − q2
iþwþ αw

iþw
¼ 0: ð12Þ

To our knowledge, the spectral curve has not been written
in the form (12) before. We will see that this form has
several advantages. This spectral curve is a polynomial of
order three. Thus we find here, for the first time, the
dispersion relations which are given by the three algebraic
roots wðqÞ of (12), namely,

w1ðqÞ ¼ −
i
12

�
4þ 27=3ð−1þ 3ð1þ αÞq2Þ

3DðqÞ −
22=3

3
DðqÞ

�
;

w2ðqÞ ¼ −
i
12

�
4þ 24=3ð−iþ ffiffiffi

3
p Þð−1þ 3ð1þ αÞq2Þ

DðqÞ − 22=3ðiþ
ffiffiffi
3

p
ÞDðqÞ

�
;

w3ðqÞ ¼ −
i
12

�
4þ 24=3ð−i − ffiffiffi

3
p Þð−1þ 3ð1þ αÞq2Þ

DðqÞ − 22=3ð1þ i
ffiffiffi
3

p
ÞDðqÞ

�
; ð13Þ

where

DðqÞ ¼ ð2iþ 9ið2 − αÞq2 þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4 − 4q4ð1þ α3Þ þ q2ð−8þ 20αþ α2Þ

q
Þ1=3: ð14Þ
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Continuing these dispersion relations to complex momenta,
there are four square-root singularities, branch points, in the
dispersion relation of each mode. These stem from the
polynomial of order four under the square-root in DðqÞ.
These branch points are located at the roots of

ðq�1Þ2 ¼
α2 þ 20α − 8þ ffiffiffiffiffiffiffiffiffiffiffi

α − 8
p ðα3=2 − 8α1=2Þ

8ð1þ αÞ3 ;

ðq�2Þ2 ¼
α2 þ 20α − 8 −

ffiffiffiffiffiffiffiffiffiffiffi
α − 8

p ðα3=2 − 8α1=2Þ
8ð1þ αÞ3 : ð15Þ

Depending on whether α < 8 or α > 8, the branch points
occur at complex or real momenta, respectively, distin-
guishing the following cases:

(i) When α < 8, ðq�1Þ2 and ðq�2Þ2 are complex, however
jq�1j2 ¼ jq�2j2.

(ii) At α ¼ 8, ðq�1Þ2 ¼ ðq�2Þ2 and both become real.
(iii) When α> 8, ðq�1Þ2 and ðq�2Þ2 are both real and

ðq�1Þ2< ðq�2Þ2.
In the next subsections, we discuss the spectrum for the
above three cases in detail.
Obviously, the existence of branch points (15) limits the

range of analyticity of the dispersion relations (13). About
the point ðw; qÞ ¼ ð0; 0Þ, each of the dispersion relations
(13) is analytic within the disc jqj ≤ minfjq�1j; jq�2jg in the
complex q-plane. Then, according to the Puiseux theorem
[10], wðqÞ can be computed as a convergent series about
q ¼ 0; the radius of convergence of this series is set by

qc ¼ minfjq�1j; jq�2jg: ð16Þ

We see that qc is a characteristic momentum scale in the
theory which depends only on α.

1. Asymptotics of the spectrum

Consider the asymptotic behavior of the dispersi on
relations (13) for the two cases q ≪ 1 and q ≫ 1,

(i) For q ≪ 1, Hydroþ dispersion relations reduce to
the standard hydrodynamic ones, given by

w1;2 ¼ �q −
1

2
iαq2 þOðq3Þ;

w3 ¼ −iþ iαq2 þOðq4Þ: ð17Þ

The first two modes are nothing but the ordinary
sound modes; ω ¼ �csq [see (11)]. The third mode
is a fast decaying nonhydrodynamic mode whose
dynamics decouples from the conserved quantities.

(ii) For q ≫ 1, hydrodynamics seizes to work. The slow
mode comes to couple with the sound modes,
yielding

w1;2 ¼ � ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
q −

iα
2ð1þ αÞ þO

�
1

q

�
;

w3 ¼ −
i

1þ α
þO

�
1

q2

�
: ð18Þ

The first two modes are the sound modes which do
now propagate faster than the ordinary sound modes.
This is equivalent to saying that the equation of state
(EoS) has become stiffer. The third mode is a
nonhydrodynamic (gapped) mode. It is important
to note that

(1) For α > 2, the gapped slow mode is the longest-lived
mode. This implies that Hydroþ is necessary in
this range.

(2) For 0 < α < 2, the dissipative sound modes are the
longest-lived modes. Nevertheless, the decay rate of
the slow mode is comparable with that of sound
modes. Therefore, although the slow mode decays
faster than the sound modes in this range, Hydroþ
should still be applied.

(3) For α ¼ 2, the sound modes and the slow modes
decay at the same rate for q ≫ 1, see Fig. 1.

FIG. 1. Dispersion relations for α < 8 (displayed is the example α ¼ 2). The slow mode (green curves) is purely imaginary. Sound
modes (blue and red curves) have complex frequencies, whose velocities are cs at q ≪ 1 while they tend to

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
cs at q ≫ 1. This is

due to the backreaction of the slow mode on the hydrodynamic evolution. The sound modes are the longest-lived modes for all values of
momentum q. Note that away from this very special case, for any 2 < α < 8 the slow mode will be longer lived than the two sound
modes; i.e., the green curve will be closer to the q-axis than the blue and red curves. Compare this with Fig. 2 in [8].

CHARACTERISTIC MOMENTUM OF HYDROþ … PHYS. REV. D 106, 016004 (2022)

016004-5



2. Spectrum at α < 8

As it was sown earlier, for α < 8, each of the three
dispersion relations has two complex-valued singularities.
For concreteness, let us consider the case α ¼ 2.8 The
location of branch points is given by

Q1;2 ≡ q�2 ¼ 0.166667� 0.096225i: ð19Þ

Note that jQ1j ¼ jQ2j. The corresponding spectrum of
modes has been illustrated in Fig. 1. As it can be seen in the
right panel, in this special case, ϕ mode decays at the same
rate as the sound modes decay at large momenta.

3. Spectrum at α > 8

It turns out that for α > 8, the dispersion relations (13)
have two unequal real-valued singularities. In other words,
q�21 and q�22 in (15) will be two real values in this range of α.
In Fig. 2 we have illustrated the spectrum of modes at
α ¼ 12 > 8 case. We find

Q1 ¼ q�21 ¼ 0.03125; Q1 ¼ q�22 ¼ 0.03200: ð20Þ

As it can be seen in the right panel of Fig. 2, the ϕ mode
is the slowest mode at large momenta, say at q≳ qc.

4. Spectrum at α= 8

At this special value of α, the magnitudes of the square of
the critical momenta coincide

Q1 ¼ Q2 ¼
1

27
: ð21Þ

All four of the branch points coincide at this value of α;
see Fig. 3.

III. HYDRO+ NEAR THE CRITICAL POINT IN
THE QCD PHASE DIAGRAM

A system is defined to be in a partial equilibrium state if
the equilibrium has been locally achieved for regions with
size of order l, much larger than the microscopic scale, but
the global (complete) equilibrium has not yet been
achieved. The evolution of these states can be described
by hydrodynamics. Thus within any region of size l or less,

FIG. 2. Dispersion relations for α > 8 (displayed is the example α ¼ 12). There is a universal feature in this sector (for all α > 8): for
q > q�2 it is the slow mode of Hydroþ (green curves) which is the longest-lived one. Within the range q�1 < q < q�2, all three modes
become purely imaginary. For this reason, one cannot distinguish between the type of modes in this range. Hence, within this range, in
the right panel we display all three modes as gray curves.

FIG. 3. Dispersion relations for the degenerate case α ¼ 8. At α ¼ 8, the four branch point singularities become degenerate, which
leads to jq�1j ¼ jq�2j.

8This special case has been studied in [8]. It is special in the
sense that in the large-q limit all modes have the same imaginary
part for α ¼ 2, as can be seen in Fig. 1.
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dynamics is well described by the evolution of conserved
quantities, sayΨ. Any such region can be treated as an open
system in equilibrium with its local environment, say in a
canonical ensemble. The entropy of such states is a func-
tional of slowly varying Ψ̄ ¼ hΨi; i.e., S≡ S1½Ψ̄�, which is
the 1PI generating functional of the correlation functions of
Ψ. Note that S1½Ψ̄� is different from S0½Ψ̄�, the micro-
canonical ensemble entropy for a state with Ψ ¼ Ψ̄.
The important point about QCD plasma near the critical

point in its phase diagram is that its partial-equilibrium
states cannot be described only by the conserved densities.
Since the correlation length ξ is much larger than the
thermal equilibrium scale ∼1=T there, the two point
function of the density or even the higher point functions
may be different from the corresponding values in complete
equilibrium. Then the dynamics is given by the set of
equations governing the evolution of conserved quantities
together with those of their two and higher point functions.
In the simplest setup, one only considers one- and two-

point functions of the conserved densities, Ψ̄ðxÞ and
Gðx1; x2Þ. Therefore, in such states, entropy is a functional
of Ψ̄ðxÞ and Gðx1; x2Þ,

S≡ S½Ψ̄; G�; ð22Þ

where the correlator G is also defined as Gðx1; x2Þ ¼
hΨðx1ÞΨðx2Þi − Ψ̄ðx1ÞΨ̄ðx2Þ. In partial-equilibrium states,
Ψ̄ðxÞ is a slowly varying function of x and similarly
Ḡðx1; x2Þ9 is slow on ðx1 þ x2Þ=2, associated with scales
larger than l, which is much larger than the scale ξ of
jx1 − x2j dependence.
The above separation of scales is used to perform a

Wigner transformation of G,

GQðxÞ ¼
Z
Δx

G

�
xþ Δx

2
; x −

Δx
2

�
eiQΔx: ð23Þ

In fact, GQðxÞ characterizes states which vary slowly with
respect to x compared to Q. In other words,

1=l ≪ Q: ð24Þ
For such partial-equilibrium states, the problem simplifies
in the sense that the entropy functional (22), or equivalently
the 2PI effective action, can be written as a local functional
of GQðxÞ [8],

S2½Ψ̄; G� ≈ S1½Ψ̄� þ
1

2

Z
x

Z
Q
Trð1 − CQGQ þ logCQGQÞ;

ð25Þ
where S1 is the 1PI effective action and CQ ¼ Ḡ−1

Q . The
function GQ satisfies a linear relaxation equation. As we

will see in the following [see (34) below], relaxation of GQ

is characterized by a matrix, namely L. Let us define

ϕQðxÞ ¼ the slowest eigenmode of L: ð26Þ

Then it was shown that [8]

S2½Ψ̄; G� ≈ S1½Ψ̄� þ
1

2

Z
x

Z
Q
ð1 − ϕQ=ϕ̄Q þ logðϕQ=ϕ̄QÞÞ:

ð27Þ

Now, in addition to the conserved densities Ψ̄, there is
another degree of freedom ϕQ. The local equilibrium value
of this mode is denoted by ϕ̄Q which is related to local
value of the hydrodynamic degrees of freedom Ψ̄.
The equation of motion for ϕQ is given by [8]

DϕQ ¼ −ΓQðϕQ − ϕ̄QÞ; ð28Þ

where10 ϕ̄Q can be approximated by [28]

ϕ̄Q ≈
cMξ2

1þ ðQξÞ2 : ð29Þ

In this equation, cM is a constant and ξ denotes the
equilibrium correlation length. The leading behavior of
Q-dependent of ΓQ near the critical point is given by [30]

ΓQ ¼ 2D0ξ0
ξ3

KðQξÞ; ð30Þ

where ξ0 is the value equilibrium correlation length far from
the critical point, with the Kawasaki function given by
KðxÞ ¼ 3

4
½1þ x2 þ ðx3 − x−1Þ arctanðxÞ� [31].11 In our later

computations, we will consider two distinct values for D0,

D0 ¼ 0.1; 0.5 fm: ð31Þ

In order to parametrize ξ, we follow [28] and write

�
ξ

ξ0

�
−2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2

�
T−Tc

ΔT

��
1−

�
ξmax

ξ0

�
−4
�
þ
�
ξmax

ξ0

�
−4

s
;

ð32Þ

with ξ0 ¼ 0.5 fm. In this ansatz, the equilibrium correlation
length, ξ, increases to a maximum value ξmax, then decreases
to its value at freeze-out.The finitevalue of ξmax indicates that

9Ḡ ¼ −δ2S0=δΨ̄δΨ̄.

10Note that Eq. (28) can be also written in the form (7).
11Equation (30) is actually giving the momentum-dependent

relaxation rate of the critical slow mode for model H; according to
the classification of Halperin and Hohenberg [6], the QCD critical
point is in the dynamical universality class of model H [32].
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the trajectory of the QGP droplet is close to the critical point,
instead of running directly through it. We will consider two
distinct values for ξmax,

ξmax

ξ0
¼ 2; 6: ð33Þ

It is clear that by approaching the critical point, ξmax
increases. Very close to the critical point, namely in the
scaling limit, ξmax diverges (see Sec. III B for comparison
with the case of passing through the critical point).
In summary, we see that near the QCD critical point, a

slowly varying variable ϕQ indexed by a continuous index
Q does not take its equilibrium value ϕ̄Qðϵ; nÞ for given ϵ
and n. In the following subsections we briefly review what
exactly this mode is and how it backreacts on the QGP
droplet near the critical point.

A. Which is the slowest mode?

The eigenmodes of the two point function of conserved
densities, namely G, can be found by studying the linear
perturbations on top of thermal equilibrium. Considering
the linearized hydrodynamic equations as

DΨ ¼ −LδΨþOðδΨ2Þ; ð34Þ

the linearized evolution equation for 2-point function is
given by the following matrix form equation:

∂tG ¼ −LðG − ḠÞ − ðG − ḠÞL† þOðG − ḠÞ2: ð35Þ

As discussed earlier, in the limit 1=l ≪ Q, G can be
replaced with local GQ modes. Then Eq. (35) indicates that
the slowest GQ mode, namely ϕQ, corresponds to the
smallest eigenvalue of the matrix L. It is easy to show
that the smallest eigenvalue of L is 0. Then the projection of
an arbitrary perturbation δΨ on the corresponding eigen-
vector turns out to be proportional to the functionm ¼ s=n,
i.e., the ratio of the entropy density to the baryon density
[8]. Thus one finds that the ϕQ mode is proportional to the
two point function of fluctuations of δm,

ϕQðxÞ ∼
Z
Δx

�
δm

�
xþ Δx

2

�
δm

�
x −

Δx
2

��
: ð36Þ

See Appendix C of Ref. [8] for an interesting discussion
about the arbitrariness in normalization of ϕQ.

B. Feedback from the slow mode on c2s
Following the discussion in Sec. II, we simply find that

in the present case, Eq. (10) takes the following form [28]:

Δc2sðωÞ ≈
c4s
2s

Z
d3Q
ð2πÞ3 ½f2ðQξÞ�2

�
ξ

ξ0

�
4
�
T

∂

∂T

�
ξ

ξ0

�
−2
�

2

×
ω2

ω2 þ Γ2
Q

; ð37Þ

with the decay rate ΓQ given by (30).
Ultimately, what we want to do is to show how the

characteristic momentum of Hydro+ discussed in Sec. II
limits the range of momenta of the critical fluctuations
contributing to Δc2s , discussed in the previous paragraph.
Our strategy is to think of any of the points near the

critical point (in the phase diagram) as one distinct
equilibrium state. In other words, we neglect the time-
evolution of the QGP droplet on a specific trajectory
through the phase space. Then for each of these equilibrium
states, the calculation of Sec. II C is applicable. One may
consider this an adiabatic approximation. Needless to say
that in this case, the temperature dependence of single-
mode Hydroþ quantities will be through the special para-
metrization of ξ in (32) as well as the equation of state we
will construct below. It should also be emphasized that (32)
ignores the dependence of the state on the baryon density.
We just consider states near nB ¼ 0 in the phase diagram.

C. Characteristic momentum near
the QCD critical point

Near the QCD critical point, Eq. (7) is replaced with
(28). Correspondingly, α, given by Eq. (11) becomes a
function of Q in this case; we will refer to it as αQ. This
function can be simply extracted from (37) by reading off
the individual contribution of each mode to the integral,

αQðω ≫ ΓQÞ ¼
Δc2s;Qð∞Þ

c2s
≈
c2s
2s

Q2ΔQ
2π2

½f2ðQξÞ�2
�
ξ

ξ0

�
4
�
T

∂

∂T

�
ξ

ξ0

�
−2
�

2

; ð38Þ

where ΔQ is the range over which we take Q to be approximately constant.
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In order to apply the characteristic momentum scale of
single-mode Hydroþ, namely (16), we need to know
whether ϕQ falls into the α < 8 or into the α > 8 subsector.
So our main task is to evaluate αQ near the QCD critical
point. To this end, three things need to be determined: 1)
ΔQ, 2) the entropy density s and 3) the sound velocity cs.
In our numerical computations, we takeΔQ ¼ 0.002 fm−1.

D. The entropy density s and the sound velocity cs
In order to compute the entropy density, one needs to

construct the thermodynamic equation of state. Without
taking into account the effect of the critical point, cV may
be expressed by the following ansatz [28]:

cno C:P:
V

T3
¼

��
aH þ aL

2

�
þ
�
aH − aL

2

�
tanh

�
T − TC:O:

ΔTC:O:

��
;

ð39Þ

which interpolates between two temperature independent
asymptotic values aL and aH, corresponding to the value of
cV=T3 at TL ¼ Tc − ΔT and TH ¼ Tc þ ΔT, respectively.
We assume ΔT ¼ 0.2Tc. In (39), the data corresponding to
the crossover is given by

TC:O: ¼ Tc and ΔTC:O: ¼ 0.6Tc: ð40Þ

Similar to Ref. [28], we also choose

aL ¼ 0.1aQGP; aH ¼ 0.8aQGP; ð41Þ

where aQGP is the value of cV=T3 for the noninteracting
ideal gas QGP, given by

aQGP ¼
4π2ðN2

c − 1Þ þ 21π2Nf

15
; ð42Þ

with Nc ¼ 3 and Nf ¼ 3 corresponding to the number of
colors and flavors, respectively. Having specified cV , one
can then directly compute s and then c2s as the following:

sðTÞ ¼
Z

T

0

dT 0 cVðT 0Þ
T 0 ;

c2s ¼
s
cV

: ð43Þ

These functions are displayed as blue-dashed curves in
Fig. 4. However, we have not considered the effect of the

FIG. 4. The left (right) vertical dashed line shows the location of TL ¼ Tc − ΔTðTH ¼ Tc þ ΔTÞ. In all panels, solid red curves
represent thermodynamic quantities taking the critical contributions into account, dashed blue curves represent results without critical
contributions. In the bottom left panel, the red dashed line indicates the critical temperature, Tc ¼ 0.16 GeV.
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critical point so far. For this reason we refer to these curves
as the no-critical-point (no C.P.) result.
In order to construct cV near the critical point, we need to

include the critical contribution. We follow [28] and take
the textbook result CV ∝ ξ [33] to write

ccritV ðTÞ ¼ 1

2

1

ξ30

ξðTÞ
ξ0

; ð44Þ

with ξðTÞ=ξ0 given by (32).12 It is expected that the effect
of critical fluctuations on cV is only important near the
critical point. In addition, far from Tc, the value of cV
should approach that without a critical point. So, cV can be
constructed as follows [28]:

cVðTÞ ¼

8>>>>><
>>>>>:

cno C:P:
V ðTÞ; T ≤ TL

ccritV ðTÞ þ T3
P
n¼0

an
	
T−Tc
ΔT



n
; TL ≤ T ≤ TH

cno C:P:
V ðTÞ; T ≥ TH

:

ð45Þ

Demanding cV=T3 and its derivatives to be continuous at
T ¼ TL;H, one can specify coefficients an to any arbitrary
order. We choose to go up to the second order in
derivatives. We then find six equations leading to six
nonzero coefficients.13 Having specified cV (see the red
curve in the top right panel in Fig. 4), one can use (43) to
find sðTÞ and c2s . The result is given by red curves in the
bottom panel of Fig. 4.

Note that in our present case the sound velocity does not
approach zero as T → Tc. The reason is that the states we
are considering here are near (never at) the critical point in
the phase diagram. In Appendix B, we will show how the
behavior of above quantities change when passing through
the critical point.

E. Computing αQ

Considering the specifications mentioned above, in Fig. 5
we display α as a function of T for various ϕQ modes in two
cases. The left panel corresponds to ξmax ¼ 1 fm while the
right panel corresponds to ξmax ¼ 3 fm.
For any mode, each plot features two peaks around the

critical temperature. The presence of the two peaks can be
understood as follows. Approaching the critical temper-
ature, the correlation length ξ increases. At the same time,
the rate of change of ξ, namely T∂Tðξ=ξ0Þ increases, too.
However, at some point, the rate of the latter begins to
decrease, resulting in T∂Tðξ=ξ0Þ ¼ 0 at the critical temper-
ature. This can be obviously seen in the top left panel of
Fig. 4. Therefore, this is the competition between the last
two factors in Eq. (38) that leads to the appearance of the
peaks in Fig. 5. On the other hand, at larger values of ξmax,
the maximum value of ξ=ξ0 in Fig. 4 will tend to become a
singularity. Then the interval between the two peaks
becomes smaller and the peaks become sharper.

IV. CONSTRAINT ON THE STIFFNESS OF EOS
FROM RADIUS OF CONVERGENCE

Having found the value of αQ as a function of temper-
ature, we are now ready to evaluate (15). We want to apply
these equations to each of the ϕQ-modes and find the
characteristic momentum qc, associated with that mode, as
a function of temperature.
According to Fig. 5, for all modes and at any temperature

αQ < 8. Thus, from (15) we conclude that

FIG. 5. The contribution, αQ, of each mode ϕQ (labeled by the magnitude Q) to the stiffness as a function of temperature. The left
panel corresponds to ξmax ¼ 1 fm, and the right panel to ξmax ¼ 3 fm.

12See Sec. III B for another construction of the EoS near the
critical point.

13For ξmax ¼ 6ξ0 ¼ 3 fm, we find a0 ¼ 17.16, a1 ¼ 13.80,
a2 ¼ 1.29, a3 ¼ −1.54, a4 ¼ −1.16, a5 ¼ 0.64.
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qc ¼ jq�1j ¼ jq�2j: ð46Þ

Note that in the present case, jq�1j and jq�2j are functions of T
and Q through the dependence on αQðTÞ.
Let us recall that qc is a dimensionless momentum [see

(11)]; thus having αQ is not enough to find a sensible result
for it in QCD. The corresponding dimensionful quantity is
given by [see (11)]

qc ¼
Γπqc
c2s

: ð47Þ

In this equation,
(1) Γπ is exactly ΓQ defined by (30) [see Eq. (94)

in Ref. [8] ].
(2) c2s is found in the bottom left panel of Fig. 4.
(3) qc is found via applying (15) together with (46) to

the αQðTÞ found in Fig. 5.
In Fig. 6, we have shown qc for various ϕQ modes at four
temperatures near Tc. In each row, we keep the value of D0

fixed and consider two different values of ξmax. From the
top panel to the bottom one, we change the value of D0.
One observes that

(i) The larger the value of ξmax becomes, the smaller the
characteristic momentum gets. It can be intuitively

attributed to the fact that a larger ξmax corresponds to
an equilibrium state closer to the critical point and
consequently to an earlier breakdown of standard
hydrodynamics.

(ii) From these plots it seems that by approaching the
critical temperature, either from above or from blow,
qc decreases. As wewill show in Fig. 7, this behavior
continues to persist up to temperatures very close
to Tc.

As mentioned earlier, specifically in Eq. (37), all ϕQ
modes seem to contribute to the stiffness of the EoS, and
consequently to the enhancement in magnitude of c2s .
However, our analysis of the Hydroþ spectrum and its
characteristic momentum proves that it is necessary to
narrow this range, resulting in a significant decrease in the
value of Δc2s , compared to the case in which all modes
contribute.
To investigate this issue in detail, let us first list some of

our assumptions and results:
(1) In all three cases shown in Figs. 1–3, the enhance-

ment in c2s becomes remarkable when q exceeds qc,
namely q≳ qc. Here q is the dimensionless momen-
tum of flow in the single-mode Hydroþ. It corre-
sponds to the length scale over which sound modes
and the slow ϕ mode vary. The critical momentum
qc is the dimensionless characteristic momentum of

FIG. 6. The characteristic momentum qc at four temperatures near Tc as a function of the momentum Q labeling the critical
fluctuation. From the left to the right panel, ξmax has tripled. As expected, this caused the value of qc to decrease. This is because the
relaxation rate of modes in the right panels is four time larger than that of the corresponding modes in the left panels.
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the theory. In a single-mode Hydroþ, qc depends on
T: qc ≡ qcðTÞ.

(2) In the case of QCD near the critical point, we deal
with a spectrum of slow modes, i.e., ϕQ. In order to
apply Hydroþ to this case, it is necessary to
explicitly distinguish between Q and q. To this
end, let us denote that each mode ϕQ can be
decomposed into a set of Fourier modes ϕ̂Q with
momenta q,

ϕQðxÞ ¼
Z
q
ϕ̂QðqÞeiq·x: ð48Þ

Here q is the momentum of the flow whileQ denotes
the momentum of the critical fluctuation. Let us
recall that the main assumption based on which we
include ϕQ as a local slow mode is the separation of
scales given by (24), or equivalently,

q ≪ Q: ð49Þ

(3) Based on (49), we can think of each ϕQ as the slow
mode of a single-mode Hydroþ. Then one naturally
expects qc to become a function of both Q and T:
qc ≡ qcðQ; TÞ.
⇒ Considering the three items above, we con-

clude that the modes contributing to the enhance-
ment of c2s near the critical point are only those
satisfying

qcðQ; TÞ ≪ Q: ð50Þ

In order to understand why this is the case, we define
Q�

jðTÞ as the root of the following equation:

qcðQ�
j ; TÞ ¼ Q�

j ; j ¼ 1; 2; ð51Þ

It turns out that at any temperature around Tc, only
the modes within the interval ½Q�

1; Q
�
2� satisfy (50). If

(50) is not satisfied, namely Q≲ qcðQ; TÞ, then (49)
requires the flow to vary slowly, i.e., q ≪ qc. This is
indeed the standard hydrodynamic range, and there

FIG. 7. For any mode Q, qc indicates when a single mode Hydroþwith the slow mode ϕQ must be applied. We have illustrated qc as a
function of T and Q for four cases: Top left panel: ξmax ¼ 1 fm and D0 ¼ 0.1 fm. Top right panel: ξmax ¼ 3 fm and D0 ¼ 0.1 fm.
Bottom left: ξmax ¼ 1 fm and D0 ¼ 0.5 fm. Bottom right: ξmax ¼ 3 fm and D0 ¼ 0.5 fm. The blue plane shows qc ¼ Q. According to
(50), regions where this blue plane is higher than the orange surface correspond to modes that may contribute to the stiffness. The large
value of qc near Tc in the two right panel plots is due to very small rate of change of the slow mode with respect to temperature there. On
the other hand, the large values of qc at the two end of the temperate interval reveals the fact that the corresponding ξ is much smaller
than ξmax there.
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is no need to consider the impact of critical slowing
down. Therefore (50) is a necessary condition for a
mode with magnitude Q to be regarded as a slow
mode.
Figure 7, displays qcðQ; TÞ for exactly the four

situations discussed in Fig. 6. The blue plane shows
qc ¼ Q. Then the modes satisfying (50) exist in
the regions where the blue plane is located above the
orange surface. The modes corresponding to the
intersection of the blue plane with the orange surface
are the Q� modes defined by Eq. (51).

Considering the discussion above, we understand that at
any temperature T, only fluctuations with Q�

1ðTÞ ≪ Q ≪
Q�

2ðTÞ contribute to Δc2s . Thus the actual value of Δc2s
cannot exceed the following upper bound:

Δc2s < Eq: ð37Þ integrated over ½Q�
1ðTÞ; Q�

2ðTÞ� : ð52Þ

In order to determine the range of integration on the right
side of (52), we have found the roots of the equation
qcðQ; TÞ ¼ Q, as shown in Fig. 8. The dashed and solid
curves correspond to Q�

1 and Q�
2, respectively. As a result,

the integration range to the right of (52) is determined by
the interval between the Q�

1- and Q�
2-curves.

As one would expect, all panels of Fig. 7 illustrate that
we find only modes within an interval near the critical
point, T ¼ Tc, may contribute to Δc2s . Why this is the case
can be understood as follows. At a temperature sufficiently
far from Tc, there are indeed three length scales in the
system, separated as [34]

ξ ≪ b ≪ l: ð53Þ

Here, b represents the size of the smallest hydrodynamic
cell. The right inequality indicates that hydrodynamics is
valid over the scale l while the left one tells us that no
effect of critical slowing down is seen; all critical fluctua-
tions fall in equilibrium faster than the local equilibration
time. Note that far from the critical point, the correlation
length ξ is of order of the thermal length, e.g., 1=T in a
strongly coupled system.
Near a critical point ξ is large: ξ ≫ 1=T; as long as (53)

continues to hold, standard hydrodynamics is sufficient to
describe the evolution on the l length scale. However, ξ
eventually exceeds 1=T near the critical point, leading to a
new scale ordering,

b ≪ ξ≲ l: ð54Þ

FIG. 8. Each panel is related to the corresponding panel in Fig. 7, showing the line of intersection between the blue and orange
surfaces. The bottom left figure illustrates that there is no intersection between the blue and orange surfaces in Fig. 7, which implies that
there is not any slow mode in this case. The dashed (solid) curves indicate the value of Q�

1ðTÞ [of Q�
2ðTÞ] defined in Eq. (51),

representing the lower (upper) integral boundary on which Eq. (37) has to be evaluated.
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The appearance of a bounded region in the panels of Fig. 8
is related to the switch between the ordering of ξ and b from
(53) to (54). Inside the bounded region, standard hydro-
dynamics breaks down, the critical slowing down is
inevitable and Hydroþ must be applied.
An important observation regarding Fig. 8 is that the

critical slowing down is less important for larger values of
D0. For this reason, from now on, we only focus on the two
top panels of this figure, namely on the case D0 ¼ 0.1 fm.
In Fig. 9, we compare the upper bound found in (52) with
the estimate based on Eq. (37). We have also plotted the
ratio of the latter two, in the right panel.
Top panel of Fig. 9: Our results show that naively

treating all modes as valid modes in the stiffness calcu-
lation would result in a small enhancement in the speed of
sound. When considering the effect of characteristic
momentum, discussed in this paper, we will find that the
enhancement is even smaller than simply found by includ-
ing all modes. We also see that the stiffness only appears in
the interval ½TL; TH�, as defined in Sec. III.
Bottom panel of Fig. 9: Our analysis reveals that the

upper bound of enhancement could be significantly smaller
than the known estimates resulting from [28]. According to
(50), only a limited amount of modes has momenta greater

than qc. As a result, the bound given in (52) becomes
smaller than the value that would be obtained from
integration over all modes in Eq. (37).
In order to show the magnitude of the stiffness, in Fig. 10,

we illustrate the enhanced speed of sound as a function of
temperature. To our knowledge for the first time,wepresent a
plot of the speed of sound including both thermodynamic and
Hydroþ corrections as a function of temperature, repre-
sented by the black dashed curve. The red curve represents
the speed of sound including the known corrections from
thermodynamic quantities near the critical point. Comparing
the black dashed and red curves, there is an enhancement due
to Hydroþ fluctuations, but that enhancement is very small
compared to the absolute value of c2s . We note that the blue
curve indicates the value of the speed of sound far away from
the critical point and is included here to guide the eye.
Comparing the left and the right figure, one observes that
increasing the value of ξmax, the enhancement of the speed of
sound also increases. For larger values of D0, the enhance-
ment will become smaller. The enhancement of the speed of
sound in any case is small, which is similar to the case of the
bulk viscosity enhancement being small in Ref. [35].
However, there the authors integrated over the whole range
of Q considering the Ising equation of state.

FIG. 9. Top panel: The blue curve shows the upper bound of the stiffness of EoS near the QCD critical point. The red curve
corresponds to the known estimate in which all modes 0 < Q contribute to the stiffness. Bottom panel: The ratio of the upper bound to
the known estimate of Δc2s .
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V. RANGE OF APPLICABILITY OF OUR RESULTS

There are three important physical scales in our problem
that compete with each other [8]:

(i) The background evolution rate ω ∼ csq.
(ii) The slow mode decay rate ΓQ ∼ ξ−3. In fact ΓQ

corresponds to Γπ in single-mode Hydroþ [see
Eq. (8)].

(iii) The shear and diffusion relaxation rate Γη ∼ ξ−2.
Far from any critical point, q ≪ ξ−1 and therefore,

ω ≪ Γη ≲ ΓQ: ð55Þ

Thus standard hydrodynamics is the valid picture at long
wave length, and the next major correction comes from
statistical fluctuations, i.e., the long time tails [29,34,36–
39]. In this case, there is no any slowing down mode.
However, near a critical point, ξ−1 can be so small

that ΓQ ≲ Γη. This is the well-known critical slowing
down limit, discussed in previous sections. Now depending
on the value of ω, different scenarios can take place.
When

ΓQ ≲ ω ≪ Γη; ð56Þ

hydrodynamics breaks down and Hydroþ applies. When
passing by the QCD critical point, depending on the
trajectory that QGP droplet follows in the T − μ phase
diagram, it may satisfy (56). This is exactly the regime of
applicability of our result. It is worth noting that Eqs. (4)–
(7) are consistent with (56). Since ΓQ ≪ Γη, the shear
tensor is completely equilibrated and tracks the hydro-
dynamic variables and slow mode.

In a more rapidly evolving background, i.e.,

ΓQ ≪ Γη ≲ ω; ð57Þ
Hydroþ breaks down as well (see [40] for a review). In this
regime, it is necessary to take into account the effect of
hydrodynamic fluctuations, the long time tails [41,42].
Then the problems translates to studying the radius of
convergence of hydrodynamics near the critical point and
in the presence of long-time tails [43]. It is actually beyond
the scope of our analysis in the current study.

VI. COMMENT ON THE GRAVITY
DUAL OF HYDRO+

In Ref. [44], the hydrodynamic theory incorporating
slowly damping gapped modes has been developed. The
so-called quasihydrodynamics theory of [44] describes
those systems in which one (or a finite number of gapped)
mode(s) is (are) parametrically slow, in the sense that their
lifetime at q ≪ 1 is comparable with that of hydrodynamic
modes. The equations of quasihydrodynamics then
describe the dynamics of hydrodynamic modes together
with the slow mode(s) at small momenta.
Authors of Ref. [44] introduce several examples for the

quasi-hydrodynamics. One of their examples is the Muller-
Israel-Stewart theory.14 They find the following equation
for the sound modes in this theory15:

FIG. 10. Dashed blue curves: The speed of sound squared when neglecting the influence of the critical point. Red curves: The speed of
sound squared when taking into account the influence of the critical point on the thermodynamic quantities. Dashed black curves: The
bound on the speed of sound squared when taking into account the influence of the critical point on both, the thermodynamic and
hydrodynamic quantities by extending hydrodynamics to Hydroþ. Dashed blue curve: The value of the speed of sound squared if the
critical point was absent (no thermodynamic and no Hydroþ corrections).

14We assume that the decay rate of the shear mode in the MIS
theory is parametrically larger then that of other infinitely many
nonhydrodynamic modes. This assumption is necessary to extend
the range of applicability of MIS theory beyond the standard
hydrodynamic approximation [8].

15The example illustrated in [44] is similar to both our Ref. [1]
and Ref. [1] in [8]. Indeed, in all these three cases, α ¼ 2. In
Ref. [44] the authors choose η=ðϵþ pÞτ ¼ 1=2 together with
c2s ¼ 1=3. Then by using (60) one finds α ¼ 2.
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MIS∶ ω3 þ i
τ
ω2 −

�
c2s þ

4

3

η

ðϵþ pÞτ
�
ωq2 −

ic2s
τ
q2 ¼ 0:

ð58Þ

Let us compare it with (9) in its simplified form,

Hydroþ ∶ ω3 þ iΓω2 − ðc2s þΔc2sð∞ÞÞωq2 − ic2sΓq2 ¼ 0:

ð59Þ

One immediately notices that at the linearized level, MIS
theory is exactly the same as Hydroþ by the following
identifications:

Γ≡ 1

τ
; Δc2sð∞Þ≡ 4

3

η

ðϵþ pÞτ : ð60Þ

As it was expected, we see that Hydroþ is one another
example of quasihydrodynamics. Interestingly, Ref. [44]
uncovers the equations of MIS theory from a holographic
higher-derivative Einstein-Gauss-Bonnet gravity theory,
which was previously shown to be able to exhibit long-
lived massive excitations within the low-energy (hydro-
dynamic) regime [45]. Then we find out that linearized
Hydroþ can be derived from Einstein-Gauss-Bonnet grav-
ity theory, too.
What is the consequence of the above discussion? In last

sections we discussed the spectral curve of Hydroþ in
details. We analytically showed that the singularities of
modes were all square-root type. When combined with the
discussion of the previous paragraph, one concludes that
the spectral curve of holographic theories at finite coupling
and at small momentum is analytic except for some square-
root singularities. It is actually in agreement with well-
known examples in the literature [46]. It may then help us
to better understand the full nature of the spectral curve in
holographic theories which is still an open question.

VII. CONCLUSION AND OUTLOOK

Motivated by the recent studies on the convergence of
the derivative expansion in holographic theories, in this
work we applied the same idea to hydrodynamics near the
QCD critical point. For the first time, we computed the
radius of convergence, qc, of Hydroþ, as well as its effect
on the observable Δc2s , the shift in the speed of sound in
QCD plasma due to the fluctuations near the critical point.
We obtained three distinct results:
(1) We computed and analyzed the full spectrum of

linear perturbations in single-mode Hydroþ. We
computed the critical point of the spectral curve and
identified the radius of convergence of the derivative
expansion, given by the critical momentum qc; see
Eqs. (15) and (16). The key message is that qc

distinguishes between the regime of validity of
standard hydrodynamics and the regime where
Hydroþ needs to be employed.

(2) For the hydrodynamic description of QCD near the
critical point, qc is a function of the momentum of
critical fluctuations, namely Q, as well as the
temperature, T, as visualized in Fig. 7.

(3) At any temperature, the competition between Q and
qcðQÞ determines whether the mode ϕQ actually
should be regarded as a slow mode in single-mode
Hydroþ or not. If Q < qcðQÞ, standard hydrody-
namics suffices. By finding Q�

1;2ðTÞ as the roots of
the equation Q� ¼ qcðQ�Þ, we discussed that at any
temperature only critical modes within the interval
ðQ�

1; Q
�
2Þ may contribute to Δc2s . This leads to a

temperature-dependent upper-bound for Δc2s=c2s
near the critical point, which is calculated numeri-
cally and given in Fig. 9, and the resulting speed of
sound is enhanced as shown in Fig. 10. (We note that
this bound depends on the particular trajectory in the
phase diagram, the value of the diffusion constant
and the uncorrected equation of state that are
assumed.)

We think that the upper-bound given in Sec. IV is not
saturated. The reason is that our desired separation of scale
(49) demandsQ to be much larger than q. So as we found in
(50), Q has to be much larger than qc. Thus not all the
modes within the interval ðQ�

1; Q
�
2Þ are able to contribute

significantly. In this sense, the bound which is the result of
integration over the whole interval, is not saturated. In other
words, (50) puts a bound on the range of applicability of
Hydroþ near the critical point.
In this work we did not consider any nonlinear effects in

the time-evolution of fluctuations. As discussed in Sec. V,
in more rapidly evolving backgrounds than what we study
here, the presence of nonlinear effects is inevitable.
Including such effects in the present study requires extend-
ing our knowledge about hydrodynamics in two directions.
First, the convergence of the derivative expansion in the
presence of long-time tails should be explored [43].
Second, the nonlinear structure of Hydroþ should be
understood [41]. Then, combing the latter two points will
provide us with the background on which we can take into
account the effect of nonlinearities, which we leave to
future work. It would be also very interesting to pursue this
discussion in the framework of Schwinger-Keldysh effec-
tive field theory.
In a more realistic situation, one should also include the

effect of the evolution of the QGP droplet, itself. Following
the study of long-time tails [37] and the evolution of critical
fluctuations [47] in a Bjorken flow, it would be very
interesting to explore what the effect of the evolution of
the background fluid on the results of our paper would be.
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More realistically, one should also include the fact that the
QGP is a highly vortical plasma [48,49]. Finally, hydro-
dynamics is the description of deviations from a known
state, for example Bjorken flow [50], and more generally it
is necessary to consider nonlinear flows beyond Bjorken
flow as well as higher orders in the hydrodynamic
derivative expansion [24,51].
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APPENDIX A: MODE COLLISION AND THE
RADIUS OF CONVERGENCE

According to Refs. [9–12], in order to find the radius of
convergence, one has to find the singularity of dispersion
relations, the nearest to the origin. Since in our present case,
the spectral curve (12) is analytic, the singular points are
those at which ∂wF ¼ 0. One can simply check that indeed,
singular points given by (15) satisfy this equation.

On the other hand, the points at which ∂wF ¼ 0, are the
critical points of F. In the following, by studying the modes
at complex momenta in the single-mode Hydroþ, we
explicitly demonstrate that complexified modes collide at
the critical points.
Figure 11 is devoted to the case α < 8. As it is seen, at

small values of jqj, the two sound modes are more slowly
decaying than the slow mode. The sound modes can be still
described with the standard hydrodynamics. They actually
form a low energy decoupled sector in the system.
However, by increasing jqj, their dynamics becomes
gradually coupled with the dynamics of the slow mode.
Then Hydroþ must be considered as the alternate. As it is
seen in the figure, at qc ≈ 0.43, the two trajectories collide.
In fact the slow mode collide with the two sound modes at
two different values of θ. We see that after the collision, the
sound modes cannot be considered as a decoupled low
energy sector anymore. We conclude that at α < 8, the
critical momentum qc corresponds to collision of the slow
mode with the sound modes.
Figure 12 is devoted to the case α > 8. As it is seen, at

small values of jqj, the two sound modes are more slowly
decaying than the slow mode. The sound modes can be still
described with the standard hydrodynamics. However, by
increasing jqj, their dynamics becomes gradually coupled
with the dynamics of the slowmode. Then Hydroþmust be
considered as the alternate. At qc ≈ 0.145, the two sound

FIG. 11. Modes for α ¼ 2 in the complex w–plane, at various values of the complexified momentum q2 ¼ jq2jeiθ. Large dots and
correspond to the poles with purely real momentum (i.e., at θ ¼ 0). As θ increases from 0 to 2π, each pole moves counterclockwise
following the trajectory whose color changes continuously from blue to red. In all panels, the two blue dots located in the third and
fourth quadrants indicate the two sound modes and the single blue dot on the vertical axis illustrates the slow mode, at θ ¼ 0.
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modes collide, although the trajectory of slow modes does
not collide with that of sound modes yet. Thus at α > 8, the
critical momentum qc corresponds to collision of the two
sound modes.
As we showed earlier, the QCD near the critical point

falls in α < 8 sector. Thus it is the collision between two
sound modes with the slow mode that determine the regime
of validity of hydrodynamics, or equivalently the character-
istic momentum qc, there.

APPENDIX B: THERMODYNAMICS SCANNING
THROUGH THE CRITICAL POINT

One could follow [47,52] and map the critical point of
QCD to that of the Ising model. However, we here continue

to work with the scaling relation (32). It is clear that at the
critical point ξ → ∞; but we take a large value for ξ, say
ξ ¼ 100 fm which corresponds to a QGP droplet in the
vicinity of the critical point, not at the critical point. We
simply fix the first six nonvanishing coefficients an as

a0 ¼ 17.16; a1 ¼ 13.80; a2 ¼ 1.30;

a3 ¼ −1.54; a4 ¼ −1.16; a5 ¼ 0.65: ðB1Þ

Having specified cV , one can easily find c2s and s, as shown
in Fig. 13. It can be inferred by extrapolation from Fig. 13
and rigorously from Eq. (38) that c2s → 0 at the critical
temperature. In addition, the out of equilibrium con-
tribution of the slow mode becomes zero, right at the
critical point.

FIG. 12. Modes for α ¼ 12 in the complex w–plane, at various values of the complexified momentum q2 ¼ jq2jeiθ. Large dots
correspond to the poles with purely real momentum (i.e., at θ ¼ 0). As θ increases from 0 to 2π, each pole moves counterclockwise
following the trajectory whose color changes continuously from blue to red. In all panels, the two blue dots located in the third and
fourth quadrants indicate the two sound modes and the single blue dot on the vertical axis illustrates the slow mode, at θ ¼ 0.
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Hydrodynamic Diffusion and Its Breakdown Near AdS2
Quantum Critical Points, Phys. Rev. X 11, 031024 (2021).

[16] M. P. Heller, A. Serantes, M. Spaliński, V. Svensson, and B.
Withers, Hydrodynamic gradient expansion in linear re-
sponse theory, Phys. Rev. D 104, 066002 (2021).

[17] N. Abbasi and M. Kaminski, Constraints on quasinormal
modes and bounds for critical points from pole-skipping, J.
High Energy Phys. 03 (2021) 265.

[18] M. Asadi, H. Soltanpanahi, and F. Taghinavaz, Critical
behaviour of hydrodynamic series, J. High Energy Phys. 05
(2021) 287.

[19] M. Baggioli, U. Gran, and M. Tornsö, Collective modes of
polarizable holographic media in magnetic fields, J. High
Energy Phys. 06 (2021) 014.

[20] N. Wu, M. Baggioli, and W. J. Li, On the universality of
AdS2 diffusion bounds and the breakdown of linearized
hydrodynamics, J. High Energy Phys. 05 (2021) 014.

[21] H. S. Jeong, K. Y. Kim, and Y.W. Sun, Bound of diffusion
constants from pole-skipping points: Spontaneous sym-
metry breaking and magnetic field, J. High Energy Phys.
07 (2021) 105.

[22] S. Grozdanov, A. O. Starinets, and P. Tadić, Hydrodynamic
dispersion relations at finite coupling, J. High Energy Phys.
06 (2021) 180.

[23] A. Jansen and C. Pantelidou, Quasinormal modes in charged
fluids at complex momentum, J. High Energy Phys. 10
(2020) 121.

[24] M. P. Heller, A. Serantes, M. Spaliński, V. Svensson, and B.
Withers, The Hydrodynamic Gradient Expansion Diverges
Beyond Bjorken Flow, Phys. Rev. Lett. 128, 122302 (2022).

[25] H. S. Jeong, K. Y. Kim, and Y.W. Sun, The breakdown of
magneto-hydrodynamics near AdS2 fixed point and energy
diffusion bound, J. High Energy Phys. 02 (2022) 006.

[26] K. B. Huh, H. S. Jeong, K. Y. Kim, and Y.W. Sun, Upper
bound of the charge diffusion constant in holography,
arXiv:2111.07515.

[27] Y. Liu and X. M. Wu, Breakdown of hydrodynamics from
holographic pole collision, J. High Energy Phys. 01 (2022)
155.

[28] K. Rajagopal, G. Ridgway, R. Weller, and Y. Yin, Under-
standing the out-of-equilibrium dynamics near a critical
point in the QCD phase diagram, Phys. Rev. D 102, 094025
(2020).

[29] P. Kovtun, Lectures on hydrodynamic fluctuations in
relativistic theories, J. Phys. A 45, 473001 (2012).

[30] M. Pradeep, K. Rajagopal, M. Stephanov, and Y. Yin,
Freezing out critical fluctuations, arXiv:2109.13188.

[31] K. Kawasaki, Kinetic equations and time correlation func-
tions of critical fluctuations, Ann. Phys. (N.Y.) 61, 1 (1970).

[32] D. T. Son and M. A. Stephanov, Dynamic universality class
of the QCD critical point, Phys. Rev. D 70, 056001 (2004).

[33] M. Kardar, Statistical Physics of Particles (Cambridge
University Press, Cambridge, England, 2007).

[34] X. An, G. Basar, M. Stephanov, and H. U. Yee, Relativistic
hydrodynamic fluctuations, Phys. Rev. C 100, 024910
(2019).

[35] M. Martinez, T. Schäfer, and V. Skokov, Critical behavior of
the bulk viscosity in QCD, Phys. Rev. D 100, 074017
(2019).

[36] P. Kovtun and L. G. Yaffe, Hydrodynamic fluctuations, long
time tails, and supersymmetry, Phys. Rev. D 68, 025007
(2003).

[37] Y. Akamatsu, A. Mazeliauskas, and D. Teaney, A kinetic
regime of hydrodynamic fluctuations and long time tails for
a Bjorken expansion, Phys. Rev. C 95, 014909 (2017).
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