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We propose a model of Majorana fermions with quartic self-couplings. These Majorana fermions
acquire masses via a type-II seesaw mechanism in which the physical eigenstates are identified as a light
Majorana fermion and another heavy Majorana fermion. On a physical basis, the quartic self-couplings
involve axial currents of these Majorana fermions, and also the interaction of the axial current for the light
particle with the heavy particle one. We introduce two auxiliaries gauge fields in this model, and we study
the stability conditions of the correspondent effective potential of the model. The ground state of the
effective potential introduces two 4-vectors as scales of vacuum expected values, and consequently,
the dynamical Lorentz symmetry breaking (DLSB) emerges in the model. We use the expansion of the
effective action to calculate the effective Lagrangian up to second order in the auxiliary fields as
fluctuations around the ground state. This mechanism generates dynamics for the auxiliary gauge fields,
mixed mass terms, longitudinal propagation, and Chern-Simons term through radiative corrections. After
the diagonalization, the two gauge fields gain masses through an analogous type-II seesaw mechanism in
which a gauge boson has a light mass, and the other one acquires a heavy mass. In this scenario of Lorentz
symmetry breaking, we obtain the correspondent dispersion relations for the Majorana fermions and the
gauge boson fields. Posteriorly, we analyze the neutrino’s oscillations in the presence of a DLSB parameter,
in the transition v, — v,. We discuss the parameter space of this transition and show that the DLSB can
conciliate the LSND and Super-Kamiokande results.
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I. INTRODUCTION

The Standard Model (SM) is the most successful
framework to describe the interaction among the elemen-
tary particles at the electroweak (EW) scale. However,
many experimental features indicate the SM as an effective
theory and it must be part of a more fundamental theory.
The neutrino’s oscillation phenomena measure the squared
difference of the neutrinos masses and indicate that the
SM needs to be extended to include masses for the
neutrinos [1]. The difference squared of neutrino’s masses
i1s associated with the observed probability transition
v, = v, reported by the LSND experiment [2-9].
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Several mechanisms to generate masses to the neutrinos
are known in the literature [10—15]. The most famous is the
seesaw mechanism in which right-handed neutrinos (RHNs)
are introduced in models beyond the SM to provide the
largest particle content with a rich phenomenology that can
be detected in accelerators in the future. In these extended
models, the scalar sector after the spontaneous symmetry
breaking (SSB) yields masses to the left-handed neutrinos
(LHNS) (light mass), and the right-handed neutrinos (heavy
mass). This is known as a type-II seesaw mechanism. Some
phenomenological models involving Lorentz symmetry
breaking have been proposed as well [16—18].

In the context of Majorana particles, is well known that
the possibilities for built fermionic bilinears are constrained
due to Majorana conditions. For instance, with one
Majorana spinor, there are only three possibilities, which
are the scalar, pseudoscalar, and pseudovectorial (axial)
bilinears [19]. One can use these bilinears to form quartic
interactions, and through both perturbative and nonpertur-
bative approaches, one can show that these models are a
rich environment to dynamical symmetry breaking (DSB)
occurs [20-24]. Interestingly, one can analyze one special
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four-fermion interaction for Majorana particles—the axial
one. As can be seen in Refs. [25-30] the axial four-fermion
interaction can dynamically generate the breaking of the
Lorentz symmetry by the non-null vacuum expected value
(VEV) of the axial bilinear (y*ysy) # 0, and therefore the
vacuum state of the model violates the Lorentz symmetry,
and also the CP and CPT symmetries.

In this paper, we propose a model with two Majorana
fermions that couple through the quartic interactions. After
a type-II seesaw mechanism, in the physical field basis, one
Majorana fermion acquires a light mass (that can describe a
light neutrino), while the other one has a heavy mass that
can be fixed at a high energy scale. On a physical basis, the
Majorana fermions have two axial quartic self-coupling,
and the third coupling involves the axial current of the light
fermion contracted with the axial current of the heavy-
fermion at the tree level. This model is an extension of the
4D Thirring model with a light fermion and another heavy-
fermion that couple between itself through quartic inter-
actions. However, this model is not renormalizable. It must
be thought of as a low-energy effective theory and as part of
a more fundamental theory. In this sense, the proposal is
analogous to the Nambu-Jona-Lasinio (NJL) model for
QCD [24].

We introduce two auxiliaries gauge fields to obtain the
effective potential of the model. The ground state of the
model is obtained in terms of two constant 4-vectors where
the effective potential is minimized. We examine the
behavior of the model around these two vacuum expected
values (VEVs) to generate radiative contributions to the
action. We calculate the radiative corrections up to second-
order to obtain the propagation terms for the auxiliaries
gauge bosons. The massive terms generated are mixed and
depend on the Majorana masses from the seesaw mecha-
nism: one gauge field has a light mass, while another one has
a heavy mass. Since the mixing is very weak, a term Chern-
Simons term appears associated with the heavy gauge field.
As a consequence of these radiative corrections, the Lorentz
and CPT symmetry is broken spontaneously. Therefore, we
obtain the correspondent dispersion relations for the
Majorana fermions and gauge bosons comparing them with
the results already known in the literature. As an application
of the seesaw mechanism, we also examine the neutrino
oscillations calculating the transition probability of v, — v,
and the oscillation length in the strong quartic coupling
limit. We discuss the influence of the DLSB in the parameter
space of this transition.

The paper is organized as follows. In Sec. II, we review the
type-II seesaw mechanism and propose the most general
quartic couplings for two Majorana fermions. Section III
focuses on the effective model in which are introduced two
auxiliaries gauge fields, and we obtain the effective potential
and the dispersion relations for the Majorana fermions with
an LSV scenario. In Sec. IV, we calculate the effective
Lagrangian up to second-order and the dispersion relations

for the gauge bosons induced by the field fluctuations
around the ground state of the model. Section V is dedicated
to the application of the neutrino’s oscillations in which we
examine the probability in the transition v, — v, and we
obtain the parameter space. Our conclusions and final
remarks are cast in Sec. VL.

We adopt the convention for the metric 7" =
diag(+1,—-1,-1,—1), and we work with the natural units:
h=c=1.

II. THE DESCRIPTION OF THE
FOUR-MAJORANA MODEL

In many models with Majorana neutrinos in the liter-
ature, the mass sector with left-handed neutrinos (v;) and
right-handed neutrinos (Ny) is given by

—Emass = MDLNR + MLEVL + MRN_%NR + H.C., (1)

where M are 3 x 3 matrix elements of Dirac mass term, M,
are 3 x 3 matrix elements of a Majorana mass term for
LHNs, and My, is the correspondent one to RHNs. The v,
sets a column of three LHNS, i. e., {v,1.v,;. v, }, and Ng
is the similar column vector for the RHNs. For a brief
review, a four-component Majorana fermion is defined as a
spinor y which obeys the identity w = w¢ = iy’y*. The
counterpart ¢ is given by y° = y'C, where C = iy%)? is
the unitary charge conjugation matrix C* = C~!, y' means
the transpose column matrix for the y-spinor, and {y°, y*}
are two Dirac matrices. Backing to the mass sector (1), it is
defined the variables # := v, + 1§ and y := Ny 4+ N§, the
massive Lagrangian can be written in terms of the two four-
component Majorana spinors 7 and y:

M _ _ _
_Emass = 5(7/]){ +)(77) +ML7777+MR)()(

o A

The mass eigenstates, that we denote by y; (i = 1, 2), are
obtained by the diagonalization of the mass matrix:

W, = cosOn — sin Oy, (3a)
W, = sinfn + cos Oy, (3b)
where tan 20 = ﬁ, and the correspondent eigenvalues

are given by:

1 1
i =5 (M + M) =5\ (M, = Mg+ M2, (4a)
1 1 5 ,
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The condition M > M; > M is applied for the neutrino’s
case. Under this consideration, the previous eigenvalues are
read below:

M2
mleL—4MRzML, (5a)
MZ
my ~Mp+——~ Mp, (5b)
2 R I R

and the mixing angle is very small 0 ~ —-M/(2My) < 1,
where we can write cos @ ~ 1 and sin# ~ 0 in (3a) and (3b).
Thereby, vy, is identified as a light Majorana fermion (left-
handed neutrinos), and v, is a heavy Majorana fermion that
describes a right-handed neutrino with mass defined on the
TeV scale or higher.

For one Majorana wy-spinor, the nontrivial bilinears
which can be formed are: wy, wysy, and wytysy.
Otherwise, any bilinear combination is null. Using the
properties of the Majorana spinors, the nontrivial bilinear
involving 7 and y are the combinations below:
aytysn. xvtvsy. Xr'vsn+artysy. ity —ir'n. (6)
Following these combinations, we propose the most gen-
eral pseudovector quartic self-interaction for the Majorana
fermions # and y:

) G, _ G, _ Gy, _

rint _ 71 (Frarsm)+ 72(”#},5)()2+73(:7y,475)(+i77,4751)2
Gy,
5 (v =2’ @)

where G, (i = 1, 2, 3, 4) are coupling constants with length
dimension squared. Using the Fierz identities

it =20 = ) 22) — (rsn) st

- % Ay ursn) r'ysx), (8a)
i(’_ﬂ’ﬂs)( + divarsy)* = =) Gex) + (ysn) Gersx)
- % Ty rsn) Zr'vsx)s (8b)

the couplings from (7) are written in the physical eigen-
states basis {y,y,} as:

G,

‘ Gy, .
LM = == rrsin)’ == (arrsva)’

1 _ _
+ 5 (G5 + Gu)Wriy,ysw) War'ysw2)

— (G5 = Gu) (1) (Wawra) = (Wryswt) Waysws)],
)

where we have considered the small mixing angle. We
choose the case in which G3 = Gy, such that the NJL-like
terms that could contribute with the dynamically generated
masses can be eliminated, and we will focus just in the
terms with the axial currents of y; and . In this particular
case, the couplings are read:

G

. G, . _
LM = — =2 (F17,75%1)> — = Ty, 5w2)?
2

2
+ Gs(W17,7sy1) W' ysw). (10)

Therefore, the model contains axial couplings for descrip-

tion of the processes w1y — Wiy, Woys — Woy,, and
Wiy — Wy, at tree level. This is an extension of the
model studied in Ref. [25], in which we will investigate the
dynamical symmetry breaking.

III. THE EFFECTIVE POTENTIAL AND THE
DISPERSION RELATIONS FOR THE
MAJORANA FERMIONS

We consider in this section the model with the two
Majorana fermions and their quartic self-interactions
through the axial currents:

G

5 W 17,.75v1)?

Linodel = W1 (10— my )y —
_ . G, _
+ o (i — my)yrp — 72 (Farurswa)?
+ Gs(W1y,7sy) (War'yswa). (11)
This Lagrangian is equivalent to
[’model =y (la_ gAyS - ml)l//l
+ 5 (id — g Bys — my)y,

1 1
+ Eg%AMA” + Eg%B“Bﬂ + BAB*,  (12)

where the auxiliary fields A# and B*, using the motion
equations, satisfy the constraints

2 2
_ 93 ,_
A= 55— gun Y ysw — 5 g 1/12}’”751,//2] ., (13a)
ﬁ%—ﬂ{ %
g 7
Bf = —5—— [9'1/727”}’51//2 - —2911_’17”754/1]’ (13b)
9192 — 93 g1

and the coupling constants G; (i=1, 2, 3) are parame-
trized by

995
gGB- g
(14)

79 G O

9% G, and G, =
GG - g gGB—gi

1::
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Notice also that the constants g; (i = 1, 2, 3) have mass
dimension, while that g and ¢ are dimensionless coupling
constants of the fermions y; and y,, with the auxiliary
gauge fields A#* and B*, respectively. The perturbative
formalism allow us to define the functional integration

— /DA”DBMDU71DW1DU72DW23ifdAxcmnde}
:/DAFDBﬂeiSeff(AJ?)’ (15)

where, after the fermion integrations, we obtain the

effective action

1 1
Seir(A, B) = / d*x [2 gIA? +§g%B2 +3A-B
—iTrln (id — gAys — m,)
— iTrIn(id — ¢ Bys — m,), (16)

and Tr means the trace on the Dirac matrices and on the
coordinate, or on the momentum space. The correspondent
effective potential is

Vet (A, B) = —lg?Az ;9332 - g3A-B
+z/( 22y str[In(p —my — gAys)]
+if 5 D ln(p—my— gBrs). (1)
(2z)*

This potential has two nontrivial minimals:

oV
aAeff = —fa' — Gp + " =0, (18a)
H VA=a,B=f
and
aV
aBeff — — P — P +illh =0,  (18b)
H 1A=a,B=p
where
d*p [ 1
" — / tr 'y } 19a
! Q2m)* |p—m — ¢f7s( s o
d*p 1
1A :/ tr{ -d)r'y } 19b
2 (2r)* ﬁ—mz—%’s( s o

and we have defined o = go*, e b* = ¢ p*. Both integrals
are like the tadpole diagrams and diverge in the ultraviolet
limit. We introduce the dimensional regularization (with a D
regulator parameter) to calculate these integrals, and con-
sequently, we can isolate the divergent terms. The coupling

constants g and ¢ are replaced by g — g(u*)'"%/? and

d — g (u?)'=%2, where yu is an arbitrary energy scale.
After some manipulations, the trace calculus yields the
regularized integrals

(D) = —4g(u?)'~4/2 / é’%ﬁ)

2[-p*a" + (p-a)p"] + (p* — m? — a*)a*
(p* = mi—a’)’ +4[p*a’ = (p-a)’]

’

(20)
(D) = ~4g ()" [ (‘2%
2[=p*b* + (p-b)p] + (p* = m3 = )b
(p? = m3 = b7+ 4[p*b* = (p - b)]
(21)

Using the approximation {m?, m3} > {a?, b*}, we expand
the previous integral into the @ and b-parameters to obtain the
results

2 2

. m m
e L
€

2
mp a
— —|, 22
(3)+5a]
2 2 2
o m;  mj ny b

where we have used the physical dimension in D = 4 — ¢,
and A”:=4xzu’e™, in which y = 0.577 is the Euler-
Mascheroni constant. Therefore, we substitute these results
in (18b) and (18b), respectively, and we obtain the relations:

2 2 2 2
g 7 m m a
_3/bl‘ = a# |: J1 —|— 2 —2111'1 (f) + F] s (233_)

qq ¢ n =&

2 2 2 2
B | B my _myy (ma\ BT
gg,a g/2+77.'2€ 2 A +3 - (239)

From the above equations, we have two nontrivial
solutions:
(1) Phase I—The case of b* = 0, the solution for a* # 0
is given by

2 2 2
Jir M ml a

(2) Phase II—For the case of a# =0 and b* # 0, the
solution is
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FIG. 1. The phase diagram of the model for G5 # 0, with the conditions G, > G; (left panel), G; = G, (middle panel) and G; > G,

(right panel), respectively. The phase I refers to the region in which # = 0 and o** # 0, while the phase II region correspond to o = 0

and p* # 0. The masses are normalized in energy scale unit.

(25)

The phase space is illustrated in the Fig. 1 including the
three cases: G, > G| (right panel), G, = G, (middle
panel), and G| > G, (right panel). We use G5 # 0 in all
plots. The masses (7, /11,) are normalized by the energy
scale (u), i.e., m;=m;/pu (i =1, 2).

It is important to highlight that only in the case g3 = 0,
both pseudovectors can acquire non-null vacuum expected
values. Notice that, in both solutions, we have defined the
renormalizable coupling constants

Q%R_g_%_m% d Q%R_g_%_m% 26
> T 2T 5 an 7 R (26)
g g- me g g° me

The true solution of the gap equation is defined by the
global minimum of the potential. Integrating the gap
equations, we obtain the effective potential:

g2

Veff(Aa B) = 1242 (A2 - a2)2
9/2
o (B> =b*)?—g3A-B. (27)

Thereby, true minimum of the potential is at the points

2 2
@ =3n2 [22’? —i—%ln (’;’\lﬂ and b* =0, (28a)

n<%>] and a* =0. (28b)

If we consider a very small mass for y;-Majorana fermion,
the first minimum point is determinate by the renormalized

coupling constant gz, i.e., a*> = 3n%g3,/g*. The effective
potential has a nontrivial minimal in which (A*) = @* and
(B') = p* are two scales of VEVs that break the Lorentz
symmetry.

As consequence, the modified dispersion relations for
the Majorana fermions are read below. In the phase I:

(p*> —mi—a’)* +4[p*a®> = (p-a)’] =0,  (29)
p? = nt, (29)
and in the phase II:
p* =mj, (30a)
(p* =m3 = b*)* +4[p*b* = (p-b)*] =0.  (30b)

These dispersion relations are analogous to Carroll-Field-
Jackiw-Proca electrodynamics [31]. The frequency solu-
tions from (29a) and (30b) are hard to obtain in this present
form. Thus, we can consider the particular cases of a
timelike and spacelike DLSB parameter. For a timelike
case, in which @* = (a°,0) and b* = (b°, 0), the frequency
solutions are read below:

o (p) = /(Ip| £ a0)? + m]
2
m

—lej:a0|+2|| ‘:::ao ’ (31)

and

(+)

o () = 1/ (Ip| £ by)? + m3

+ by)?
oy (L0
2m2

~

(32)
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For the spacelike case, where a# = (0, a) and b* = (0, b),
the frequency solutions are given by
o\ (p) = \/p2 +m? +a® £+ 2|al\/m? + (p - 4)?
mi
~|p+ , 33
pal 5 (33)
and
oS (p) = \/ + m2 + b? :|:2|b|\/m2 + (p-b)?
~m, + |b| +-— (34)
2 my’

We have considered the condition from the seesaw mecha-
nism m, > m; in the previous approximation. For the
massless case, for example, if we consider y; a Majorana
fermion with a very small mass in which we can neglect it
m; = 0 with a generic DLSB parameter, the frequencies are
given by

ot (p) = —ag (35a)
wy(p) = ap = |p—al. (35b)

The usual RDs are recovered when a* — 0. Other impor-
tant point is that the results (35a) reproduce asymmetric
frequencies and it depend on the direction of the vector a
with a propagation direction p.

IV. THE EFFECTIVE ACTION

The vacuum properties of the model help us to
understand the dynamics of the fluctuations dictated by
the auxiliary fields A* and B*. Thereby, we expand
these auxiliary fields around the vacuum minimal as:
A#(x) = a* + X*(x) and B*(x) = p* + Y#(x), respec-
tively, where X* and Y* are interpreted as the new
dynamical fields of the model, and {a*, *} do not depend
on the space-time coordinates. The effective action in terms
of X* and Y* is

Seff(X’Y):/d4 {2910‘ +5 gzﬂz

+a@(aB)+ X (gia+gip)+Y - (Bh+ga)
+%Q?X2+%9%Y2+93(X'Y)

d4
—i/(zﬂi)?4tr[ln(p—m1—¢iy5—ng5)]

4
-i [ %tr[ln(y—mz—ws—g/w}. (36)

Now, we expand the previous effective action in power
series of X# and Y¥, such that:

etf X Y)

Zs (X,Y), (37)
where the first correction (n = 1) is given by

SOY) =1 [ @il (T - g - @)
+Y,(il = g3 — g3a)] = 0. (38)
This contribution is null, as we expect, due to the relations

(18b) and (18b). The self-energy term is the correction at
the second order:

S (x / d*X[Vi(x)ITE V(X)) (39)

1]1

where we have introduced the notation Vi, = (V},V2) =
(X,.Y,), and the vacuum polarizations are given by

Ho s U 2
I = —in" gy

+ Tr[(=igr*ys)Si(p)(=igr*ys)Si(p — k)], (40a)
I, =105 = —in™ g3, (40b)
1 = —ins
+ Tr[(=ig'y"ys)S2(p)(=ig'v*vs5)S2(p — k)], (40c)
in which
i
Si(p)=—, 41a
1(p) prap— (41a)
i
SH(p)=———. 41b
2(p) prap—— (41b)

Since we know that m, > m; through the seesaw
mechanism, we fix the y, mass at the energy scale (A),
i.e., my ~ A. In this case, the gap equations (23a) and (23b)
are simplified to a*~37%¢3,/g*, when b* =0, and
b? ~3n’g5x/ g, when a* = 0, respectively. The global
minima is defined for the condition g,z > g,z in the first
gap, and g, > g in the second gap. Since experimental
measurements point out to a null or very small value for |a?|
which couples with the SM neutrino, we can consider the
condition g,r > g;z. Under these conditions, we obtain the
vacuum polarizations in the position space
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2.2 1
= —ipvd ¢ =211 _on
11 m {91 222 e A

i [1—l+2ln<A>](rz"”D-a"”>

127z
i
- oo, 42
1272 (422)
12p2 m2 [1 m
MY — el 292 91 5 (T2
ig? 1 my ig?
— 1——+2In{—= HY[] — oMo ) — oHo”
12 2{ P n(A)}(" Ty
ig? ig? 1
——(bH0¥ — bYo*) — = ——21 HUPoh 0
+122( Ly ) [ b0

(42b)

e o

Substituting these results in (39), we write the effective
action as

sG) = / L. (43)

where the renormalizable effective Lagrangian (at the
second order) is given by

2 1 g5 1
‘Cifg = _ZXI%IW - 241;1_2 (aﬂX’Ili’)z + 5 <6m%)X%’ﬂ
1., Ik uy2 L 2\y2
4 YR;H/ - 24 2 (aﬂ YR) + 5 (6m2)YR/4
+ X, Y — gR S(b-Yg)d,Yh
27 3
- Z (b YR) + Z bﬂeﬂpr-YRyYRpg. (44)

To get the effective Lagrangian in this form, we have
defined the renormalized fields

AR AS G (A (45)

where the renormalization factors are given by

2
_ g 1 m
z7' = |-~ 42m™
3 12;;2{ e n<A>]’
_ g° 1 mp
z;' = |-~ 4222
4 12;:2{ e n<A>]’

and the renormalized coupling constants are

(46a)

(46b)

IR=V239. Gx=+'24d. Gr=~/2Z3Z495. (47)

The transversal operators from (42a) and (42b) induces
dynamical for the auxiliary vector fields through the field
strength tensors X, =9,X, -9, X, and Y, = 9,Y, — 9,Y,,
respectively. In (44), the correspondent renormalized field
strength tensors are Xz, = Z3 2x X,,and Yg,, = Z_]/QY e
Furthermore, in (44), the radiative corrections also induce a
new Chern-Symons term depending on the b*-parameter, Y%
and the field strength tensor Y%'. Note that, the effective
Lagrangian also shows quadratic terms in X% and Y%, and
also a mixed term of X% with Y%. These terms are interpreted
as like-massive terms of the auxiliary fields Xz and Y. We
can write these terms into the matrix form

1
ﬁgggs—xy = 5’1” D(VRu)tM ZVRw (48)

in which M? is the mass matrix

6m? g3

2 1 3R

M? = { , 2], (49)
G5 Om;

and V% is the column vector formed by the fields X% and Y%.
This mass matrix can be diagonalized by a SO(2) matrix, say
‘R, in which transformations in the vector fields are

X = cosaZiy + sinaZby, (50a)

Y = —sinaZi, + cos aZsy, (50b)
where @ is a mixing angle, such that, tan(2a) = g3/
(3m3 — 3m?). The Z{, and Z , are interpreted as the physical
eigenstates for the auxiliary fields whose the masses are
determinate by the diagonal matrix M2 = R'M*R =
diag(u?, p3), in which the eigenvalues {u3, 43} are, respec-
tively, read below

13 = 3(m} + m3) —\/9(m? — md)? + gy
4
IR (51a)

~ 2 _
~ 6mj
6m3

13 = 3(m? + md) + \/9(m3 — md)? + g

(51b)

in which we have used the condition m, > m,. Since that
my > g3, weidentify p; ~ V/6m, asthe Z, r mass eigenstate
(light gauge boson), while that 1, ~ +/6m, is the correspond-
ent eigenstate for Z,z (heavy gauge boson). Under this
condition, we can consider tan(2a) = g3,/(3m3) < 1, such
that sina =~ g3,/ (6m3) ~ 0 and cos a = 1. In the {Zz, Z»z }
basis, the effective Lagrangian (44) is
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2 1 1 Ik
‘Céff) = _ZZ%R;W + E”%Z%Rﬂ - & (aﬂZI;R>2

242
1, 1o gR u
- ZZQR;W + §M2ZZR/4 242 (6 Zzze)
g/2 27
— 152 (b Zar)0uZhg = (b Zog)?
3
+ Zbﬂeﬂ”/’”zzRyZZRpg. (52)

Notice that the Chern-Symons term emerges for
the Z5, physical eigenstate when the mixing with the
Z!, is very weak. The action principle yields the field
equations:

Ik

aﬂleul/% +/‘%Z7R + 1222 ay(aﬂZIfR> =0, (53a)
v v g
0,Z5% + m3 25, + 12Rza”(5 Zhg)
i b0, 7k — (b Z
I 0,28~ (b Zae)
3
5 E7b, Zopgy = 0. (53b)

Operating d, on the Eqgs. (53a) and (53b), the longi-
tudinal part of Z,z and Z,; satisfies the relations

<D + 12;[2 )a 7' =0, (54a)
R

Substituting the plane wave solutions Z'y(x) = Z/ie*~
(i =1, 2), in which z’i‘ r are the constant and uniform wave
amplitudes, the equations (53a) and (53b) can be written as
M zg, =0 and MY zpp, =0, respectively, where the
matrices M:" (i = 1, 2) are given by

MY = (=2 + i + (1 - 9%2 kke,  (55a)
127
MY = k2 AN 1 g/Rz )l ed
5 = (=K +u)n" + T2
(ke — k) + 3k 55b
+ o —5( ) + i3e ks (55b)

The dispersion relations are determinate by the conditions
det(M7") = 0 and det(M%") = 0. The null determinant of

MY yields the frequencies solutions w(z) = ia’(z,)R(k)
(i =1, 2), in which the dispersion relations a)<ZI)R (k) are
read below:
o) (k) = /K> + 4. (56a)
127243
o) (k) = | k2 + 92” L (56b)
R

The frequency (56a) is the transversal mode of Z;p with
mass j; = v/6m;, and (56b) is the frequency associated
with longitudinal propagation mode of Z, . For the case of
ME", we assume a timelike vector b* = (b, 0) in which

12 . L ()E
<D b.og 127 ,uz> 0,2+ C(b-Zog) = 0. (54b) four roots are possible for the null determinant: @, -
:I:coZ (k) (i =1, 2, 3, 4). These frequencies are given by
|
o) (k) = /K2 =3[ K| + 43, (57a)
P} (k) = /K2 + 3[bol k| + 43, (57b)
3a(gf + 122008 — \ /97 (df — 122°) k4 = 33K
() _
of) (k) = \[ K2 + i , (57¢)
3n(gR + 122243 + /9 (R — 1272k — 3b3/gK°
4
o) (k) =\ k2 + o , (57d)
R
|
Notice that, when b, — 0, the previous frequencies reduce Iy, =0, (58a)
to (56a) and (56b) exchanging g — gg and u, — ;. -
Finally, we obtain the n = 3 contribution to the effective Y g
’ I, == . 58b
action, under the condition ¢* = 0 and b* # 0, is e 32 Buttop Pty + Pty (58b)
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The divergent contribution vanishes due to the index
symmetry. For the n = 4 contribution, one finds:

i 4

g

%, = ) (MM = Mo + M) (59a)

o i : 59b
wpx =3 3 (MM = Nupllox + Mutlup)- (59D)

Again, the divergence vanishes due to the index symmetry.
Therefore, using these results, the renormalized effective
potential can be written in terms of the physical eigenstates

{Z\g. Zog} as:

1 ar 1
Vert(Z1gr Zor) = _Eﬂ%Z%R +5 3 1222 (Z%R) Eﬂ%Z%R
(9}%)4 2 2 2
Z —Z-p-b ), 60
+ 127[2 2R + g;e 2R ( )

where we have fixed the condition a# = 0, with the shift
B* — % -+ Y#, and the rotation to the physical eigenstates
R

from (50a) and (50b).

V. NEUTRINO OSCILLATIONS IN THE
DLSB SCENARIO

Since the discovery of the oscillation phenomena asso-
ciated with the non-null neutrino’s masses in a basis which
does not match with the flavor basis of the SM, several
models beyond the SM were proposed in order to explain
this phenomena in the literature [32-34]. We start the
description of the oscillation phenomena considering the
three flavor neutrinos eigenstates |v,) = {|v,).|v,). ;) }-
After the seesaw mechanism takes place, we deﬁne the
physical eigenstates |v;), with i = {1,2,3}, that represent
the LHN's with light masses. These physical eigenstates are
related with the previous flavor neutrinos eigenstates by the
transformation

= ZUia|l/a>

ZU(" (61)

in which U,;, is the so-called Pontecorvo—Maki—
Nakagawa—Sakata (PMNS) unitary and complex matrix.
The dynamic of the physical eigenstates is ruled by the
spatial-time evolution:

vi(x. 1)) = BP0, 0)). (62)

Therefore, the transition probability of oscillation between
flavors states [v,) — |v;) is defined by

Pop(x.1) = [(va(x. 0)lrs(x. 1))

U elE,[ ip;-x

2

(63)

ia

The energy of a i-neutrino in the physical eigenstate basis is

2 2

ms
—E4+1. (64
Ty +55 (64)

E; = Plz

where we have considered the approximation |p;| > m;,
and assuming that 7~ x and p; —p; ~0, the transition
probability is

RIU* Am%j
Pop(x) =64 —42 R[ULU U Upglsin® | | — 2" )¢

ij=1.
i>j

+2Z\SU UipUq;Up;lsin 55 x| (65)

i,j=1,
i>j

in which i and J are the real and imaginary parts of
the PMNS matrix elements. The previous result (65) is
associated with the usual dispersion relation for the light
i-neutrino. Notice also that this result depends on the
PMNS matrix elements, and depends on the squared
difference of the mass between a i-physical eigenstate
and a j-physical eigenstate, Amy; :=m; —m3, and the
known oscillation length is #;; = 4zE/|m} — m3|.

In the case of the model with DLSB, we consider the
transition probability for the neutrino dispersion relation
from the phase I in (31), in which the VEV parameter is
timelike, i.e., a* = (a°,0). In this particular case, the light
i-neutrino dispersion relation is:

i
EX = \/llpil £ w2 + m

m;

2(pil + il
2

2|Eﬂ: il

~

-

= |[pif £ il +

> |E£p| + 50— (66)

where y; == (a°);, = 7v/3(g1z);/9 (i = 1, 2, 3) means the
timelike parameter for each i-neutrino (or i-antineutrino),
EEH is the energy of the light i-neutrino, and EE_) is the
correspondent for the i-antineutrino. To obtain the differ-
ence of energy of a i-neutrino with a j-neutrino in this
scenario, we assume (u;,4;) >0, and with a flavor
dependent on the coupling constant (gz); (i =1, 2, 3).
Under these conditions, the difference of energy is

015013-9



Y. M. P. GOMES and M.J. NEVES

PHYS. REV. D 106, 015013 (2022)

2 m2
+ +
Ef >—E( )ﬁ|Eiﬂ:| |Ei”/|+2|E:|:H| 2|E:é,u-|
i J
Amlzj
%:*:(M,"/h‘)"’ 2E. s (67)

where we have used E > (u;, ;) in the last line. Notice
that this result yields different oscillation lengths for the
neutrino and antineutrino induced by the DLSB violation.

To simplify our future estimate, we reduce our problem
for the case of the transition probability of muon and
electron neutrinos. Thereby, the PMNS matrix is reduced in
terms of the electron-muon mixing angle 6,:

v cos 0 sin @ v,
()= ] ()@
Uy —sinf@, cosf | \v,
where sin’6,, = 0.307 & 0.013 [35]. The probability of the
v -neutrino changes its flavor to v, is read below:

P (5) = s o | B - £

= sin®(26,,)sin’ (ﬂ—;> , (69)

in which the correspondent oscillation length ¢ is

/3

2—g(A91R)

Am12

£l =
4rE |

(70)

where (Agir)i = (91r); — (91r)2, and the difference of
squared masses is in the range Am?, = 107>~107> eV? for
experiments in accelerators [35]. The usual oscillation
length in the literature is recovered when (g;); — 0. For
a strong coupling regime (SCR) (Agg),, > Am3,/E,
we obtain

g

é' (Agir) 1 . (71)

2 g

The transition probability P, ., is illustrated as a
function of x in Fig. 2, and posteriorly, it is also illustrated
as function of energy (F) in Fig. 3, respectively. In
both plots, we have used the Am?}, =0.041 eV? and
sin?(26,,) = 0.96 [36]. In the Fig. 2, we have chosen
the values (Agig);,/g9 =0 (black line), (Agig)i,/9=
4+0.1 meV (red line) and AG = —0.1 meV (blue line),
in energy (E) units. In fig. (3), we have chosen
(Agir)12/9 =0 (black line), (Agig);5/9=0.2¢eV (red
line), and (Ag z);,/9 = —0.2 eV (blue line). The graphics
show that the effect of the DLSB in the neutrino oscillation
is greater for large energy values.

As can be seen in Fig. 2, the DLSB effect is to shift the
transition probability in the x-axis. Notice that, in Fig. 3, the

0.8f

0.6

Prvo,

0.4}

0.2}

0.0

x.E [km.MeV]

FIG. 2. The transition probability P, —y, S function of the
distance x in energy (E) units. We use Am12 =0.041 eV? and
sin?(20,,) = 0.96, for the values (Ag;z);»/g = 0 (black line),
(Agir)12/9 = 0.1 meV (red line), and (Agiz);,/9 = —=0.1 meV
(blue line).

1t ]
0.5¢ i
&
0.2r :
0.1f :
5 10 50 100 500 1000
E.x [MeV.km]
FIG.3. The transition probability P, _,, as function of the energy

(E). We also choose Am?3, = 0.041 eV and sin 2(260,,) = 0.96, for
the values (Agiz)2/9 = 0 (black line), (Agiz) /9 = 0.2 eV (red
line), and (Agyz)12/g = —0.2 eV (blue line).

effect of the DLSB in the neutrino oscillation is to generate
oscillation even for high energies, in opposition to the usual
result (black line). The red (neutrinos) and blue (antineu-
trinos) lines also show oscillation, but the curves go to a
finite value of probability that is contributed by the DLSB
parameter. For large energy, the oscillation length is given
by (71). If we consider (Agig),/g = £0.2 eV, the tran-
sition probability limit (E-x > 1) in the red and blue
curves from Fig. 3 is

Py, (E-x>1)=0.65. (72)
Going further, in Fig. 4, we show the allowed region in the

parameter space of sin?(26,,) versus Am?,. Based on an
oscillation probability of Py, = (26 +£1.5)x 1073
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101 b

_\
2

Amé,leV7]
3

1073+

10—4 b

107 1073 1072 107" 1
sin2(291 2)

FIG. 4. The parameter space of sin?(26,,) versus Am?, for the
electron-neutrino oscillation. The gray region shows the region
with 68% confidence level and the light gray shows the region for
the 95% confidence level, according to the LSND experiment.
The green and blue regions shows the allowed region for
(Agig)12/9 =107 eV and (Agg);,/g9 = —10 eV based on
the LSND result (68% C.L.). The red region indicates the
region with 68% confidence level from the Super-Kamiokande
experiment [35].

from the LSND experiment [2], and using E =
60-200 MeV and x=L=~30m=24x10" eV~!, we
plot the range of sin?(26,,) and Am?, values compatible
with this result (gray and light gray regions in Fig. 4, for
68% C.L. and 95% C.L., respectively). Based on the
phenomenological bounds from [16], we consider
(Agig)12/g~ £1071% eV, and plotting their contribution
in the probability one can see in the Fig. 4 where the green
and blue regions are in contact with long base line (LBL)
accelerators results (interception of the red regions), in

contrast to the symmetric case (gray regions). It happens
Am%z

11> since that

due to the smallness of the argument

Am

7o~ 10712 eV. Thereby, the contribution of the mass

splitting and DLSB parameter is small and obeys the

hierarchy condition 23 (A A, such way th
ierarchy condition %32 (Agig)i, > 7. such way the
oscillation length in the Eq. (71) can be rewritten as

%“%(Agm)n- Finally, one can note that L/¢ < 1,
and due to this property, one can approximate the oscil-

lation probability as:

Vo=V,

3n* Agie)in]?
PSCR z%sinz(Zé’lz)[Li( g;R)”] . (73)

and using the PDG best fit for sin’(26,,) ~0.31 and
L ~ 30 m, one finds:

A 2
PSR %6.5% 1013 {M] = (2.6+15)x1073. (74)
e i g

Therefore, one can infer that |%| =8x 107" GeV

with 68% C.L., the same order of magnitude of the bounds
from the tandem model [17], and consistent with our initial
assumptions.

VI. CONCLUSIONS

A model with two massive Majorana fermions coupled
through self-quartic interactions themselves was proposed
in this paper. After a type-II seesaw mechanism, one of the
Majorana fermions acquires a light mass (m,), the other one
gains a heavy mass (m,), and we obtain an effective model
with quartic self-interaction fermion theory of axial cur-
rents in the physical basis. The model allows the intro-
duction of two auxiliary gauge fields in which the effective
potential has a minimum at two vacuum expected values
(VEVs) that are constant 4-vectors. These VEVs scales
break dynamically the Lorentz symmetry of the model, and
as consequence, the dispersion relations of the Majorana
fermions are modified.

We calculate the correspondent frequencies solutions for
the light and heavy Majorana fermions in the scenarios of
timelike and spacelike 4-vectors. Posteriorly, we analyze
the fluctuations of the auxiliary gauge fields around the
VEV scales to calculate the effective action expanded up to
second order. Therefore, the radiative corrections yield
kinetic terms and mixed mass terms for the gauge fields.
The mass matrix is so diagonalized, where the physical
eigenstates have one mass of M, ~ V/6m, for the light
gauge field (Zg), and a mass of M, ~ V6m, for the
heavy gauge field (Z,z). Since we just consider one DLSB
parameter, the radiative corrections also generate the
Chern-Symons term associated with the heavy gauge field.
Using the field equations, we obtain the dispersion relations
and the frequency solutions for the gauge fields on a
diagonal basis.

To end, we investigate the DLSB in the neutrino’s
oscillation. The dispersion relation obtained previously for
the light Majorana fermions is used to calculate the transition
probability v, — v, and the length oscillation. It is well
known that the neutrino oscillation in the electron-muon
sector measured by Super-Kamiokande experiment [37]
differs from the LSND [2,3] and the MiniBooNe experiments
36]], as can be seen in Fig. 1, where one plots the parameter
space of sin’(26,,) versus Am?,. The allowed region for the
LSND and the Super-Kamiokande experiments can be seen
as the red and gray regions of Fig. 1, respectively. The blue
and green regions represents the allowed phase space with
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the contribution of the DLSB parameter with approximate

value of %z +6x107'°GeV on the DLSB parameter.

As can be seen in Fig. 1, if we admit the light and heavy
sector interacts through the axial channel (G5 # 0) only one
of the sectors violates dynamically the Lorentz symmetry,
and the VEVs scales are given by

322G
=272 and b =0, (75)
G\G, - G2
or
322G
@=0 and b =_2L (76)
G\G, - G

where a” and b* couple with the light and heavy sectors,
respectively. Thereby, there is a possibility in the phase
diagram for the DSLB occurs in the heavy sector main-
taining the standard model of the symmetric sector under
Lorentz symmetry. One also has that for G; = 0, i.e., in the
decoupled scenario, both the VEVs scales can be non-null
simultaneously.

If one assumes G; =0, i.e., the light neutrino sector
decouples from the heavy sector, one can estimate the
Lorentz violation parameter in the axial neutrino self-
interaction. The authors choose this framework since
the heavy sector up to date was not detected, which
indicates that, if it exists, the heavy sector interacts
weakly with the SM particles, particularly with neutrinos.
Using the SME limits from a=|(a;)!,| <2x1072" GeV
(from Table D29 of Ref. [38]), we obtain the upper
bound:

|(aL)Zu| <3x 107" GeV, (77)

which means the muonic neutrino sector would be the
relevant sector in the axial quartic interactions. Based on
the experimental results from oscillations of muonic
neutrinos [39,40], which reveals no discrepancies with

the standard neutrino oscillation models, one can roughly
assume the following hierarchy:

[(ar)ee| < I(ap )l ~ |(ap)z|- (78)

Is important to comment on the case G5 # 0: If one
assumes a more general statement that the light and heavy
sectors interact through G, the analysis become much more
complex. In fact, any attempt to find any bound assuming
G; # 0 becomes unfeasible with the actual experimental
data. In addition to the fact that G, and G5 are constants
related to the heavy sector (which one has no information
about) more general assumptions should be made, i.e., the
full flavor structure of the quartic interactions. These
features will be studied in other opportunities.

From the phenomenological point of view, in the high
energy limit, the quantity Am?/E vanishes and implies that
neutrinos at high energy do not oscillate. In the case of
DLSB, the oscillation remains even in the high energy limit
and can be a motivation to search for oscillation patterns in
events from natural astrophysical phenomena which pro-
duce particles with energy beyond the PeV scale [41,42].

Going further, since |a°| « G7'/, one can roughly
estimate the coupling constant for the muon and tau
neutrinos: G ~ G\ ~ 10% GeV~2. In such a strong
coupling environment nonperturbative phenomena may
take place and nonlinear aspects could drive the system
[30]. The effects of this kind of interaction also could be
tested in the context of supernova processes and could also
generate cosmological implications. These new features
will be research subjects in forthcoming papers.
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