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We show that models in which the strongCP problem is solved by introducing an axion field with a mass
enhanced by non-QCD UV dynamics at a scale ΛSI exhibit enhanced sensitivity to external sources of CP
violation. In the presence of higher-dimensional CP-odd sources at a scale ΛCP, the same mechanisms that
enhance the axion mass also modify the axion potential, shifting the potential minimum by a factor
∝ Λ2

SI=Λ2
CP. This phenomenon of CP-violation enhancement, which puts stringent constraints on the scale

of new physics, is explicitly demonstrated within a broad class of “small instanton” models with CP-odd
sources arising from the dimension-six Weinberg gluonic and four-fermion operators. We find that for
heavy axion masses ≳100 MeV, arising from new dynamics at ΛSI ≲ 1010 GeV, CP violation generated
up to the Planck scale can be probed by future electric dipole moment experiments.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has two
sources of CP violation. The well-established and mea-
sured source of CP violation in the quark mixing sector, the
Kobayashi-Maskawa phase [1], is responsible for a multi-
tude of CP-violating phenomena observed in the quark
flavor-changing transitions. At the same time, this phase
induces electric dipole moments (EDMs) of neutrons and
heavy atoms well below current experimental limits. The
other source ofCP violation, the nonperturbative parameter
θ of quantum chromodynamics (QCD), is largely irrelevant
for flavor physics, but tends to induce large EDMs. The
nonobservation of EDMs that imply the smallness of theta,
jθj≲ 10−10 [2,3], contrasted with the naive expectation of
θ ∼Oð1Þ, poses a naturalness problem for the Standard
Model, the strong CP problem.
There are two generic approaches to resolve the strong

CP problem. The first approach involves promoting the θ
parameter to a new dynamical field, the QCD axion [4–10],
which symbolically can be represented as

θ

32π2
Gc

μνG̃
cμν →

1

2
ð∂μaÞ2 þ

a
32π2fa

Gc
μνG̃

cμν; ð1Þ

where Gc
μν is the gluon field strength, G̃cμν ≡ 1

2
εμνρσGc

ρσ

with c the adjoint index and fa is the decay constant of the
axion field a. The QCD vacuum energy, which for small θ
can be parametrically expressed as

EðθÞ ∝ θ2mqΛ3
QCD → VðaÞ ¼ 1

2
m2

aa2; ð2Þ

can be made to dynamically relax to the minimum of the
potential VðaÞ. In this expression, ΛQCD is the nonpertur-
bative scale of the strong interactions, and mq is the light
quark mass. As a result, any initial value of θ ¼ a=fa will
relax to the minimum of the axion potential. In the absence
of additional sources of CP violation, this minimum is
exactly at θ ¼ 0, as in Eq. (2). Therefore, the neutron EDM
that scales as

dn ∝
mqθ

Λ2
QCD

ð3Þ

is also relaxed to zero.
Consider now additional sources of CP violation placed

at some new physics scale ΛCP that we will assume to be
larger than the electroweak scale (for example, this could be
due to supersymmetric theories with large CP-violating
phases). Integrating out the new physics at this scale will, in
general, result in a number of generic consequences:
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(1) The theta parameter may receive additive corrections
to its value, θ → θ þ θrad. Since GG̃ is a dimension
four operator, θrad can depend only on the ratio of
scales, and therefore has Λ0

CP scaling. Potentially,
this can be a large correction, but the axion mecha-
nism will remove the theta term together with θrad.

(2) CP-violating new physics will generically induce
higher-dimensional CP-odd operators, of which the
most relevant are dimension six operators, O6 that
are suppressed by the square of the new physics
scale, and the resulting EDMs will have scaling
dnðO6Þ ∝ ΛQCD=Λ2

CP (or mq=Λ2
CP, depending on the

chiral properties of O6).
(3) In the presence of higher-dimensional CP-odd

new physics operators, the axion potential minimum
shifts away from zero inducing a low-energy value of
theta, θind ∝ Λ2

QCD=Λ2
CP. This leads to an additional

θ-induced contribution to dn that has, for example, a
comparable mq=Λ2

CP scaling [11–13].
An important conclusion can be drawn from these

observations: the QCD axion mechanism ensures that for
sufficiently large ΛCP, the observable EDMs can be made
small and indeed within current bounds for ΛCP≳100 TeV,
one can allow for an arbitrarily large amount of (strong) CP
violation above these scales. In this sense, the axion
mechanism allows for a proper decoupling of new physics
contributions to EDMs.
The second class of models does not introduce an axion,

and instead appeals to symmetry arguments that help to
argue why θ is zero or small. Historically, models with an
exact CP symmetry or exact parity, that is spontaneously
broken at some UV scale, have been argued to give a viable
solution to the strong CP problem (see Refs. [14–21] for a
representative set of ideas). Models based on mirror
symmetries have also been used to implement this approach
[22,23]. The most important feature of these models is the
absence of a dynamical axion and the sensitivity of EDM
observables to the value of θ generated at a UV scale. For
example, the spontaneous breaking of CP symmetry may
also result in complex quark Yukawa couplings that feed
into θrad (a representative set of calculations can be found
in Refs. [24–28]). Since the θ term has Λ0

CP scaling, this
nondecoupling means that all possible sources of CP
breaking have to be “controlled” to very high scales.
Recently, there has been renewed interest in models that

solve the strong CP problem, which occupy an intermedi-
ate niche between the QCD axion solution and solutions
based on discrete symmetries. In this class of models there
is still a dynamical axion field and Peccei-Quinn symmetry
at a high scale, but the axion mass is now enhanced
compared to (2) by additional dynamical mechanisms at the
small-instanton scale ΛSI. By small instantons we refer to
instantons whose size 1=ΛSI is smaller than the inverse
electroweak scale (see Fig. 1). For example, extending the

strong gauge interactions and the corresponding axion to
a larger group where the non-QCD partners confine at a
much larger scale Λ0

QCD (identified with ΛSI) can lead to a
significant parametric increase in the axion mass provided
Λ0
QCD ≫ ΛQCD [29–33]. Similarly, an axion “portal”

between QCD and a mirror QCD with the alignment of
θ and θ0 can also result in a heavier axion for Λ0

QCD ≫
ΛQCD [23,34]. Alternatively, if the QCD coupling running
is modified to become strong above the TeV scale, the QCD
axion mass would receive new contributions from “small”-
size instantons [35–40]. This naturally occurs in models
where at someUV scale, QCD propagates in five dimensions
[41,42]. These models which significantly enhance the axion
mass compared to the minimal QCD axion models have a
distinctively different phenomenology. Indeed, given the
conventional axion mass range 10−6–10−3 eV, the enhance-
ment mechanisms imply heavy axions could be in the
100 MeV range or above. These heavier axions avoid most
of the astrophysical bounds, and make the axion amenable to
searches at beam dump and collider experiments [34,39].
Moreover, such heavy axions will be less susceptible to
possible distortions of the axion potential by the imperfec-
tions of the Peccei-Quinn global symmetry.
Besides the enhanced axion mass it is therefore also

interesting to consider whether EDM observables could be

FIG. 1. Schematic diagram of the different scales referred to in
the text. The scale of CP violation, ΛCP due to dimension six
operators, is a UV scale near the Planck scale,MP, and ΛSI is the
small-instanton scale (assumed to be above the electroweak scale,
v and QCD strong coupling scale, ΛQCD) where new dynamics
enhances the axion mass. The PQ symmetry breaking scale fa is
assumed to be an independent parameter that can either be above
(as shown in the figure) or below the scale ΛSI.
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enhanced in these models. In this paper we investigate heavy
axion models in the presence of additional sources
of CP violation, which are parametrized as higher-
dimensional operators that arise from SM fields and are
not related to Planck scale gravitational corrections associated
with the axion quality problem. The central question we
would like to address is whether there is a similar decoupling
as for the standard QCD axion, where all observables from,
for example, dimension six operators, scale asΛ2

QCD=Λ2
CP, or

if there is an enhancement of CP violation mediated by the
induced θ which is similar to models attempting to solve the
strong CP problem using exact parity or CP symmetries.
To answer this question we compute the topological

susceptibility and mixed correlators in heavy axion models
that arise from two sources of CP violation: the dimension
six Weinberg gluonic operator and a CP-odd four-fermion
operator. Such CP-odd operators induce a linear term
in θ (or equivalently a) in the axion potential leading to
a shift θind in the potential minimum. Similar contributions
were proposed in [36], and were estimated on dimensional
grounds for fermionic and scalar operators in [37,38,43].
Instead of relying on dimensional analysis our compu-

tation employs a simple, noninteracting instanton (or anti-
instanton) background that ignores strong coupling effects,
where we are able to extract qualitative results which show
that the induced theta, θind ∝ Λ2

SI=Λ2
CP.

This induced shift is qualitatively different from the
usual QCD axion scenario and solutions based on exact
discrete symmetries due to the presence of the new scale
ΛSI. While there is still decoupling in the ΛCP → ∞ limit,
our results show that the induced θ can enhance the
magnitude of observable EDMs, even to the point that if
Λ2
SI=Λ2

CP is too large, the strong CP problem will reappear.
Thus, models with a dynamically enhanced axion mass are
subject to bounds depending on the amount of CP violation
that is present at energy scales that may significantly
exceed 100 TeV. Interestingly, the enhanced EDMs are
potentially observable in future EDM experiments.
This paper is organized as follows: in Sec. II we

investigate vacuum correlators in an instanton (or anti-
instanton) background with different sources of CP vio-
lation that shift the axion potential minimum. In Sec. III, we
consider different heavy QCD axion models with small
instantons, deriving the resulting size of the induced θ and
subsequent constraints on the CP-violating scale, ΛCP. We
reach our conclusions in Sec. IV.

II. INSTANTON CORRELATION FUNCTIONS

We begin with briefly reviewing QCD dynamics and the
instanton solution that will be used to compute various
instanton correlation functions. The pure Yang-Mills part of
the QCD Lagrangian is given by

LQCD ¼ −
1

4g2
Ga

μνGaμν þ θ

32π2
Ga

μνG̃
aμν; ð4Þ

where g is the QCD gauge coupling, θ is the QCD vacuum
angle, and a ¼ 1;…; 8 labels the gauge adjoint represen-
tation. The BPST instanton solution [44] is given by

Aa
μðxÞ ¼

2ηaμνðx − x0Þν
ðx − x0Þ2 þ ρ2

; ð5Þ

where the instanton is located at x0 and has a size ρ. The ηaμν
denote the group-theoretic ’t Hooft η symbols [45]. The
topological charge is defined to be

Q ¼ 1

32π2

Z
d4xGa

μνG̃
aμν; ð6Þ

where Q ¼ 1 for the one instanton solution (5). We will
next compute correlation functions in the instanton (or anti-
instanton) background (5) that will be useful in obtaining
contributions to EDM observables such as the neutron
EDM.

A. Topological susceptibility

The vacuum-to-vacuum amplitude in QCD can be
written as

h0j0i ¼
X
Q

Z
DAðQÞ

μ e−SE; ð7Þ

where the Euclidean action for (4) in an instanton back-
ground of charge Q [46] is given by

SE ¼ 8π2

g2
jQj þ iQθ: ð8Þ

The topological susceptibility is then introduced as [8,11,47]

χð0Þ ¼ −i lim
k→0

Z
d4xeikx

× h0jT
�

1

32π2
GG̃ðxÞ; 1

32π2
GG̃ð0Þ

�
j0i; ð9Þ

where GG̃ is shorthand notation for Ga
μνG̃

aμν.
Since the amplitude in the jQj > 1 instanton background

becomes more exponentially suppressed, only the Q ¼ �1
configurations dominate the path integral. Henceforth, we
refer to SE in (8) only for jQj ¼ 1. In the instanton
background (5) we then obtain the two-point correlator

h0jTfGG̃ðxÞ; GG̃ð0Þgj0iQ¼þ1

¼
Z

DAμGG̃ðxÞGG̃ð0Þe
−8π2

g2
0 ; ð10Þ
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¼
Z

d4x0
dρ
ρ5

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ

×
192ρ4

ððx − x0Þ2 þ ρ2Þ4
192ρ4

ðx20 þ ρ2Þ4 ; ð11Þ

where the running coupling gð1=ρÞ encodes corrections
from the quantum fluctuations. In (10) we have replaced the
path integral over the fluctuation Aμ with an integration in
(11) over the collective coordinates (see Ref. [45]) where,
assuming an SUðNÞ gauge group,1 the coefficient

C½N� ¼ C1e−C2N

ðN − 1Þ!ðN − 2Þ! ; ð12Þ

and C1, C2 are order one constants (C1 ¼ 0.466, C2 ¼
1.679 using Pauli-Villars regularization [49]). The gauge
coupling running is given by

8π2

g2ð1=ρÞ ¼
8π2

g20
− b0 logðMUVρÞ; ð13Þ

where b0 ¼ 4N − N=3 ¼ 11N=3 is the pure SUðNÞ Yang-
Mills β-function coefficient and g0 ¼ gðMUVÞ with UV
cutoff MUV.
In principle, we could consider an ensemble of instan-

tons and anti-instantons [50–52] to compute correlation
functions. However, the qualitative aspects of such an
ensemble can be simply captured by one instanton and
one anti-instanton [53,54], where the (anti-)instantons are
assumed to be noninteracting with each other and can be
justified in the weak coupling regime. Thus, we will
compute correlation functions by adding the contribution
from an instanton background to that in an anti-instanton
background. The total contribution to the topological
susceptibility, obtained by performing the x integration
first that arises from (9), followed by the x0 integration in
(11), is then given by

χð0Þ ¼ −2i
Z

dρ
ρ5

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ: ð14Þ

Assuming an asymptotically free theory, the integral in (14)
is divergent for large instantons but can be evaluated with a
IR cutoff ρIR on the instanton size. Assuming N ¼ 3 with
ρIR ¼ 1=ΛQCD we obtain χð0Þ ∝ Λ4

QCD.

1. Fermion contributions

The introduction of fermions modifies the path
integral and the collective coordinate integration. In the
massless fermion limit, the pure vacuum-to-vacuum tran-
sition amplitude is zero. Instead, the instanton now causes
transitions from left-handed to right-handed fermions
violating the Uð1Þ chiral symmetry so that, for example,
h0jψ̄RiψLij0i ≠ 0. Thus, instantons only contribute to
correlation functions in which each fermion flavor and
chirality appears at least once.
The effect of massless fermions is usually formulated as

an “effective” Lagrangian [45,49]

Lf ¼
Z

d4x0
dρ
ρ5

C½N�e0.292Nf

�
8π2

g2ð1=ρÞ
�

2N
e−SE

× ρ3Nf det½ψ̄Rðx0ÞψLðx0Þ� þ H:c:; ð15Þ

where the determinant is taken over the Nf fermion flavors,
and ψα

L;Rðx0Þ are the fermion zero modes. The constant
e0.292Nf assumes Pauli-Villars regularization and the gauge
coupling running (13) now includes the fermion contribu-
tions b0 → b0 − 2=3Nf.
Note that because of the explicit appearance of the

fermion zero modes ψL;Rðx0Þ in (15), there is only a
contribution to the axion potential if the external fermion
zero mode legs are closed. There are two ways this can
occur. The first way is to assume that the fermions have an
explicit mass mf [corresponding to a nonzero Higgs
vacuum expectation value (VEV), v ≈ 246 GeV] that con-
nects left- and right-handed fermion fields. The determinant
in the effective action then gives a contribution ∝ ðρmfÞNf

for Nf fermion flavors. This is the case for the usual
contributions from “large” instantons with ρ ∼ ρIR ¼
1=ΛQCD and mf ≲ ΛQCD. However, since we are interested
in “small” instantons corresponding to instanton sizes
(∼1=ΛSI) much smaller than the inverse of the electroweak
scale, a second possibility is to close the external fermion
zero-mode legs in (15) with Nf=2 Higgs bosons. This
contribution will be proportional to the product of Yukawa
couplings (times a loop factor) and is larger than the Higgs
VEV contribution that now scales as ∼ðmf=ΛSIÞNf (assum-
ing ΛSI ≫ v). Instead of proceeding with the ’t Hooft
determinant operator in the effective Lagrangian (15)
we will follow the approach taken in Refs. [38,40] and
directly compute the vacuum-to-vacuum amplitude by
including the Higgs-fermion Yukawa interaction in the
path integral.
Consider a Higgs field H which couples to Nf flavors of

massless fermions with the following Euclidean action:

SH ¼ Sð0ÞH − i
Z

d4x
XNf

i¼1

yiffiffiffi
2

p HðxÞψ̄ iðxÞψ iðxÞ; ð16Þ

1In principle, we should also include the normalized Haar
measure of the group, as computed in [40,48]. We will omit this
measure since its value is simply one for (11) [or anOð1Þ number
in more generic cases], and therefore our qualitative results
remain unchanged.
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where Sð0ÞH is the quadratic (free) part of the Higgs action
and yi are the Yukawa couplings. The Yukawa couplings,
or equivalently the fermion masses, have been redefined to

be real with their phase included in θ̄ ¼ θ þ Arg DetMq,
where Mq is the quark mass matrix. The vacuum-to-
vacuum amplitude now takes the form

h0j0iΔQ¼1 ¼
Z

d4x0
dρ
ρ5

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e−SE
Z

DHe−S
ð0Þ
H DψDψ̄e−S

ð0Þ
ψ þi

R
d4x

PNf
i¼1

yiffiffi
2

p HðxÞψ̄ iðxÞψ iðxÞ;

¼
Z

d4x0
dρ
ρ5

C½N�e0.292Nf

�
8π2

g2ð1=ρÞ
�

2N

e−SEðNf − 1Þ!!
�YNf

i¼1

yiρffiffiffi
2

p
�
INf=2 ð17Þ

where the action SE is defined in (8) with θ → θ̄. The first
line in (17) shows the collective coordinate integration
arising from the gauge field part of the path integral and the
second line contains the Higgs and massless fermion

contributions to the path integral with Sð0Þψ the quadratic
(free) part of the fermion action. Integrating over the
fermionic fields introduces the factor e0.292Nf and the
running gauge coupling now contains fermionic contribu-
tions via b0 → b0 − 2=3Nf. Finally, the path integral
over the Higgs field gives a nonzero contribution to the
amplitude provided all Higgs fields are contracted where
ðNf − 1Þ!! is the number of Higgs contractions and the
quantity I is given by [38,40]

I ¼ −
Z

d4x1

Z
d4x2ψ̄

ð0Þ
i ðx1Þψ ð0Þ

i ðx1Þψ̄ ð0Þ
j ðx2Þψ ð0Þ

j ðx2Þ

×ΔHðx1 − x2Þ;

¼ ρ4

4π8

Z
d4x1

Z
d4x2

Z
d4k

1

k2 þm2
H

e−ikðx1−x0Þ

ððx1 − x0Þ2 þ ρ2Þ3

×
eikðx2−x0Þ

ððx2 − x0Þ2 þ ρ2Þ3 ;

≈
� 1

12π2ρ2
mHρ≪ 1;

1
5π2m2

Hρ
4 mHρ≫ 1:

ð18Þ

In the second line of (18) we have substituted for the scalar
Feynman propagator ΔHðx1 − x2Þ and the fermions have
been replaced with their respective zero mode expressions
given in [49]. Note that for an instanton background we

have two zero modes ψ̄ ð0Þ
i;L;ψ

ð0Þ
j;R (and ψ̄ ð0Þ

i;R;ψ
ð0Þ
j;L in an anti-

instanton background) where the subscripts L, R, which are
suppressed hereon, denote left- and right-handed fields,
respectively. Thus, combining (18) and (17) gives the final
expression (assuming mHρ ≪ 1)

h0j0iΔQ¼1 ¼
Z

d4x0
dρ
ρ5

Cf½N�
�

8π2

g2ð1=ρÞ
�

2N

e−SE; ð19Þ

with SE defined in (8) (assuming θ → θ̄), and

Cf½N�≡ ðNf − 1Þ!!
�
2

3

�
Nf=2

�YNf

i¼1

yi
4π

�
e0.292NfC½N�: ð20Þ

The expression (19) shows how the instanton density
in the vacuum-to-vacuum amplitude is modified in the
presence of massless fermions and a Higgs-fermion Yu-
kawa interaction. As expected, the amplitude vanishes if
any Yukawa coupling is zero. Thus, the topological
susceptibility (14) in the presence of massless fermions
is obtained by the substitutions C½N� → Cf½N�, θ → θ̄, and
b0 → b0 − 2=3Nf.
In the case of “large” instantons associated with the scale

1=ΛQCD, the expression for the vacuum-to-vacuum ampli-
tude differs from (19). As already mentioned, each
light fermion (mf ≲ ΛQCD) introduces an e0.292ρmf factor.

2

This can be seen via the first line in (18) where ΔH can be
replaced by v2, which just gives I ¼ v2, and hence:

h0j0iΔQ¼1 ¼
Z

d4x0
dρ
ρ5

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e−SE

×

�YNL

i¼1

ρmi

�
e0.292NL; ð21Þ

where the product runs only over NL light fermions
and mi ¼ yiv=

ffiffiffi
2

p
.

B. Weinberg gluonic operator

The Weinberg operator is a purely gluonic, CP odd,
dimension six term given byOW ¼ GGG̃ [56] that leads to
the Lagrangian term

L ⊃
1

Λ2
W
GGG̃; ð22Þ

2In QCD, χð0Þ ∝ mf, whereas the χð0Þ resulting from (21)
∝ mNL

f . The difference can be understood in terms of instanton-
(anti-)instanton interactions—either via mixing between the
fermion zero modes of the instanton with those of the anti-
instanton [55] or using ’t Hooft vertices with fermion legs joined
between an instanton and anti-instanton [51].
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where ΛW is an effective UV scale. The operator (22) can
induce a shift in the axion potential minimum, which can be
computed by considering the mixed correlator [13,57]

χWð0Þ ¼ −i lim
k→0

Z
d4xeikx

× h0jT
�

1

32π2
GG̃ðxÞ; 1

Λ2
W
GGG̃ð0Þ

�
j0i: ð23Þ

In the instanton background (5) we obtain

OW ¼ fabcGa
μκGb

κνG̃
cνμðxÞ ¼ −

1536ρ6

ððx − x0Þ2 þ ρ2Þ6 ; ð24Þ

where fabc are the structure constants. Note that for an
SUðNÞ gauge group, the SUð2Þ instanton solution is
embedded in the top left corner of the N × N matrix of
SUðNÞ generators. Thus, the sum in (24) only gives
nonzero contributions for a, b, c ¼ 1, 2, 3. Furthermore,

h0jTfGG̃ðxÞ; GGG̃ð0Þgj0iQ¼þ1

¼
Z

DAμGG̃ðxÞGGG̃ð0Þe
−8π2

g2
0 ;

¼
Z

d4x0
dρ
ρ5

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ

×
192ρ4

ððx − x0Þ2 þ ρ2Þ4
−1536ρ6

ðx20 þ ρ2Þ6 : ð25Þ

Again performing the integrals first over x and then x0 gives

χWð0Þ ¼ 2i
384π2

5Λ2
W

Z
dρ
ρ7

C½N�
�

8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ; ð26Þ

wherewe have also included the anti-instanton contribution.
In the presence of fermions, χWð0Þ is obtained by making

the substitutions C½N� → Cf½N� for small instantons [or by
introducing the factor ðρmfÞNL, as in (21) for large
instantons], θ → θ̄ and b0 → b0 − 2=3Nf in the running
gauge coupling gð1=ρÞ.

C. Four-fermion operators

Another class of dimension six operators which can
affect the axion solution are the four-fermion operators.
Such operators are suppressed by an effective mass scale
ΛF and given by

L ⊃
X
ijkl

λijkl
Λ2
F
ψ̄ iψ jψ̄kψ l; ð27Þ

where λijkl are complex coefficients with flavor indices
i, j, k, l. Note that the spinor and electroweak structure
has been suppressed in (27), although it is straightforward to
incorporate these details. Of particular interest is the spinor
structure of (27) resulting in CP violation. These are

operators of the type OF;ijkl ¼ ψ̄ iiγ5ψ jψ̄kψ l which are
anti-Hermitianwith thecorrespondingλijkl purely imaginary.
TheCP-violating effect arising from (27) can be obtained

by including the four-fermion interactions in the path
integral (17). These operators allow for new ways to close
the fermion legs in the ’t Hooft vertex, as depicted in Fig. 2.
The largest contribution arises from just one insertion ofOF,
as shown in Fig. 2(a), while more insertions of the four-
fermion operator, such as in Fig. 2(b) are suppressed by
powers ofΛF. Similar to the definition (23) for χWð0Þwe can
define a fermion mixed correlator

χF;ijklð0Þ¼−i lim
k→0

Z
d4xeikx

× h0jT
�

1

32π2
GG̃ðxÞ;λijkl

Λ2
F
OF;ijklð0Þ

�
j0i: ð28Þ

The only operators contributing to the fermion path
integral are those with two pairs of flavor indices
(i ¼ j ≠ k ¼ l or i ¼ l ≠ k ¼ j), i.e., OF;iijj, and OF;ijji,
both of which are hereon generically referred to as OF;ij

with the corresponding coupling constant λij ≡ λiijj (or
λijij). The explicit expression for such a generic operator
OF;ij can be computed as

(a)

(b)

FIG. 2. The t’Hooft vertex that includes the insertion of four-
fermion operators. Fermion legs are closed with one four-fermion
operator OF and two Higgs-fermion Yukawa interactions (a) and
three four-fermion operators OF (b).
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χF;ijð0Þ ¼ −2i
Z

d4x0
dρ
ρ5

C½N�e0.292Nf

�
8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ

×
2λij
yiyj

ðNf − 3Þ!!
�YNf

k¼1

ykρffiffiffi
2

p
�
INf=2−1

1

Λ2
F
ψ̄ ð0Þ
i iγ5ψ

ð0Þ
i ψ̄ ð0Þ

j ψ ð0Þ
j ð0Þ 1

32π2

Z
d4xGG̃ðxÞ;

¼ 2i
2ð−iλijÞ
yiyj

Z
dρ
ρ5

Cf½N�
Nf − 1

�
8π2

g2ð1=ρÞ
�

2N 12

5ρ2Λ2
F
e
− 8π2

g2ð1=ρÞ; ð29Þ

where we have also included the effect of the anti-instanton.
The part of OF;ij contributing to the path integral in the
instanton background is iψ†

L;iψR;iψ
†
L;jψR;j, while in the

anti-instanton background (where GG̃ → −GG̃) it is
−iψ†

R;iψL;iψ
†
R;jψL;j. These two contributions add up3 to

give the factor of 2i in (29).
The result (29) can also be understood in terms of

the results (17) and (18) from the fermionic path integral,
up to the overall ratio of couplings. If we assume that OF
is generated by a heavy scalar of mass ΛF, interacting
with Standard Model quarks via Yukawa interactions,
(18) implies a factor of 12π2ρ2=5π2Λ2

Fρ
4 ¼ 12=5ρ2Λ2

F
relative to the expression (19), which matches the factor
inside the integral. The factor 1=ðNf − 1Þ arises from
having a fewer number of contractions-ðNf − 3Þ!!
compared to (17), assuming only one insertion of the
operator OF;ij.
Furthermore, notice that yi and yj have been explicitly

factored out of (29) to write the result in terms of Cf½N�
defined in (20). For −iλij ∼ 1, this shows that the effect of
the four-fermion operator, being ∝ 1=yiyj, is most
enhanced for the up and down quarks compared to that
from the Weinberg gluonic operator or the second and third
generation quarks. However, the four-fermion operator
coefficient λij can be chirally suppressed by Yukawa
couplings [43]. For example, such four-fermion operators
with a chiral suppression can arise from the overlap of
fermion profiles in extra dimension models [58]. Thus, we
will henceforth assume that −iλij ∝ yiyj so that the effect
of the four-fermion operator is similar to that of the
Weinberg gluonic operator as well as the contributions
from the other generations of quarks.
Assuming −iλij ¼ yiyj=2, we then have NfðNf − 1Þ

contributions of the fermion susceptibility (29) for both
types of operators OF;iijj, and OF;ijji, each. Thus, for
Nf ¼ 6 we obtain

χFð0Þ≡ 2NfðNf − 1ÞχF;ijð0Þ;

¼ 2i
144

5Λ2
F

Z
dρ
ρ7

Cf½N�
�

8π2

g2ð1=ρÞ
�

2N

e
− 8π2

g2ð1=ρÞ: ð30Þ

Using (30) we will place limits on a generic scale ΛF that
represents all of these fermion effects.
Finally, note that in supersymmetric theories the operator

OF can arise from a dimension-four term in the super-
potential [59]. After integrating out the scalar superpartners
this leads to a four-fermion term with

1

Λ2
F
∼

g2

16π2
1

ΛUVmSUSY
; ð31Þ

where ΛUV is the UV scale of the superpotential term and
mSUSY is the supersymmetry-breaking scale of the scalar
superpartners. The bounds on ΛF can thus be interpreted as
bounds on the scalar superpartner masses.

III. INDUCED THETA

Using the results in Sec. II we can now obtain an
estimate for the shift in the axion potential minimum due
to CP-odd operators. In the presence of the Weinberg
operator the axion potential is modified by a linear term in
the axion field

VðaÞ ¼ χWð0Þ
�
a
fa

�
þ 1

2
χð0Þ

�
a
fa

�
2

; ð32Þ

where we have promoted the theta angle to the axion field,
θ̄ → a=fa. This leads to a shift in the potential minimum by
an amount

�
a
fa

�
≡ θind ¼ −

χWð0Þ
χð0Þ : ð33Þ

In the case of four-fermion operators the linear potential
term again causes a shift in the potential minimum given by
(33), with χWð0Þ replaced by χFð0Þ.
The induced θ then directly contributes to EDM observ-

ables such as the neutron EDM where

3Instead, for CP-even operators of the type ψ̄ iψ iψ̄ jψ j there is a
cancellation between the two contributions since ψ†

L;iψR;iψ
†
L;jψR;j

and ψ†
R;iψL;iψ

†
R;jψL;j both appear with the same sign.
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dn ∝
mq

Λ2
QCD

jθindj ¼
mq

Λ2
QCD

χW;Fð0Þ
χð0Þ : ð34Þ

The experimental limit arising from the neutron EDM gives
the constraint

jθindj≲ 10−10; ð35Þ
which can now be used to obtain constraints on various
heavy axion scenarios.4

A. QCD

We first consider the effect of dimension six operators in
QCD with NL light fermions (i.e., mf ≲ ΛQCD). The
induced θ (33) that arises from including the Weinberg
operator is given by

θQCDind ≈ ξW
b0 − 4þ NL

b0 − 6þ NL

Λ2
QCD

Λ2
W

; ð36Þ

where ξW ¼ 384π2=5, b0 is the β-function coefficient and
the CP-violation scale ΛCP is identified with ΛW . Note that
in (36) the product of all light quark masses cancel and the
induced θ becomes small (or decouples) as ΛW → ∞.
Imposing the constraint (35) for QCD (bQCD0 ¼ 9, NL ¼ 3

and ΛQCD ≈ 300 MeV), gives the limit ΛW ≳ 106 GeV on
the effective scale of the Weinberg operator.
For the case of the CP-odd four-fermion operator, the ’t

Hooft vertex now has two fewer factors of ρmf compared to
the topological susceptibility resulting from (21). This
gives a bound similar to ΛW when there is no chirality
suppression in the four-fermion operator, otherwise the ΛF
bound is much weaker. A calculation for θind using the
chiral anomaly can be found in [60], which agrees with our
estimate of the bound on ΛF within an order of magnitude.
As such, current constraints on the neutron EDM

correspond to new CP-violating physics at ∼106 GeV.
Thus, future neutron EDM experiments can probe new CP-
violating sources at scales ranging from ∼106–109 GeV,
beyond which the SM contribution due to the CKM phase
becomes comparable in size.

B. 4D small instantons

1. Product gauge group

A heavy axion can be generated by extending the
QCD gauge group into a product gauge group SUð3Þk ¼
SUð3Þ1 × SUð3Þ2 ×… × SUð3Þk which is spontaneously
broken at a scale ΛSI [39,40]. Small instantons at the scale
ΛSI associated with the product gauge groups lead to this
enhancement. The SM quarks are assumed to be charged

under only SUð3Þ1. In addition, there are k axions, labeled
by i, which couple to the k SU(3) GG̃ terms with decay
constants fai , eliminating the k theta terms.
At the scale ΛSI the QCD gauge coupling α is matched to

the SUð3Þk gauge couplings αi via the relation

1

αðΛSIÞ
¼

Xk
i¼1

1

αiðΛSIÞ
: ð37Þ

This relation implies that each individual coupling αi must
be larger than the QCD coupling at the scaleΛSI. Therefore,
the larger couplings αiðΛSIÞ can make the small instanton
effects dominate over the usual QCD large instantons. This
effect is most dominant in the limit k ≫ 1, where the axion
masses scale as ma1 ∼

ffiffiffiffiffiffiffiffiffiffi
Πfyf

p
Λ2
SI=fa1 (with yf the quark

Yukawa couplings) and mai ∼ Λ2
SI=fai for i ¼ 2…; k,

showing that the lightest axion mass (ma1) can remain
much heavier that the QCD axion mass for ΛSI ≫ ΛQCD.
For concreteness, let us consider the case with small k,

where there is some perturbative control and the instanton
(or anti-instanton) background still gives us qualitatively
accurate results. Assuming the product gauge group is
broken by scalars with a VEV, vϕ, the effective cutoff for
the instanton size then becomes 2πvϕ, in contrast to the
naive expectation, ΛSI [40]. The constraint (35) can then be
used to obtain limits on the scales associated with the
sources of CP violation from the Weinberg and four-
fermion operators. Since the QCD instanton contribution to
χW;Fð0Þ is suppressed by at least Λ2

QCD=Λ2
W;F, the small

instanton contribution from the UV gauge group dominates
and results in

θind ≈ ξW;F
2

b0;i − 6

ð2πvϕÞ2
Λ2
W;F

≈ ξW;F
8π2

b0;i − 6

Λ2
SI

Λ2
W;F

; ð38Þ

where ξF ¼ 24Nf=5, ξW is defined under (36), and we have
assumed ΛSI ≈ vϕ in the second expression in (38). The
constraint (35) then implies ΛSI=ΛW ≲ 10−8 and ΛSI=ΛF ≲
10−7 or ΛSI ≲ 1010ð1011Þ GeV for ΛWðΛFÞ ¼ MP where
MP ¼ 2.4 × 1018 GeV is the (reduced) Planck mass,5

b0;1 ¼ 13=2 and b0;k ¼ 21=2. For i ¼ 2;…; k − 1, the same
expression (38) holds with b0;i ¼ 10, and vϕ →

ffiffiffi
2

p
vϕ,

which does not change the bounds significantly.6 Note
that if UV couplings are included in (22) then the effective

4For simplicity, we will present limits that arise from the
individual operators OW and OF separately. Our results can be
straightforwardly generalized by summing the contributions in
(33) if both operators are present.

5The difference in these two bounds results from the size of the
different prefactors ξW;F, where ξW results from the large number
of color contractions in (23), while ξF arises from the smaller
flavor multiplicity of the four-fermion operator (27).

6It is possible that the axion mass could instead be dominated
by QCD large instantons. But in this case the CP violation
arising from small instantons of the product gauge group gives
the much weaker constraint that ΛSI=ΛW ≲ 10−8 ×ma;QCD=ma1 .
For instance, assuming ma;QCD=ma1 ¼ 103 implies that ΛSI ≲
1013 GeV for ΛW ¼ MP.
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scale ΛW can be larger than MP. Assuming fa > ΛSI, the
limits on ΛW;F correspond to a maximum possible axion
mass enhancement of ∼107 for k ¼ 3 relative to the QCD
axion [39,40]. As such, axion masses ma ≳ 100 MeV with
fa ≲ 107 GeV [61,62] can be explored in future exper-
imental searches.
However, when fa < ΛSI, we need to UV complete the

dimension five axion-GG̃ coupling and explain the PQ
breaking. This can be done in a minimal KSVZ-type
scenario [7,8], by introducing a single heavy Dirac fermion
Ψ, with mass mΨ, charged under the Uð1ÞPQ symmetry,
which changes the instanton measure by a factor of
e0.292ρmΨ. Combining this with the contribution arising
from the running of the gauge coupling between mΨ and
ΛSI, the topological susceptibility (or any similar correla-
tor) is modified to

χð0Þ → χð0Þ b0 − 4

b0 − 11=3

�
mΨ

ΛSI

�
−2=3

e0.292
�
mΨ

ΛSI

�
;

≈ χð0Þ
�
fa
ΛSI

�
1=3

; ð39Þ

where the Yukawa coupling betweenΨ and the PQ scalar is
assumed to be order one, i.e., mΨ ≈ fa. Since m2

a ∝ χð0Þ
this suppresses the axion mass enhancement by an amount
ðfa=ΛSIÞ1=6 [63]. Thus for the experimentally interesting
region of ma ≳ 100 MeV and fa ≲ 107 GeV, the axion
mass enhancement is reduced by up to a factor of 10
when fa < ΛSI.
A similar result is also obtained for an enlarged color

group [32,35,36] where ΛSI is identified with the scale
where the enlarged symmetry group is broken and the
appropriate b0 is used. In all these cases, there is again a
nondecoupling effect that depends on the ratio ΛSI=ΛW;F.

2. Mirror QCD

A heavy axion can also be obtained by assuming that
there exists a Z2 mirror copy of QCD that becomes strong
at a scale Λ0

QCDð≡ΛSIÞ ≫ ΛQCD [22,23,30,31,34]. The
axion is Z2 neutral and couples to both QCD and mirror
QCD, via the interaction

1

32π2
a
fa

εμνρσðGc
μνGc

ρσ þ G0c
μνG0c

ρσÞ; ð40Þ

where G0
μν is the mirror QCD field strength. The axion now

receives contributions from the mirror QCD instantons
(which are small in size relative to those from QCD) and
gives rise to limits on higher dimensional operators with
scales ΛW;F involving gluons and fermions in the mirror
sector.
The mirror QCD expression for the induced θ due to

the Weinberg operator can be obtained by substituting
ΛSI in (36). This leads to the bounds ΛSI=ΛW ≲ 10−7 or
ΛSI≲ 1011 GeV for ΛW ¼MP, assuming the mirror Higgs

VEV v0 ≫ ΛSI such that QCD0 is a pure Yang-Mills theory
at ΛSI with bQCD00 ¼ 11. These bounds for the Weinberg
operator do not change appreciably if this assumption is
relaxed.
The induced θ from the four-fermion operator can be

obtained by considering NL ≥ 2 light flavors in QCD0.
Applying the QCD result (21) for QCD0 then gives

θind;F ≈
2NLðNL − 1Þ

5π2
b0 − 4þ NL

b0 − 8þ NL

Λ4
SI

v02Λ2
F
;

≈
2NLðNL − 1Þ

5π2
b0 − 4þ NL

b0 − 8þ NL

Λ2
SI

Λ2
F
; ð41Þ

where we have taken v0 ≈ ΛSI in the last expression in (41).
Assuming b0 ¼ 9 and NL ¼ 3, implies ΛSI=ΛF ≲ 10−5, or
ΛSI ≲ 1013 GeV for ΛF ¼ MP. Again, the difference in the
ΛW;F bounds arises from the different color and flavor
multiplicity factors.

C. 5D small instantons

Another way for the QCD coupling to become large at a
UV scale and increase the effect of small instantons is to
consider a 5D model where QCD gluons propagate in a
fifth dimension of size R. The axion can be identified with
a UV boundary localized field that couples to QCD via a
coupling proportional to 1=fa, with fa an independent
parameter of the theory. This allows the decay constant to
be either above or below the small instanton scale and
allows for more general possibilities. Above the scale 1=R
the QCD coupling increases in strength until the coupling
becomes strong at the cutoff scale Λ5 which is defined by
the relation [41]

Λ5R ¼ 6πϵ

αð1=RÞ ; ð42Þ

where α ¼ g2=ð4πÞ and ϵ ≤ 1 is a perturbativity parameter.7

The small instanton scale can be identified asΛSI ≡ Λ5. The
4D effective action is approximately given by [41]

Seff ≈
2π

αsð1=RÞ
−
R
ρ
þ b0 ln

R
ρ
; ð43Þ

where the power-law term R=ρ arises from summing over
the 5D Kaluza-Klein gluons. Thus, small instantons of size
1=ΛSI ≲ ρ≲ R can now reduce the effective action and
contribute greatly to the path integral.
Using an approximate expression for the integrals in (14)

and (26) with the effective action (43), the induced θ from
5D small instantons is

7Note that in the 5D model, small instantons can be made to
dominate when perturbativity still holds. This implies that our
instanton (or anti-instanton) approximation used for the correla-
tors will give more accurate quantitative results relative to QCD.
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θind ≈ ξW;F
Λ2
SI

Λ2
W;F

; ð44Þ

where ξW and ξF are defined under (36) and (38),
respectively. The induced θ no longer necessarily
decouples in the limit ΛSI;ΛW;F → ∞. Imposing the con-
straint (35) leads to the limit ΛSI=ΛWðΛFÞ≲ 10−7ð10−6Þ.
For ΛWðΛFÞ ¼ MP this implies an upper bound
ΛSI ≲ 1011ð1012Þ GeV on the 5D strong coupling scale.
The limit on ΛW;F from an exact numerical evaluation of
θind is shown in Fig. 3. We see that the limit on ΛW;F

deviates from (44) for small 1=R (and hence small Λ5). The
limits on the ratio ΛSI=ΛW;F imply that for the case when
ΛW;F ∼ Λ5ð¼ΛSIÞ, the dimension six terms would need to
be generated from some new physics in the UV completion
of the 5D model with an additional suppression in the
otherwise order-one coefficients.
The corresponding range of axion mass enhancement

is depicted in Fig. 4. Note that both effects of small
instantons—the enhancement of the axion mass and the
shift in the axion potential minimum due to CP-violating
operators—are dominant only for large 1=R, since even-
tually large (QCD) instantons dominate the susceptibility at
small values of 1=R.
Furthermore, when fa < ΛSI the axion mass enhance-

ment is reduced by the factor ðfa=ΛSIÞ1=6 as obtained from
(39). This means that in the experimentally viable region of
ma ≳ 100 MeV and fa ≲ 107 GeV [61,62], the axion mass
enhancement is reduced by up to an order of magnitude, as
can be seen in Fig. 4, where we have taken fa ¼ 106 GeV
as a representative value.

D. Enhanced EDMs

Compared to QCD, the small instanton contributions
provide an enhancement to the EDMs due to CP-violating

sources. In particular, using (38), (41), and (44) we see that
the neutron EDM (34) is enhanced by a factor of Λ2

SI=Λ2
QCD

compared to the θ induced from new CP-odd sources
in QCD [see (36)]. Therefore, measuring the neutron
EDM can be interpreted as a probe of the small
instanton scale, ΛSI. For example, if ΛW;F ¼ MP, this
corresponds to modified strong dynamics at scales of order
ΛSI ∼ 108–1011 GeV, where the lower limit represents a
neutron EDM value equivalent to the Standard Model
CKM contribution. Furthermore, if the CP-violating
sources appear at scales lower than the Planck scale, then
any new contribution due to small instantons will appear at
even lower scales 104 GeV≲ ΛSI ≲ 108 GeV, where the
model-dependent lower limit corresponds to the scale of
axion mass enhancement.
Finally note that when fa ≲ ΛSI, the UV completion of

the dimension five axion-gluon coupling does not affect the
predictions for the induced θ. Since the neutron EDM (34)
depends only on the ratio of the mixed correlators with the
topological susceptibility, the suppression factor in (39)
cancels, leaving the results for the induced θ unchanged.

IV. CONCLUSION

The QCD axion solution provides an elegant mechanism
for solving the strong CP problem in such a way that an
arbitrarily large amount of CP violation at UV scales ΛCP
can be sufficiently decoupled as ΛCP → ∞. This is in
contrast with solutions to the strong CP problem that
invoke exact discrete symmetries. For these solutions there
is a nondecoupling of the additional sources of CP
violation, which means that arbitrarily large amounts of
CP violation cannot be tolerated at UV scales in models
with exact parity or CP symmetry.

FIG. 3. Lower limit on the effective scale of the dimension six
Weinberg (four-fermion) operator, depicted in purple (orange) as
a function of the extra dimension scale 1=R, assuming ϵ ¼ 0.30.
The Planck scale is shown as a dotted line for reference. The
dashed lines represent the limit from the approximation (44). The
deviation from (44) arises since for small 1=R, large QCD
instantons begin to dominate the instanton integral χð0Þ.

FIG. 4. The ratio of the enhanced axion mass to the QCD axion
mass as a function of the extra dimension scale, 1=R. The dotted
contour lines assume fa > ΛSI and depict the ratio for different
values of the perturbitivity parameter ϵ, up to the maximum
possible enhancement in the red shaded region. The dashed
contours assume fa ¼ 106 GeV and include the suppression (39)
when fa < ΛSI. The blue shaded region to the right shows the
excluded 1=R range due to the Weinberg gluonic operator.
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Heavy axion models represent a qualitatively different
class of solution to the strong CP problem in which new
dynamics at some UV scale ΛSI magnifies the effect of
small instantons (which are normally exponentially sup-
pressed), giving rise to a new contribution and enhance-
ment of the axion mass. This has led to renewed interest in
axion searches outside the usual QCD axion mass window.
However, in the presence of additional sources of CP
violation, the enhanced effect of small instantons could also
lead to enhanced EDM observables such as the neutron
EDM as well as possible nondecoupling effects.
We have estimated these effects by calculating the

topological susceptibility and mixed correlators in the
presence of two CP-violating dimension six operators:
the Weinberg gluonic operator and a CP-odd four-fermion
operator. The calculation is performed using an instanton
(or anti-instanton) background where Standard Model
fermion chiral zero modes in the ’t Hooft vertex are closed
with the Higgs boson. Identifying the scale of the additional
sources of CP violation with ΛCP we find that the axion
potential minimum shifts by an amount θind ∝ Λ2

SI=Λ2
CP in

several heavy axion models, where ΛSI is the scale where
small instanton effects dominate. This result reveals that
unlike the minimal QCD axion models, the amount of
decoupling is limited, although not as restrictive as models

with exact discrete symmetries. Imposing the neutron
EDM derived limit jθ̄j ≲ 10−10, we obtain the constraint
ΛSI=ΛCP ≲ 10−8, which is stronger than the naive estimate
of 10−5 due to sizable prefactors that depend on the
particular heavy axion model. In particular, for a bench-
mark value of ΛCP ≃MP requires ΛSI ≲ 1010 GeV (as can
be seen in Fig. 4 for the 5D small instanton model).
The modification of the decoupling behavior is a direct

consequence of the new dynamical scale ΛSI. Our results
therefore imply that EDM observables such as the neutron
EDM can be enhanced in heavy axion models up to the
current experimental limit dn ≲ 10−26 e · cm. This com-
pares with the SM CKM prediction (∼10−32–10−31 e · cm).
Thus, besides axion searches, EDM observables provide
another probe of UV scales in heavy axion models
associated with new dynamics, assuming that this class
of models plays any role in solving the strong CP problem.
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