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High-multiplicity signatures at particle colliders can arise in Standard Model processes and beyond.
With such signatures, difficulties often arise from the large dimensionality of the kinematic space. For final
states containing a single type of particle signature, this results in a combinatorial problem that hides
underlying kinematic information. We explore using a neural network that includes a Lorentz Layer to
extract high-dimensional correlations. We use the case of squark decays in R-Parity-violating Supersym-
metry as a benchmark, comparing the performance to that of classical methods. With this approach, we
demonstrate significant improvement over traditional methods.
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At particle colliders such as the Large Hadron Collider
(LHC) [1], there is a need to probe high-multiplicity
signatures to study the decays of Standard Model (SM)
particles and to search for new physics. There, the visible
decay products from proton-proton interactions are mea-
sured by detectors, such as CMS and ATLAS, as a
collection of N four-momentum vectors. Since each
momentum contains four components, the measured kin-
ematic feature space per reconstructed collision event is
R*N. When the decay chains are complex and N is large,
this dimensionality can be large enough that combinatorics
prevent effective interpretation of the decay history. The
aim of this letter is to highlight the capacity of machine
learning (ML) to handle combinatorial problems more
accurately and robustly than existing methods.

We are interested in event interpretation: the problem of
matching parent and child particles. One often has many
candidate interpretations of the decay history and must
decide which is correct or accept a background from the
incorrect interpretations. In the limit that all final-state
particles have the same kind of experimental signature,
even events with low multiplicity are swamped with
combinatorial background making explicit mass resonance
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reconstruction or crafting useful high-level observables
difficult.

Since this problem has existed for decades, classical
techniques (i.e., without ML) have been developed to
overcome it. Minimizations over the set of combinations
in invariant mass or angle are particularly popular for
simple signatures [2]. For more complex scenarios, other
analyses have used event-level y?> minimization [3], the
Dalitz variables for three-body decays [4,5], jet substruc-
ture [6,7], and accidental substructure for avoiding combi-
natorics [8-10].

In this work, we demonstrate how a simple ML model
can outperform the two most prominent existing methods
for an example benchmark. We focus on a case inspired by
R-parity-violating (RPV) Supersymmetry (SUSY) as a
proof of concept [11], with a simplified model where
pair-produced heavy stop squarks 7 decay to two SM quarks
each, giving a four-jet final state at leading order. This
signature is ideal for our study because the all-hadronic
(2 x 2) jet topology is one of the simplest cases facing this
combinatorial background. Its relative simplicity allows
traditional methods to retain some utility, unlike in more
complex cases. Despite this simplicity, however, even this
signature remains underprobed at the LHC [12-14].

For the (2 x 2) topology, at leading order, there are
(3)/2 = 3 possible unique pairings. As only one of these is
correct, a simple brute-force approach faces a 200%
combinatorial background, even in a pure sample of signal
events. The problem becomes even more difficult in
practice due to the possible existence of additional high-
momentum jets from initial state radiation (ISR) and
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overlapping particle interactions (pileup). This background
is on top of fully SM background processes with multiple
jets (primarily from pure QCD processes).

Figure 1 shows the level of combinatorial background as
a function of the complexity of symmetrically decaying
pair-produced multijet resonances. For larger multiplicities,
brute-force solutions are significantly less effective. These
high multiplicities may also arise from multistep cascade
decays via on-shell intermediate resonances. In the RPV
model, (2 x 4) and (2 x 5) signatures can easily arise when
the RPV coupling is smaller than the gauge couplings and a
cascade of decays to lighter beyond the standard model
(BSM) particles can occur. These more complex topologies
are particularly interesting because they can contain nested
resonance structure. For example, simple RPV models may
yield gluino g pair production with each § decaying to ggy,
and the 7 further decaying to ggq. To correctly interpret this
topology, one must overcome the ('?)/2 =126 unique
combinations to reconstruct each 5-jet resonance g, and
then the additional (3) = 10 possibilities to resolve each
3-jet resonance } correctly. The fully correct interpretation
of the event is swamped in a combinatorial background of
more than a million percent. Past searches for these
signatures have proven rather weak for these reasons, as
indicated in terms of some past search signal selection
efficiencies shown in blue in Fig. 1 [5,6,10,13-17].
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FIG. 1. Percent combinatorial background given a brute-force

analysis (black) is shown as a function of final-state multiplicity.
Increased complexities from nested resonances are shown for
various intermediate decays (gray). Examples of past search
signal selection efficiencies are also shown (blue) for 1 TeV
resonances from recent LHC searches [5,6,10,13-16].

Similar challenges exist in SM measurements [18,19].
However, in searches for new particles, neither the location
nor the width of a mass peak is known a priori. Therefore, a
method must perform well across a broad range of potential
signal masses and lineshapes to be useful in BSM searches.
Combinatorial problems in SM event reconstruction are at a
significant advantage of being able to use expected reso-
nance masses as strong additional constraints. In the new
particle searches discussed here, only aggregate peaking
qualities and event-level symmetries can be exploited to
reduce the complexity.

Classically, the problem can be constrained significantly
beyond the brute-force approach by optimizing over some
observable quantity. One prominent example for pair
production is the asymmetry variable

|m1 —m2|

A= (1)

m1—|—m2

where m; and m, represent the invariant masses of some
exclusive subsets of objects. In this method, the combina-
torial solution is taken as the particular configuration of
objects into systems 1 and 2 that minimizes .A. This
technique generally works well since at leading order
the invariant mass of half of the objects should be equal
to that of the other half. However, the performance drops
with realistic detector resolutions since the width of the
invariant mass distribution can allow for correct configu-
rations with large A.

Another approach is to minimize the opening angle
between grouped objects using

AR*= " |AR; - C|, (2)
ie{1,2}

where AR; = \/An? + A¢? is the opening angle between
momenta in group i with pseudorapidity # and azimuthal
angle ¢, and C is a customizable offset to optimize for
nonzero opening angles that may be favored by the target
signal. This method is successful when the resonances are
produced well above threshold, with large back-to-back
transverse boost. Using the limiting relation that the scale
of the opening angle between the decay products of each
resonance is roughly (2m/ pr) for a parent particle of mass
m and transverse momentum pr, highly boosted resonan-
ces tend to have collimated decay products such that AR*
minimization performs well. This has been the primary
method (with C = 1) used by ATLAS and CMS for all-
hadronic RPV 7 searches [13,14].

While these techniques have been useful, there is a
significant amount of kinematic information not utilized,
motivating the use of ML for this problem. Convolutional
Neural Networks have been used on event images [20,21],
but are not ideal because using images requires a choice
of pixel segmentation. This results in sparse and higher
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dimensional event representations while neglecting much
of the complex jet physics that produces well-understood
four-vectors. For example, an image of size 50 x 50 with
three channels such as the tracker, ECAL, and HCAL has
7,500 dimensions, a far cry from the 16 dimensions of the
original (2 x 2) problem. More recently, there is ongoing
work on architecture properties tailored to kinematics
problems, as in attention-based networks, for example
[22-25]. Recent studies also explore the use of quantum
annealers to solve similar event topology problems [26].

We deploy a relatively simple, physics-inspired architec-
ture shown in Fig. 2 called CANNONBALL (Combinatorial
Artificial Neural Network ON a BAckronym Lorentz Layer)
based on an idea proposed for top-tagging [27-29] that a so-
called Lorentz Layer can help efficiently utilize the relation-
ships between four-vectors. Events are input as matrices
with each row representing a separate four-momentum
(E, p). A Combination Layer enables the network to add
four-momenta by taking weighted linear combinations of
the input using a single learned matrix and softmax
activation.' The fact that this matrix is learned may provide
robustness against merging of nearby objects, although this
has not been studied. In this implementation, a Lorentz
Layer computes the properties (m, pr, 7, ¢) of those com-
binations.’ Lastly, a Head uses a batch normalization and
feed-forward network to convert these features into an event
label, described below.’

Simulated signal and background events were used to
study performance. These samples were produced using
MadGraph5_aMC@NLO 2.7.3 interfaced to MadEvent and the
RPVMSSM UFO [30,31]. Production of 7 pairs from 13 TeV
pp collisions was simulated with up to one additional
parton in the matrix element from ISR. Each 7 is forced to
decay to two light-flavor quarks. One million events at 7
mass from 0.3 to 2 every 0.1 TeV were generated and split
75/25% for training and testing, resulting in a total training
set size of 13.5M events. For simplicity, these events are
analyzed at parton level as a function of the 7 mass and a
transverse momentum smearing that transforms pr —
N (pt,epr) for a smearing parameter € to account for
loss of information from fragmentation, hadronization, and
detector effects.” Using € rather than looking at
reconstruction-level jets enables a quantitative understand-
ing of how the algorithms perform as information is
removed. Throughout this paper, only parton-level results

'"The softmax ensures that no negative weights are applied
while forming the combinations, as those could result in objects
with m? < 0.

This differs from Ref. [27] as there are no learned weights nor
exotic observables computed. Through testing, this switch
resulted in faster training and slightly better performance.

The batch normalization was trained for the first epoch to fix
the normalization for the remainder of the training; alternate
schemes were tested and resulted in lower performance.

“In a dedicated study, € values of roughly 20% captured the
spread due to a parton shower model from PYTHIA8.2 [32,33].
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FIG. 2. Network structure of CANNONBALL including combi-
nation and Lorentz Layers. Only some connections are shown for
clarity. All neurons from the Lorentz Layer and after are fully
connected. Neurons represented by a circle correspond to scalar
values, while rectangles denote four-vector-valued neurons.

are presented where loss of information is represented in a
controlled way via e. The angular extent of the hadronic
shower, and therefore the potential for object merging, is
ignored in this study. A background sample of QCD events
containing exclusively pp — 4/5j was also generated at
parton level, where j represents a parton.

Since the benchmark data is at parton level with up to
one additional parton from ISR, CANNONBALL’s input is a
5 x 4 event matrix, representing five four-vectors. There
are no events with more than five partons, and those with
four have the fifth row zero-padded. Explicit masking
within the architecture for this padding was tested and did
not improve results. The target event label is an 8-bit
sequence; the first five bits identify which 4 partons are
produced in the 7 decays, while the last three detail how to
combine them. The network produces a likelihood score for
each bit.

In an attempt to achieve signal mass invariance, a single
network was trained on all mass points at a given €. During
preprocessing, events were shuffled so that the mass points
were mixed with roughly even statistics per batch, and the
input four-vectors were randomly ordered per event. We
also tried pr ordering the inputs and saw better perfor-
mance for fewer-epoch trainings but comparable perfor-
mance for longer trainings.

The networks were implemented using PyTorch [34] and
trained on an NVIDIA Quadro RTX using CUDA version
11.5 [35]. Binary Cross Entropy was minimized using the
Adam optimizer over 30 epochs with a learning rate of 1073
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and a batch size of 10 k [36]. The large batch size was
important so that each mass sample was well-represented in
the training. The Combination Layer and Head were
chosen to have 30 combinations and three 200-node hidden
layers, respectively. The number of learned parameters was
110 k, corresponding to ~0.8% of the training set size.
Networks were also trained for 20 times longer with the
same architecture and for the same duration with 10x-
wider layers in the Combination Layer and Head, leading to
only a ~1% improvement, so the shorter length and smaller
network was favored for reproducibility.

Figure 3 shows the fraction of correctly reconstructed
events versus stop mass for CANNONBALL, A minimization,
and ART minimization on the testing set. The bands
indicate the degree of pr smearing from ¢ = 0.1 to 0.3.
The classical methods are both significantly outperformed
by the neural network. The AR* minimization performance
does not change with € since the smearing does not modify
the n — ¢ distributions and performs the worst because
most of the stops are not highly boosted. The accuracy
decreases with stop mass because the ratio (2m/pr);
increases with mass, resulting in less collimated decay
products. CANNONBALL performs significantly better than
either of the classical methods across the full range of
masses but with more mass dependence than the A
minimization. This is expected since at lower masses the
kinematics of the signal partons are more similar to those of
ISR, but the general shape is heavily influenced by the
training procedure, architecture choices, and the loss of
information from nonzero e values. At ¢ =0.3 and
m; = 2 TeV, CANNONBALL gives twice the performance

pp = t(5) = qqqq(j), Mc5 anc@xro
T
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FIG. 3. The fraction of correctly reconstructed events for

CANNONBALL (blue), A minimization (orange), and AR mini-
mization (green) as a function of stop mass for py smearing
between € = 0.1 and 0.3.

of the A minimization, and thirty-five times that of the ARZ
minimization.

While Fig. 3 captures the performance as a function of
stop mass, it is useful to understand in which regions of
phase space the methods perform well. To quantify this, we
calculate the Kullback-Leibler (KL) divergence of the four-
dimensional stop momentum probability density functions
(PDFs) [37]. The KL divergence is an entropic distance
measure between multidimensional PDFs defined here as

D (rP) = [ nog(g)dpu ()

=> Y Tlog(%) (4)

pr bins 17,¢p,m bins

= Y DLI™(T|IP. pr). (5)

pr bins

where p* = (prt,7, ¢, m) is a stop four-momentum and the
second line converts 7 and P from continuous PDFs to 4D
histograms of truth and prediction, respectively. A repre-

sentative example of DY (T||P, pr) is plotted in Fig. 4 as
a function of stop pt for my = 1 TeV and € = 0.2. Smaller
values represent more accurate interpretations of the events.
The distribution between truth and itself is shown in black
as a reference for zero divergence. There is a strong pr
dependence for the classical methods that is not present for
the neural network, indicating that the largest performance
gains are in the low stop pt regime. This provides strong
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FIG. 4. KL divergence over the four-momentum phase space
p* = (pr,n, ¢, m) space in bins of pr of CANNONBALL (blue),
A minimization (orange), AR* minimization (green) with respect
to truth for my = 1 TeV with e = 0.2. Zero divergence (black) is
shown for visual aid. The total divergences Dg; are shown in
parentheses.
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evidence that CANNONBALL is best at predicting the full
kinematics of the parent stops.

When using these methods in a bump-hunt search, shape
discrimination between the QCD multijet background and
the hypothesis signal is crucial. Failing to correctly solve the
combinatorial problem leads to decreased discrimination
power. In particular, analyses often search in the average
mass space My, = 1(m; 4+ my), where m; and m, are the
predicted candidate stop masses. CANNONBALL results in a
more sharply peaked distribution than either of the other
methods across all mass points considered. Figure 5 shows a
shape comparison between the resulting m,,, distributions
for the same signal model shown in Fig. 4. CANNONBALL
most faithfully reproduces the true signal lineshape.

The blue filled histogram in Fig. 5 shows the shape of the
QCD background contribution after applying the interpre-
tation given by CANNONBALL, giving a smoothly falling
distribution after an initial kinematic turn-on. None of these
three methods significantly sculpt the QCD background
distribution away from a steeply falling distribution in the
mass range of interest. Figure 5 also shows the resulting
QCD distributions from the classical methods, showing no
significant sculpting. Final discovery sensitivity of each
method will depend on the comparison between the shapes
from QCD and signal for a given combinatorial solution.
Determination of the properties of such a new particle
would be best done using CANNONBALL.

In addition to its ability to improve event reconstruction,
this approach would also easily fit into current analysis
paradigms. The background estimation techniques, sys-
tematic uncertainty evaluation, observable construction,
and statistical treatment will still apply from the classical

pp — t(4) = qqqq(j), Mcd avc@xro

— T T
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FIG. 5. A shape comparison of the per-event average candidate
mass from CANNONBALL (blue), A minimization (orange), AR®
minimization (green) for m; = 1 TeV with ¢ = 0.2 and simulated
QCD background.

iterations of this analysis. In its simplest form, its just
that the separation power of existing variables will be
improved by decreasing the contributions from combina-
torial backgrounds.5

The ability to use classical treatments for the evaluation
of systematic uncertainties is a major advantage of this
method. In previous work, no dedicated systematic was
ever placed on the combinatorial solution method. Instead,
experimental uncertainties were propagated to the details of
the background estimate and on the final observables
[13,14]. Replacing these classical combinatorial solutions
with that from CANNONBALL gives no additional source of
systematic uncertainty. Existing techniques fully cover the
analysis uncertainty, without the complications seen when
full-event classification networks are used [20,21].

There are several outstanding questions left for future
work. One drawback of this architecture is that it operates via
matrix multiplications on full events and therefore requires
fixed-size inputs. In signatures with many jets, users would
have to increase the architecture size considerably or exclude
jets from consideration. A more robust method could natively
handle variable size inputs. Theoretical analysis of the
architecture, its functional representation and Jacobian,
and generalizations are needed to better understand what
is learned. Lastly, we aim to explore how to effectively use
parton-level information to constrain learned representations
of smeared or reconstruction-level events.

In summary, we have identified that the combinatorial
background often becomes the primary challenge at high
multiplicities and demonstrated a considerable perfor-
mance increase on a simple (2 x 2) multijet signature as
a function of resonance mass assuming realistic resolutions.
Future work will extend the complexity of the signature and
therefore the network, making those problems from well-
motivated signatures tractable. More broadly, we advocate
for an increased program of ML focusing on kinematic
problems where there is an overabundance, rather than a
lack, of information.

We thank Javier Montejo Berlingen, Kate Pachal, Zach
Marshall, Steve Farrell, Kelechi Ukah, the Harvard LPPC,
Anna Sfyrla and her group, the ATLAS RPV multijet
group, and Dan Guest for useful discussions and sugges-
tions. This work has been supported by the Department of
Energy, Office of Science, under Grant No. DE-
SC0007881 (J.H., A.B., and L.L.), and the Harvard
Frederick Sheldon Traveling Fellowship (A.B.). This
project has received funding from the FEuropean
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(Grant Agreement No. 787331).

>For this exact signature, a ML approach to constructing an
optimal ABCD observable plane is suggested in Ref. [38],
although no attempt is made at improving the combinatorial
treatment.
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