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In this article a novel mechanism for dynamical electroweak symmetry breaking and the ensuing
appearance of fermion mass terms in the action is proposed. The action contains massless fermions of the
standard model coupled to gravity through a new type of nonminimal coupling to the vielbein field. The
corresponding coupling constants in our approach become zero-dimension scalar fields. Such scalar fields
provide the cancellation of the Weyl anomaly [Latham Boyle and Neil Turok, arXiv:2110.06258].
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I. INTRODUCTION

In this article a novel mechanism of dynamical symmetry
breaking, thus leading to the appearance of fermion mass
terms in the action, is put forward. The assumed action
contains the full set of standard model (SM) fermions
coupled to gravity through a new type of nonminimal
coupling to the vielbein field. In contrast to the fermion-
vielbein coupling via a constant term [1], we promote this
coupling from a constant to being an actual field in its own
right. Correspondingly, additional distinct scalar fields are
introduced in the theory that furnish a set of coupling
coefficients between the various different flavors of SM
fermions to the vielbein. Adding scalar fields to the SM
action is known to imply the cancellation of the Weyl
anomaly [2]. We propose an action made up from the SM
fermions coupled to the vielbein and fundamental scalar
fields that (i) are the very coupling coefficients between
the SM fermions and the vielbein, (ii) lead directly to the
appearance of mass terms of the fermions, and (iii) generate
a theory with a vanishing Weyl anomaly. This stands as a
new model of the composite Higgs boson.
The Higgs boson itself has a rich history, beginning with

the discovery that the Higgs mechanism [3–8] is respon-
sible for the presence of mass terms in the SM, where the
introduction of the Higgs boson in the action spontaneously
breaks local symmetries thus ascribing mass terms to the
massive bosons and fermions. Explicitly, the SM comprises
the SUð3Þ × SUð2Þ × Uð1Þ gauge model of strong and
electroweak interactions [9–14]. Through the Higgs

mechanism the electroweak SUð2Þ ×Uð1Þ group is spon-
taneously broken down to the Uð1Þ symmetry of electro-
magnetism [3,6,7,15–17]. Couplings of the elementary
Higgs scalar bosons also break quark and lepton chiral-
flavor symmetries, giving rise to hard mass terms for
the quarks and leptons. The Higgs boson itself has been
detected as the scalar excitation with a mass found at
125 GeV [18–23], consistent with theoretical predictions.
Despite the success of the Higgs mechanism, the model

admits a number of ambiguities [24]; perhaps the most
striking one is the triviality of the model with fundamental
scalar fields, as well an emerging hierarchy problem with
vastly disparate energy scales in the theory, and more. This
led to the question, if indeed the Higgs is a new fundamental
particle of the SM in its own right, or rather is the Higgs itself
composed of known fundamental particles of the SM?
Composite Higgs models began with the suggestion

by Terazawa et al. that due to its large mass, the top quark is
a natural candidate for being a constituent of the composite
Higgs boson [25,26]. In 1989, the original top-quark
condensate model of Terazawa et al. was revived by
Miransky, Tanabashi, Yamawaki, and later by Bardeen
et al. [27–30], who proposed the top-quark condensate
as a means of electroweak symmetry breaking. In this
approach the Higgs is composite at short distance scales.
Nevertheless this model conflicts with experimental obser-
vations on a number of counts. In these models the energy
scale of the new dynamics was assumed to be at about
1015 GeV. Consistent with this value, these models give
naive predictions for the Higgs mass at approximately
2mt ∼ 350 GeV [26–31], and present experimental data
rule out such a value. A smaller value of the Higgs boson
mass might be obtained if the calculations rely on large
renormalization group corrections [27–30], due to the
running of coupling constants between the working scale
(1015 GeV) and the electroweak scale (100 GeV). At any
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rate this running is not able to explain the observed
appearance of the Higgs mass at around 125 GeV. Even
more, these models require fine-tuning of numerous
parameters in order to match experimental results. But
that aside, the models with four-fermion interactions should
be taken as the phenomenological ones, in which only the
leading order in the 1=Nc expansion is taken into account.
The top seesaw model was advocated initially by

Chivukula et al. [32] in response to the difficulties of
the earlier top-quark condensate models. The model
admits, in addition to the top quark, an additional heavy
fermion, χ [32,33]. In particular, in the top seesaw model
there is no need for fine-tuning of parameters, and a later
version of the model by Dobrescu and Cheng [34] includes
a light composite Higgs boson.
In the 1970s the technicolor (TC) model was formulated

[35,36] as an attempt to resolve the shortcomings of the
SM already discussed, while providing sound theoretical
predictions for the Higgs mass. TC is a gauge theory of
fermions with no elementary scalars, yet at the same time
inclusive of dynamical electroweak symmetry breaking and
flavor symmetry breaking. In the TC model the Higgs,
instead of being a fundamental scalar, is composed of a new
class of fermions called technifermions interacting via
technicolor gauge bosons. This interaction is attractive
and as a result, by analogy with Bardeen-Cooper-Schrieffer
(BCS) superconductor theory, leads to the formation of
fermion condensates. However, TC theory fails to produce
mass terms for the quarks and leptons. For this reason the
model was extended to the extended technicolor (ETC)
model [37,38], but this model is inconsistent with exper-
imental constraints on flavor changing neutral currents, and
precision electroweak measurements. Later on an improved
TC model called the walking technicolor model [39,40]
was constructed that resolves these issues, although it still
fails to predict correctly the measured value of the top-
quark mass. For a detailed pedagogical review of the TC
and ETC models see Refs. [24,41].
After the technicolor models came the idea that the

Higgs boson appears as a pseudo-Goldstone boson, as
noted originally in Ref. [42]. This idea forms the basis of
little Higgs models [43–48]. The model stems a well-
known result of Goldstone’s theorem, namely that sponta-
neous breaking of a global symmetry yields massless
scalar particles, or Goldstone bosons. By selecting the
right global symmetry, it is possible to have Goldstone
bosons that correspond to the Higgs doublet in the SM.
Subsequently the partial compositeness model was con-

jectured, by Kaplan [49] initially. Therein each SM particle
has a heavy partner that can mix with it. Like this, the
SM particles are linear combinations of elementary and
composite states via a mixing angle. The elegance of the
partial compositeness model is its simplicity, without the
need for deviations beyond the standard model, thus relying
on the known fundamental particles only [50].

More recently, among a variety of theoretical papers that
appeared between December 2015 and August 2016, there
are several that consider both the 125-GeV Higgs boson,
and the hypothetical new heavier Higgs boson as composite
due to the new strong interaction, as noticed for example in
Refs. [51,52]. In a different approach there are other papers
devoted to the description of the composite nature of the
heavier (750-GeV) Higgs boson only [53–66].
Other more modern composite Higgs models consist of

thewalking model [67,68], the ideal walking model [69–72],
the technicolor scalar model [73], Sannino’s model of the
generalized orientafold gauge theory approach to electro-
weak symmetry breaking [74], and the walking model in
higher-dimensional SUðNÞ gauge theories of Dietrich and
Sannino [75,76]. A more comprehensive review of modern
composite Higgs models can be found in [77].
Quantum gravity in the first-order formalism with either

the Palatini action [78,79] or the Holst action [80] shares a
property with the above composite Higgs models: it leads
to a four-fermion interaction. This four-fermion interaction
is now between spinor fields coupled in a minimal way to
the torsion field [81,82], but importantly this four-fermion
interaction leads to fermion condensates of the type that
could constitute the composite Higgs. A similar idea
has already been suggested in Ref. [83], namely that the
torsion field coupled in a nonminimal way to fermion fields
[84–86] could be a source of dynamical electroweak
symmetry breaking.
This type of action with fermion fields coupled to the

vielbein is one of the main ingredients of our action. The
other main ingredient flows from a theory that contains
fundamental scalar fields with zero-mass dimension recently
proposed in [2], as a way of simultaneously canceling both
the vacuum energy and the Weyl anomaly. Starting with a
theory of the SM coupled to gravity, the fermion and gauge
fields are coupled to a background classical gravitational
field, with a right-handed neutrino for each generation also
coupled to the background field. This representation is a
quantum field theory (QFT) on a classical background
spacetime. The Weyl anomaly is a measure of the failure
of the classically Weyl-invariant theory to define a Weyl-
invariant quantum theory, and can be expressed in terms
of the number of different fields present in the theory. In the
SM there are n0 ¼ 4 ordinary real scalars in the usual
complex Higgs doublet, n1=2 ¼ 3 × 16 ¼ 48 Weyl spinors
(16 per generation), n1 ¼ 8þ 3þ 1 ¼ 12 gauge fields of
SUð3Þ × SUð2Þ ×Uð1Þ, and a single gravitational field
(n2 ¼ 1). With these combinations the Weyl anomaly is
nonzero. However, suppose that the Higgs and graviton
fields are not fundamental fields but rather composite, such
that their contributions to the vacuum energy and Weyl
anomaly can be dropped, and n0 ¼ n2 ¼ 0. The implication
is that by introducing n00 ¼ 36 scalars with zero-mass
dimension, then not only does the Weyl anomaly vanish,
but also the vacuum energy vanishes as well.

J. MILLER, G. E. VOLOVIK, and M. A. ZUBKOV PHYS. REV. D 106, 015021 (2022)

015021-2



This embodies our motivation for the starting point of
this work: a model comprising Dirac fermions of the SM
with a nonminimal coupling to gravity, that includes 36
fundamental scalar fields. The details of the construction of
the theory is described in full in Sec. II A. We find that in
this model, the theory admits mass terms for the fermions.
By using the Schwinger-Dyson equation for the fermion
self-energy function, a relationship is derived between the
top-quark mass, the Planck mass (the ultraviolet cutoff
point of the loop integral), and the strength of the inverse
coupling between the fermion fields and the vielbein. From
this relation an estimation for the mass of the top-quark can
be extracted.
This paper is organized as follows. In Sec. II the first

main ingredient of the action is constructed, the piece that
includes Dirac fermions coupled nonminimally to the
vielbein field that describes the background gravitational
field. of the action is formulated, namely the dynamical
piece of the fundamental scalar fields described above. In
Sec. IV the Schwinger-Dyson approach is implemented to
calculate the leading-order piece of the self-energy of the
dominant scalar field in the action, namely the scalar field
that couples to the top quark, being the heaviest flavor.
In this section the main result of the paper is derived,
namely the emergence of a mass term for the top quark.
A relationship between the top-quark mass, the coupling of
the scalars to the vielbein (gravitational) field, and the
cutoff energy of the loop integral (the Planck mass) is used
to estimate the leading-order contribution to the top-quark
mass. In Sec. V the main conclusions of the paper are
summarized along with prospects for future research. There
are two appendixes: Appendix A contains the main for-
mulas for a Wick rotation used in the computation of the
one-loop integral, and Appendix B contains full details of
the angular integrals in the one-loop integral.
Throughout this article lowercase Latin letters a; b; c… ¼

0, 1, 2, 3 label internal Lorentz indices, Greek letters
μ; ν;… ¼ 0, 1, 2, 3 label spacetime indices, and ϵabcd is
the completely antisymmetric Levi-Civita symbol. Lorentz
indices are raised and lowered by the Minkowski metric ηab
and spacetime indices are raised and lowered by a space-
time metric gμν. Metrics are assumed to have a mostly
negative signature, and specifically the Minkowski metric
is ηab ¼ diagð1;−1;−1;−1Þ.

II. FUNDAMENTAL SCALARS IN MODELS WITH
THREE GENERATIONS OF SM FERMIONS

A. Nonminimal coupling of fermions with gravity

The action for Dirac fermions coupled to the vielbein
field can be written as [81,87]

S ¼ 1

6
ϵabcd

Z
d4xθa ∧ eb ∧ ec ∧ ed; ð1Þ

where

θa ¼ i
2
½ψ̄γaDμψ −Dμψγ

aψ �dxμ; ð2Þ

with γa the usual Dirac matrices, ψ̄ ¼ ψ†γ0, andDμψ is the
covariant derivative acting on the Dirac fermion field
defined by [88]

Dμψ ¼ ∂μψ −
i
2
γabω

ab
μψ ; ð3Þ

where γab ¼ 1
4
½γa; γb� and ωab

μ is the spin connection. The
fields ea are the vielbein fields that describe the background
gravitational field, related to the spacetime metric g through
the completion relation ηabeaμebν ¼ gμν. The action in (1)
is a functional of e alone, as opposed to being a functional
of both e and ω. Explicitly, ω becomes dependent on e by
imposing Cartan’s first structure equation.
In turn, the action for the right-handed Weyl fermions

may be written as Eq. (1) with θa → θaR, where

θaR ¼ i
2
½ψ̄Rσ

aDμψR −DμψRσ
aψR�dxμ; ð4Þ

while the action for the left-handed Weyl fermions may be
written as Eq. (1) with θa → θaL and

θaL ¼ i
2
½ψ̄Lσ̄

aDμψL −DμψLσ̄
aψL�dxμ: ð5Þ

A nonminimal coupling of fermions to gravity is achieved
via the substitution [1]

θaR → θaR þ i
2
½ψ̄RξRσ

aDμψR − ξ�RDμψRσ
aψR�dxμ ð6Þ

and

θaL → θaL þ i
2
½ψ̄LξLσ̄

aDμψL − ξ�LDμψLσ̄
aψL�dxμ; ð7Þ

with complex-valued constants ξR and ξL. Notice that in the
absence of the spin connection,Dμ ¼ ∂μ and the imaginary
parts of ξR and ξL decouple and do not interact with
fermions. At the same time the real parts of these constants
may be absorbed by a rescaling of the fermion fields.
That said, suppose that this construction is extended to

the case where ξR and ξL become coordinate-dependent
fields. In this case both the real and imaginary parts of ξR
and ξL interact with the fermions of the theory, and cannot
be removed by any rescaling of the fields. Furthermore, let
ξR and ξL be assigned flavor indices. In the presence
of SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ gauge fields, there are n1 ¼
8þ 3þ 1 ¼ 12 vector fields. In accordance the number of
Weyl fermions must equal n1=2 ¼ 4n1 ¼ 48. This number
coincides with the number of Weyl fermions in the SMwith
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three generations: n1=2 ¼ ð1leptons þ 3quarksÞ × 2up& down×
2left& right × 3generations ¼ 48.

B. Parity-breaking interactions with zero-dimension
scalar fields

The theory can be extended one stage further to the
case where ξL and ξR carry not only flavor indices but also
generation indices. Even more they can be further distin-
guished by assigning different forms for the matrices ξ for
the left-handed and the right-handed particles, while ξ the
matrices for the quarks and leptons remain identical. In this
approach the fermion term θa in (1) now reads

θa ¼ θaL þ θaR; ð8Þ
where

θaR ¼ i
2
½ψ̄Rð1þ ξRÞσaDμψR − ðDμψ̄RÞð1þ ξ†RÞσaψR�dxμ;

ð9Þ
and

θaL ¼ i
2
½ψ̄Lð1þ ξLÞσ̄aDμψL − ðDμψ̄LÞð1þ ξ†LÞσ̄aψL�dxμ:

ð10Þ
This gives rise to n00 ¼ 2chiralities × 2real& imaginary parts ×
3generations × 3generations ¼ 36 components of the scalar
fields. This is precisely the number of scalars n00 ¼ 3n1
needed for the cancellation of the Weyl anomaly [2].

C. Interactions that conserve parity

There would be the same number of scalar fields as
above if ξL were identical to ξR, but with the matrices ξ
being different for quarks and leptons. In this case the
interaction with ξ does not break parity. The fermion action
is still defined as in Eq. (1), but instead of Eq. (8),

θa ¼ θal þ θaq; ð11Þ
where

θaq ¼
i
2
½ψ̄qð1þ ξqÞγaDμψq − ðDμψ̄qÞð1þ ξ†qÞγaψq�dxμ;

ð12Þ
and

θal ¼
i
2
½ψ̄qð1þξlÞγaDμψ l−ðDμψ̄ lÞð1þξ†l Þγaψ l�dxμ: ð13Þ

Here both ξl and ξq are the 3 × 3 complex-valued
matrices in flavor space. As before, n00¼2leps&qrks ×
2real& imagparts ×3generations ×3generations¼36 zero-dimension
scalar fields.

D. Φ fields

It is worth mentioning that the θ field of Eq. (12) may be
replaced in a different way in order to produce the zero-
dimension scalar fields:

θa →
i
2
½ψ̄γaDμψ − ðDμψ̄Þγaψ �dxμ

þ i
2
½ψ̄A

LΦa
ABDμψ

B
R − ðDμψ̄RÞBΦþ;a

AB ψ
A
L�dxμ: ð14Þ

Here Φ is the SUð2Þ doublet that carries in addition the
generation index A and the flavor B of the right-handed
fermions. (We may take e, μ, τ for leptons, and d, s, b,
and/or u, c, t for quarks.) This expression is the further
extension of the nonminimal coupling of fermions to
gravity, in which the above-mentioned constants ξ not
only become fields, but are, in addition, transformed under
the SUð2ÞL group. For example, we can take A ¼ 1, 2, 3
corresponding to the three generations of quarks, and
B ¼ 1, 2, 3 corresponding to the u, c, t quarks. As a
result we obtain 4 × 4 × 3 ¼ 144 real-valued components
of these scalar fields. This number is larger than the one
needed for the cancellation of Weyl anomaly [2]. The
minimal choice here is if we consider the singlets in
flavor space, which gives only 4 ¼ 16 components of
the scalars—the number that is smaller than the required
32 components. This scheme therefore cannot be used
directly to build the theory with the cancellation of
Weyl anomaly. The other ingredients should be added
in order to match this condition. Therefore, in the
following we will concentrate on the scheme proposed
above in Sec. II C.

III. ELECTROWEAK SYMMETRY BREAKING
AND MASS GENERATION

Consider the SM with three generations and the
fundamental scalar ξ fields constructed in Sec. II C.
With variations of the vielbein and spin connection
restrained, define an action for the zero-dimension scalar
fields as

SB ¼ αuvABCD

Z
d4xðξABu Þ�□2ξCDv ; ð15Þ

where A, B, C,D ¼ 1, 2, 3 are generation indices, u; v ¼ q,
l are flavor indices, and αuvABCD are a set of coupling
constants. The effective four-fermion interactions arise
from the exchange by quanta of the fields ξq and ξl.
The effective four-fermion interaction is nonlocal.
Consider now a certain sector of the theory that describes

the dominant contributions of the field ξ33q . Add this piece
of the action to the action in (1), with θa given by (11), to
obtain
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S ¼
Z

d4x

�
αξ�□2ξþ i

2
Q̄ð1þ ξÞ=DQ −

i
2
=DQð1þ ξ�ÞQ

�
;

ð16Þ

where =D ¼ γμDμ, ξ ¼ ξ33q , α ¼ αq3333; and

Q3ðxÞ ¼
�

t

b

�
ð17Þ

is the third generation of quarks. Note that the covariant
derivative D contains gauge fields. Define an effective
action, S4 as eiS4 ¼ 1

Z0

R
DξDξ�eiS. After integrating out

the scalar fields the corresponding effective action is
found to be

S4 ¼ −
1

4α

Z
d4xd4yQ̄3ðxÞγμDμQ3ðxÞ

×□
−2ðx; yÞDνQ̄3ðyÞγνQ3ðyÞ; ð18Þ

where □−2ðx; yÞ is the square of the inverse propagator of
the boson field ξ33q . The one-loop contribution to the two-
point Green function is straightforwardly read off Eq. (18).
The form of the self-energy of the thirdgeneration quarks
then follows, as written in Eq. (19) below. The correspond-
ing Feynman diagram is shown in Fig. 1.

IV. SCHWINGER-DYSON APPROACH FOR
CALCULATING FERMION MASS

At this point the discussion follows the method of [89],
itself based on [90]. The idea of this method is to write
down the Schwinger-Dyson equation in order express the
inverse of the full propagator, D−1ðpÞ in terms of the self-
energy function ΣðpÞ in the form of a simplified ansatz,
through which ΣðpÞ can be determined. The self-energy
function, ΣðpÞ of the third-generation quarks through
leading order, has the form

ΣðpÞ ¼ 1

α

Z
đ4kγk

i
γk − ΣðkÞ γk

1

ðp − kÞ4 ; ð19Þ

where the standard notation
R
đ4kð…Þ ¼ ð2πÞ−4 R d4kð…Þ

has been used. Now apply a Wick rotation (see Appendix A
for details) to obtain

iΣðpÞ ¼ 1

α

Z
đ4kEγEkE

1

ðγEkE − iΣðkÞÞ γEkE
1

ðpE − kEÞ4
:

ð20Þ

Since all expressions from now on are in terms of Euclidean-
space variables the subscript “E” can be dropped.
The ansatz for the Schwinger-Dyson equation has the

form

D−1ðpÞ ¼ Aðp2Þγp − iBðp2Þ ¼ γp − iΣðpÞ: ð21Þ

The right-hand side of (21) may be substituted inside (20).
To keep notation brief it is useful to use the shorthand
A ¼ Aðk2Þ and B ¼ Bðk2Þ. The resulting expression is

iΣðpÞ ¼ 1

α

Z
đ4kγk

ðAγkþ iBÞ
ðA2k2 þ B2Þ γk

1

ðp − kÞ4 : ð22Þ

By (A3), ðγkÞ2¼ γμγνkμkν¼ 1
2
δμνkμkν¼k2, and hence (22)

becomes

iΣðpÞ ¼ Σ1ðpÞ þ Σ2ðpÞ; ð23Þ

where

Σ1ðpÞ ≔
1

α

Z
đ4kγk

k2A
ðA2k2 þ B2Þ

1

ðp − kÞ4 ; ð24Þ

Σ2ðpÞ ≔
i
α

Z
đ4k

k2B
ðA2k2 þ B2Þ

1

ðp − kÞ4 : ð25Þ

Σ1ðpÞ needs to be in a form in which γp appears explicitly
such that Aðp2Þ can be easily read off (21) by comparing
coefficients. Multiply Σ1 by γp to obtain

1

4
TrγpΣ1ðpÞ ¼

−1
2α

Z
đ4k

k2A
ðA2k2 þ B2Þ

×

�
1

ðp − kÞ2 −
p2 þ k2

ðp − kÞ4
�
: ð26Þ

Now multiply (26) by γp, bearing in mind that by (A3)
ðγpÞ2 ¼ p2, to obtain

FIG. 1. Feynman diagram of the fermion self-energy corre-
sponding to Eq. (19). The incoming and outgoing lines are initial
and final fermion states with momentum p. The dashed line in the
loop is a scalar boson propagator carrying virtual momentum
p − k, and the thick horizontal line corresponds to the full
fermion propagator with renormalized mass ΣðkÞ inclusive of
all self-energy corrections, as related in Eq. (19).
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p2Σ1ðpÞ ¼
−1
2α

γp
Z

đ4k
k2A

ðA2k2 þ B2Þ

×

�
1

ðp − kÞ2 −
p2 þ k2

ðp − kÞ4
�
: ð27Þ

In this form the γp term is explicit and (23) reads

iΣðpÞ ¼ −1
2αp2

γp
Z

đ4k
k2A

ðA2k2þB2Þ
�

1

ðp− kÞ2 −
p2þ k2

ðp− kÞ4
�

þ i
α

Z
đ4k

k2B
ðA2k2þB2Þ

1

ðp− kÞ4 : ð28Þ

Substitute (28) back into (21) and compare coefficients on
both sides to obtain the integral equations

Aðp2Þ ¼ 1þ 1

2αp2

Z
đ4k

k2A
ðA2k2 þ B2Þ

×

�
1

ðp − kÞ2 −
p2 þ k2

ðp − kÞ4
�
; ð29Þ

Bðp2Þ ¼ 1

α

Z
đ4k

k2B
ðA2k2 þ B2Þ

1

ðp − kÞ4 : ð30Þ

Write (29) and (30) in terms of four-dimensional polar
coordinates:

Aðp2Þ ¼ 1þ 1

2αp2

1

ð2πÞ4
Z

∞

0

dk
Z

π

0

dθ1

Z
π

0

dθ2

×
Z

2π

0

dθ3k3sin2θ1 sin θ2
k2A

ðA2k2 þ B2Þ
�

1

p2 þ k2 − 2pk cos θ1
−

p2 þ k2

ðp2 þ k2 − 2pk cos θ1Þ2
�

¼ 1þ π

αp2

1

ð2πÞ4
Z

∞

0

dk2
Z

π

0

dθ1sin2θ1
k4A

ðA2k2 þ B2Þ
�

1

p2 þ k2 − 2pk cos θ1
−

p2 þ k2

ðp2 þ k2 − 2pk cos θ1Þ2
�
: ð31Þ

Bðp2Þ ¼ 1

α

1

ð2πÞ4
Z

∞

0

dk
Z

π

0

dθ1

Z
π

0

dθ2

Z
2π

0

dθ3k3sin2θ1 sin θ2
k2B

ðA2k2 þ B2Þ
1

ðp2 þ k2 − 2pk cos θ1Þ2

¼ 2π

α

1

ð2πÞ4
Z

∞

0

dk2
Z

π

0

dθ1sin2θ1
k4B

ðA2k2 þ B2Þ
1

ðp2 þ k2 − 2pk cos θ1Þ2
: ð32Þ

The θ1 integrals have the forms

I1 ¼
Z

π

0

dθ1
sin2θ1

a − b cos θ1
; ð33Þ

I2 ¼
Z

π

0

dθ1
sin2θ1

ða − b cos θ1Þ2
; ð34Þ

where a ¼ p2 þ k2 > 0 and b ¼ 2pk, such that (31)
and (32) read

Aðp2Þ ¼ 1þ π

αp2

1

ð2πÞ4
Z

∞

0

dk2

×
k4A

ðA2k2 þ B2Þ ðI1 − ðp2 þ k2ÞI2Þ; ð35Þ

Bðp2Þ ¼ 2π

α

1

ð2πÞ4
Z

∞

0

dk2
k4B

ðA2k2 þ B2Þ I2: ð36Þ

The values of the integrals I1 and I2 are calculated in
Appendix B. Their final forms are given in Eqs. (B16)
and (B17). Substitute them in (35) and (36) to yield

Aðp2Þ ¼ 1þ 1

16π2αp2

Z
∞

0

dk2
Ak4

ðA2k2 þ B2Þ
�

p2

k2ðp2 − k2Þ θðk − pÞ þ k2

p2ðk2 − p2Þ θðp − kÞ
�

ð37Þ

and

Bðp2Þ ¼ 1

16π2α

Z
∞

0

dk2
Bk4

ðA2k2 þ B2Þ
�

1

k2ðk2 − p2Þ θðk − pÞ þ 1

p2ðp2 − k2Þ θðp − kÞ
�
: ð38Þ

Clearly the integrands in both expressions diverge at k ¼ p. However, the integration limits will be adjusted to take values
that agree with current experimental data, such that this singular point will lie outside of the integration range. This is
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elucidated in the next paragraph. The next step is to drop
the contributions to the loop integrals in (37) and (38) from
the region k < p while retaining just the pieces from the
region k > p. This too is justified in the following para-
graph. To aid the discussion below it is useful to expand the
remaining terms in A and B in powers of p2 to yield

Aðp2Þ ¼ 1þ 1

16π2α

Z
∞

0

dk2
A

ðA2k2 þ B2Þ
�
−1 −

p2

k2
−
p4

k4

�

þOðp6Þ ð39Þ
and

Bðp2Þ¼ 1

16π2α

Z
∞

0

dk2
B

ðA2k2þB2Þ
�
1þp2

k2
þp4

k4

�
þOðp6Þ:

ð40Þ
The integrals in (37) and (38) are ultraviolet divergent.

In contrast, notice that the terms in the expansions in the
integrals, (39) and (39), except for the first term (indepen-
dent of p) are infrared divergent. However, in our scheme
we implement an infrared cutoff in addition to an ultraviolet
cutoff. Physically the presence of this infrared cutoff is
needed in order to satisfy present experimental bounds on
the existence of extra scalar excitations. From this bound
we derive that the infrared cutoff in the above integral
should be of the order λ ∼ 1 TeV. Evidently, the dominant
contribution to Bðp2Þ originates from the large-k region,
provided that λ ≫ mt. The implication is that B is log
divergent. The integral over k2 is assumed to have an upper
limit at k ¼ Λ with Λ finite. This essentially means that
the four-momentum in the loop is bound from above (see
Fig. 1). The upshot is that Λ is large to the extent that the
value of the integral is saturated by the region where k is
close to Λ. In physical terms the loop is dominated by large
values of k, or equivalently, the loop is dominated by
small distances of the order 1=Λ, with Λ of the order of the
Planck mass. As a result it is reasonable to take p to be of
the order of 100 GeV, close to the fermion (top-quark)
mass. Since 1 GeV is much smaller than the Planck scale,
p is effectively zero in the integral.
The leading order (LO) in p2 contributions to A and B

are straightforwardly read off Eqs. (39) and (40). By
inserting a cutoff at the ultraviolet and at the infrared
end of the spectrum, these LO contributions have the forms

A0 ¼ 1 −
1

16π2α

Z
Λ2

λ2
dk2

A0

ðA2
0k

2 þ B2
0Þ
; ð41Þ

B0 ¼
1

16π2α

Z
Λ2

λ2
dk2

B0

ðA2
0k

2 þ B2
0Þ
: ð42Þ

By canceling a constant factor of B0 on both sides
of (42) and substituting a reparametrization of the form
B0 ¼ mtA0, Eqs. (41) and (42) reduce to

A0 ¼ 1 −
1

16π2α

Z
Λ2

λ2
dk2

A0

A2
0ðk2 þm2

t Þ
; ð43Þ

and

1 ¼ 1

16π2α

Z
Λ2

λ2
dk2

1

A2
0ðk2 þm2

t Þ
; ð44Þ

respectively. Substitute (44) in (43) to obtain

A0 ¼ 1 − A0 ⇒ A0 ¼
1

2
: ð45Þ

Now substitute (45) in (44) to find

1 ¼ 1

4π2α
ln

�
Λ2 þm2

t

λ2 þm2
t

�
: ð46Þ

This gives rise to the existence of a critical value of the
coupling constant

αc ¼
1

4π2
ln

�
Λ2

λ2

�
∼ 1.86641: ð47Þ

It can thus be inferred that for α < αc the fermion mass is
generated dynamically. As mentioned above, we assume
that Λ ≫ λ ≫ mt, where λ is the infrared cutoff of the
momentum k in the loop. In this regime

mt ¼ Λe−2π2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e4π

2ðα−αcÞ
p

: ð48Þ

It follows from (48) that the generated top mass varies from
0 at α ¼ αc to a value that approaches Λ at strong coupling
1=α ≫ 1. All other intermediate values of α correspond to
physical values of the fermion masses. For example, the top
quark mass, which is approximately 175 GeV, is generated
for α ¼ 1.86564. By comparing this value with the critical
value of α, we see that a certain type of the fine-tuning is
needed in the given model.
As a consistency check, take the integrals in (37)

and (38) but with the cutoffs k2 ¼ λ2 at the lower end and
k2 ¼ Λ2 at the upper end of the spectrum, where recall that
λ ≫ p is assumed such that only the k > p contribution
survives. Then substitute for A and B inside the integrands,
the leading-order values found in (45) and (48). Select
the values Λ ¼ 1019 Gev (the Planck mass), λ ¼ 1 TeV,
mt ¼ 175 GeV, and α ¼ 1.86564; then evaluate the inte-
grals over k2. In this regime, the integrals as functions of
p labeled as ÃðpÞ and B̃ðpÞ, have the forms

ÃðpÞ ¼ 1þ 1

16π2α

Z
Λ2

λ2
dk2

A0k4

A2
0k

2 þ B2
0

1

ðp2 − k2Þ ; ð49Þ
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B̃ðpÞ ¼ 1

16π2α

Z
Λ2

λ2
dk2

B0k2

A2
0k

2 þ B2
0

1

ðk2 − p2Þ ; ð50Þ

where in Eqs. (49) and (50), A0 ¼ 1
2
and B0 ¼ mt

2
¼

87.5 GeV should be inserted. The values for ÃðpÞ and
B̃ðpÞ=ÃðpÞ as functions of p are shown in the plots in
Figs. 2 and 3. The values of ÃðpÞ are very close to A0 ¼ 1

2

as expected, while the values of B̃ðpÞ=ÃðpÞ are very close
to mt ¼ 175 GeV, also as expected.

V. CONCLUSION

In this paper we have proposed a novel scheme that
could pave the way for the construction of the ultraviolet
completion of the SM. The said mechanism, instead of the
conventional Higgs boson field, features a set of 36 zero-
dimension scalar fields that give rise to dynamical sym-
metry breaking. In consequence we have presented a
mechanism for obtaining fermion mass terms in the SM
action. We have implemented this mechanism to the top-
quark sector of the action, and shown that it is capable of
predicting a value for the top-quark mass in agreement with
the measured value, within specific limits imposed on the

energy scale of the interactions between the scalars and
the top-quark.
These scalar fields are precisely the couplings between

the fermions and the vielbein field of the background
gravitational field. The form of the coupling we propose is
a direct extension of the nonminimal coupling of fermions
to the vielbein [1], in which the constant coupling terms are
promoted to fields in their own right. We further generalize
to a scenario where the coupling terms between the vielbein
and the various different fermion flavors are distinctly
different fields for each different fermion in the SM action.
The outcome is that we obtain a total of 36 scalar fields that
constitute the coupling terms. At the same time this is the
precise number of zero-dimension scalar fields required to
have a vanishing Weyl anomaly [2], this being the case for
the action we have formulated.
But more fundamentally, in the model that we propose,

the zero-dimension scalar fields have manifestly geomet-
rical origins. We assume that the sector of the theory
containing these zero-dimension scalar fields is valid
within the range of energy scales between λ ∼ 1 TeV
and Λ ∼mP ∼ 1019 GeV. The presence of the infrared
cutoff, λ is necessary in order to satisfy the currently
known lower bound on extra scalar fields in the SM. The
ultraviolet cutoff, Λ, is naturally of the order of the Plank
mass, the scale at which quantum gravity effects are
expected to play a significant role.
On grounds that the Weyl anomaly vanishes in the theory

presented in this work, then arguably this theory offers a
solution for the cosmological constant problem. We argue
that within this theory the fermion masses are generated
dynamically due to the exchange of such scalars between the
SM fermions. We have tested our model by implementing a
simplified toy-model version, containing just a doublet of the
top quark and bottom quark interacting via the exchange
of the zero-dimension scalars. Specifically, we used an
approach based on the truncated Schwinger-Dyson equa-
tions (the so-called rainbow approximation), which enables a
description of dynamical symmetry breaking.Our observa-
tions show that there exists a certain critical value of the
coupling constant α. For smaller values (strong coupling)
the dynamical fermion mass is generated. In order for the
fermion mass to be close to the top-quark mass, the value of
α must be close to the critical value.
Thinking beyond the results in this article, the toy model

discussed here yields equal masses for both the top and
bottom quarks. Without doubt this model should be
generalized to incorporate different masses for the top
and bottom quarks. In particular, a prospective generalized
model should have a suppression of the bottom-quark mass
in comparison with the top-quark mass. Above all, the
interactions between other components of the scalars
should be taken into account, which give rise to the smaller
masses of these fermions. Further afield the question arises
of how to incorporate the generation of the difference in

FIG. 3. The function B̃ðpÞ=ÃðpÞ found by evaluating the
integral in (50) with the same numerical parameters as Fig. 2.
The values of B̃ðpÞ=ÃðpÞ are very close to mt ¼ 175 GeV, as
expected.

FIG. 2. The function ÃðpÞ found by evaluating the integral in
Eq. (49) for the values Λ ¼ 1019 Gev (the Planck mass),
λ ¼ 1 TeV, mt ¼ 175 GeV, and α ¼ 1.86564. The values of
ÃðpÞ are very close to A0 ¼ 1

2
, as expected.
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masses between the u and d quarks, the c and s quarks,
as well as the difference in masses between the charged
leptons and their neutrinos. This generalized theory is
beyond the scope of this paper but will be addressed in a
follow-up paper.
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APPENDIX A: WICK ROTATIONS

In Minkowski space the γ matrices satisfy the Clifford
algebra given by

fγμ; γνg ¼ 2ημν; ðμ; ν ¼ 0; 1; 2; 3Þ; ðA1Þ

where ημν ¼ diagð1;−1;−1;−1Þ. A wick rotation com-
prises a transformation of the γ matrices to new matrices,
γE defined by

γ4E ¼ γ0; γiE ¼ −iγi; ði ¼ 1; 2; 3Þ ðA2Þ

such that

fγμE; γνEg ¼ 2δμν; ðμ; ν ¼ 1; 2; 3; 4Þ: ðA3Þ

Four-vector components get transformed under a Wick
rotation to new components. For example, given compo-
nents kμ of the four-vector k in Minkowski space,

k4E ¼ ik0; kiE ¼ ki; ði ¼ 1; 2; 3Þ: ðA4Þ

The implication is that

k2¼ðk0Þ2−ðkiÞ2¼−ðk4EÞ2−ðk1EÞ2−ðk2EÞ2−ðk3EÞ2≡−k2E:

ðA5Þ

γk¼ γ0k0−γiki¼−iγ4Ek4E− iγ1Ek
1
E− iγ2Ek

2
E− iγ3Ek

3
E

≡−iγEkE: ðA6Þ

APPENDIX B: ANGULAR INTEGRAL

The integrals in (B1) and (B4) are solved in this
appendix, whose forms are

I1 ¼
Z

π

0

dθ
sin2θ

ða − b cos θÞ ;

I2 ¼
Z

π

0

dθ
sin2θ

ða − b cos θÞ2 ; ðB1Þ

where

a ¼ p2 þ k2; b ¼ 2pk: ðB2Þ

They both have the same structure, namely

In ¼
Z

π

0

dθ
sin2θ

ða − b cos θÞn ; ðB3Þ

and are evaluated in the same way.
First write it as an integral from 0 to 2π so that it can be

converted into a contour integral along a closed circular
path in the complex plane. Since cos θ ¼ cosð2π − θÞ and
sin2 θ ¼ sin2ð2π − θÞ, then In can equally be written as

In ¼
Z

π

0

dθ
sin2ð2π − θÞ

ða − b cosð2π − θÞÞn

¼
Z

2π

π
dξ

sin2ξ
ða − b cos ξÞn ; ðB4Þ

such that

In ¼
1

2

Z
2π

0

dθ
sin2θ

ða − b cos θÞn : ðB5Þ

Now write this as a closed integral over the variable z ¼ eiθ

in the complex plane, with sin θ ¼ ð−i=2Þðz − z−1Þ and
cos θ ¼ ð1=2Þðzþ z−1Þ:

In ¼
i
8

I
dz

2nzn−3ðz2 − 1Þ2
ð2az − bz2 − bÞn : ðB6Þ

Write the denominator of the integrand as

ð2az − bz2 − bÞn ¼ ð−bÞnðz − z1Þnðz − z2Þn; ðB7Þ

where

z1 ¼
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p

b
; z2 ¼

a −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p

b
; ðB8Þ

to bring the integral into the form

In ¼ 2n−3i
I

dz
zn−3ðz2 − 1Þ2

ð−bÞnðz − z1Þnðz − z2Þn
: ðB9Þ

Now the integral has the familiar form
H
dz fðzÞ

ðz−z1Þnðz−z2Þm
where the contour is the unit circle with fðzÞ analytic and
continuous at z1 and z2, and it can be solved by the standard
method of summing over the residues of fðzÞ.
Note carefully the location of the poles. From (B2) it

follows that

a − b ¼ p2 þ k2 − 2pk ¼ ðp − kÞ2 > 0; ðB10Þ
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and there it is always true that

a > b: ðB11Þ

Accordingly

z1 ¼
k
p
θðk − pÞ þ p

k
θðp − kÞ; ðB12Þ

z2 ¼
p
k
θðk − pÞ þ k

p
θðp − kÞ: ðB13Þ

In conclusion jz2j < 1 while jz1j > 1, so the pole at z1 is
discounted because it is not inside the unit circle. This
leaves two poles in the expression (B9): one at z ¼ 0 and
one at z ¼ z2.
For n ¼ 2 the integral in (B9), by the Cauchy formula,

has the form

I2 ¼
i
2
ð2πiÞ 1

b2

�� ðz2 − 1Þ2
ðz − z1Þ2ðz − z2Þ2

�����
z¼0

þ d
dz

� ðz2 − 1Þ2
zðz − z1Þ2

�����
z¼z2

�

¼ −
π

ð2pkÞ2
�

1

ðz1z2Þ2
−

ðz22 − 1Þ2
z22ðz2 − z1Þ2

−
2ðz22 − 1Þ2
z2ðz2 − z1Þ3

þ 4ðz22 − 1Þ
ðz2 − z1Þ2

�
; ðB14Þ

while for n ¼ 1 it is

I1 ¼
i
4
ð2πiÞ 1

ð−bÞ
�
d
dz

� ðz2 − 1Þ2
ðz − z1Þðz − z2Þ

�����
z¼0

þ
� ðz2 − 1Þ2
z2ðz − z1Þ

�����
z¼z2

�

¼ π

4pk

�
z1 þ z2
z12z22

þ ðz22 − 1Þ2
z22ðz2 − z1Þ

�
: ðB15Þ

Finally. substitute the explicit forms of z1 and z2 to obtain

I1 ¼
π

2k2
θðk − pÞ þ π

2p2
θðp − kÞ; ðB16Þ

and

I2 ¼ −
π

2k2ðp2 − k2Þ θðk − pÞ − π

2p2ðk2 − p2Þ θðp − kÞ: ðB17Þ
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