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Motivated by tensions between experimental measurements and SM predictions in b → slþl−

transitions, we present the first study of nonminimal flavor-violating minimal supersymmetric Standard
Model (MSSM) scenarios contributing to the relevant Wilson coefficients to address the observed
anomalies using SuperIso and MARTY. We calculate the full one-loop analytical contributions of the
general MSSM to Wilson coefficients relevant for flavor anomalies, together with the anomalous muon
magnetic dipole moment ðg − 2Þμ. We show that, after imposing theoretical constraints on the flavor-

violating parameters, we can find scenarios in agreement with the experimental measurements that can
address at the same time the tensions in flavor observables and in ðg − 2Þμ.
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I. INTRODUCTION

In recent years, impressive progress has been achieved in
studying and measuring semileptonic B decays. In particu-
lar, neutral currents with b → s transitions offer a plethora
of clean observables that have been under scrutiny, as they
present tensions with the Standard Model (SM) predictions.
The first tension, at the level of 3σ, was reported in 2013 in
the measurement of angular observables related to B →
K�μþμ− decay [1]. Since then, similar tensions have
been observed in several decays, such as B → Kμþμ−,
Bs→ϕμþμ−, and Λb → Λμþμ− [2–5]. In addition, LHCb
measured lepton-flavor-universality-violating (LFUV) ratios
RKð�Þ ¼BRðB→Kð�ÞμμÞ=BRðB→Kð�ÞeeÞ, that are pre-
dicted very precisely in the SM, and confirmed the tension
with the SM with about 3σ significance for low dilepton
mass squared (q2) [6,7]. Interestingly, all these deviations
point to a coherent and consistent pattern, and can find a
common explanation from new physics (NP) contributing
to the Wilson coefficients C9 (as was shown in, e.g.,
Refs. [8–11]).

While LFUVobservables have theoretical uncertainties
at the percent level (or below) due to the cancellation of
hadronic uncertainties in the ratios, the rest of the b → s
observables are subject to assumptions made for the
nonlocal hadronic effects and generally suffer from larger
theoretical uncertainties [12]. In this analysis, we con-
sider the minimal supersymmetric Standard Model
(MSSM) [13,14], which predicts a superpartner particle
(sparticle) to each SM field, together with an additional
Higgs doublet. As supersymmetry (SUSY) is not
observed at low energy scales, it needs to be a broken
symmetry of nature. To preserve some of the nice features
of supersymmetry, it should be “softly” broken, namely
by introducing a SUSY-violating effective Lagrangian
LSOFT, that contains all necessary couplings and masses,
adding up to 105 new free parameters.
Until very recently, due to obvious computational chal-

lenges, the whole MSSM has been little studied. Indeed,
more constrained SUSY models were devised to allow for
doable calculations and computations, through well-moti-
vated and seemingly reasonable, but not physically founded
assumptions. Such models with simplifications at the GUT
scale consider a handful of parameters, like the constrained
MSSM (cMSSM) [15]. More recently, the phenomenologi-
cal MSSM (pMSSM), which considers CP conservation
and minimal flavor violation (MFV) simplifications [16],
entered within computational reach with its 19 free param-
eters [17–21]. These models fail to provide a SUSY
scenario fully compatible with the aforementioned flavor
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anomalies if R-parity is conserved [22] (for R-parity-
violating models, see, e.g., Refs. [23,24]).
In this work, following our preliminary results [25], we

will go one step further and consider for the first time a more
general setup, based on the assumptions of the pMSSM but
including in addition nonminimal flavor violation (NMFV)
in the squark sector, as a candidate for the explanation of the
flavor anomalies in the b → sll transitions. NMFV allows
for sizeable flavor-changing neutral current (FCNC) effects
coming directly from the squark mass matrices at the weak
scale, whose off-diagonal entries are then considered as new
free parameters with respect to MFV scenarios. We will first
consider NMFV contributions to Wilson coefficients
through the mass insertion approximation (MIA) and show
that the new FCNCs can highly affect the value of C9 in
some scenarios, while still being compatible with the rest of
the b → s constraints. Then, we will present the first
analytical calculation of the general contributions to C7,
C9, C10, and also ðg − 2Þμ in the full MSSM with 105
parameters, and their evaluation for particular NMFV
scenarios with 42 parameters.
The paper is organized as follows: Section II describes

the theoretical context of our analysis. In Sec. III, the flavor-
violating parameters are introduced in the mass insertion
approximation, and their new contributions to Wilson
coefficients are defined. In Sec. IV, the numerical setup
for our scans is presented. Section V shows and discusses
how the NMFV models may fit the flavor anomalies. In
Sec. VI, we present the first full analytical evaluation of the
Wilson coefficients and ðg − 2Þμ, using MARTY [26,27], in
the MSSM and their evaluation in NMFV scenarios,
confronting the results to the expected experimental values.
Finally, the conclusions are given in Sec. VII.

II. THEORETICAL CONTEXT

In the MSSM, the most general soft supersymmetry-
breaking Lagrangian can be written as: −LSOFT ¼
−Lgaugino − Lsfermions − LHiggs − Ltril., where the different
terms are [16,28]
(1) Mass terms for the gluinos, winos, and binos:

−Lgaugino ¼
1

2

�
M1B̃ B̃þM2

X3
a¼1

W̃aW̃a

þM3

X8
a¼1

G̃aG̃a þ H:c:

�
; ð2:1Þ

where B̃, W̃, and G̃ are the bino, wino, and gluino
fields, respectively.

(2) Mass terms for the scalar fermions:

−Lf̃¼
X

i;j¼gen

Q̃†
i ðM2

Q̃
ÞijQ̃jþ L̃†

i ðM2
L̃
ÞijL̃j

þŨ†
i ðM2

Ũ
ÞijŨjþD̃†

i ðM2
D̃
ÞijD̃jþ Ẽ†

i ðM2
Ẽ
ÞijẼj;

ð2:2Þ
where Q̃i and L̃i are the left-handed squarks and
sleptons, respectively, with their right-handed coun-
terparts Ũ, D̃, and Ẽ [no right-handed (s)neutrinos
are assumed]. The indices i, j run over generation,
and all scalar squared mass matrices are Hermitian.

(3) Mass and bilinear terms for the Higgs bosons:

−LHiggs¼m2
Hu
H†

uHuþm2
Hd
H†

dHdþμHu:HdþH:c:;

ð2:3Þ

where μ is the supersymmetric Higgs mass
parameter.

(4) Trilinear couplings between sfermions and Higgs
bosons:

−Ltril: ¼
X

i;j¼gen

Au
ijY

u
ijũRi

Hu:Q̃j þ Ad
ijY

d
ijd̃Ri

Hd:Q̃j

þ Al
ijY

l
ijl̃Ri

Hu:L̃j þ H:c:; ð2:4Þ

where Af
ij are the general 3 × 3 complex soft SUSY-

breaking scalar trilinear coupling matrices between
Higgs fields (Hu,Hd) and sfermions, in genera-
tion basis.

Several mixing effects arise in the general MSSM. In
particular, the electroweak gauginos mix together with the
Higgsinos and give rise to the chargino and neutralino mass
eigenstates. The chargino mixing matrix in the weak
eigenstate ðW̃þ; H̃þ

u ; W̃−; H̃−
d Þ basis is given by

Mχ ¼
�

M2

ffiffiffi
2

p
MW sin βffiffiffi

2
p

MW cos β μ

�
; ð2:5Þ

where μ is the Higgs quadratic coupling and M2 is the soft
SUSY-breaking wino mass. The β parameter is related to
the vacuum expectation values of the two Higgs doublets
present in the MSSM by

tan β≡ vu
vd

; ð2:6Þ

with vu ¼ hH0
ui ¼ v sin β, and vd ¼ hH0

di ¼ v cos β.
The 2 × 2 unitary matrices U and V which diagonalize

the chargino mass matrix Mχ are defined as
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U�MχV−1 ¼ diagðMχ�
1
;Mχ�

2
Þ: ð2:7Þ

Their explicit expressions can be found in, e.g.,
Refs. [16,29,30].
In the other sectors, the MFV hypothesis limits the

mixing of squarks to the third generation only. This
approach is still widely used in the study of the MSSM.
If the MFV hypothesis is relaxed for other generations, a
rich mixing dynamic arises. Concentrating on the squark
sector in such a NMFV model, and starting from the
Lagrangian in Eq. (2.2), one can define the super-CKM
(sCKM) basis so that it rotates the (s)quarks’ superfields in
flavor space, making the quark mass matrices mu;d diago-
nal. This flavor alignment between quarks and squarks does
not imply diagonal squark mass matrices, and it can yield
substantial flavor-changing effects.
In the same manner as Ref. [29], let

f̃ ≡
 
f̃L
f̃R

!
ð2:8Þ

be a six-component vector, where f̃L; f̃R are spanning
generation space. We can therefore write the 6 × 6 flavor
mixed squared fermion mass matrices as

M2
f̃
¼
0
@M2

f̃LL
M2

f̃RL

M2
f̃LR

M2
f̃RR

1
A: ð2:9Þ

Collecting all sfermion mass terms in Eq. (2.2) and using
Eq. (2.9),

−LM2

f̃
¼
X
f̃

f̃ †M2
f̃
f̃ : ð2:10Þ

This defines the relevant mass matrices for the squark
sector: M2

ũ;M
2
d̃
, in the corresponding bases ðũL; c̃L; t̃L;

ũR; c̃R; t̃RÞ and ðd̃L; s̃L; b̃L; d̃R; s̃R; b̃RÞ. Their complete
expressions can be found, e.g., in Ref. [31], and a thorough
analysis of the various terms at play can be found in
Ref. [29]. Following Ref. [31], we define

M2
d̃
¼
0
@ M2

Q̃
þm2

dþDd̃;L
vdffiffi
2

p T†
d−mdμ tanβ

vdffiffi
2

p Td−mdμ
� tanβ M2

D̃
þm2

dþDd̃;R

1
A;

M2
ũ ¼
0
@VCKMM2

Q̃
V†
CKMþm2

uþDũ;L
vuffiffi
2

p T†
u−mu

μ
tanβ

vuffiffi
2

p Tu−mu
μ�
tanβ M2

Ũ
þm2

uþDũ;R

1
A;

ð2:11Þ

where M2
Ũ
, M2

D̃
, and M2

Q̃
are the soft breaking squark

masses defined in Eq. (2.2), and mu;d are the diagonal

up- and down-type quark masses. The various D terms are
given by

DfLL;RR ¼ cos 2βm2
ZðT3

f −Qf sin2 θWÞ13; ð2:12Þ

which are obviously flavor diagonal.
Finally, the Tu;d terms are related to the trilinear quark-

squark-Higgs couplings in Eq. (2.4) by

ðTuÞij ≡ ðAuYuÞij; ð2:13Þ

ðTdÞij ≡ ðAdYdÞij: ð2:14Þ

The final mass-ordered squark mass eigenstates are
obtained by introducing the unitary transformation to the
matrices in Eq. (2.11):

diagðm2
q̃1
; m2

q̃2
;…; m2

q̃6
Þ ¼ Rq̃M2

q̃R
†
q̃; for q ¼ u; d;

and m2
q̃1

< … < m2
q̃6
; ð2:15Þ

with the matricesRũ;d̃ containing the flavor decomposition
information of the mass-ordered squark mass eigenstates:

ð ũ1 ũ2 ũ3 ũ4 ũ5 ũ6 Þt ¼Rũð ũL c̃L t̃L ũR c̃R t̃R Þt;
ð d̃1 d̃2 d̃3 d̃4 d̃5 d̃6 Þt ¼Rd̃ð d̃L s̃L b̃L d̃R s̃R b̃R Þt:

ð2:16Þ

Transformations between mass and flavor eigenstates are
needed to perform phenomenological analyses on the
model, as its parameters cannot be accessed directly from
the mixed final eigenstates. The complexity of such
analyses grows rapidly with the allowed mixings and free
parameters. The computational challenge is such that a
complete analysis of the most general MSSM with its 105
free parameters is not feasible. We propose two approaches:
one within the so-called mass insertion approximation
(MIA) with 28 free parameters, and then within a subset
of the MSSM including NMFV with 42 parameters.

III. THE MASS INSERTION APPROACH TO
THE NMFV MSSM

The usual approach when studying NMFV effects in the
MSSM is to use the MIA approach, introduced as early as
1989 in Ref. [32]. The MIA originates as a diagrammatic
technique [32,33], allowing us to choose a basis where the
quark-squark-neutral gaugino couplings are flavor diagonal.
The flavor-changing effects are provided by nondiagonal
contributions in the sfermion propagators, as shown in
Figs. 1 and 2. The new SUSY contributions (to, e.g.,
Wilson coefficients) are then proportional to the various
off-diagonal elements.
The MIA is also defined algebraically through the flavor

expansion theorem (FET) [34], the main features of which
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we will summarize in the following. All sfermion squared
mass matricesM can be decomposed as a sum of a diagonal

diagðMiiÞ≡Md
i and a nondiagonal M̂ij matrix. Calculating

loop amplitudes requires evaluating Hermitian matrix
functions fðMÞ of the involved mass matrices, which
can be expanded following the FET’s conditions:

fðMÞij ¼ δijfðMd
i Þ þ f½1�ðMd

i ;M
d
j ÞM̂ij

þ
X
n1

f½2�ðMd
i ;M

d
j ;M

d
n1ÞM̂in1M̂jn1 þ � � � ; ð3:1Þ

where the divided difference f½k� functions are defined
in Ref. [34].
This expansion expresses the loop quantities such as

Wilson coefficients in terms of the flavor-violating off-
diagonal entries in the squark squared mass matrices. The
following dimensionless ratio is usually introduced to
define the mass insertions:

δf̃ij ¼
ðM2

f̃
Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
f̃
ÞiiðM2

f̃
Þjj

q ; ð3:2Þ

where M2
f̃
is one of the fermion soft-breaking matrices in

Eq. (2.2). As the full sfermion mass matrix is actually a
6 × 6 matrix spanning both generation and chirality
indices [Eq. (2.9)], the actual mass insertion parameter

is of the form ðδf̃ijÞAB, where i, j are generation indices,
and ðABÞ ∈ fLL;LR; RL;RRg.
In this framework, we define the relevant mass insertions

(MIs) for our study. To be consistent with the constraints
from kaon observables [29,33,35], every off-diagonal
element involving a first-generation squark is neglected.

The relevant ðδf̃23ÞAB’s are

δdLL ¼
ðM2

Q̃
Þ23

ðMQ̃Þ22ðMQ̃Þ33
; δuRR ¼ ðM2

Ũ
Þ23

ðMŨÞ22ðMŨÞ33
; δdRR ¼ ðM2

D̃
Þ23

ðMD̃Þ22ðMD̃Þ33
;

δuRL ¼ vuffiffiffi
2

p ðTuÞ23
ðMQ̃Þ22ðMŨÞ33

; δuLR ¼ vuffiffiffi
2

p ðTuÞ32
ðMQ̃Þ33ðMŨÞ22

;

δdRL ¼ vdffiffiffi
2

p ðTdÞ23
ðMQ̃Þ22ðMD̃Þ33

; δdLR ¼ vdffiffiffi
2

p ðTdÞ32
ðMQ̃Þ33ðMD̃Þ22

: ð3:3Þ

For the δuLL insertion, following the definition of M2
ũ in

Eq. (2.11), we express it in terms of the soft-breaking
squark mass matrix M2

Q̃
as

δuLL ¼
ðVCKMM2

Q̃
V†
CKMÞ23

ðVCKMMQ̃V
†
CKMÞ22ðVCKMMQ̃V

†
CKMÞ33

: ð3:4Þ

All the relevant NMFV contributions to the C7, C9, and C10

Wilson coefficients are given in Appendix B.

IV. NUMERICAL SETUP

In what follows, we present a study of NMFV contri-
butions to the b → sll processes in terms of Wilson
coefficients (given in Sec. A 2 of Appendix A) and mass
insertions. The model used is an extension of the

FIG. 2. Relevant box diagram for b → slþl−. The red cross
indicates a Mass Insertion.

FIG. 1. Some of the relevant penguin diagrams for b → slþl−.
The red cross indicates a Mass Insertion. First row diagrams are
based on chargino interactions. The ones at the bottom consider
gluino interactions.
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phenomenological MSSM (pMSSM), where the new con-
tributions arise from additional flavor violation sources in
the form of mass insertions. No new sources of CP
violation in LSOFT with respect to the pMSSM are included,
and the degeneracy between the first and second gener-
ations of squarks is kept.
The third-generation trilinear interactions At, Ab, and Aτ

are allowed to vary, while the others are set to zero. As we
will see in Sec. VI B 2, the slepton sector contribution to
ðg − 2Þμ can be completely decoupled from the squark
sector analysis. Therefore, no flavor-violating effect is
turned on in the slepton sector, as they do not contribute
to the b → sll observables. The Standard Model sector
parameters are given in Table I.
The 28 input parameters for our model and their ranges

(pMSSMþMIA) are given in Tables II and III. They are
randomly sampled from a uniform distribution. The spec-
trum is calculated at the electroweak scale using the code
SOFTSUSY [36]. Following Ref. [30], we have introduced
an average squark mass (over the first two generations),
obtained from the resulting spectra, and used it to compute
the various Wilson coefficients:

Msq ≡ 1

8

X
squarks

msquarks: ð4:1Þ

We then use SuperIso [37–40] to compute all relevant
pMSSM contributions from the obtained spectrum. The

additional NMFV contributions to Wilson coefficients are
computed following the formulas presented in Appendix B.

A. Constraints

In the following, we give the constraints considered in
our study, both during and after the sampling of the
parameter space.
First, no tachyonic spectra are kept. This is a built-in

condition in many spectrum calculators such as SOFTSUSY,
which is enforced during execution.
We discard any spectra with a charged lightest super-

symmetric particle (LSP) to ensure the possibility for the
LSP (often the lightest neutralino) to be a viable dark matter
candidate. We impose further the latest available mass
limits from supersymmetric searches given by Ref. [41].
No additional ab initio constraints are imposed, in order to
keep the study as general as it can be.
As the SLHA1 [42] file format does not implement flavor

mixing, the spectrum yielded by SOFTSUSY is obtained
without considering the flavor-violating MIA parameters.
Therefore, the spectrum considered here is pMSSM-like.
The δ’s are considered as additional free parameters that do
not intervene in the computation of the spectrum. This can
be justified a posteriori by considering constraints on the
MI, as the approximation should be valid if they are small
enough with respect to the diagonal mass parameters.
The following limits on the MIA parameters are also

considered a posteriori:
(1) To avoid tachyonic sparticles, all the MI parameters’

ranges are reduced to

jδf̃ABj < 0.85: ð4:2Þ

(2) From vacuum stability arguments [30,43],

jðδu23ÞLRj < mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

sq þ 2hm2
l̃
i

q
M2

sq
≃

mt

Msq
: ð4:3Þ

TABLE I. SM parameters’ values used in this study.

SM parameter Value

mt 173.8 GeV
mb 4.8 GeV
mc 1.4 GeV
ms 125 MeV
MB 5.27 GeV
αsðmZÞ 0.119
1=αelðmZÞ 128.9
sin2 θW 0.2334

TABLE II. Allowed ranges for the 19 pMSSM soft-breaking
parameters.

Parameter Range

M1 [50, 5000]
M2 [50, 5000]
M3 [50, 5000]
mA [50, 5000]
tan β [2, 60]
μ ½−104; 104�
At, Ab, Aτ ½−104; 104�
Mq̃1L ;Mq̃3L [50, 5000]
MũR;Md̃R

;Mt̃R ;Mb̃R
[50, 5000]

MẽL;Mτ̃L ;MẽR ;Mτ̃R [50, 5000]

TABLE III. Additional NMFV input parameters in the MIA.

Parameter Range

ðδũ23ÞLR ½−1; 1�
ðδũ23ÞLL ½−1; 1�
ðδũ33ÞLR ½−1; 1�
ðδd̃23ÞLL ½−1; 1�
ðδd̃23ÞRR ½−1; 1�
ðδd̃23ÞRL ½−1; 1�
ðδd̃23ÞLR ½−1; 1�
ðδd̃33ÞRL ½−1; 1�
ðδd̃33ÞLR ½−1; 1�
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The flavor-violating parameters that contribute the most to
C9 are ðδu23ÞLL and ðδu23ÞLR, in the chargino penguin
diagrams such as the ones shown in Fig. 1, which are
mainly constrained by Eqs. (4.2) and (4.3). On the other
hand, in the d̃ sector, the gluino loops contribute mostly to
C7, which is already strongly limited by experimental data.
Therefore, considering all double mass insertions as neg-
ligible, no constraints on the other MI parameters are
imposed. A comprehensive discussion of the allowed
ranges for these parameters can be found in Ref. [44].
Finally, all spectra should be considered with particular

care, as flavor mixing can significantly affect the squark
masses and their expected signal topologies at colliders.
Also, the recast of LHC limits for general MSSM models is
a nontrivial task [45,46], which goes beyond the scope of
this study. Therefore, no particular limits on the sparticle
masses are considered, apart from the model-independent
ones present in Ref. [41].

V. RESULTS AND DISCUSSION

The mass insertions allow new sources of FCNC, which
give sizeable contributions to flavor observables by sig-
nificantly shifting the relevant Wilson coefficients. In
Fig. 3, we present the scan results with 2 × 106 model
points. We can see an oyster-shaped spread of the pMSSM
distribution upon turning on the NMFV contributions in the
ðC9; C7Þ plane. In the ðC9; C10Þ case, we can see an
isotropic spread of the pMSSM distribution in all quad-
rants, indicating a homogeneous behavior of the two
Wilson coefficients under flavor violation in the squark
sector. On the other hand, in the ðC9; C7Þ case, the largest
contribution to C9 can be obtained by shifting C7 signifi-
cantly from its SM value, which is strongly constrained by

the b → sγ data. However, it is clear from the impressive
spread that the flavor anomalies can be given a satisfying
answer using this framework, while still having reasonable
values for C7.
In Fig. 4(a), a zoom in the region of interest in the

ðδC9; δC7Þ plane is presented, together with the global
best-fit patches from Ref. [47]. δCi is defined as
CNMFV
i − CSM

i . The pMSSM distribution is shown in
red, and the corresponding NMFV points are shown in
blue. Imposing the constraints discussed in Sec. IV IVA
yields Fig. 4(b) with 1721 remaining points. We can see
that even if the highest density of model points can be
found away from the C7 best-fit region, the presented
NMFV model succeeds in proposing valid scenarios. In
particular, several points seem to completely account for
the flavor anomalies in the B sector, but further exploration
of the full model spectrum is necessary. Also, it is clear that
the pMSSM alone cannot give sufficient contributions to
C9 and C7: the red distribution can at most account for half
of the required shift in C9 to explain the anomalies, with no
other constraints imposed on the pMSSM parameters.
Indeed, Fig. 5 clearly shows this feature, where we can
see the spread of C9 for both pMSSM and NMFV models,
with no particular constraints on the sampled points. The
pMSSM, while being able to provide compelling shifts,
fails to fully account for the anomalies (best fit given in
Refs. [47–49]) as was shown already in Ref. [22], whereas
the NMFV is capable of providing hundreds of compatible
scenarios if no other constraints are considered.
To examine these best-fit points, one can look at the

associated mass spectra for some well-studied collider
SUSY signals like electroweakinos and colored sparticle
states. In particular, in Fig. 6, we show both MI parameters
and the LSP’s mass distribution for our candidate models,

FIG. 3. Combined distributions of the scanned points in the ðC9; C7Þ and ðC9; C10Þ planes. The blue distribution is calculated in the
NMFV augmented pMSSM, and the corresponding pMSSM points are shown in red.
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without imposing constraints (left) and after imposing
constraints (right) for some of the best points with respect
to the expected C9 shift. We see that a 10% fraction
survives the tachyonic and vacuum stability constraints
while still offering valid candidates for the flavor
anomalies.
Similarly to what was shown in Refs. [30,50], it is

mostly the top row diagrams in Fig. 1 corresponding to
chargino interactions that contribute the most to C9, which
corresponds to ðδu23ÞLR; ðδu23ÞLL terms in the MIA. For C7,
the major contributions come from ðδd23ÞLR in the gluino
diagrams. However, the effect on the Wilson coefficients
shown here is the result of a global effect coming from
all the contributions. The correlation between the free

parameters (pMSSMþMI) and the best ðC9; C7Þ values
was not found to point towards a specific direction.
The effect of the constraints on the most important MI

parameters is also shown in Figs. 6(d) and 6(c). From left to
right, the available parameter space in the ðδLL; δuLRÞ plane
is reduced from ½−1; 1� × ½−1; 1� to ≃½−0.85; 0.85�×
½−0.2; 0.2�. This shows that vacuum stability constraints
on c̃L − t̃R mixing are the most stringent ones, as expected
from large average squark masses, i.e., Msq ≫ 2mt. The
other MI parameters contribute very little to C7;9 and can be
neglected and/or kept close to zero.
The results clearly show the interest of NMFV scenarios,

and the need of their further exploration. Indeed, the main
advantage of the MIA in our case was to easily explore the
pMSSM extended with flavor violation, with direct access
to the flavor-violating parameters instead of the final mass
eigenstates. Also, it has the advantage of reducing the
model’s free parameters, if their contribution is not sig-
nificant in the subject at hand, which we did by keeping
fewer than 30 parameters, instead of Oð50Þ or Oð100Þ.
However, due to the obviously expected effect on the
sparticle spectrum, a more general and complete approach
without approximation is necessary to completely confirm
the model’s shown interesting features. Moreover, a com-
plete approach should also evaluate the contribution of such
models to the muon ðg − 2Þμ. This is precisely what is
addressed in the next section.

VI. ANALYTICAL CALCULATIONS IN NMFV-
MSSM SCENARIOS WITHOUT APPROXIMATION

In the pMSSM, analytical calculations have been per-
formed for several one-loop quantities such as C7, C9 [51],
and ðg − 2Þμ [52].
In NMFV scenarios, some calculations have been per-

formed at the one-loop level (see, e.g., Refs. [53–55]), but
the general contributions to C7, C9, and ðg − 2Þμ are not

FIG. 4. Combined distribution of the scanned model points in the ðδC9; δC7Þ plane for the whole sample (a) and after applying cuts
(b), where δCiðμbÞ ¼ CNMFV;pMSSM

i ðμbÞ − CSM
i ðμbÞ. The orange bands represent the 1σ best-fit regions from Ref. [47].

FIG. 5. Compared distribution of δC9ðμbÞ ≤ 0 for both
the pMSSM and our NMFV model. The SM value is shown
at the dashed black line, and the best-fit patches are shown in
orange. The bins of each histogram differ to show the features of
each model.
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known. In the following sections, we present the methods
that we used to derive analytically these quantities in the
general MSSM with 105 parameters for the first time,
together with their evaluation in a particular subset of
NMFV scenarios with 42 parameters.

A. Methods

1. Theoretical calculations

In order to derive the full one-loop NMFV contributions
to the Wilson coefficients and ðg − 2Þμ, a large number of
Feynman diagrams must be calculated. We performed the
analytical calculation in the unconstrained MSSM with
general mixings. This means that diagrams must be
summed over all particle families: two charginos χ̃þ1;2, four
neutralinos χ̃01;2;3;4, six sleptons l̃1;2;3;4;5;6, six up squarks
ũ1;2;3;4;5;6, six down squarks d̃1;2;3;4;5;6, and three sneutrinos
ν̃1;2;3. For the diagram shown in Fig. 7(c), for example,
there are 4 × 4 × 6 × 6 × 2 ¼ 1152 independent diagrams,
where the factor of 2 comes from the two possible

contractions for any given ordered pair of neutralinos
(counting the crossed diagrams).
We used MARTY [26,27] to calculate automatically all

the involved Feynman diagrams and extract the coefficients
ðg − 2Þμ, C7, and Cμ

9. The number of diagrams for each
contribution is presented in Table IV. As MARTY counts left
and right Dirac projectors PL and PR as independent
vertices, the number of diagrams is larger than what a
standard counting method would imply.

2. Numerical evaluation

The mathematical expressions resulting from the sum of
thousands of one-loop diagrams are too large for any
analytical purpose. In order to obtain predictions,
MARTY generates a numerical Cþþ library containing
functions evaluating the results given a general MSSM
scenario. From a set of values for the SUSY-breaking
parameters presented in Eqs. (2.1) to (2.4), we are therefore
able to evaluate the exact values of C7, C

μ
9, and ðg − 2Þμ at

the one-loop level in the library generated by MARTY.

FIG. 6. (a), (b) Distribution of the sampled points in the ðmχ�
1
; mχ0

1
Þ plane, first (top-left) in the case of unconstrained model points

that significantly shift the value of C9. Applying vacuum stability and tachyon constraints on the δ parameters yields the top-right plot.
(c), (d) The same goes for the bottom plots, in the ½ðδu23ÞLL; ðδu23ÞLR� plane.
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While MARTY also generates a tree-level spectrum
generator to calculate masses and mixings from the initial
model parameters, loop corrections are known to be large,
and we therefore use SPheno [56,57] to produce a more
precise spectrum including loop-level corrections and
phenomenological constraints. Finally, the values of the
Wilson coefficients are given to SuperIso to apply
renormalization group equations and evolve the coeffi-
cients down to the b mass scale, and calculate flavor
observables.

3. Random scan

To sample the MSSM parameter space, we used a
uniform random scan in 42 dimensions with NMFV only
in the squark sector to reduce the number of free param-
eters. Input parameter ranges are presented in Table V.
The scan efficiency is of about 0.05%, corresponding to

physical scenarios for which SPheno can calculate a
spectrum. For such a low efficiency, there is a large bias
in the selected scenarios. Consequently, we also present
some posterior distributions of the spectrum in Fig. 8. The
scan could be refined with better constraints on the input
parameters to improve the efficiency. The following analy-
sis is therefore more a proof of principle rather than a
complete phenomenological study of the MSSM parameter

space. There are two visible biases in the posterior
distributions of spectrum parameters:
(1) Charged sleptons are lighter than sneutrinos because

the range for M2
Ẽ
is smaller than that of M2

L̃
.

(2) The lightest neutralino is always lighter than
400 GeV, contrary to the lightest chargino. This is
because we impose the condition of having a neutral
LSP in order to be a dark matter candidate.

To improve the scan efficiency, we considered machine
learning techniques to sample the parameter space. The
purpose of these techniques is to create a sampling bias
toward scenarios that generate valid model points, that

(a) (b) (c)

FIG. 7. Examples of contributions in NMFV-MSSM scenarios. Other chargino, neutralino, and Higgs diagrams also contribute to C7,
C9, and ðg − 2Þμ.

TABLE IV. Number of diagrams for each contribution calcu-
lated by MARTY. The starred numbers are NMFV-specific
contributions. By definition, C7 and ðg − 2Þμ only receive
contributions from γ-penguin diagrams. There are in total
17949 Feynman diagrams.

χ̃þi χ̃0i g̃ Hþ H0, A0

ðg − 2Þμ 96 96 0 1 2
C7 240 96� 24� 24 0
C9=γ penguins 240 96� 24� 24 0
C9=Z penguins 624 1344� 240� 78 0
C9=boxes 864 13824� 0 12 0

TABLE V. Input parameters for the scan. Specific ranges have
been chosen empirically to improve the scan efficiency. There are
in total 42 free parameters, which include the 19 pMSSM
parameters and 14 flavor violating parameters ðM2

Q̃
Þ23,

ðM2
D̃
Þ23, ðAuÞij, and ðAdÞij for i ≠ j.

Parameter Scanned range

tan β [2, 60]
μ ½−100; 1000� GeV
M1, M2 [100, 3000] GeV
M3 [100, 7000] GeV
MA [100, 5000] GeV
ðM2

Q̃
Þii ½102; 107� GeV2

ðM2
Ũ
Þii ½102; 107� GeV2

ðM2
D̃
Þii ½102; 107� GeV2

ðM2
L̃
Þii ½102; 106� GeV2

ðM2
Ẽ
Þii ½102; 105� GeV2

ðAeÞ33 ½−100; 100� GeV
ðAu=dÞ11 ½−0.1; 0.1� GeV
ðAu=dÞ22 ½−100; 100� GeV
ðAu=dÞ33 ½−104; 104� GeV
ðM2

Q̃
Þ23 ½0; 103� GeV2

ðM2
D̃
Þ23 ½0; 103� GeV2

ðAuÞij; i ≠ j ½−100; 100� GeV
ðAdÞij; i ≠ j ½−100; 100� GeV
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therefore improves the scan efficiency. However, while these
techniques can be implemented without much difficulty for
the pMSSM with 19 parameters, the 43-dimensional space
of the NMFV scenarios we present in this paper is too large
for the machine-learning-based sampling to be established.
Indeed, in the absence of prior knowledge on the distribution
of valid parameters, and because of the high number of
dimensions, no efficient sampler could be constructed with
the considered techniques such as normalizing flows or
Hamiltonian Monte Carlo samplers. Further work is
required to build efficient samplers in highly dimensional
unknown and little-constrained parameter spaces with very
few acceptable points, which is beyond the scope of
this work.
Finally, let us stress that the current LHC limits on

SUSY particle masses are not directly applicable to our
study. The NMFV MSSM being a more general model
than the so-called simplified or constrained MSSM sce-
narios, the recasting of collider constraints on the sparticle
spectrum is a nontrivial task (see, e.g., Refs. [45,46])
and yields weaker bounds. We nevertheless checked for

points leading to significant negative contributions to C9

that they escape the direct limits, in particular due to the
degeneracy between the lightest neutralino and chargino,
Δmðχ01; χ�1 Þ ≤ 1 GeV, which makes them extremely com-
plicated to probe experimentally.

B. Results

Using as input the NMFV-MSSM spectra obtained with
SPheno the numerical functions generated by MARTY
evaluate the full one-loop contributions to the Wilson
coefficients and ðg − 2Þμ. As the scan is random, we show
distributions for the different quantities that we calculated
for the 70282 valid model points. In the following, we
study the impact on the Wilson coefficients and ðg − 2Þμ
separately. Then, the relation between the two will be
discussed.

1. Wilson coefficients

The distributions for the NMFV-MSSM contributions to
the Wilson coefficients C7 and Cμ

9 are presented in Fig. 9.

FIG. 8. Posterior distributions for gaugino (left), slepton (middle), and squark (right) masses. For particle families, the distribution
corresponds to the lightest particle of the family. Chargino and gluino mass distributions extend up to 3 TeV and 7 TeV, respectively.

FIG. 9. Distribution of the Wilson coefficients δC7 and δCμ
9. The 1σ best-fit regions from Ref. [47] are shown in orange.
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Both distributions are centered around zero, as expected.
While the majority of δC7 points are close to zero and the
best-fit region, many scenarios are already excluded
because of a large shift to this coefficient. For δCμ

9, the
best-fit region is shifted by −1 from the SM value. While it
is possible to obtain substantial C9 shifts in our scenarios,
only a handful of them predict δCμ

9 < 0.2.
It is important to note that the best-fit region

for Cμ
9 should not be considered as a discriminant

criterion; any scenario between the SM and the best fit
can still fit better flavor observables and should be
carefully considered.
A 2D distribution of ðδC7; δC

μ
9Þ is presented in Fig. 10. It

is clear that the constraint on δC7 excludes several
scenarios with δCμ

9 < −0.15. It seems nevertheless possible
to address both coefficients, but a larger dataset is required
to explore the region with large negative δC9.

2. ðg− 2Þμ and combined analysis

For just over fifteen years, the anomalous magnetic
moment of the muon has proven to be a persistent tension
between the SM [58–78] and experimental measurements.
The most recent results obtained at Fermilab [79] have not
only confirmed the Brookhaven 3σ–4σ [80] discrepancy,
but raised it to the 4.2σ level with a combined experimental
average of aEXPμ ¼ 116592061ð41Þ × 10−11. However,
multiple questions remain, as lattice QCD calculations
may reduce the discrepancy to only 1.6σ [81]. In the
following, we investigate whether NMFV-MSSM models
can account for the observed tensions in both ðg − 2Þμ and
the b quark flavor sector.

Our present analysis does not strictly consider NMFV
parameters in the lepton sector,1 as shown in Table V. We
present the numerical results for ðg − 2Þμ in the following.
The mass distribution for charged sleptons is around the
electroweak scale—i.e., a few hundred GeV (see Fig. 8).
This implies significant contributions to ðg − 2Þμ that are
shown in Fig. 11. As the experimental deviation is very
small [79], it is not hard to address ðg − 2Þμ alone.
As shown in Table IV, the lepton and quark sectors are

sensitive to the neutralino and chargino mass scales.
However, while there are slepton contributions in box
diagrams for Cμ

9, these contributions are small, and the
latter coefficient is almost independent of the slepton
masses. Figure 12 shows the dependence of ðg − 2Þμ and
Cμ
9 with respect to the relative slepton mass scale.2

This analysis shows that by rescaling the slepton masses
(charged sleptons and sneutrinos), one can shift the value of
ðg − 2Þμ and let Wilson coefficients C7 and Cμ

9 remain
stable. It is therefore possible to search for a scenario that
fits the flavor observables well and adjust the slepton mass
scale to address ðg − 2Þμ.

VII. CONCLUSION

We presented a first study of the pMSSM extended with
nonminimal flavor-violating couplings in the context of the
tensions observed in b → slþl− transitions with the SM
predictions, and we considered the SUSY contributions to

FIG. 10. Combined distribution of the Wilson coefficients δC7

and δCμ
9. The best-fit region for δC7 is shown in green.

FIG. 11. Distribution of δðg − 2Þμ. Only scenarios with a
positive shift are considered, and the experimental measurement
with its 1σ uncertainty [79] is shown in orange.

1There is no limitation for NMFV in the lepton sector; this
choice has been made to reduce the number of free parameters
and concentrate on flavor observables that are more difficult to
address because of the Cμ

9 shift.
2C7 is completely independent of the slepton sector.
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the relevant Wilson coefficients. We carry on our study first
by assuming the mass insertion approximation, and then
show that the NMFV contributions allow us to shift the
Wilson coefficients sufficiently to fully address the anoma-
lies. After imposing theoretical constraints on the flavor-
violating parameters, we still find scenarios in agreement
with the experimental measurements.
While the MIA provides a direct access to the flavor-

violating parameters and eases the phenomenological
studies by reducing the number of free parameters, a more
general approach is necessary to fully assess the impact of
NMFV contributions. Hence, in a second part, we calcu-
lated for the first time the full one-loop analytical con-
tributions in the general MSSM to the relevant Wilson
coefficients, as well as to ðg − 2Þμ, using MARTY. By
scanning the MSSM parameter space randomly and setting
nonzero values for some of the flavor-violating parameters,
we obtained 70282 valid scenarios with their individual
spectra. In these scenarios, we showed that Cμ

9 can be
shifted towards the best-fit region given in Ref. [47], but
that we have only a few points that shift Cμ

9 in the favored
direction and let C7 come close to the SM prediction. We
then discussed the scaling of ðg − 2Þμ with the slepton mass
scale that allows us to address ðg − 2Þμ without modifying
the predictions for flavor observables.
The present analysis is limited by the small sample of

scenarios. For perspective, the scan should be optimized by
searching a parameter set that is more likely to produce
physical scenarios. In particular, by looking at the posterior
distributions of the input parameters, it is possible to refine
the scan, improve the efficiency, and generate more
scenarios to analyze. Finally, experimental constraints

could be studied more in depth to compare the obtained
spectra with direct searches of SUSY particles, in particular
from LHC measurements. The obtained results are never-
theless very promising and show for the first time the
impact of NMFV parameters in addressing the recent
anomalies.
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APPENDIX A: WILSON COEFFICIENTS

1. Effective Hamiltonian at the electroweak scale

The effective Hamiltonian for the decay B → Xslþl− in
the SM and in the MSSM is given by (neglecting the small
contribution proportional toV�

usVub), in the basis of Ref. [30],

Heff ¼ −
4GFffiffiffi

2
p V�

tsVtb

�X8
i¼1

CiðμÞOi þ
α

4π

X10
i¼9

C̃iðμÞOi

�
;

ðA1Þ
where the Oi operators read

O1 ¼ sLαγμbLαc̄LβγμcLβ;

O2 ¼ s̄LαγμbLβc̄LβγμcLα;

O3 ¼ s̄LαγμbLα
X

q¼u;…;b

q̄LβγμqLβ;

O4 ¼ s̄LαγμbLβ
X

q¼u;…;b

q̄LβγμqLα;

O5 ¼ s̄LαγμbLα
X

q¼u;…;b

q̄RβγμqRβ;

O6 ¼ s̄LαγμbLβ
X

q¼u;…;b

q̄RβγμqRα;

O7 ¼
e

16π2
mbs̄LσμνbRFμν;

O8 ¼
gs

16π2
mbs̄LTaσμνbRGa

μν;

O9 ¼ ðs̄LγμbLÞl̄γμl;
O10 ¼ ðs̄LγμbLÞl̄γμγ5l;

with V being the CKM matrix and qLðRÞ ¼ ð1∓γ5Þ
2

q.
This Hamiltonian is known to next-to-leading order both

in the SM [82,83] and in the MSSM [84–86].
For the B system, the operators and coefficients of

interest for the anomalies are C7, C9, and C10.

2. Wilson coefficients

We consider the contributions to the Wilson coefficients
as given in Ref. [30], including the correction as suggested

FIG. 12. The variation of the relative mean absolute value of C9

and ðg − 2Þμ for the entire dataset is plotted as a function of the
relative slepton mass scale. The initial, nonmodified dataset
corresponds to the point at (1,1).
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in Ref. [50], which we reproduce here for completeness.
The loop functions Pijkða; bÞ are defined in Appendix B.
The constants are as follows:
(1) θW is the weak mixing angle of the SM for the

electroweak bosons.
(2) M2

W is the squared mass of the W� boson.
(3) λt;b are the Yukawa couplings for the top and bottom

quarks.
(4) g2 is the weak isospin coupling constant.
(5) Msq is the average squark mass.
(6) Mg̃ is the gluino mass.
(7) In Pijkðxi; xjÞ, xi, and xj are defined asM2

χ̃i
=M2

sq for
chargino loops.

(8) In Pijkðx; xÞ, x is defined as M2
g̃=M

2
sq, for gluino

graphs.
(9) The Vab’s are the elements of the CKM matrix.
(10) ms;b are the pole masses of the s, b quarks.
(11) Nc ¼ 3 is the number of color charges in SUð3Þc.
(12) αs is the QCD coupling constant, evaluated at MZ.
(13) GF is the Fermi constant.
(14) U, V are the charginos mixing matrices defined

in eq. (A2).

In the weak eigenstates basis, the chargino mass matrix is
given by [29]

Mχ ¼
�

M2

ffiffiffi
2

p
MW sin βffiffiffi

2
p

MW cos β μ

�
; ðA2Þ

where the index 1 of rows and columns refers to the wino,
and the index 2 to the Higgsino. μ is the Higgs quadratic
coupling, and M2 is the soft SUSY-breaking wino mass.
The 3 × 3 complex matrices U and V which diagonalize
Mχ are introduced:

diagðMχ1 ;Mχ2Þ ¼ U�MχVþ: ðA3Þ

Their explicit expressions can be found in, e.g., Ref. [87].
All the contributions to the Wilson coefficients are evalu-
ated at the renormalization scale μ0 ¼ mW .

a. Chargino contributions

In the following, we give the contributions from chargino
loops, such as the two top diagrams in Fig. 1.
Z-penguin with Higgsino/wino loops:

−
C9

1 − 4sin2θW
¼ C10 ¼ ðδu23ÞLR

λt
g2

V�
cs

V�
ts

1

4sin2θW

X
i;j¼1;2

Vi1V�
j2

×
n
U�

i1Uj1
ffiffiffiffiffiffiffiffi
xixj

p
P112ðxi; xjÞ þ V�

i1Vj1P111ðxi; xjÞ −
1

2
δijP021ðxi; xjÞ

o
: ðA4Þ

This diagram is proportional to ðδu23ÞLR, which is one of the most interesting mass insertions, and is yet to be more
constrained.

Z-penguin with two wino vertices:

−
C9

1 − 4sin2θW
¼ C10 ¼ −ðδu23ÞLL

V�
cs

V�
ts

1

4sin2θW

X
i;j¼1;2

Vi1V�
j1

× fU�
i1Uj1

ffiffiffiffiffiffiffiffi
xixj

p
P112ðxi; xjÞ þ V�

i1Vj1P111ðxi; xjÞ − δijP021ðxi; xjÞg: ðA5Þ
This is the same diagram as above, but with the exchange of two winos. They differ only by the specific mass insertion and
the factor λt=g2. Both diagrams are null in the limit of a diagonal chargino mass matrix, and so they are negligible for
large M2.

Gamma penguin with two wino vertices:

C7 ¼ −ðδu23ÞLL
M2

W

M2
sq

1

3

V�
cs

V�
ts

X
i¼1;2

Vi1V�
i1

�
3

2
P222ðxi; xiÞ þ P132ðxi; xiÞ

�
; ðA6Þ

C9 ¼ −ðδu23ÞLL
M2

W

M2
sq

2

3

V�
cs

V�
ts
×
X
i¼1;2

Vi1V�
i1

�
P312ðxi; xiÞ −

1

3
P042ðxi; xiÞ þ xiP313ðxi; xiÞ

�
; ðA7Þ

C0
7 ¼ −ðδu23ÞLL

M2
W

M2
sq

1

3

V�
cs

V�
ts

ms

mb

X
i¼1;2

Vi1V�
i1

�
3

2
P222ðxi; xiÞ þ P132ðxi; xiÞ

�
: ðA8Þ
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Gamma penguin with Higgsino-wino vertex:

C7 ¼
M2

W

M2
sq

V�
cs

V�
ts

X
i¼1;2

�
V�
i2Vi1

λt
g2

�
1

2
P222ðxi; xiÞ þ

1

3
P132ðxi; xiÞ

�
ðδu23ÞLR

þ Ui2Vi1
Mχi

mb

λb
g2

�
P212ðxi; xiÞ þ

2

3
P122ðxi; xiÞ

�
ðδu23ÞLL

�
; ðA9Þ

C9 ¼ ðδu23ÞLR
M2

W

M2
sq

2

3

λt
g2

V�
cs

V�
ts

X
i¼1;2

V�
i2Vi1

�
P312ðxi; xiÞ −

1

3
P042ðxi; xiÞ þ xiP313ðxi; xiÞ

�
; ðA10Þ

C0
7 ¼ðδu23ÞLR

M2
W

M2
sq

1

3

λt
g2

V�
cs

V�
ts

ms

mb

X
i¼1;2

V�
i2Vi1

�
3

2
P222ðxi; xiÞ þ P132ðxi; xiÞ

�
: ðA11Þ

The primed operators are obtained by switching the chirality of external states. All of these contributions are used, but we
are most interested in the C9 contribution coming from the γH̃ W̃ vertex.

Z-penguin with two wino vertices and a double mass insertion:
Even though a double mass insertion corresponds to a higher order in the perturbative expansion, it has been pointed out

[30] that this particular diagram could provide enhancement in the K system. For completeness, in the B decay, the
contribution is

−
C9

1 − 4sin2θW
¼ C10 ¼ −

ðδu23ÞLRðδu33ÞLR
4sin2θW

V�
cs

V�
ts

X
i;j¼1;2

Vi1V�
j1

×
�
U�

i1Uj1
ffiffiffiffiffiffiffiffi
xixj

p
P123ðxi; xjÞ þ

1

2
V�
i1Vj1P122ðxi; xjÞ −

δij
3
P032ðxi; xjÞ

�
: ðA12Þ

b. Gluino contribution

In this part, we collect all the contributions arising from gluino loops, from the bottom diagrams in Fig. 1,
with x≡M2

g̃=M
2
sq.

γ-penguin:

C7 ¼
ffiffiffi
2

p

M2
sqGF

1

3

N2
c − 1

2Nc

παs
V�
tsVtb

��
ðδd23ÞLL þ ðδd23ÞRR

ms

mb

�
1

4
P132ðx; xÞ þ ðδd23ÞRLP122ðx; xÞ

Mg̃

mb

�
; ðA13Þ

C0
7 ¼

ffiffiffi
2

p

M2
sqGF

1

3

N2
c − 1

2Nc

παs
V�
tsVtb

��
ðδd23ÞRR þ ðδd23ÞLL

ms

mb

�
1

4
P132ðx; xÞ þ ðδd23ÞLRP122ðx; xÞ

Mg̃

mb

�
; ðA14Þ

C9 ¼ −
ffiffiffi
2

p

M2
sqGF

1

3

N2
c − 1

2Nc

παs
V�
tsVtb

1

3
P042ðx; xÞðδd23ÞLL; ðA15Þ

C0
9 ¼ −

ffiffiffi
2

p

M2
sqGF

1

3

N2
c − 1

2Nc

παs
V�
tsVtb

1

3
P042ðx; xÞðδd23ÞRR: ðA16Þ

The terms proportional to Mg̃ can be dominant over the others. However, the mass insertion which enters the diagram is
strongly constrained from b → sγ [32].

Double mass insertion, Z − g̃:
For completeness, we give the gluino penguin contribution with a double mass insertion:

−
C9

1 − 4 sin2 θW
¼ C10 ¼

ðδd33ÞLRðδd23ÞRL
VtbV�

ts

N2
c − 1

2Nc

αs
12α

P032ðx; xÞ; ðA17Þ
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−
C0
9

1 − 4 sin2 θW
¼ C0

10 ¼
ðδd33ÞRLðδd23ÞLR

VtbV�
ts

N2
c − 1

2Nc

αs
12α

P122ðx; xÞ: ðA18Þ

c. Box diagrams

The following contributions come from the box diagrams in Fig 2.

Box diagram with wino exchange:

C9 ¼ −C10 ¼ ðδu23ÞLL
V�
cs

V�
ts

M2
W

M2
sq

1

sin2θW

X
i;j¼1;2

ðV�
i1Vj1Vi1V�

j1Þfðxi; xj; xν̃Þ; ðA19Þ

where

fðxi; xj; xν̃Þ ¼
1

2

Z
1

0

dx
Z

1

0

dy
Z

1

0

dz
yzð1 − zÞ2

½yð1 − zÞ þ xν̃ð1 − yÞð1 − zÞ þ zðxixþ xjð1 − xÞÞ�2 ðA20Þ

and xν̃ ¼ M2
ν̃=M

2
sq.

Box diagram with Higgsino-bottom-stop vertex:
Replacing the wino with a Higgsino yields

C9 ¼ −C10 ¼ −ðδu23ÞLR
V�
cs

V�
ts

M2
W

M2
sq

λt
g2 sin2 θW

X
i;j¼1;2

ðV�
i1Vj1Vi1V�

j2Þfðxi; xj; xν̃Þ: ðA21Þ

APPENDIX B: FEYNMAN INTEGRALS AND
HYPER-GEOMETRIC FUNCTIONS

1. Hypergeometric functions and integral
representations

To calculate the new Wilson coefficients in the NMFV/
MIA framework, the following integrals need to be
evaluated:

Pijkða;bÞ≡
Z

1

0

dx
Z

1

0

dy
yið1−yÞj

ð1−yþaxyþbð1−xÞyÞk : ðB1Þ

These integrals can be shown to be linear combinations of
hypergeometric functionspFq (for an extensive review see
Refs. [88,89]). In most cases, the integrals can be rewritten
using solely 2F1, which is sometimes referred to as the
Gaussian or ordinary hypergeometric function. This leads
to nearly arbitrary precision in the numerical implementa-
tion as the series usually converge quickly. However, in
some cases, particular analytical continuation formulas
have to be used, which are well known in the literature,
and can be found in, e.g., Ref. [88].
The integral representation of 2F1 is defined by Euler’s

formula:

2F1ða; b; c; zÞ ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
×
Z

1

0

tb−1ð1 − tÞc−b−1ð1 − tzÞ−adt; ðB2Þ

which is a one-valued analytic function of z, provided
ℜðcÞ > ℜðbÞ > 0; jargð1 − zÞj < π [88].
In what follows, we will refer to 2F1 as simply F.

Equation (B2) provides an analytic continuation of F,
which is usually defined by its series representation:

Fða; b; c; zÞ ≔
X∞
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ðB3Þ

where

ðaÞn ¼
Γðaþ nÞ
ΓðaÞ ; is the ðrisingÞ Pochhammer symbol:

The generalized hypergeometric functions pFq can be
defined by

pFq

	� a1;…; ap
b1;…; bq

; z

�
¼
X∞
n¼0

ða1Þn � � � ðapÞn
ðb1Þn � � � ðbqÞn

zn

n!
; ðB4Þ

and a general Euler integral transform relates hypergeo-
metric functions of higher and lower orders [89]:
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Aþ1FBþ1

�
a1;…; aA; c

b1;…; bB; d
; z

�

¼ ΓðdÞ
ΓðcÞΓðd − cÞ

Z
1

0

tc−1ð1 − tÞd−c−1AFB

�
a1;…; aA
b1;…; bB

; tz

�
:

ðB5Þ
2. Analytical expressions for Pijk

Let us demonstrate that the class of loop integrals in
Eq. (B1) can all be expressed using hypergeometric
functions.
First, we rewrite Eq. (B1) using Fubini’s theorem as

Pijkða;bÞ ¼
Z

1

0

dyyið1− yÞj
Z

1

0

dx
1

½Aða;b;yÞxþBðb;yÞ�k ;

ðB6Þ

with

Aða; b; yÞ ¼ yða − bÞ; ðB7Þ

Bðb; yÞ ¼ 1þ yðb − 1Þ: ðB8Þ

Therefore, for k ≠ 1 and a ≠ b, we can integrate over x
using Cavalieri’s quadrature formula:

Z
1

0

dx
ðBþ AxÞk ¼

�ðAxþ BÞ1−k
ð1 − kÞA

�
1

0

¼ ðAþ BÞ1−k − B1−k

Að1 − kÞ :

ðB9Þ

Then, by replacing the integrand in Eq. (B6) with the result
of Eq. (B9), we obtain

Pijkða; bÞ ¼
Z

1

0

dy
yi−1ð1 − yÞj

ða − bÞð1 − kÞ ½ðyða − 1Þ þ 1Þ1−k − ðyðb − 1Þ þ 1Þ1−k�: ðB10Þ

We can spot the integral representation of the hypergeometric function. Explicitly,

Pijkða; bÞ ¼
1

a − b
1

1 − k

Z
1

0

dyyi−1ð1 − yÞj½ð1 − yð1 − aÞÞ1−k − a ↔ b�

¼ βEði; jþ 1Þ
ða − bÞð1 − kÞ ½Fðk − 1; i; iþ jþ 1; 1 − aÞ − a ↔ b�; ðB11Þ

where we use Eq. (B2) and Euler’s beta function’s
definition.

k ≠ 1, a ¼ b:
Let GðbÞ ¼ Fðk − 1; i; iþ jþ 1; 1 − bÞ. By definition,

lim
a→b

GðaÞ −GðbÞ
a − b

¼ G0ðbÞ; ðB12Þ

and the differentiation formula for F is

dFðα; β; γ; zÞ
dz

¼ αβ

γ
Fðαþ 1; β þ 1; γ þ 1; zÞ: ðB13Þ

Therefore,

lim
a→b

Pijkða;bÞ¼βEði;jþ1Þlim
a→b

1

ð1−kÞða−bÞ½GðaÞ−GðbÞ�;

ðB14Þ

¼ βEði; jþ 1Þ
1 − k

G0ðbÞ; ðB15Þ

¼ 1

1− k
βEði; jþ 1Þ ðk− 1Þi

ðiþ jþ 1ÞFðk; iþ 1; iþ jþ 2;1− bÞ;

ðB16Þ

which simplifies to

Pijkðb; bÞ ¼ βEðiþ 1; jþ 1ÞFðk; iþ 1; iþ jþ 2; 1− bÞ:
ðB17Þ

k ¼ 1:
Only three of these integrals appear in the computation

of the Wilson coefficients; all three are reasonably doable:

P111ða; bÞ ¼
Z
½0;1�2

dxdy
yð1 − yÞ

1 − yþ axyþ bð1 − xÞy ; ðB18Þ

P021ða; aÞ ¼
Z
½0;1�2

dxdy
ð1 − yÞ2

1þ yða − 1Þ ; ðB19Þ

P111ða; aÞ ¼
Z
½0;1�2

dxdy
yð1 − yÞ

1þ yða − 1Þ : ðB20Þ

The last two integrals are straightforward to compute:
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P111ða; aÞ ¼
Z

1

0

dy
yð1 − yÞ

1þ yða − 1Þ ;

¼ 1

a − 1

�
½yðy − 1Þ logð1þ yða − 1ÞÞ�10 −

Z
1

0

ð1 − 2yÞ logðð1þ yða − 1ÞÞdy
�
;

¼ −1
a − 1

Z
1

0

dyð1 − 2yÞ logðð1þ yða − 1ÞÞ;

¼ −1
a − 1

−a2 þ 2a logðaÞ þ 1

2ða − 1Þ2 ; ðB21Þ

with

lim
a→1

−1
a − 1

−a2 þ 2a logðaÞ þ 1

2ða − 1Þ2 ¼ 1

6
:

Similarly,

P021ða; aÞ ¼
Z
½0;1�2

dxdy
ð1 − yÞ2

1þ yða − 1Þ ¼
−1
a − 1

Z
1

0

dy2ð1 − yÞ log ð1þ yða − 1ÞÞ;

¼ ðaþ 1Þð3a2 − 2a2 logðaÞ − 4aþ 1

2ða − 1Þ2a ; ðB22Þ

with

lim
a→1

ðaþ 1Þð3a2 − 2a2 logðaÞ − 4aþ 1

2ða − 1Þ2a ¼ 0;

P111ða; bÞ ¼
Z
½0;1�2

dxdy
yð1 − yÞ

1 − yþ axyþ bð1 − xÞy ; ðB23Þ

¼ 1

2ða − 1Þ2ða − bÞðb − 1Þ2ðab − a − bþ 1Þ

×

�
ða − 1Þ2ða − bÞðb − 1Þ2 þ ða − 1Þ2ðb − 1Þ2 log

�
a
b

�
ðab − a − bþ 1Þ

þ ða − 1Þ2ð2b − 1Þð− logbÞðab − a − bþ 1Þ

þ ð2a − 1Þðb − 1Þ2 logðaÞðab − a − bþ 1Þ
�
: ðB24Þ

For completeness, let us show that in this case too, we
can reexpress Pij1ða; bÞ using hypergeometric functions:
We are interested in the set of integrals defined by

Pij1ða;bÞ ¼
Z

1

0

dx
Z

1

0

dy
yið1− yÞj

1− yþaxyþbð1− xÞy : ðB25Þ

Two cases, a ¼ b and a ≠ b, have to be distinguished.

k ¼ 1, a ¼ b:
In this case, the computation is straightforward and

yields

Pij1ða; bÞ ¼
Z

1

0

dx
Z

1

0

dy
yið1 − yÞj

1 − yþ axyþ bð1 − xÞy

¼
Z

1

0

dy
yið1 − yÞj

ð1 − yð1 − aÞÞ ðB26Þ

¼ βEðiþ 1; jþ 1Þ2F1ð1; iþ 1; iþ jþ 2; 1 − aÞ: ðB27Þ

k ¼ 1, a ≠ b:
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We can express Eq. (B25) as an integral over 2F1:

Pij1ða; bÞ ¼
Z

1

0

dx
Z

1

0

dy
yið1 − yÞj

1 − yþ axyþ bð1 − xÞy
¼
Z

1

0

dx
Z

1

0

dyyið1 − yÞjð1 − yð1 − b − xða − bÞÞÞ ðB28Þ

¼
Z

1

0

dxβEðiþ 1; jþ 1Þ2F1ð1; iþ 1; iþ jþ 2; 1 − b − xða − bÞÞ: ðB29Þ

This holds provided Ref1 − ax − bð1 − xÞg < 1. For x ∈ ½0; 1�; a; b ∈ Rþ, this is always true.
Using the general Euler transform [Eq. (B5)], we can compute the integral over 2F1:

Pij1ða; bÞ ¼ βEðiþ 1; jþ 1Þ 1

a − b

�
ð1 − aÞ3F2

�
1; 1; iþ 1

2; iþ jþ 2
; 1 − a

�
− a ↔ b

�
: ðB30Þ

The two previous results for a ¼ b and a ≠ b can be checked against the explicit analytical expressions given before.

[1] LHCb Collaboration, Measurement of Form-Factor-Inde-
pendent Observables in the Decay B0 → K�0μþμ−, Phys.
Rev. Lett. 111, 191801 (2013).

[2] LHCb Collaboration, Differential branching fractions and
isospin asymmetries of B → Kð�Þμþμ− decays, J. High
Energy Phys. 06 (2014) 133.

[3] LHCb Collaboration, Differential branching fraction and
angular analysis of Λ0

b → Λμþμ− decays, J. High Energy
Phys. 06 (2015) 115.

[4] LHCb Collaboration, Angular Analysis of the Bþ →
K�þμþμ− Decay, Phys. Rev. Lett. 126, 161802 (2021).

[5] LHCb Collaboration, Branching Fraction Measurements of
the Rare B0

s → ϕμþμ− and B0
s → f02ð1525Þμþμ− Decays,

Phys. Rev. Lett. 127, 151801 (2021).
[6] LHCb Collaboration, Test of lepton universality with B0 →

K�0lþl− decays, J. High Energy Phys. 08 (2017) 055.
[7] LHCb Collaboration, Test of lepton universality in beauty-

quark decays, Nat. Phys. 18, 277 (2022).
[8] S. Descotes-Genon, J. Matias, and J. Virto, Understanding

the B → K�μþμ− Anomaly, Phys. Rev. D 88, 074002 (2013).
[9] W. Altmannshofer and D.M. Straub, New physics in

B → K�μμ?, Eur. Phys. J. C 73, 2646 (2013).
[10] T. Hurth and F. Mahmoudi, On the LHCb anomaly in

B → K�lþl−, J. High Energy Phys. 04 (2014) 097.
[11] T. Hurth, F. Mahmoudi, and S. Neshatpour, Global fits to

b → sll data and signs for lepton non-universality, J. High
Energy Phys. 12 (2014) 053.

[12] T. Hurth, F. Mahmoudi, and S. Neshatpour, On the
anomalies in the latest LHCb data, Nucl. Phys. B909,
737 (2016).

[13] J. Wess and B. Zumino, Supergauge transformations in four
dimensions, Nucl. Phys. B70, 39 (1974).

[14] P. Fayet, Supersymmetry and weak, electromagnetic and
strong interactions, Phys. Lett. 64B, 159 (1976).

[15] H. P. Nilles, Supersymmetry, supergravity and particle
physics, Phys. Rep. 110, 1 (1984).

[16] MSSM Working Group Collaboration, The minimal super-
symmetric standard model: Group summary report, in GDR
(Groupement De Recherche)—Supersymetrie, 12, 1998
[arXiv:hep-ph/9901246].

[17] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo,
Supersymmetry without prejudice, J. High Energy Phys. 02
(2009) 023.

[18] S. S. AbdusSalam, B. C. Allanach, F. Quevedo, F. Feroz,
and M. Hobson, Fitting the phenomenological MSSM,
Phys. Rev. D 81, 095012 (2010).

[19] S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi, L.
Pape, M. Pierini, H. B. Prosper, and M. Spiropulu, Inter-
preting LHC SUSY searches in the phenomenological
MSSM, J. High Energy Phys. 02 (2012) 075.

[20] A. Arbey, M. Battaglia, and F. Mahmoudi, Implications of
LHC searches on SUSY particle spectra: The pMSSM
parameter space with neutralino dark matter, Eur. Phys. J.
C 72, 1847 (2012).

[21] A. Arbey, M. Battaglia, and F. Mahmoudi, Constraints on
the MSSM from the Higgs sector: A pMSSM study of Higgs
searches, B0

s → μþμ− and dark matter direct detection, Eur.
Phys. J. C 72, 1906 (2012).

[22] F. Mahmoudi, S. Neshatpour, and J. Virto, B → K�μþμ−

optimised observables in the MSSM, Eur. Phys. J. C 74,
2927 (2014).

[23] Q.-Y. Hu, Y.-D. Yang, and M.-D. Zheng, Revisiting the B-
physics anomalies in R-parity violating MSSM, Eur. Phys.
J. C 80, 365 (2020).

M. A. BOUSSEJRA, F. MAHMOUDI, and G. UHLRICH PHYS. REV. D 106, 015018 (2022)

015018-18

https://doi.org/10.1103/PhysRevLett.111.191801
https://doi.org/10.1103/PhysRevLett.111.191801
https://doi.org/10.1007/JHEP06(2014)133
https://doi.org/10.1007/JHEP06(2014)133
https://doi.org/10.1007/JHEP06(2015)115
https://doi.org/10.1007/JHEP06(2015)115
https://doi.org/10.1103/PhysRevLett.126.161802
https://doi.org/10.1103/PhysRevLett.127.151801
https://doi.org/10.1007/JHEP08(2017)055
https://doi.org/10.1038/s41567-021-01478-8
https://doi.org/10.1103/PhysRevD.88.074002
https://doi.org/10.1140/epjc/s10052-013-2646-9
https://doi.org/10.1007/JHEP04(2014)097
https://doi.org/10.1007/JHEP12(2014)053
https://doi.org/10.1007/JHEP12(2014)053
https://doi.org/10.1016/j.nuclphysb.2016.05.022
https://doi.org/10.1016/j.nuclphysb.2016.05.022
https://doi.org/10.1016/0550-3213(74)90355-1
https://doi.org/10.1016/0370-2693(76)90319-1
https://doi.org/10.1016/0370-1573(84)90008-5
https://arXiv.org/abs/hep-ph/9901246
https://doi.org/10.1088/1126-6708/2009/02/023
https://doi.org/10.1088/1126-6708/2009/02/023
https://doi.org/10.1103/PhysRevD.81.095012
https://doi.org/10.1007/JHEP02(2012)075
https://doi.org/10.1140/epjc/s10052-011-1847-3
https://doi.org/10.1140/epjc/s10052-011-1847-3
https://doi.org/10.1140/epjc/s10052-012-1906-4
https://doi.org/10.1140/epjc/s10052-012-1906-4
https://doi.org/10.1140/epjc/s10052-014-2927-y
https://doi.org/10.1140/epjc/s10052-014-2927-y
https://doi.org/10.1140/epjc/s10052-020-7940-8
https://doi.org/10.1140/epjc/s10052-020-7940-8


[24] P. S. Bhupal Dev, A. Soni, and F. Xu, Hints of natural
supersymmetry in flavor anomalies? arXiv:2106.15647.

[25] M. A. Boussejra and F. Mahmoudi, New constraints on
flavour violating supersymmetry, Proc. Sci., EPS-HEP2021
(2022) 661.

[26] G. Uhlrich, F. Mahmoudi, and A. Arbey, MARTY—
Modern ARtificial Theoretical phYsicist A C þþ frame-
work automating symbolic calculations beyond the standard
model, Comput. Phys. Commun. 264, 107928 (2021).

[27] G. Uhlrich, F. Mahmoudi, and A. Arbey, Automatic
extraction of one-loop Wilson coefficients in general
BSM scenarios using MARTY-1.4, Proc. Sci., EPS-
HEP2021 (2022) 507.

[28] S. P. Martin, A supersymmetry primer, Adv. Ser. Dir. High
Energy Phys. 18, 1 (1998).

[29] M. Drees, R. Godbole, and P. Roy, Theory and Phenom-
enology of Sparticles: An Account of Four-Dimensional
N ¼ 1 Supersymmetry in High Energy Physics (World
Scientific, Singapore, 2005).

[30] E. Lunghi, A. Masiero, I. Scimemi, and L. Silvestrini, B →
Xslþl− decays in supersymmetry, Nucl. Phys. B568, 120
(2000).

[31] B. C. Allanach et al., SUSY Les Houches Accord 2,
Comput. Phys. Commun. 180, 8 (2009).

[32] F. Gabbiani and A. Masiero, FCNC in generalized super-
symmetric theories, Nucl. Phys. B322, 235 (1989).

[33] E. Gabrielli, A. Masiero, and L. Silvestrini, Flavor changing
neutral currents and CP violating processes in generalized
supersymmetric theories, Phys. Lett. B 374, 80 (1996).

[34] A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, and K.
Tamvakis, Mass insertions vs. mass eigenstates calculations
in flavour physics, J. High Energy Phys. 06 (2015) 151.

[35] M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S. K.
Vempati, and O. Vives, Soft SUSY breaking grand uni-
fication: Leptons versus quarks on the flavor playground,
Nucl. Phys. B783, 112 (2007).

[36] B. C. Allanach, SOFTSUSY: A program for calculating
supersymmetric spectra, Comput. Phys. Commun. 143, 305
(2002).

[37] F. Mahmoudi, SuperIso: A program for calculating the
isospin asymmetry of B → K�γ gamma in the MSSM,
Comput. Phys. Commun. 178, 745 (2008).

[38] F. Mahmoudi, SuperIso v2.3: A program for calculating
flavor physics observables in supersymmetry, Comput.
Phys. Commun. 180, 1579 (2009).

[39] F. Mahmoudi, SuperIso v3.0, flavor physics observables
calculations: Extension to NMSSM, Comput. Phys. Com-
mun. 180, 1718 (2009).

[40] S. Neshatpour and F. Mahmoudi, Flavour Physics with
SuperIso, Proc. Sci., TOOLS2020 (2021) 036.

[41] Particle Data Group, Review of Particle Physics, Prog.
Theor. Exp. Phys. 2020, 083C01 (2020).

[42] P. Z. Skands et al., SUSY Les Houches accord: Interfacing
SUSY spectrum calculators, decay packages, and event
generators, J. High Energy Phys. 07 (2004) 036.

[43] J. A. Casas and S. Dimopoulos, Stability bounds on flavor
violating trilinear soft terms in the MSSM, Phys. Lett. B
387, 107 (1996).

[44] K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi,
B. O’Leary, W. Porod, S. Sekmen, and N. Strobbe, General

squark flavour mixing: Constraints, phenomenology and
benchmarks, J. High Energy Phys. 11 (2015) 125.

[45] J. Bernigaud and B. Herrmann, First steps towards the
reconstruction of the squark flavour structure, SciPost Phys.
6, 066 (2019).

[46] G. Alguero, J. Heisig, C. Khosa, S. Kraml, S. Kulkarni, A.
Lessa et al., Constraining new physics with SModelS
version 2, arXiv:2112.00769.

[47] T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour,
More indications for lepton nonuniversality in b → slþl−,
Phys. Lett. B 824, 136838 (2022).

[48] T. Hurth, F. Mahmoudi, D. Martinez Santos, and S.
Neshatpour, Lepton nonuniversality in exclusive b → sll
decays, Phys. Rev. D 96, 095034 (2017).

[49] A. Arbey, T. Hurth, F. Mahmoudi, D. M. Santos, and S.
Neshatpour, Update on the b → s anomalies, Phys. Rev. D
100, 015045 (2019).

[50] A. Behring, C. Gross, G. Hiller, and S. Schacht, Squark
flavor implications from B̄ → k̄�lþl−, J. High Energy Phys.
08 (2012) 152.

[51] C. Bobeth, A. J. Buras, and T. Ewerth, B̄ → Xslþl− in the
MSSM at NNLO, Nucl. Phys. B713, 522 (2005).

[52] S. P. Martin and J. D. Wells, Muon anomalous magnetic
dipole moment in supersymmetric theories, Phys. Rev. D
64, 035003 (2001).

[53] A. Dedes, J. Rosiek, and P. Tanedo, Complete one-loop
MSSM predictions for B0 → lþl− at the Tevatron and
LHC, Phys. Rev. D 79, 055006 (2009).

[54] A. Crivellin, L. Hofer, and J. Rosiek, Complete resumma-
tion of chirally-enhanced loop-effects in the MSSM with
non-minimal sources of flavor-violation, J. High Energy
Phys. 07 (2011) 017.

[55] A. Crivellin and U. Nierste, Chirally enhanced corrections
to flavor-changing neutral current processes in the generic
MSSM, Phys. Rev. D 81, 095007 (2010).

[56] W. Porod, SPheno, a program for calculating supersym-
metric spectra, SUSY particle decays and SUSY particle
production at eþe− colliders, Comput. Phys. Commun. 153,
275 (2003).

[57] W. Porod and F. Staub, SPheno 3.1: Extensions including
flavour, CP-phases and models beyond the MSSM, Com-
put. Phys. Commun. 183, 2458 (2012).

[58] T. Aoyama et al., The anomalous magnetic moment of the
muon in the Standard Model, Phys. Rep. 887, 1 (2020).

[59] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete Tenth-Order QED Contribution to the Muon
g − 2, Phys. Rev. Lett. 109, 111808 (2012).

[60] T. Aoyama, T. Kinoshita, and M. Nio, Theory of the
anomalous magnetic moment of the electron, Atoms 7,
28 (2019).

[61] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Refine-
ments in electroweak contributions to the muon anomalous
magnetic moment, Phys. Rev. D 67, 073006 (2003).

[62] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim,
The electroweak contributions to ðg − 2Þμ after the
Higgs boson mass measurement, Phys. Rev. D 88,
053005 (2013).

[63] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the Standard Model predictions of the muon g − 2

FLAVOR ANOMALIES IN SUPERSYMMETRIC SCENARIOS WITH … PHYS. REV. D 106, 015018 (2022)

015018-19

https://arXiv.org/abs/2106.15647
https://doi.org/10.22323/1.398.0661
https://doi.org/10.22323/1.398.0661
https://doi.org/10.1016/j.cpc.2021.107928
https://doi.org/10.22323/1.398.0507
https://doi.org/10.22323/1.398.0507
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1016/S0550-3213(99)00692-6
https://doi.org/10.1016/S0550-3213(99)00692-6
https://doi.org/10.1016/j.cpc.2008.08.004
https://doi.org/10.1016/0550-3213(89)90492-6
https://doi.org/10.1016/0370-2693(96)00158-X
https://doi.org/10.1007/JHEP06(2015)151
https://doi.org/10.1016/j.nuclphysb.2007.05.032
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1016/j.cpc.2007.12.006
https://doi.org/10.1016/j.cpc.2009.02.017
https://doi.org/10.1016/j.cpc.2009.02.017
https://doi.org/10.1016/j.cpc.2009.05.001
https://doi.org/10.1016/j.cpc.2009.05.001
https://doi.org/10.22323/1.392.0036
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1088/1126-6708/2004/07/036
https://doi.org/10.1016/0370-2693(96)01000-3
https://doi.org/10.1016/0370-2693(96)01000-3
https://doi.org/10.1007/JHEP11(2015)125
https://doi.org/10.21468/SciPostPhys.6.6.066
https://doi.org/10.21468/SciPostPhys.6.6.066
https://arXiv.org/abs/2112.00769
https://doi.org/10.1016/j.physletb.2021.136838
https://doi.org/10.1103/PhysRevD.96.095034
https://doi.org/10.1103/PhysRevD.100.015045
https://doi.org/10.1103/PhysRevD.100.015045
https://doi.org/10.1007/JHEP08(2012)152
https://doi.org/10.1007/JHEP08(2012)152
https://doi.org/10.1016/j.nuclphysb.2005.02.011
https://doi.org/10.1103/PhysRevD.64.035003
https://doi.org/10.1103/PhysRevD.64.035003
https://doi.org/10.1103/PhysRevD.79.055006
https://doi.org/10.1007/JHEP07(2011)017
https://doi.org/10.1007/JHEP07(2011)017
https://doi.org/10.1103/PhysRevD.81.095007
https://doi.org/10.1016/S0010-4655(03)00222-4
https://doi.org/10.1016/S0010-4655(03)00222-4
https://doi.org/10.1016/j.cpc.2012.05.021
https://doi.org/10.1016/j.cpc.2012.05.021
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1103/PhysRevLett.109.111808
https://doi.org/10.3390/atoms7010028
https://doi.org/10.3390/atoms7010028
https://doi.org/10.1103/PhysRevD.67.073006
https://doi.org/10.1103/PhysRevD.88.053005
https://doi.org/10.1103/PhysRevD.88.053005


and αðm2
ZÞ using newest hadronic cross-section data, Eur.

Phys. J. C 77, 827 (2017).
[64] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g − 2 and

αðM2
ZÞ: A new data-based analysis, Phys. Rev. D 97,

114025 (2018).
[65] G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion

contribution to hadronic vacuum polarization, J. High
Energy Phys. 02 (2019) 006.

[66] M. Hoferichter, B.-L. Hoid, and B. Kubis, Three-pion
contribution to hadronic vacuum polarization, J. High
Energy Phys. 08 (2019) 137.

[67] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
αðm2

ZÞ, Eur. Phys. J. C 80, 241 (2020).
[68] A. Keshavarzi, D. Nomura, and T. Teubner, The g − 2 of

charged leptons, αðM2
ZÞ and the hyperfine splitting of

muonium, Phys. Rev. D 101, 014029 (2020).
[69] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Hadronic

contribution to the muon anomalous magnetic moment to
next-to-next-to-leading order, Phys. Lett. B 734, 144 (2014).

[70] K. Melnikov and A. Vainshtein, Hadronic light-by-light
scattering contribution to the muon anomalous magnetic
moment revisited, Phys. Rev. D 70, 113006 (2004).

[71] P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole
contribution to the ðgμ − 2Þ: A rational approach, Phys.
Rev. D 95, 054026 (2017).

[72] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,
Dispersion relation for hadronic light-by-light scattering:
Two-pion contributions, J. High Energy Phys. 04 (2017) 161.

[73] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.
Schneider, Dispersion relation for hadronic light-by-light
scattering: Pion pole, J. High Energy Phys. 10 (2018) 141.

[74] A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice calcu-
lation of the pion transition form factor with Nf ¼ 2þ 1
Wilson quarks, Phys. Rev. D 100, 034520 (2019).

[75] J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-
Sánchez, Short-distance constraints for the HLbL contribu-
tion to the muon anomalous magnetic moment, Phys. Lett.
B 798, 134994 (2019).

[76] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P.
Stoffer, Longitudinal short-distance constraints for the

hadronic light-by-light contribution to ðg − 2Þμ with
large-Nc Regge models, J. High Energy Phys. 03 (2020)
101.

[77] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin,
C. Jung, and C. Lehner, The Hadronic Light-by-Light
Scattering Contribution to the Muon Anomalous Magnetic
Moment from Lattice QCD, Phys. Rev. Lett. 124, 132002
(2020).

[78] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and
P. Stoffer, Remarks on higher-order hadronic corrections to
the muon g − 2, Phys. Lett. B 735, 90 (2014).

[79] Muon g − 2 Collaboration, Measurement of the Positive
Muon Anomalous Magnetic Moment to 0.46 ppm, Phys.
Rev. Lett. 126, 141801 (2021).

[80] Muon g − 2 Collaboration, Final report of the muon E821
anomalous magnetic moment measurement at BNL, Phys.
Rev. D 73, 072003 (2006).

[81] S. Borsanyi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature (London)
593, 51 (2021).

[82] A. J. Buras and M. Munz, Effective Hamiltonian for
B → Xseþe− beyond leading logarithms in the NDR and
HV schemes, Phys. Rev. D 52, 186 (1995).

[83] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak
decays beyond leading logarithms, Rev. Mod. Phys. 68,
1125 (1996).

[84] P. L. Cho, M. Misiak, and D. Wyler, KL → π0eþe− and
B → Xslþl− decay in the MSSM, Phys. Rev. D 54, 3329
(1996).

[85] T. Goto, Y. Okada, Y. Shimizu, and M. Tanaka, b → sl l̄ in
the minimal supergravity model, Phys. Rev. D 55, 4273
(1997).

[86] T. Goto, Y. Okada, and Y. Shimizu, Flavor changing neutral
current processes in B and K decays in the supergravity
model, Phys. Rev. D 58, 094006 (1998).

[87] F. Kruger and J. Romao, Flavor conserving CP phases in
supersymmetry and implications for exclusive B decays,
Phys. Rev. D 62, 034020 (2000).

[88] H. Bateman, Higher Transcendental Functions [Vol. I–III]
(McGraw-Hill Book Company, New York, 1953), Vol. 1.

[89] L. Slater, Generalized Hypergeometric Functions (Cam-
bridge University Press, Cambridge, England, 2008).

M. A. BOUSSEJRA, F. MAHMOUDI, and G. UHLRICH PHYS. REV. D 106, 015018 (2022)

015018-20

https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1007/JHEP08(2019)137
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1103/PhysRevD.101.014029
https://doi.org/10.1016/j.physletb.2014.05.043
https://doi.org/10.1103/PhysRevD.70.113006
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1103/PhysRevD.95.054026
https://doi.org/10.1007/JHEP04(2017)161
https://doi.org/10.1007/JHEP10(2018)141
https://doi.org/10.1103/PhysRevD.100.034520
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1007/JHEP03(2020)101
https://doi.org/10.1007/JHEP03(2020)101
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1016/j.physletb.2014.06.012
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1103/PhysRevD.52.186
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/PhysRevD.54.3329
https://doi.org/10.1103/PhysRevD.54.3329
https://doi.org/10.1103/PhysRevD.55.4273
https://doi.org/10.1103/PhysRevD.55.4273
https://doi.org/10.1103/PhysRevD.58.094006
https://doi.org/10.1103/PhysRevD.62.034020

