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The possibility of neutron swapping between the ordinary and mirror sectors is today a subject of a great
many theoretical and experimental studies. In this paper, we investigate the neutron-mirror neutron
transitions in different environments from a vacuum to a neutron star. Our approach is based on the density
matrix formalism, Lindblad and Bloch equations and the implication of the seesaw mechanism to the
Hamiltonian diagonalization.
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I. INTRODUCTION

The observation of neutron transformation to mirror
neutron would be a discovery of fundamental importance.
This would demonstrate the existence of a hidden copy of
the ordinary particle sector. The idea goes back to a Lee and
Yang suggestion [1] to compensate the parity violation in
weak interactions by the introduction of the right-handed
protons. The concept of mirror world as an independent
parallel sector took a distinct form in a seminal paper by
Kobzarev, Okun, and Pomeranchuk [2]. Ordinary and
mirror particles can communicate via gravitation and via
oscillations between neutral particles from both sectors
[3–7]. To our knowledge this neutron-mirror neutron n − n0
mixing was first considered in [5], where it was also shown
that such transitions do not destabilize nuclei. A compre-
hensive review of the status of the mirror matter concept for
50 years 1956–2006 was given in [8]. The review of the
early searches for neutron to mirror neutron conversion was
presented in [9]. At the present, mirror matter, and in
particular the n − n0 transformation, is the focus of intense
theoretical and experimental studies. It is not in the scope of
the present work to give a review of a great number of
relevant publications. An up-to-date situation with regard to
performed and planning experiments and a comprehensive
list of references may be found in [10]. The most important
among the planned experiments is the HIBEAM/NNBAR
[10] to be performed at the European Spallation Source

[10]. Two significant experiments, namely STEREO [11]
and MURMUR [12], deserve a special mention. These are
passing-through-wall experiments with nuclear reactor
acting as a source of neutrons/hidden neutrons. This
experimental strategy is similar to a short-baseline search
for sterile neutrinos [13–17].
The present limit for a free n − n0 oscillation time

obtained by [18] is τn−n0 ≥ 448 s (90% C.L.). This result
implies the assumption of compensation the Earth’s mag-
netic field and the absence of the mirror magnetic field.
Results with these conditions relaxed may be found in
[10,19–22]. Results of STEREO [11] and MURMUR [12]
experiments are presented in terms of the swapping
probability p (see below), which is correspondingly equal
to p < 3.1 × 10−11 (95% C.L.) [11], and p < 4.0 × 10−10

(95% C.L.) [12].
An important motivation for the current interest to mirror

neutron physics is the n − n0 transition inside the neutron
star and putative neutron star-MNS transition, where MNS
means a mixed neutron-mirror neutron star [23–27].
Possible cosmological and astrophysical manifestations
of mirror particles have been discussed since the early
days of the mirror matter concept [28–32]. Another reason
why the n − n0 transition is now a point of attraction is the
possibility that dark matter is a mirror twin of the Standard
Model [4,29,33,34]. Finalizing this brief introductory
review necessary to mention a conjecture that n − n0
transition can be responsible for the neutron lifetime
anomaly [21,27,35–37]. The neutron lifetime is measured
in two types of experiments, the bottle and the beam
experiments, see the references above. There is a 4σ
discrepancy between the results of the two methods with
the beam experiment giving the value of the lifetime higher
than the bottle one. Whether this discrepancy may be attri-
buted to n − n0 oscillations is an open question. According
to [35,37] the most probable reason of discrepancy is the
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drawback of the beam method. In [27] the upper bound for
n − n0 mixing parameter is deduced from the binary pulsars
data with the conclusion that the obtained limit excludes the
possibility to explain the neutron lifetime anomaly.
The aim of the present work is to describe the neutron-

mirror neutron conversion n − n0 using the density matrix
formalism. The point is that when the two-state quantum
system is embedded into the environment, this approach is
the most adequate one. Interaction with the environment
leads to the destruction of the density matrix off-diagonal
elements and thus to the lost of the coherence. The present
work relies on the Lindblad [38,39] and Bloch [40]
equations for the density matrix and in one case on the
seesaw diagonalization of the Hamiltonian. In our view the
cornerstone of this approach is a seminal paper by
G. Feinberg and S. Weinberg [41] on the conversion of
muonium into antimuonium. Awhile later this work served
as a basis for numerous investigations of the transitions into
the mirror world and a related subject of hidden particles
production. In recent years the Lindblad equation became a
standard tool to describe the multilevel system embedded
into the environment. Just two of a great many examples is
the investigation of the neutrino oscillations in plasma [42]
and heavy quark systems evolution in quark-gluon plasma
[43]. Therefore some equations presented below will be
either taken for granted or supplemented with minimal
explanations. Our work has some overlap with [44–47] as
will be indicated below. The detailed numerical calcula-
tions will be given elsewhere.

II. DENSITY MATRIX FORMALISM.
LINDBLAD EQUATION

We consider the time evolution of the n − n0 system
embedded in the environment with the vacuum being a
particular case. The density matrix of this system has the
form

ρ̂ ¼
�
ρ11 ρ12

ρ21 ρ22

�
≡
�

ρ1 xþ iy

x − iy ρ2

�
; ð1Þ

where indices 1 and 2 correspond to the neutron and mirror
neutron. The second expression for ρ̂ in (1) is a convenient
form used previously in [45,46]. The relation between the
two forms is

ρ1 ¼ ρ11; ρ2 ¼ ρ22; x¼ 1

2
ðρ12þ ρ21Þ; y¼ i

2
ðρ21− ρ12Þ:

ð2Þ

The time evolution of the density matrix is described by the
Von-Neumann–Liouville equation

dρ̂
dt

¼ −i½Ĥ; ρ̂�; ð3Þ

where Ĥ is the Hamiltonian of the system. But this is not
the whole story if the system under consideration interacts
with the environment. In this case the reduced density
matrix evolution is given by the Lindblad equation. Prior to
the introduction of this equation a historical remark is in
order. To our knowledge, the first work in which such an
equation was written down and used for the calculation of
the muonium to antimuonium conversion is [41] by
G. Feinberg and S. Weinberg mentioned in the
Introduction. These authors derived the needed equation
from the physical arguments long before it was formulated in
the general form [38,39] on the mathematical grounds and
started to be called Lindblad equation. However, in his later
work [48] S. Weinberg used the term Lindblad equation,
made reference to [38,39] and did not mention [41].
The Lindblad equation time evolution of the density

matrix of an open system has the following form [38,39]

dρ̂
dt

¼ −i½Hρ̂� þ LρLþ −
1

2
fLþL; ρ̂g; ð4Þ

where L is the Lindblad operator, which should satisfy
certain conditions [49] but is not known a priori, and f…g
is an anticommutator. A pedagogical derivation of the
Lindblad equation may be found in [49].
The Hamiltonian in (4) is Hermitian. Dissipation arising

from the interaction with the environment is described by
the two terms on the right-hand side of (4) containing the
Lindblad operator L. This dissipation is called the Lindblad
decoherence. In order to take into account the decay widths
of the mass eigenstates (beta decay of n and n0) one has to
consider the non-Hermitian Hamiltonians. Such generali-
zation of the Lindblad equation has been discussed in
literature, see, e.g., [50], and reads

dρ̂
dt

¼ −iðHρ̂ − ρ̂HþÞ þ LρLþ −
1

2
fLþL; ρ̂g; ð5Þ

For n − n0 conversion H and L in (4) are [44,51]

H ¼
 
− 2π

k nvRefð0Þ þ E − i γ
2

ε

ε E0 − i γ
0
2

!
; ð6Þ

L ¼ ffiffiffiffiffiffi
nv

p
F; F ¼

�
fðθÞ 0

0 0

�
: ð7Þ

Here E;E0; γ, and γ0 are the neutron and mirror neutron
energies and widths. The energies and the widths may differ
either due to the broken mirror symmetry or to the different
external conditions like neutron interaction with matter and
electromagnetic fields. Magnetic fields, both usual and
mirror [19,20], will not be explicitly introduced into the
equations. Magnetic field acting in our world is implicitly
included into the energy difference d ¼ E − E0, while the
hypothetical mirror magnetic field, which may lead to
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intriguing effects [19,52,53], is beyond the scope of this
work. The amplitude fðθÞ is the neutron elastic scattering
one, n stands for the number density of the surrounding
matter, v is the mean relative velocity between the neutron
and the matter particles. The term 2π

k nvRefð0Þ corresponds
to the energy shift related to the forward scattering. The
mirror neutron is considered as a sterile particle subjected
only to the decay with the decay constant γ0. With Eqs. (6)
and (7), Eq. (5) yields

_ρ1 ¼ −2εy − ðnvσr þ γÞρ1; ð8Þ

_ρ2 ¼ þ2εy − γ0ρ2; ð9Þ

_x ¼ −Mxþ ðdþ KÞy − 1

2
ðγ þ γ0Þx; ð10Þ

_y ¼ −My − ðdþ KÞxþ εðρ1 − ρ2Þ −
1

2
ðγ þ γ0Þy; ð11Þ

Here σr ¼ σt − σe is the neutron reaction cross section. It
will be assumed that the neutron cross section is saturated
by an swave. The quantitiesK andM in (10), (11) stand for

K ¼ −
2π

k
nvRefð0Þ; M ¼ 2π

k
nvImfð0Þ; ð12Þ

and d ¼ E − E0. Finally, we note that one can write the
same set of Eqs. (8)–(11) taking for granted Eq. (23) of
[41], namely

dρ̂
dt

¼−iH̃ ρ̂þiρ̂H̃þ þ 2πnv
Z

dðcosθÞF̂ðθÞρ̂F̂�ðθÞ; ð13Þ

with F̂ðθÞ given by (7) and where H̃ differs from (6) by
omitting the symbol Re in the amplitude fð0Þ. This way of
reasoning has been adopted, e.g., in [45,54]. Still, we
wanted to present the Lindblad equation in its original form
since it is presently commonly used in particle physics.
The set of differential Eqs. (8)–(11) do not allow simple

closed form solutions [55]. Therefore in the next sections
we shall resort to the approximations adequate for the given
environment.

III. CONVERSION IN VACUUM
AND IN THE TRAP

The well-known expression for n − n0 oscillations in
vacuum can be immediately received from Eqs. (8)–(11).
To this end we use the truncated set of equations with
K ¼ M ¼ γ ¼ γ0 ¼ 0. Taking the derivative of the Eq. (11)
for _y and making obvious substitutions, one gets

ÿþ ðd2 þ 4ε2Þy ¼ 0: ð14Þ

We consider the transition n to n0. Therefore the initial
conditions at t ¼ 0 are ρ1 ¼ 1; ρ2 ¼ ρ12 ¼ ρ21 ¼ 0.

Correspondingly according to (2) the initial condition for
y is yð0Þ ¼ 0, and from (11) _yð0Þ ¼ ε. With this initial
condition, one obtains

y ¼ ε

Ω
sinΩt; Ω2 ¼ d2 þ 4ε2: ð15Þ

Then Eq. (9) for _ρ2 yields the result

ρ2 ¼
4ε2

Ω2
sin2

Ω
2
t: ð16Þ

Next we consider transitions in a trap. This process for
ultracold neutrons has been experimentally studied in a
number of works [56,57]. On the theoretical side we resort
to [44,45,58]. A general remark is in order. Decoherence
drastically suppresses oscillations if the collision rate with
environment is much higher than the oscillation frequency.
There are two sources of decoherence in the trap experi-
ments, namely, collisions with the trap walls and with the
residual gas inside the trap. Here we consider only
collisions with the walls, decoherence due to the presence
of low density gas inside the trap was studied in [44].
Let τi be the time interval between (i − 1)th and ith

collisions with the walls. It is convenient to introduce a
variable Rz ¼ ρ1 − ρ2, which is the zth component of the
Bloch three-vectorR [40]. We shall return to the discussion
of the decoherence due to the collisions with the trap walls
within the R-matrix formalism at the end of this section. In
[45] this variable is called s. Following collisions step by
step one arrives at the obvious result [44,45]:

RzðτnþÞ ¼
Yn
k¼1

cosð2ετkþÞ: ð17Þ

Note that ετ ≪ 1, where τ is the average collision time,
τ ¼ t=n, n is the number of collisions and we assume
n ≫ 1, τ ≃ 0.1s, ε−1 ≥ 448s according to [18]. On account
of 2ετk ≪ 1 and in the approximation of equal time
intervals between the collisions, one can represent (17) as

Rz ≃
Yn
k¼1

�
1 −

ð2ετÞ2
2

�
≃
�
1 −

2ε2τt
n

�
n

≃ expð−2ε2τtÞ;

ð18Þ
which coincides with (32) of [45]. We see that colli-
sions with the walls exponentially suppress oscillations.
Transition probability after n collisions is equal to

ρ2 ¼
1

2
ð1 − RzÞ ≃ ε2τt; ð19Þ

in line with (35) of [45] and with (39) of [58]. It is
interesting to note that one can came to the same result by
using the evolution equation for the Bloch three-vector R
defined as
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ρ̂ ¼ 1

2
ð1þRσÞ; ð20Þ

R ¼

0
B@

ρ12 þ ρ21

−iðρ21 − ρ12Þ
ρ1 − ρ2

1
CA ¼

0
B@

2x

−2y
ρ1 − ρ2

1
CA: ð21Þ

We shall use the R-matrix formalism in the form
proposed by L. Stodolsky [59]. Direct examination shows
that the Lindblad equation in the form (5), or (8)–(11) is
equivalent to

_R ¼ V ×R −DTRT − γR; ð22Þ

where

V ¼

0
B@

2ε

O

dþ K

1
CA; DT ¼

�
M O

O M

�
; RT

�
Rx

Ry

�
: ð23Þ

The physical meaning of the three terms in (22) is quite
different. The contribution K in VZ corresponds to the
energy shift due to the refraction index. Alternatively, it
may be considered as a supplementary “magnetic field”
along the Z axis [59]. The third term in (22) is rather trivial.
It corresponds to the shrinking of the Bloch vector R in
length. It may be set equal to zero without distortion of the
physical picture. The most important is the second term
with DT giving the quantum friction. It leads to destroying
the off-diagonal elements of the density matrix and the lost
of coherence. Using the optical theorem the matrix ele-
mentsM ofDT are related to the total neutron cross section

M ¼ 2π

k
nvImfð0Þ ¼ 1

2
nvσt: ð24Þ

In order to recover the result (19) for the transition in the
trap we take Eq. (11) for _y in the form

_y ¼ −Myþ εðρ1 − ρ2Þ: ð25Þ

Taking the derivative once more, one obtains the
following equation for Rz

R̈z þM _Rz þ 4ε2Rz ¼ 0: ð26Þ

This is the equation for oscillator with friction. When
M ≫ 4ε it leads to the overdamping solution that at “long”
times t ≫ 1=M is proportional to

Rz ∼ exp

�
−
4ε2

M
t

�
; ð27Þ

and we return to (19) provided M ¼ 2=τ. Therefore the
transition probability is

ρ2ðtÞ ¼
1

2
½1 − expð−2ε2τtÞ� ≃ ε2τt ð28Þ

in line with [58]. The general problem of the equivalence
between the Lindblad equation and the Bloch vector
evolution equation is discussed in [60].

IV. SEESAW MECHANISM IN STRONG
ABSORPTION REGIME

Consider now the n − n0 conversion in the media with
strong neutron absorption. Within the density matrix for-
malism similar problemhas been solved in [44].Herewe turn
to theHamiltonian diagonalizationmethod closely following
[61–63]. At the end of this section we shall show how the
Lindblad equation works in this case. Consider the limiting
case M ≫ jKj [see (12)]. This means that we neglect the
neutron rescattering. It makes the use of Lindblad equation
not obligatory. The quantity M can be presented as

M ¼ 2π

k
nvImfð0Þ ¼ 1

2
nvσ ≃ Γ=2; ð29Þ

where σ is the total neutron cross section. The last equality in
(29) may be explained in the following way. The mean free
path of the neutron is L ¼ ðnσÞ−1. The corresponding
propagation time is t ¼ L=v, so that Γ ≃ t−1 ¼ nvσ. The
Hamiltonian reads

H ¼
�−iM ε

ε ω

�
; ð30Þ

wherewe subtracted the part proportional to the unitymatrix,
ω ¼ E0 − E ¼ −d. Diagonalization results in the two eigen-
values

μ1 ≃ −iM þ ε2
iM

M2 þ ω2
− ε2

ω

M2 þ ω2
; ð31Þ

μ2 ≃ ω − ε2
iM

M2 þ ω2
þ ε2

ω

M2 þ ω2
: ð32Þ

For the degenerate n − n0 levels (ω ¼ 0) there is a huge
disparity between the two eigenvalues. This is a typical
seesaw picture [61]. The wave function evolution is
described by [63]

ψðtÞ ¼
�
H − μ2
μ1 − μ2

e−iμ1t þ H − μ1
μ2 − μ1

e−iμ2t
��

a

b

�
; ð33Þ

where a stands for ψnð0Þ and b for ψn0 ð0Þ. In the leading
order in ε and assuming jεðωþ iMÞ−1j ≪ 1 and
ε2ðω2 þM2Þ−1ML ≪ 1, one obtains

ψðtÞ ¼
 

ae−
Γ
2
t − b ε

ωþiΓ
2

ðe−Γ
2
t − e−iωtÞ

be−iωt − a ε
ωþiΓ

2

ðe−Γ
2
t − e−iωtÞ

!
: ð34Þ
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Weare interested inmirror neutron production, so thata ¼ 1,
b ¼ 0, and

ψn0 ðtÞ ¼ −
ε

ωþ i Γ
2

ðe−Γ
2
t − e−iωtÞ: ð35Þ

For jψn0 ðtÞj2 ¼ ρ2ðtÞ this yields

jψn0 ðtÞj2 ¼
ε2

ω2 þ Γ2

4

ð1þ e−Γt − 2e−
Γ
2
t cosωtÞ: ð36Þ

Our results (35) and (36) coincide with those of [62–64].
The solution (36) corresponds to the dominant role of the
eigenvalue μ1 [see (31)]. If we remove assumptions
allowing to obtain (34) from (33), and consider the solution
of (33) for the times

1

M
≪ t ≪

1

M

�
M
ε

�
2

; ð37Þ

we arrive to another solution with the dominant role the
eigenvalue μ2 (32) provided ω ¼ 0, or very small. Then
ρ2ðtÞ ¼ jψn0 ðtÞj2 reads [44,61]

jψn0 ðtÞj2 ¼
ε2

ω2 þ Γ2

4

e−δt; ð38Þ

where δ ¼ ε2Γðω2 þ Γ2

4
Þ−1. This is the limit of “long” times

or distances close to or exceeding the absorption length
L ¼ vt, where v is neutron velocity. Formally, the distance
(or time) independent factor in (38) is obtained from (36)
at Γt ≫ 1, or ðnσLÞ ≫ 1. The regime (38) means that at
some thickness L of the absorber such that ðnvσÞt ≫ 1 or
ðnσLÞ ≫ 1 the attenuation of the neutron beam due to the
n − n0 transition becomes almost constant.
One can solve Eq. (33) in the next order in ε=M and get

the solution that incorporates both limiting regimes (36)
and (38). It has the following form:

jψn0 ðtÞj2 ¼
ε2

ω2 þ Γ2

4

e−δtð1þ e−Γ
00t − 2e−

Γ00
2
t cosω00tÞ; ð39Þ

where

δ ¼ ε2
Γ

ω2 þM2
; ωε ¼ ε2

ω

ω2 þM2
; ð40Þ

Γ00 ¼ Γ − 2δ; ω00 ¼ ωþ 2ωε: ð41Þ

To treat the strong absorbtion regime within the Lindblad
equation approach one can take Eqs. (9) and (11) in an
oversimplified form

_ρ2 ¼ 2εy; ð42Þ

_y ¼ −Myþ εðρ1 − ρ2Þ: ð43Þ

Taking the time derivative in (43) once more we obtain

d2y
dt2

þM
dy
dt

þ 4ε2y ¼ 0: ð44Þ

The initial conditions are yð0Þ ¼ 0; _yð0Þ ¼ ε. Solving
(44) in the same approximation that lead to (34), putting the
result into (42), we obtain

ρ2ðtÞ ¼
ε2

M2
ð1 − e−MtÞ2 ¼ 4ε2

Γ2

�
1 − e−

Γ
2
t

�
2

; ð45Þ

which is the same as (36) for ω ¼ 0.
Striving for an analytical solution in the strong absorption

regime we were forced to make a drastic approximation
M ≫ jKj, or Imfð0Þ ≫ jRefð0Þj. Looking into the NIST
table of the neutron scattering length [65] one concludes that
this is not the most adequate assumption. As noted already
the system of Lindblad equations (8)–(11) does not allow a
transparent solution without approximations. For illustrative
purposes we present a solution in a regime “opposite” to the
previous one, namely with the negligible absorption
jKj ≫ M. Equations (9) and (11) take the form

_ρ2 ¼ 2εy; ð46Þ

_y ¼ −Kxþ εðρ1 − ρ2Þ: ð47Þ

Invoking Eq. (10) for _x we arrive at the following
equation for ÿ

d2y
dt2

þ ðK2 þ 4ε2Þy ¼ 0: ð48Þ

Solving (46)–(48) with the same initial conditions for yð0Þ
and _yð0Þ we obtain

ρ2ðtÞ ¼
4ε2

K2 þ 4ε2
sin2

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 4ε2

p
t: ð49Þ

As expected, the neutron undergoes oscillations with the
time-averaging swapping probability [46]

P ¼ 2ε2

K2 þ 4ε2
: ð50Þ

The actual experimental regime most probably corre-
sponds to jKj≳M [65] so that both these quantities should
be kept in (8)–(11). With a given set of physical parameters
a compete solution of (8)–(11) is a cumbersome but
tractable task.
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V. A TOY MODEL OF n− n0 CONVERSION IN
NEUTRON STARS

As stated, the system of Eqs. (8)–(11) does not allow a
simple analytical solution. There is a physical situation
when it is of minor importance to control the n − n0
conversion at every moment. The process might be slow,
long-lasting, and the goal is to predict the final outcome,
namely the balance between n and n0 components at an
asymptotically long time. This is exactly what may happen
in a neutron star, which could gradually transform into a
mixed star consisting of normal neutron and mirror neutron
components [23,24]. What follows is a preliminary outline
of a future work on this problem.
The system (8)–(11) cannot be solved in a closed form

but can be integrated in time from 0 to∞ with given initial
conditions. This procedure has been previously performed
in [41,45].
We return to (8)–(11) and introduce the following

notations:

X¼
Z

∞

0

dtx; Y ¼
Z

∞

0

dty; Pi ¼
Z

∞

0

dtρi; i¼ 1;2;

ð51Þ

R ¼ nvσr þ γ; Γ ¼ 1

2
ðγ þ γ0 þ 2MÞ; Δ ¼ dþK:

ð52Þ

This mode of action and similar notations were first
introduced by G. Feinberg and S. Weinberg [41]. The
initial conditions read P1 ¼ 1; P2 ¼ X ¼ Y ¼ 0. The set of
equations to be solved are

RP1 þ 2εY ¼ 1; ð53Þ

γ0P2 − 2εY ¼ 0; ð54Þ

ΓX − ΔY ¼ 0; ð55Þ

ΓY þ ΔX − εðP1 − P2Þ ¼ 0: ð56Þ

The branching ratio we seek for is

Br ¼ P2

P1 þ P2

: ð57Þ

Br is easily found from (53)–(56) in the approximation
ε2 ≪ Γ2 with the result

Br ≃
Γ
γ0

2ε2

Γ2 þ Δ2
: ð58Þ

As might be expected, we obtained the same result as
[41,45]. The minor difference from (53)–(56) of [41] is

because the problem considered here is not completely
the same as in [41]. The next task would have been to
implement the neutron star parameters from, e.g., [23,24]
and to get the mirror matter admixture under different
conditions. This will be the subject of the work in
preparation.

VI. CONCLUSIONS AND OUTLOOK

We have considered the neutron transition into the mirror
world in different conditions from vacuum to neutron stars.
It is shown that the reduced density matrix formalism, the
Lindblad and Bloch equations are the most efficient tools to
solve this problem. The reason is that the contact with the
surroundings leads to the destruction of the density matrix
off-diagonal elements and consequently the loss of the
coherence. It is important to note that deconherence and the
resulting collapse of the wave function is a phenomenon
beyond the standard quantum mechanics based on the
Schrodinger equation with optical potential. The correct
description was proposed by G. Feinberg and S. Weinberg
[41]. Eventually this approach was coined the name
Lindblad equation [38,39]. Relation between the optical
potential and the Lindblad equation was discussed in
[51,66]. A correct way to incorporate the optical potential
into the Lindblad equation presented in [51] is

dρ
dt

¼ −i½H; ρ� − iðWoptρ − ρW�
optÞ þ LρLþ; ð59Þ

where Wopt ¼ −2π
n
m�

fð0Þ: ð60Þ

Subject to minor differences, this equation is equivalent
to (8)–(11) of the present work.
To summarize, we may say that the problem of the n − n0

conversion in a trap is completely solved. The transition in
the absorbing material has been studied in [11,12,46,67,68]
and the present work. Our approach is close to that used in
[12,46]. In some limiting approximations the results
basically coincide, like (9) of [46] and (50) of the present
work. On the other hand, we can not find an immediate
correspondence between (24) of [67] and our results. This
poses a serious problem to work at in order to provide a
clear guidance to the experiment. As for the intriguing
problem of neutron-mirror-neutron star transition, it gets a
close attention [23,24] but is far from a complete solution.
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