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We study general freeze-out scenarios where an arbitrary number of initial and final dark matter particles
participate in the number-changing freeze-out interaction. We consider a simple sector with two particle
species undergoing such a thermal freeze-out; one of the relics is stable and gives rise to the dark matter
today, while the other one decays to the Standard Model, injecting significant entropy into the thermal bath
that dilutes the dark matter abundance. We show that this setup can lead to a stable relic population that
reproduces the observed dark matter abundance without requiring weak-scale masses or couplings.
The final dark matter abundance is estimated analytically. We carry out this calculation for arbitrary
temperature dependence in the freeze-out process and identify the viable dark matter mass and cross section
ranges that explain the observed dark matter abundance. This setup can be used to open parameter space for
both heavy (above the unitarity bound) or light (sub-GeV) dark matter candidates. We point out that the
best strategy for probing most parts of our parameter space is to look for signatures of an early matter-
dominant epoch.
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I. INTRODUCTION

The particle nature and nongravitational interactions of
dark matter (DM) are major mysteries of particle physics
and cosmology. A central classifying feature of a given
dark matter scenario is its production mechanism. While
attractive alternative scenarios, such as freeze-in [1], have
been put forward recently, thermal production scenarios via
DM freeze-out remain well motivated. Perhaps the best-
studied production mechanism is the classic thermal freeze-
out via 2-to-2 annihilations for weakly interacting massive
particles (WIMPs) [2–5]. The dark matter yield is given
in this case by YDM ∼ xfo=ðmDMMPlhσviÞ, with subtle
dependence on the number of thermalized degrees of
freedom during freeze-out [6]. But it is, in general, valid
as an order of magnitude estimate, as long as the dark sector
was in thermal contact with the Standard Model (SM)
initially [7]. Given the measured temperature of matter-
radiation equality Teq, the annihilation rate yielding the

correct late time dark matter abundance can be determined
by setting Teq ∼ YDMmDM, implying that

hσvi ∼ xfo
TeqMPl

: ð1Þ

This result has three profound implications. First, if hσvi
remains close to constant after freeze-out, there is a fixed
target cross section for indirect detection searches. Second,
perturbative unitarity provides an upper bound on the DM
particle mass [8,9]. Third, given the naive cross section
scaling of hσvi ∼ α2=m2

DM, one expects a relationship
between the DM mass scale and the interaction strength
of the theory. When this scaling holds, it follows that in this
simple scenario

mDM ∼ αðTeqMPlÞ1=2 ∼Oð1Þ TeV; ð2Þ

where MPl is the Planck mass and α is a coupling constant
assumed to be comparable to the coupling of SM weak
interactions. This relation is often referred to as the “WIMP
miracle”; it describes the observation that a weak-scale DM
mass requires an interaction strength similar to the electro-
weak interaction. The exact mass and target cross section
window for the WIMP interaction can be subject to
nonperturbative effects [10–12]. The theoretical under-
standing and experimental exploration of this window
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from the low [13] and high [9,14] mass end remains a major
challenge for the coming decade.
The interaction topology of the freeze-out process can be

generalized to the case where DM depletion is dominated by
number-changing interactions with p DM particles in the
initial state and qDMparticles in the final state, with p > q;
see, e.g., Ref. [15] for a 3 → 2 freeze-out scenario known as
strongly interacting massive particle (SIMP) freeze-out
and Ref. [16] for the co-SIMP scenario. Parametrizing the
interaction rate factor hσvp−1i∼αp=m3p−4

DM , requiring the
correct relic density relates the mass and interaction
strength as

mχ ∼ αTeq

�
MPl

Teq

�
1=p

∼ α × 1028=p−9 GeV: ð3Þ

For p > 2, the DMmass is constrained to be in the sub-GeV
range; for such a light DM relic, strong astrophysical and
cosmological bounds exist due to DM self-interaction con-
straints [17] and the verified predictions of big bang
nucleosynthesis (BBN) [18–20].
Furthermore, if multiple dark-sector species are pro-

duced by similar freeze-out mechanisms, but one or more
species decays with a timescale shorter than the age of the
Universe, then the decays of the unstable components can
inject significant entropy into the visible sector and modify
the yield of any remaining dark components. We consider a
simple two-state version of this scenario, where an already
frozen-out relic χ is diluted by entropy injection from
another relic ϕ (following the notation of Ref. [21]).
Possible timelines for this scenario are shown in Fig. 1.
To obtain a non-negligible entropy injection, ϕ should be
both abundant and long-lived enough to dominate the
energy budget of the Universe, giving rise to an early
matter-dominant (MD) epoch starting at temperature
Ti [22].
While ϕ always freezes out during a radiation-dominant

(RD) epoch, for some points of the parameter space χ’s
freeze-out can happen after ϕ dominates the energy density
of the Universe, i.e., during a MD epoch (bottom figure in
Fig. 1); see Refs. [24,25] for previous works on DM freeze-
out during an early MD epoch. Note that Ref. [25]
considers DM annihilation with more than two DM
particles in the initial state in the context of a matter-
dominated early Universe; however, the interplay with
the production mechanism of the unstable relic is not
investigated.
We study the freeze-out of both χ and ϕ from the thermal

bath when they are controlled by general interactions
beyond the conventional WIMP and SIMP scenarios.
These freeze-outs happen, respectively, at temperatures
Tχ and Tϕ. We analytically calculate the final abundance
of χ after the entropy injection and will show that such a
minimal extension can vastly expand the viable parameter
space. We also check our analytic formulas against

numerical results for a few benchmark scenarios and find
better than 10% agreement in the final relic abundance
calculation.
Given the vastly different search strategies required to

look for DM in different parts of the parameter space,
identifying new dynamics that can expand the viable
parameter space can have profound implications for exper-
imental efforts. We find that our minimal extension can
substantially affect the viable mass range of thermal relics.
We will argue that the best way to probe the high mass end
of our parameter space is to look for signatures of an early
MD epoch, as discussed in Refs. [26–28].
The effects of entropy injection in the early Universe

have been considered previously in the literature. It has
been shown that, in a setup with DM particles freezing out
during a RD epoch and with 2-to-2 interactions controlling
the freeze-out, the DM mass can be as large as 1010 GeV
[21]. This was extended to the case of p ≥ 2 and freeze-out
during both RD and MD epochs in Ref. [25]. If the baryon
asymmetry of the Universe (BAU) can be generated after
the dilution, even higher masses are permitted. The effect of
such a dilution on nonthermal [29] or hot thermal relics [30]
has also been studied in the literature. Entropy injection has
been studied in setups where the DM and SM have different
temperatures and where the 2-to-2 interactions controlling
DM freeze-out are χχ → ϕϕ [31,32]. The decay of infla-
tons to decoupled SM and DM particles (without freeze-out
or freeze-in) has been studied in Ref. [33].
In this work, we extend these studies by analytically

studying general number-changing interactions for both ϕ
and χ freeze-outs, including the case with arbitrary q, as
well as general temperature dependence in the freeze-out
cross sections. We will use the result of our analytic
calculations to demonstrate the following.

FIG. 1. Two possible evolutions of the Universe in our setup.
Top (DM freeze-out during a RD epoch): First, the unstable relic
ϕ freezes out in a RD epoch at T ¼ Tϕ, followed by the DM
candidate χ freezing out at T ¼ Tχ . Then, ϕ takes over the energy
budget of the Universe at T ¼ Ti and MD begins. At T ¼ Tτϕ , ϕ
particles decay to the SM, diluting the χ abundance. The decay of
ϕ should take place before TBBN ∼ 3 MeV given the strong
bounds [18–20,23]. Bottom (DM freeze-out during a MD epoch):
Similar timeline as above, but now Tχ ≤ Ti; i.e., the Universe
enters the early MD epoch before χ freezes out, which affects its
final abundance.
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(i) The setup naturally opens up parameter space
between the freeze-in and freeze-out DM annihila-
tion cross sections.

(ii) Lower interaction rates arise due to small couplings
between DM and SM particles for DM masses at or
below the GeV scale. We thus find new open
parameter space for sub-GeV DM masses, which
can be tested in the future by direct detection
experiments, with sensitivity to very-low-energy
recoils, and improved indirect detection searches.

(iii) Even with ϕ lifetimes as short as the electroweak
phase transition timescale, it is possible to have a
DM candidate with a mass that exceeds the WIMP
unitary bound [8] of ∼100 TeV and with unexpect-
edly large coupling values α ∼Oð1Þ.

(iv) In scenarios with 3 → 2 freeze-out interactions, we
find new parameter space with masses far above the
GeV scale.

(v) Finally, we show that, in general, DM freeze-out via
interactions with p ≥ 4 and arbitrary q, and with
general temperature dependence in the cross section,
are viable even for heavy DM relics.

In Sec. II, we summarize the result of our analytic
calculation for entropy injection and general freeze-out
mechanisms. In Sec. III, we use our analytic calculation to
identify the viable range of cross sections and masses that
give rise to the observed DM abundance today for a few
different benchmark freeze-out interactions. In Sec. IV, we
show the parameter space that entropy injection opens in a
sample minimal model with a Z0 mediator. We conclude in
Sec. V. Further details on the entropy injection calculation,
freeze-out during a RD epoch, and freeze-out during a MD
epoch are provided in Appendixes A–C, respectively. We
also comment more on a few other benchmark freeze-out
scenarios in Appendix D.

II. FREEZE-OUT AND DILUTION IN A
MINIMAL ENTROPY INJECTION SETUP

A. Entropy injection

Consider a minimal DM setup with a single DM
candidate χ, with mass mχ , that freezes out; thus, unlike
in the setup discussed in Ref. [34], the dark sector does not
undergo a self-heating phase. We will take χ to be self-
conjugate (e.g., a Majorana fermion or real scalar) or as a
complex field for cases where a ZN symmetry is required to
stabilize the DM candidate. Throughout this work, we
assume that kinetic equilibrium is maintained between the
dark sector particles and the SM. If the interaction con-
trolling the freeze-out has pχ ¼ 2 DM particles in the
initial, qχ ¼ 0 DM particles, and two SM particles in the
final state, the relic abundance will be given by [35]

Ωh2 ≈ 3.81 ×
s0
ρc

h2
xfo;χg

1=2
�;χ

g�S;χ

1

σ0;pχ
MPl

: ð4Þ

Here, s0 and ρc are today’s entropy density and critical
energy density, respectively, and the ratio has a numerical
value of [36]

s0
ρc

h2 ≈ 2.75 × 108 GeV−1; ð5Þ

xfo;χ ¼ mχ=Tχ with Tχ being the freeze-out temperature,
g�ðSÞ;χ is the number of relativistic degrees of freedom (for
entropy) at T ¼ Tχ , MPl ≈ 1.2 × 1019 GeV is the Planck
mass, and we used hσvi≡ σ0;pχ

as the cross section for the
interaction controlling the freeze-out; i.e., freeze-out inter-
actions do not have any temperature dependence. Using
this, it has been argued that the natural mass range for a DM
particle freezing out via pχ ¼ 2 interactions is around a
TeV, with an upper bound of ∼102 TeV on its mass owing
to unitarity arguments [8].
However, there are a number of ways to break outside

this mass window. One simple possibility is when, in
addition to DM and its portal to the SM, there is another
relic ϕ with mass mϕ that can freeze out and at some point
decay to SM particles, injecting a significant amount of
entropy into the SM thermal bath. For this to happen, the
unstable relic ϕ should take over the energy budget of the
Universe after its freeze-out [35], giving rise to an early MD
epoch. If such an epoch starts at T ¼ Ti, it can be shown
that the injected entropy will dilute the DM relic abundance
by a factor of

ξ≡
�
Sf
Si

�
−1

¼
�
1þ1.65hg1=3�S i

�
T4
i

ðΓϕMplÞ2
�

1=3
�−3=4

: ð6Þ

where Sf (Si) is the SM bath total entropy after (before) the

entropy injection, Γϕ is ϕ’s decay rate, and hg1=3� i is a
weighted average over relativistic degrees of freedom
throughout the MD epoch; see Appendix A for further
details. We assume ϕ can decay only to SM bath particles.
The effect of this entropy injection on the DM relic
abundance with pχ ¼ 2, qχ ¼ 0 (conventional WIMP)
has been studied in Ref. [21].
We extend the work of Ref. [21] to the general case of

arbitrary pχ and qχ and the assumption that the abundance
of ϕ itself is set by a freeze-out process. Furthermore, while
the dilution factor ξ in Ref. [21] was treated as a free
parameter itself, we consider scenarios where ϕ freezes out
via a process with pϕ and qϕ particles in the initial and final
states, respectively. We also consider a general temperature
dependence for the freeze-out cross section

hσvpϕ−1i≡ σ0;pϕ
x
−lϕ
ϕ : ð7Þ

In the conventional case of pϕ ¼ 2 interactions, lϕ corre-
sponds to the partial wave expansion of the interaction in
the nonrelativistic regime (lϕ ¼ 0 for s-wave, lϕ ¼ 1 for
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p-wave, etc.); for higher pϕ interactions, the situation is
somewhat more complicated. For simplicity, and to further
capture the effect of other phenomena such as Sommerfeld
enhancement [10,37–41], we remain agnostic about the
interpretation of lϕ and merely use it to capture the
temperature dependence of the freeze-out interaction. In
Appendix B, we show that

Ti ¼
30

π2
g�i
g�Si

�
pϕ!

ðpϕ − qϕÞðpϕ − 1Þ
� 1

pϕ−1ð1.67g1=2�;ϕ Þ
1

pϕ−1

×
m

2
pϕ−1

−2

ϕ

g�S;ϕ

�ð3pϕ þ lϕ − 5Þx3pϕþlϕ−5
fo;ϕ

σ0;pϕ
MPl

� 1
pϕ−1

; ð8Þ

where xfo;ϕ ¼ mϕ=Tϕ with Tϕ being ϕ’s freeze-out temper-
ature, g�ðSÞi is the relativistic degrees of freedom (for
entropy) at T ¼ Ti, and g�ðSÞ;ϕ is the relativistic degrees
of freedom (for entropy) at ϕ’s freeze-out. In our setup,
where all the particles are at the same temperature, we can
simplify the equation further with g� ¼ g�S at all temper-
atures. In deriving this equation, we also assumed ϕ is
identical to its antiparticle.
Next, we should study the freeze-out of χ, distinguishing

between the RD and MD epochs in the two following
sections.

B. Freeze-out during a RD epoch

We consider interactions where pχ DM particles in the
initial state convert to qχ DM particles (pχ ≥ qχ þ 1) and
an arbitrary number of SM particles in the final state. We
also assume that for both χ and ϕ particles and antiparticles
are identical; this affects the symmetry factors used in the
equations.
The Boltzmann equation for such relics will be

s _Y ¼ −
ðp − qÞ

p!
hσvp−1ispYp

�
1 −

�
Yeq

Y

�
p−q

�
; ð9Þ

where p ¼ pχ ; pϕ (q ¼ qχ ; qϕ) refers to the initial (final)
number of χ orϕ particles involved in their respective freeze-
out processes, s is the SM entropy density, Y is the relic’s
yield, and hσvp−1i is the relevant cross section. Notice that
the number of SM particles involved in the interaction does
not enter the equation. Solving this equation for relic χ, we
find (see Appendix B for further details)

Ωχh2 ≈
45

2π2
s0
ρc

h2
�

pχ!

ðpχ − qχÞðpχ − 1Þ
� 1

pχ−1

× ð1.67g1=2�;χ Þ
1

pχ−1 ×
m

2
pχ−1

−2
χ

g�S;χ

×

�ð3pχ þ lχ − 5Þx3pχþlχ−5
fo;χ

σ0;pχ
MPl

� 1
pχ−1

; ð10Þ

where the interaction cross section is defined as

hσvpχ−1i≡ σ0;pχ
x
−lχ
χ ; ð11Þ

with σ0;pχ
a prefactor, xχ ¼ mχ=T, and lχ capturing the

temperature dependence of the interaction. [A slightly more
general result can be found in Appendix B; see Eq. (B13).]
We can easily check that, in the limit of pχ ¼ 2, qχ ¼ 0,
Eq. (10) reduces to Eq. (4). As a cross-check, one can verify
that this expression has the right dimensions; in doing so, it
should be noted that σ0;pχ

has mass dimension −3pχ þ 4.
A similar calculation can be repeated for the freeze-out of ϕ
and its abundance before its decay. We checked Eq. (10)
explicitly against numerical calculations for a few bench-
mark scenarios and found better than 10% agreement.
Combining Eq. (10) with Eqs. (6)–(8), we find an

expression for the χ relic abundance after the entropy
injection

Ωχh2 ≈ 0.45 ×
s0
ρc

h2 × ð1.67Þ
pϕ−pχ

ðpχ−1Þðpϕ−1Þ ×
ðpχ!Þ

1
ðpχ−1Þ

ðpϕ!Þ
1

ðpϕ−1Þ

×
ððpϕ − qϕÞðpϕ − 1ÞÞ 1

pϕ−1

ððpχ − qχÞðpχ − 1ÞÞ 1
pχ−1

×
ðlχ þ 3pχ − 5Þ 1

pχ−1

ðlϕ þ 3pϕ − 5Þ 1
pϕ−1

×
x
lχþ3pχ−5

pχ−1

fo;χ

x
lϕþ3pϕ−5

pϕ−1

fo;ϕ

× hg1=3�S;ϕi−3=4 ×
g�S;ϕ
g�S;χ

×
g

1
2ðpχ−1Þ�;χ

g
1

2ðpϕ−1Þ
�;ϕ

×M
1
2
þ pχ−pϕ

ðpχ−1Þðpϕ−1Þ
Pl ×

m
2
pϕ−2
pϕ−1

ϕ

m
2
pχ−2
pχ−1
χ

×
σ

1
pϕ−1

0;pϕ

σ
1

pχ−1

0;pχ

× Γ
1
2

ϕ: ð12Þ

The following assumptions were used to arrive at this
equation:
(1) Both ϕ and χ freeze out during a RD epoch,
(2) the entropy injection happens after χ has frozen out

from the thermal bath, and
(3) we neglected the factor of 1 in Eq. (6) for ξ; i.e., we

assumed ξ ≪ 1.
Furthermore, as argued in Ref. [21], if the BAU is generated
before ϕ decays, we should check that ξ≳ ηb with ηb ¼
6 × 10−10 [36] denoting the observed baryon-to-photon
ratio; otherwise, any preexisting asymmetry will be washed
out to values too small to explain today’s BAU. However, if
a baryogenesis mechanism is provisioned for after the
entropy injection, there is no obstruction to going to smaller
values of ξ.
Equation (12) shows that Ωχ is most sensitive to pϕ;χ

(since they appear in powers of various quantities), masses,
freeze-out cross sections, and ϕ’s decay rate to SM Γϕ;
other parameters mostly affect the relic abundance byOð1Þ
factors. Unlike the case of pχ ¼ 2, we find that the final
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abundance does explicitly depend on mχ for pχ ≥ 3. We
also find that the final abundance always increases as σ0;pχ

decreases. We can also calculate xfo;χ as a function of other
parameters; see Appendix B. Notice that Γϕ is a free
parameter of the calculation at this level. By varying this
parameter, it is possible to go to different regions of the
parameter space with different DM masses. In particular,
the entropy injection dilutes the DM abundance, which can
be used to open up new parameter space for DM masses
beyond the unitarity bound [8]. We will discuss this in more
detail in the upcoming section.

C. Freeze-out during a MD epoch

When there is a large hierarchy between the masses of the
two relics, ϕ takes over the energy budget of the Universe,
and the Universe enters an early MD epoch before χ freezes
out, i.e., Tχ ≤ Ti; see the bottom row in Fig. 1.
Here, ϕ’s freeze-out goes forward as before. We can

check from the calculation in Appendix B that its asymp-
totic yield Yϕ

∞ will be given by

Yϕ
∞ ¼ 45

2π2

�
pϕ!

ðpϕ − qϕÞðpϕ − 1Þ
� 1

pϕ−1ð1.67g1=2�ϕ Þ 1
pϕ−1

×
m

2
pϕ−1

−3

ϕ

g�S;ϕ

�ð3pϕ þ lϕ − 5Þx3pϕþlϕ−5
fo;ϕ

σ0;pϕ
MPl

� 1
pϕ−1

; ð13Þ

and its energy density can be written as

ρϕðTÞ ¼ mϕY
ϕ
∞sðTÞ ≈ π2

30
g�S;ϕTiT3; ð14Þ

where sðTÞ is the SMentropy at temperatureT. In the second
equality, we neglect the change in g�S after the ϕ freeze-out
and use Eq. (8). This was done to simplify the temperature
dependence of ρϕðTÞ so as to simplify the upcoming
integrations. We will see eventually that, as long as we do
not introduce any newdegrees of freedom, thiswill introduce
only Oð1Þ change in the final DM abundance expression.
In Appendix C, we provide more details on the

Boltzmann equations governing χ freeze-out during this
MD epoch. The final result for the χ abundance before the
entropy injection is

Ωχh2 ¼
45

2π2
s0
ρc

h2
�

pχ!

ðpχ − qχÞðpχ − 1Þ
� 1

pχ−1

× ð1.67g1=2�S;ϕT
1=2
i Þ 1

pχ−1 ×
m

3=2
pχ−1

−2
χ

g�Sχ

×

�ð3pχ þ lχ − 9=2Þx3pχþlχ−9=2
fo;χ

σ0;pχ
MPl

� 1
pχ−1

: ð15Þ

Comparing this with Eq. (10), we observe changes in the
power of xfo and DM mass, as well as the appearance of Ti
in the calculation.
We checked this equation against the numerical result as

well and found very good agreement. Using Eqs. (6) and
(8) for the entropy injection, we find an expression for the
final DM abundance today:

Ωχh2 ≈ 0.45 ×
s0
ρc

h2 × ð1.67Þ
pϕ−pχ

ðpχ−1Þðpϕ−1Þ ×
ðpχ!Þ

1
ðpχ−1Þ

ðpϕ!Þ
1

ðpϕ−1Þ

×
ððpϕ − qϕÞðpϕ − 1ÞÞ

1
pϕ−1

ððpχ − qχÞðpχ − 1ÞÞ 1
pχ−1

×
ðlχ þ 3pχ − 9

2
Þ 1
pχ−1

ðlϕ þ 3pϕ − 5Þ 1
pϕ−1

×
x
lχþ3pχ−92

pχ−1

fo;χ

x
lϕþ3pϕ−5

pϕ−1

fo;ϕ

× hg1=3�S;ϕi−3=4 ×
g�S;ϕ
g�S;χ

×
g

1
2ðpχ−1Þ
�S;ϕ

g
1

2ðpϕ−1Þ
�;ϕ

× T
1

2ðpχ−1Þ
i

×M
1
2
þ pχ−pϕ

ðpχ−1Þðpϕ−1Þ
Pl ×

m
2
pϕ−2
pϕ−1

ϕ

m
2
pχ−7=4
pχ−1

χ

×
σ

1
pϕ−1

0;pϕ

σ
1

pχ−1

0;pχ

× Γ
1
2

ϕ: ð16Þ

We should reiterate that in deriving this equation we
neglected the evolution of g�S between Tϕ and Tχ for
analytic clarity; this will merely introduce Oð1Þ effects on
the DM abundance calculation. This dependence should be
restored in a fully numerical treatment. It should also be
noted that Ti introduces some further dependence on mϕ

and σ0;ϕ; see Eq. (8).

III. VIABLE DM PARAMETER SPACE

We can use Eqs. (12) and (16) to study the available
parameter space in models with different freeze-out dynam-
ics. In this section, we consider a few benchmark scenarios
and comment on the new parameter space opened thanks to
the entropy injection.

A. Broadening the thermal cross section range

Let us start by considering the WIMP-like freeze-out
case of pχ;ϕ ¼ 2; qχ;ϕ ¼ 0. In this setup, if the freeze-outs
happen during a RD epoch, the final relic abundance does
not explicitly depend on the masses. Without any entropy
injection, the observed DM abundance would require

hσviWIMP ∼ 2–3 × 10−26 cm3=s: ð17Þ

In our scenario, however, no absolute cross section or mass
scale is singled out. The final abundance is instead
determined by the ratio of the χ and ϕ annihilation cross
sections. After the entropy injection, the right relic abun-
dance is obtained even with cross section values below the
standard WIMP thermal cross section.
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In Fig. 2, we show the annihilation cross section values
for χ and ϕ that yield the correct DM abundance, at
different lifetimes for ϕ. We use lχ;ϕ ¼ 0 (s-wave inter-
actions) in generating this plot and assume both relics
freeze out during a RD epoch. We assume a geometric
s-wave cross section:

hσχvi≲ 4π

m2
χ
: ð18Þ

This allows us to relate each hσχvi to a maximal DM mass.
This should be viewed as an approximate upper limit for the
s-wave cross section during freeze-out, for a given mχ ,
since the unitarity bound on the nonrelativistic s-wave
cross section is hσvi < 4π=k2 and freeze-out occurs when
the DM is only mildly nonrelativistic (i.e., k is parametri-
cally similar tomχ). Themχ values obtained by this relation
can, thus, also be viewed as approximate upper bounds on
the DM mass for a fixed cross section.
An additional factor to consider is the baryon-to-photon

ratio of the Universe. If the dilution factor ξ becomes
smaller than around ηb ≈ 6 × 10−10, any previously pro-
duced baryon asymmetry dilutes to values smaller than
today’s observed asymmetry, unless ϕ decays generate a
SM baryon asymmetry. Thus, for this part of the parameter

space, a baryogenesis mechanism should be provisioned
that is active after the ϕ entropy injection.
In general, we will consider lifetimes τϕ ≲ 0.1 s; this

choice ensures the bulk of the energy density stored in ϕ
has decayed by BBN. A more careful treatment of BBN
constraints may open a small parameter space for larger
lifetimes—see Refs. [18,19]; here, we use τϕ ≲ 0.1 as a
conservative bound and leave a more rigorous study of the
BBN bounds for future works.
For the case of τϕ ∼ 0.1 s, the region with ξ ≤ ηb is ruled

out, since in that region the observed BAU cannot be
produced before BBN. However, proposals exist for baryo-
genesis at temperatures as low as OðMeVÞ [42–45]; using
these models, the parameter space with ξ ≤ ηb and τϕ ≲
0.1 s can still be viable.
The lower bound on the DM cross sections in Fig. 2 for

which our analysis is viable comes from the condition that
the dark sector has to be thermally populated at early times,
assuming a high reheating temperature. As we go to lower
cross sections, eventually the two sectors will not start from
equilibrium and we transition to a freeze-in [1] scenario
instead. Our analytic analysis can be repeated for these
cross sections; we leave this study for future work.
The existence of entropy injection and DM dilution

allows DM annihilation cross sections to the SM to be
below the usual thermal WIMP cross section of Eq. (17).
This allows us to have viable models with annihilation
cross sections between the conventional freeze-out cross
section and the freeze-in cross section. In the heavy DM
mass end, this will open up parameter space for DMmasses
beyond the unitarity bound. At the lower end of the DM
mass spectrum, the lower annihilation rates to SM particles
lead to open parameter space that is accessible to upcoming
experiments; see Sec. IV for an example of such models.

B. Generalized freeze-out mass window

The entropy injection shifts the required interaction rates
for the DM candidates. Using a cross section parametriza-
tion, as well as unitarity arguments, this can be translated
into a generalized viable DM mass window.
In Fig. 3, we show the available parameter space on

the plane of mχ −mϕ for different benchmark scenarios.
We again use geometric cross sections as estimated
upper bounds for the cross sections during freeze-out.
Specifically, we use the nonrelativistic generalized unitarity
bound computed in Eq. (10) in Ref. [46], and further
investigated in Ref. [25], which has also considered freeze-
out in matter-dominated cosmologies, and replace the
particle momentum with the mass, k → m:

hσvp−1i ≲ Γð3p−3
2
Þ

2π
3p−3
2

2πp
1

p−1p!
m

�
2π

m

�
3p−5

ð2lþ 1Þ: ð19Þ

As in the s-wave case discussed above, this is justified by
the observation that the DM is only mildly nonrelativistic

FIG. 2. The viable range of cross sections for a 2 → 0 freeze-
out process for both ϕ and χ. Using the unitarity bound, the cross
sections can be associated with an upper bound on the mass of the
particle, denoted by dashed gray lines. On the red lines (below
the red lines), we can get the observed relic abundance (overclose
the Universe) by assuming the denoted lifetime for ϕ. In the upper
left corner of the parameter space, the dilution factors will always
be too small (for Tτϕ ≤ Tχ), and we underclose the Universe. For
the points in the lower gray region, the dilution factor will be
small enough that the BAU is completely washed away at or after
BBN. For τϕ ∼ 0.1 s, there is no time left to reproduce this
asymmetry before BBN; yet, for smaller lifetimes, the BAU can
be generated after ϕ’s decay.
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during freeze-out; however, if the unitarity bound is truly
saturated, then the cross sections could be slightly larger
than the values given here (and, of course, much smaller
cross sections are always allowed). In Appendix D, we
show variations of these plots under rescaling of the
assumed maximal cross sections.
Since the geometric cross section for χ annihilation

should be close to the maximal value allowed by unitarity,
using it will allow us to estimate the maximum viable DM
mass in each scenario; this is the meaning of the mχ axis in
Fig. 3. If we go to low enough DM masses, the right relic
abundance can be obtained without an entropy injection
(and with smaller freeze-out cross sections). This is
indicated by the gray region in the plots. In all these plots,
we set the ϕ lifetime for every point in the parameter space
such that the final Ωχ matches the observed value [47].
In each plot, the part with τϕ lifetime longer than ∼0.1 s

is ruled out by the BBN bounds [18,19]. For large enough
hierarchies between mϕ and mχ , even if the ϕ particles
decay right after χ freezes out, they still inject too much
entropy into the SM bath and dilute the DM abundance to
below the observed value; thus, in this part of the parameter
space, our model can account for only a fraction of
DM today.
Clearly, depending on the type of interaction controlling

the freeze-outs, the viable mass range shifts significantly. In
particular, when pχ ¼ 2 (top plot in Fig. 3), without any
entropy injection we find the right DM abundance formχ ∼
100 TeV (note that the cross sections used in this plot
saturate the unitarity bound; thus, this agrees with the
results in Ref. [8]). With entropy injection, we can have
viable parameter space withmχ ≳ 100 TeV. For the case of
pχ ¼ 3, this bound on the mass in the case of zero entropy
injection is shifted to mχ ∼ 0.1 GeV (consistent with
Ref. [15]). For mϕ ≤ 1018 GeV, in the pχ ¼ 2 (pχ ¼ 3)
case, the DM mass can go up to even ∼1014 GeV
(∼1012 GeV), provided the unstable relic ϕ is long-lived
enough.
It is worth reiterating that the final parameter space is not

especially sensitive to qχ;ϕ, as these quantities merely give
rise to Oð1Þ changes in the final Ωχ . The plots in Fig. 3 are
made assuming lχ;ϕ ¼ 0 interactions; we find that changing
these parameters does not affect the viable mass window
perceptibly either. Results in Sec. II can be used to remake
these plots with smaller cross sections or different freeze-
out interactions for χ or ϕ as well. For completeness, in
Appendix D, we include some plots on the viable mass
range in a handful of other freeze-out scenarios.
The bottom plot in Fig. 3 shows that the entropy

injection allows heavy DM masses even for pχ ≥ 4
freeze-out interactions. Given this enormous viable mass
range, it will be interesting to find actual models in which
the freeze-out is controlled by pχ ≥ 4 interactions. For
instance, this can be achieved if we assume the process

FIG. 3. Theviablemass rangeofϕ andχ assuming the interactions
controlling the χ freeze-out are 2 → 0 (top), 3 → 2 (middle), and
4 → 3 (bottom), with ϕ freezing out via 2 → 0 interactions, and no
temperature dependence in the freeze-out cross sections. The freeze-
out cross sections of both χ and ϕ are set to the maximum value
allowed by the unitarity bound for each mass point. We set the
lifetimeofϕ such thatweget the right relic abundance for everypoint
in the parameter space. Contours of a constant lifetime (in seconds)
are denoted by dashed green lines. Every point in the orange region
requires τϕ ≳ 0.1 s to give rise to the observedDMabundance and is
ruled out by the BBN bounds. In the gray region, the entropy
injection is negligible; the observed DM abundance can be obtained
herewithout any entropy injection and smaller cross sections.On the
black line, weget the correct relic abundancewith cross sections that
saturate the unitarity bound [46] and without any entropy injection.
In the purple region, if the entropy injection happens after the χ
freeze-out, wewill always underproduce DM. For every point to the
right of the red line, the BAU has to be generated after theϕ entropy
injection since in that region ξ ≲ ηb ∼ 6 × 10−10.
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controlling the freeze-out respects a large discrete sym-
metry, e.g., ZN with large enough N, between DM
particles.
We also assumed there are unspecified 2-to-2 elastic

interactions between the SM and each of the relics ϕ and χ
that keep them in kinetic equilibrium with the thermal bath.
The crossing symmetry can relate this elastic process to a
number-changing process with pχ;ϕ ¼ 2 that can affect the
freeze-out dynamics. In Ref. [15], however, it was shown
that for masses above 1 MeV there can always exist a
range of couplings for which kinetic equilibrium can be
maintained during the freeze-out via a 2-to-2 elastic
scattering while the associated pχ ¼ 2 annihilation process
is suppressed.
All in all, Fig. 3 shows a vast mass range that can explain

the observed DM abundance which, above all parameters,
is most sensitive to pχ;ϕ. In particular, in such a simple
setup, the unstable particle ϕ can decay even before the
electroweak phase transition, i.e., τϕ ≲ 10−11 s, and still
inject a significant amount of entropy into the SM bath.
With such a short lifetime, even if the dilution factor is
small enough to wash away any preexisting baryon
asymmetry (ξ≲ ηb), we can regenerate BAU via electro-
weak baryogenesis proposals [48].
Our result shows that, even in minimal scenarios

including an entropy injection, there is essentially no
preferred mass window for thermal relic DM. Such a
broad mass window became viable thanks to the entropy
injection, which, in turn, takes place if and only if we have
an early MD epoch in the Universe. Looking for other
signatures of such an epoch could be the most model-
independent way to probe the high mass end of our viable
parameter space; see, for example, Refs. [26–28].

IV. VIABLE PARAMETER SPACE
IN A BENCHMARK MODEL

As a concrete example of how entropy injection expands
the parameter space of simple thermal relic DM models, in
this section, we study a gauged B-L symmetry with some
entropy injection at around τϕ ≈ 0.1 s. We do not consider
the freeze-out of ϕ for simplicity and treat the dilution
factor ξ as a free parameter.
We assume the Z0 mediator of the Uð1ÞB−L gauge gets a

mass via the Stueckelberg mechanism [49]; thus, no
symmetry breaking takes place and no cosmic strings
form—however, a model variant with spontaneously bro-
ken Uð1ÞB−L would lead to potentially detectable GW
signals from those objects [50]. Furthermore, a new vector-
like fermion χ with a B-L charge nχ ≠ 1 is then accidentally
stable and provides a minimal DM candidate [51,52].
The dark matter particle χ freezes out via usual pχ ¼ 2

interactions. The relevant interactions are

L ⊃ −igB−Lnχ χ̄γμχZ0μ − igB−Lnff̄γμfZ0μ; ð20Þ

where nχ (nf) is the DM (SM fermions) charge under
Uð1ÞB−L and gB−L is the gauge coupling of the Uð1ÞB−L
gauge group. The charges of the SM particles are −1 for
leptons and 1=3 for quarks, such that nucleons couple with
a B − L charge nN ¼ 1. The DM charge will be taken as
nχ ¼ 3 for concreteness.
In Figs. 4 and 5, we show the plane of dark matter mass

vs spin-independent elastic cross section. We study both
limits of heavy (above the ∼100 TeV unitarity bound) and
light (sub-GeV) DM masses. The Uð1ÞB−L gauge coupling
is uniquely determined for any point on this plot. We then
choose the right dilution factor ξ for each point such that the
right DM abundance today is obtained; contours of
required ξ are shown.
In Fig. 4, we show the heavy DM scenario with a fixed

mediator mass. The indirect detection limit from the
FermiLAT satellite [55] is relevant only for the case that
no dilution is present, i.e., ξ ¼ 1. However, as discussed in
Refs. [26–28], the early MD epoch can lead to increased
production of high-density DMminihalos. This effect could
lead to an enhanced DM annihilation signal, if those halos
are not disrupted at later times. In particular, in the case of a
low reheating temperature, this effect could improve the
indirect detection prospects by several orders of magnitude.
The Large Electron-Positron Collider (LEP) bound

of mZ0=gB − L≲ 6.9 TeV [58,60] provides an upper
bound on the spin-independent cross section σDM−SM ≲
5 × 10−44n2χ cm2. The current Xenon1T limit [54] excludes
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FIG. 4. Contours of required dilution factor ξ to generate the
observed DM abundance today on the plane of DM mass vs spin-
independent DM-nucleon cross section in our benchmark
Uð1ÞB−L mediator model. We fix the mediator mass to mZ0 ¼
8 TeV and focus on the heavy DM region. Contours of constant ξ
are color coded according to the value of gB−L. Superimposed are
the bounds from collider searches for the B-L gauge boson [53]
(blue), current direct detection bounds from Xenon1T [54]
(green), the indirect DM annihilation limits from the FermiLAT
satellite [55] (purple), the expected neutrino floor [56] (dashed
magenta), and maximal dilution limit if χ freezes out during a RD
epoch (orange); see the text for further details.
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the no-dilution scenario in a wide range of masses
as well.
For simplicity, in making this plot we assumed χ freezes

out during a RD epoch, i.e., Ti ≤ Tχ . Since the entropy
injection should occur before t ∼ 0.1 s, i.e., Γϕ ≥ ð0.1 sÞ−1,
we can calculate a lower bound on ξ using Eq. (6); see the
orange region in Fig. 4. Combining this limit with the
collider searches mentioned above puts an upper bound of
mχ ≲ 1010 GeV on DM mass in this benchmark model.
With this example, we demonstrate that for ξ ≪ 1 a wide

parameter space remains open forDMmasseswell above the
perturbative unitarity bound and significant gauge inter-
actions gB−L ∼Oð1Þ. Such scenarios without the weakness
of the WIMP couplings are within the reach of upcoming
large volume detectors, such as XENONnT [61], and
provide excellent experimental targets. We also find viable
parameter space below the neutrino floor [56,62,63] which
motivates developing new search techniques; see, for
example, Refs. [64–71].
In Fig. 5, we show contours of required ξ to get the right

DM abundance today in the light DM regime. We assume
the DM freeze-out happens during a MD epoch, and we fix
τϕ ¼ 0.1 s, such that the entropy injection happens right
before the BBN epoch. Note that in most of the viable
parameter space ξ < ηb; in those parameter regions, the
BAU should be generated either after the entropy injection,
e.g., using models from Refs. [42–45], or by ϕ decay itself.
Superimposed on this figure are the limits from searches

for the B-L gauge boson in the sub-GeV mass range at

BABAR [53] (see also Ref. [58]), as well as the limit on the
s-wave annihilation cross section from the cosmic micro-
wave background (CMB) [59] and current Xenon1T
bounds [54]. At very small coupling values, the system
never enters thermal equilibrium with the SM, and our
treatment is not applicable. The lower mχ end of the plot is
ruled out by BBN constraints.
Overall, while the no-dilution scenario is ruled out in this

DM mass range, a large parameter space with ξ≲ 10−8 is
widely open, motivating new search strategies that can
cover the entire viable region. We find that part of the
remaining parameter space is within the reach of upcoming
low-threshold direct detection techniques with superfluid
helium [57,72] with one kg-yr exposure; larger low-thresh-
old detectors can fully test the low mass end of this thermal
DM scenario within the next decade [72].

V. CONCLUSION AND OUTLOOK

We studied the freeze-out abundance of thermal relic
DM (denoted χ) in a next-to-minimal freeze-out scenario
featuring an unstable relic ϕ that decays to the SM after its
freeze-out. We analytically calculated the final χ abundance
for general freeze-out interactions with pχ;ϕ ≥ 2 initial
particles and qχ;ϕ ≥ 0 final particles and for arbitrary
temperature dependence of the freeze-out cross sections.
We found that the final χ abundance is very sensitive to

mχ;ϕ, their cross sections, and especially the initial number
of particles in the interaction (pχ;ϕ). The viable DM mass
window moves as pχ;ϕ changes, even in the presence of
entropy injection. However, even for the conventional
WIMP scenario [ðpχ ; qχÞ ¼ ð2; 0Þ], the entropy injection
means there is no particular mass value singled out—unlike
the traditional WIMP models, in which the weak scale
emerges as the natural DM mass scale.
Using our analytic calculation, we identified viable

parameter space between the freeze-in and freeze-out cross
section values (Fig. 2). We also pointed out that, for the
WIMP scenario, if the BAU is generated after (before) the
entropy injection, the DM can be as heavy as ∼1014 GeV
(∼108 GeV) formϕ ≲MPl as shown in Fig. 3. We also used
our results to argue that for freeze-out interactions with
pχ ≥ 3 there is viable parameter space with DM masses as
high as mχ ∼ 1012 GeV.
As a proof of principle, we studied the parameter space

of a simple B − L gauge boson portal and showed that the
entropy injection can open up parameter space for light and
heavy DM masses that were previously considered ruled
out owing to direct detection bounds for the former and
CMB bounds for the latter (Figs. 4 and 5).
Our calculation and analysis can be extended in a few

interesting ways. It is intriguing to consider the case of
either the χ or ϕ relic density being set by a freeze-in
instead of freeze-out. In particular, this way we can extend
the range of Fig. 2 to lower cross sections in each direction.
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FIG. 5. The parameter space in the light DM regime. Similar
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Furthermore, given the large viable masses that will not be
accessible to conventional DM searches in the foreseeable
future, the best way to probe our setup is likely by looking
for signatures of an early MD epoch. There are already
proposals in the literature for searching for an early MD
epoch [26–28]. Such an epoch can also affect the evolu-
tion of the Hubble parameter and, thus, the spectrum of
gravitational waves from various sources in the early
Universe [34,73–77].
There are also intriguing studies of UV-complete sce-

narios which we leave for future explorations. In particular,
now that we have a large parameter space for freeze-out via
pχ → qχ interactions with pχ ≥ 4, it is interesting to think
about natural particle physics models that could give rise to
such freeze-out behavior.
Another interesting direction will be studying the corre-

lation between DM and SM abundances in more detail. One
of the best arguments for the existence of a portal between
the DM and the SM is the closeness of their respective
abundances. Since the SM abundance today is set by the
BAU, a complete study should include a way to relate this
asymmetry to the DM abundance today. Since the DM
abundance in our setup is a function of the ϕ lifetime, a
natural direction for exploration is UV-complete models
where the BAU is generated by decays of ϕ itself.
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APPENDIX A: ENTROPY INJECTION

The relevant calculation for the entropy injection is
carried out for a single heavy relic decaying to the SM
in Ref. [35], Sec. V. 3. (Similar calculations are carried out
elsewhere in the literature as well; see, for instance,
Refs. [31,78].) For completeness, we repeat that calculation
here; we also generalize that to the case where the dark
sector has a different temperature than the SM.While this is
not the case in our study, this can be useful for future works.
We want to calculate the amount of entropy injected into

the SM when ϕ decays into a SM bath. First, we should
keep in mind that the energy density of ϕ is controlled by

1

R3

d
dt

ðρϕR3Þ ¼ _ρϕ þ 3Hρϕ ¼ −Γϕρϕ; ðA1Þ

with ρϕ being ϕ’s energy density, Γϕ their decay rate, andH
the Hubble constant. The solution to this equation is

ρϕðRÞ ¼ ρðR0Þ
R3
0

R3
e−Γϕt; ðA2Þ

where the subscript 0 here refers to some arbitrary origin of
time (and not today) and t is the time passed since then.
This equation and solution is valid for both RD and MD
portions of the evolution, as long as ϕ is nonrelativistic.
As the ϕ particles decay to the SM, they inject heat and,

thus, entropy into it. The entropy injection can be calcu-
lated by

dS ¼ dQ
T

¼ −
4π

3

dðR3ρϕÞ
T

¼ 4π

3

R3

T
ρϕΓϕdt; ðA3Þ

where in the second equality we used Eq. (A1). Notice that
dS here is the infinitesimal change in the entropy of the SM.
The entropy of the SM can be written as

S ¼ 4πR3

3

2π2

45
g�ST3; ðA4Þ

where T and g�S refer to the SM temperature and number of
relativistic degrees of freedom (#d.o.f.) for entropy.
Without any entropy injection from decoupled particles,
this total entropy of the SM remains constant. Putting the
last two equations together, we have

_SS1=3 ¼
�
4π

3

�
4=3

R4ρϕðRÞΓϕ

�
2π2

45

�
1=3

g1=3�S : ðA5Þ

This equation can be solved as

Z
S1=3dS ¼

�
4π

3

�
4=3

�
2π2

45

�
1=3 Z

dtR4ρϕðRÞΓϕg
1=3
�S

⇒ S4=3f ¼ S4=3i þ 4

3

�
4π

3

�
4=3

�
2π2

45

�
1=3

×
Z

tf

ti

dtR4ρϕðRÞΓϕg
1=3
�S ; ðA6Þ

where now i, f are just two labels for the beginning and end
of any interval we are studying. Combining this with
Eq. (A2), we find

S4=3f ¼ S4=3i þ 4

3

�
4π

3

�
4=3

�
2π2

45

�
1=3

ρiR4
iΓϕ

×
Z

tf

ti

dt
R
Ri

g1=3�S e−Γϕt ðA7Þ

⇒
Sf
Si

¼
�
1þ 4

3

�
4π

3

�
4=3 ρi

S4=3i

R4
i I

�
3=4

; ðA8Þ

where
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I ¼ Γϕ

�
2π2

45

�
1=3 Z tf

ti

dt
R
Ri

g1=3�S e−Γϕt: ðA9Þ

We can simplify this quantity as below:

I ¼ Γϕ

R tf
ti dtð2π

2

45
Þ1=3 R

Ri
g1=3�S e−ΓϕtR tf

ti dtð2π
2

45
Þ1=3 R

Ri
e−Γϕt

Z
tf

ti

dt

�
2π2

45

�
1=3 R

Ri
e−Γϕt

≡ Γϕhg1=3�S i
Z

tf

ti

dt

�
2π2

45

�
1=3 R

Ri
e−Γϕt: ðA10Þ

From this point on, again for simplicity we assume i
labels a point right after the Universe becomes MD, i.e.,
ρϕ;i ≈ ρR;i with ρR denoting the radiation bath energy
density. When the Universe becomes MD, and before ϕ
decays (t ≪ τϕ), we have

R
Ri

¼
�
ρϕ;i
ρϕ

�
1=3

;

ρϕ ¼ 3M2
pl

8π

�
_R
R

�2

⇒
R
Ri

¼ ρ1=3ϕ;i

�
8π

3M2
pl

�
1=3

�
_R
R

�−2=3
: ðA11Þ

In the MD Universe, we have R ∝ t2=3ð1þwÞ with w ¼ 0,
i.e., R ∝ t2=3. Hence, in the MD epoch, we have

�
_R
R

�−2=3
¼

�
3

2
t
�

2=3
: ðA12Þ

Combining these equations, we can rewrite Eq. (A10) as

I ¼hg1=3�S iΓϕ

Z
tf

ti

dt
�
2π2

45

�
1=3

ρ1=3ϕ;i

�
8π

3M2
pl

�
1=3

�
3

2
t
�

2=3
e−Γϕt

¼hg1=3�S i
�
2π2

45

�
1=3

ρ1=3ϕ;i

�
3

2

�
2=3

�
8π

3M2
pl

�
1=3

×Γ−2=3
ϕ

Z
uf

ui

duu2=3e−u; u¼Γϕt: ðA13Þ

For ti ≪ τϕ, we can simply use ti ¼ 0. However, we
should be careful about the upper bound of the integral. As
mentioned above, we are considering a MD Universe. So,
the equations are really reliable only as long as most of the
ϕ’s have not decayed. Yet, let us for the moment assume the
Universe actually does remain MD even after the ϕ decays.
This introduces some error, since the R=Ri scaling changes
after ϕ decays, but, with this assumption, we can take
tf → ∞ and use the definitions of the Gamma functions:

I ¼ hg1=3�S i
�
2π2

45

�
1=3

ρ1=3ϕ;i

�
3

2

�
2=3

�
8π

3M2
pl

�
1=3

Γ−2=3
ϕ Γð5=3Þ

ðA14Þ

≈1.18ρ1=3ϕ;i

�
8π

3M2
pl

�
1=3

�
2π2

45

�
1=3

hg1=3�S iΓ−2=3
ϕ ; ðA15Þ

which is off by only around 10% from Eq. (5.72) in
Ref. [35], where the integral is evaluated numerically with
the right scaling of R in the RD epoch after our MD era. We
can now use this in Eq. (A8) to find

Sf
Si

¼
�
1þ 4

3

�
4π

3

�
4=3 ρϕ;i

S4=3i

R4
i × 1.18ρ1=3ϕ;i

�
8π

3M2
pl

�
1=3

×

�
2π2

45

�
1=3

hg1=3�S iΓ−2=3
ϕ

�
3=4

: ðA16Þ

Note should be taken that g� and Si;f are referring to SM
quantities. The entropy and the energy density of SM at ti
can be written, respectively, as

Si ¼
2π2

45
g�S;iT3

i
4πR3

i

3
; ðA17Þ

ρi¼
π2

30
g�;iT4

i

⇒
4

3

�
4π

3

�
4=3 ρϕ;i

S4=3i

R4
i ¼

�
45

2π2

�
1=3 g�;i

g4=3�S;i
ðA18Þ

⇒ Sf=Si ¼
�
1þ g�;i

g4=3�S;i
hg1=3�S i1.18ρ1=3ϕ;i

�
8π

3M2
pl

�
1=3

Γ−2=3
ϕ

�
3=4

ðA19Þ

¼
�
1þ2.40

g�;i
g4=3�S;i

hg1=3�S iρ1=3ϕ;i

�
1

M2
pl

�
1=3

Γ−2=3
ϕ

�
3=4

:

ðA20Þ

Finally, again using ρϕ;i ≈ ρR;i ¼ π2=30 × g�;iT4
i , we find

Sf
Si

¼
�
1þ 1.65

�
g�;i
g�S;i

�
4=3

hg1=3�S i
�

T4
i

ðΓϕMplÞ2
�

1=3
�

3=4

:

ðA21Þ

The only place where the temperature difference of the
two sectors could enter the calculation is in #d.o.f. g�ðSÞ.
Notice that all these #d.o.f. factors entered from energy or
entropy density of the SM and did not care about #d.o.f. in
the dark sector. Thus, even if the two sectors had different
temperatures, the calculation would have remained
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unchanged. Furthermore, since all particles are at the same
T, g� ¼ g�S,

Sf
Si

¼
�
1þ 1.65hg1=3�S i

�
T4
i

ðΓϕMplÞ2
�

1=3
�

3=4

; ðA22Þ

which is the final formula we use in Sec. III. The g� average
is defined in Eq. (A10), and, given its small power, it will
always be an Oð1Þ number.

APPENDIX B: DETAILS OF FREEZE-OUT
AND DILUTION DURING A RD EPOCH

Let us assume the process controlling the freeze-out is
p → qþ SM; i.e., p initial DM particles go to q final DM
particles and an arbitrary number of particles from the SM
thermal bath. The calculation here is viable for both ϕ and χ
relics, so we drop their subscripts in this appendix.
Assuming identical particles and antiparticles, the
Boltzmann equation for this freeze-out is

_nþ3Hn¼ s _Y¼−
ðp−qÞ
p!

hσvp−1iðnp−np−qeq nqÞ

¼−
ðp−qÞ
p!

hσvp−1ispYp

�
1−

�
Yeq

Y

�
p−q

�
: ðB1Þ

In a RD Universe, we have [see Eq. (5.15) in Ref. [35]]

t ¼ 0.301g−1=2�
MPl

T2
≡ x2

2HðmÞ ; ðB2Þ

where m is the relic that freezes out, x ¼ m=T, and
HðmÞ ¼ 1.67g1=2� m2=MPl. This suggests that in RD epochs

∂x
∂t

¼ HðmÞ
x

: ðB3Þ

Thus, the Boltzmann equation can be rewritten as

Y 0 ¼−
p−q
p!

x
HðmÞhσv

p−1isp−1Yp

�
1−

�
Yeq

Y

�
p−q

�
: ðB4Þ

We also have

s ¼ 2π2

45
g�ST3 ≡ βx−3; ðB5Þ

using which we can rewrite the Boltzmann equation as

Y 0 ¼−
p−q
p!

x−3pþ4

HðmÞ hσv
p−1iβp−1Yp

�
1−

�
Yeq

Y

�
p−q

�
: ðB6Þ

We can use this equation to find an approximation for xfo,
i.e., when the freeze-out happens (see below).

When calculating the asymptotic yield Yeq ≪ Y, we have

dY
dx

¼ −
p − q
p!

x−3pþ4

HðmÞ hσv
p−1iβp−1Yp: ðB7Þ

At this point, we have to determine the x dependence of the
cross section. We simply assume

hσvp−1i≡ σ0
X
i

aix−i: ðB8Þ

This captures a general temperature dependence for the
interaction. Then, Eq. (B7) can be rewritten as

dY
Yp ¼ −dx

p − q
p!

βp−1

HðmÞ
�
σ0
X
i

aix−i−3pþ4

�
: ðB9Þ

Integrating this equation, we find the asymptotic value of
the abundance Y∞:

1

ðp−1ÞYp−1
∞

¼p−q
p!

βp−1

HðmÞ
�
σ0
X
i

ai
ð3pþi−5Þx3pþi−5

fo

�

ðB10Þ

⇒Y∞¼
�

p!
ðp−qÞðp−1Þ

� 1
p−1

×
HðmÞ 1

p−1

β

�
1

σ0
P

i
ai

ð3pþi−5Þx3pþi−5
fo

� 1
p−1
: ðB11Þ

Notice that in this integration we neglected the change in
g�ðSÞ during the freeze-out. The only place the RD property
of the Universe enters is in the HðmÞ factor and the
derivative ∂t=∂x. Replacing HðmÞ and β ¼ 2π2

45
g�Sm3 in

the expression above, we find

Y∞ ¼ 45

2π2

�
p!

ðp − qÞðp − 1Þ
� 1

p−1ð1.67g1=2� Þ 1
p−1

×
m

2
p−1−3

g�S

�
1

σ0MPl
P

i
ai

ð3pþi−5Þx3pþi−5
fo

� 1
p−1
; ðB12Þ

where g�ðSÞ is the #d.o.f. (for entropy) during the freeze-out,
i.e., what we called g�S;χ or g�S;ϕ in the main body of the
paper. If we assumed hσvi ¼ σ0x−l instead, the expression
above simplifies to

Y∞ ¼ 45

2π2

�
p!

ðp − qÞðp − 1Þ
� 1

p−1ð1.67g1=2� Þ 1
p−1

×
m

2
p−1−3

g�S

�ð3pþ l − 5Þx3pþl−5
fo

σ0MPl

� 1
p−1

; ðB13Þ
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which allows us to calculate Ωh2:

Ωh2 ¼ mY∞
s0
ρc

h2

¼ s0
ρc

h2 ×
45

2π2

�
p!

ðp − qÞðp − 1Þ
� 1

p−1ð1.67g1=2� Þ 1
p−1

×
m

2
p−1−2

g�S

�ð3pþ l − 5Þx3pþl−5
fo

σ0MPl

� 1
p−1

: ðB14Þ

Following Ref. [35], we define the freeze-out point xfo as
when ∂xðY − YeqÞ ¼ 0 and Y ¼ ð1þ cÞYeq with c being an
Oð1Þ number. Assuming a nonrelativistic distribution for
the Yeq, we can algebraically solve these equations for xfo
to find

xfo≈
1

p−1
ln

��
0.14×

g
g�S

�
p−1

λð1þcÞp
�

−
3pþ2l−5

2ðp−1Þ ln

�
1

p−1
ln

��
0.14×

g
g�S

�
p−1

λð1þcÞp
��

;

ðB15Þ

where

λ ¼ p − q
p!

σ0
HðmÞ β

p−1; ðB16Þ

g is the internal degrees of freedomof the particle that freezes
out, and we used hσvi ¼ σ0x−l. Varying the value of c
changes xfo only by a fewpercent forpχ ≤ 10, which, in turn,
affects the final abundance only byOð1Þ factors.Wewill use
c ¼ 1 in this work. In deriving this equation, we again
neglected the variation in #d.o.f. during the freeze-out.

APPENDIX C: DETAILS OF FREEZE-OUT
AND DILUTION DURING A MD EPOCH

Now let us consider the scenario where the ϕ relic
freezes out during a RD epoch, while the χ relic freezes out
after the Universe enters the MD epoch. The effect of χ
freezing out during an early MD epoch has been studied
before in the literature; see Ref. [25]. We extend their
calculation to arbitrary q and temperature dependence in
the interaction rate, as well as considering the effect of ϕ
freeze-out explicitly.
Notice that, for the entropy injection to affect the χ

abundance, τϕ should be long enough so that it decays after
the χ freeze-out, i.e., Ti ≳ Tχ ≳ Tτϕ . The calculation of ϕ
freeze-out is unchanged from the previous appendix, since
it occurs in a RD Universe; see Eq. (B12). The energy
density of ϕ is

ρϕðTÞ¼mϕY
ϕ
∞sðTÞ≡ γ2T3;

γ2 ¼ g�SðTÞ
g�Sϕ

�
pϕ!

ðpϕ−qϕÞðpϕ−1Þ
� 1

pϕ−1ð1.67g1=2�ϕ Þ 1
pϕ−1

×m
2

pϕ−1
−2

ϕ

�
1

σ0;pϕ
MPl

P
i

ai
ð3pϕþi−5Þx3pϕþi−5

fo;ϕ

� 1
pϕ−1

≈
�

pϕ!

ðpϕ−qϕÞðpϕ−1Þ
� 1

pϕ−1ð1.67g1=2�ϕ Þ 1
pϕ−1

×m
2

pϕ−1
−2

ϕ

�
1

σ0;pϕ
MPl

P
i

ai
ð3pϕþi−5Þx3pϕþi−5

fo;ϕ

� 1
pϕ−1: ðC1Þ

In the last line, we neglect the change in g�S after the ϕ
freeze-out (and effectively until the χ freeze-out). This was
done to make ξ temperature independent so as to simplify
the upcoming integrations. One can show that neglecting
this change in #d.o.f., we have

γ2 ≈
π2

30
g�S;ϕTi: ðC2Þ

Now let us study χ’s freeze-out. The temperature
evolution in this MD epoch is given by

∂tT ¼ −HT; H ¼
ffiffiffiffiffiffiffiffiffiffi
8πρϕ
3M2

Pl

s
; ρϕ ¼ γ2T3;

⇒H ¼
ffiffiffiffiffiffi
8π

3

r
γ

MPl
T3=2

⇒
dT

T5=2 ¼ −
ffiffiffiffiffiffi
8π

3

r
γ

MPl
dt

⇒ −
2

3
T−3=2jfi ¼ −

ffiffiffiffiffiffi
8π

3

r
γ

MPl
tjfi ; ðC3Þ

and we can neglect the initial T and t since time and
temperature change significantly during the integration;
thus,

⇒ t ¼ 2

3
T−3=2

ffiffiffiffiffiffi
3

8π

r
MPl

γ
≡ 2

3

x3=2χ

HMDðmχÞ
;

HMDðmχÞ ¼
ffiffiffiffiffiffi
8π

3

r
γ
m3=2

χ

MPl
: ðC4Þ

This is the equivalent of Eq. (B2) for a MD Universe; we
see that t has a different scaling with T or xχ now. The
following equations for χ freeze-out in the previous section
can now be rewritten as below:

∂x
∂t

¼ HMDðmχÞ
x1=2χ

: ðC5Þ
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Thus, the Boltzmann equation can be rewritten as

Y 0 ¼ −
pχ − qχ
pχ!

x1=2χ

HMDðmχÞ
hσvpχ−1i

× spχ−1Ypχ

�
1 −

�
Yeq

Y

�
pχ−qχ

�
ðC6Þ

¼ −
pχ − qχ
pχ!

x
−3pχþ7

2
χ

HMDðmχÞ
hσvpχ−1i

× βpχ−1Ypχ

�
1 −

�
Yeq

Y

�
pχ−qχ

�
ðC7Þ

≈ −
pχ − qχ
pχ!

x
−3pχþ7

2
χ

HMDðmχÞ
hσvpχ−1iβpχ−1Ypχ ; ðC8Þ

where again in the last line we have considered the asymp-
totic form of the equation when Yeq ≪ Y. Compared to the
RD case, the power of xχ and the HMDðmχÞ parameter have
changed.
Using the general formula for the cross section Eq. (B8),

we now can have

dY
Ypχ

¼ −dxχ
pχ − qχ
pχ!

βpχ−1

HMDðmχÞ
�
σ0;pχ

X
i

aix−i−3pχþ7=2

�
:

ðC9Þ

Once we integrate this equation from x ¼ xfo to x → ∞, we
find

1

ðpχ −1ÞYpχ−1
∞

¼pχ −qχ
pχ!

βpχ−1

HMDðmχÞ

×

�
σ0;pχ

X
i

ai
ð3pχ þ i−9=2Þx3pχþi−9=2

�

ðC10Þ

⇒Yχ
∞¼

�
pχ!

ðpχ−qχÞðpχ−1Þ
� 1

pχ−1HMDðmχÞ
1

pχ−1

β

×

�
1

σ0;pχ

P
i

ai
ð3pχþi−9=2Þx3pχþi−9=2

� 1
pχ−1

: ðC11Þ

Again, we neglected the variation in #d.o.f. in the
integration above. [This can introduce some error for
DM mass in the Oð0.1Þ–Oð10Þ GeV ballpark; for this
mass range, the calculation should be carried out numeri-
cally for better precision.] Now we should replace
HMDðmχÞ from Eq. (C4) and β from Eq. (B5) (for χ).
The final abundance of χ becomes

Yχ
∞¼ 45

2π2

�
pχ!

ðpχ −qχÞðpχ −1Þ
� 1

pχ−1ð2.89γÞ 1
pχ−1

×
m

3=2
pχ−1

−3

g�S;χ

�
1

σ0MPl
P

i
ai

ð3pχþi−9=2Þx3pχþi−9=2

� 1
pχ−1

: ðC12Þ

This is the equivalent of Eq. (B12) in a MD epoch freeze-
out. Specializing to the simpler form of the cross section

hσvpχ−1i≡ σ0;pχ
x
−lχ
χ , we find

Yχ
∞ ¼ 45

2π2

�
pχ!

ðpχ − qχÞðpχ − 1Þ
� 1

pχ−1ð2.89γÞ 1
pχ−1

×
m

3=2
pχ−1

−3

g�S;χ

�ð3pχ þ lχ − 9=2Þx3pχþlχ−9=2

σ0;pχ
MPl

� 1
pχ−1

:

This equation is in agreement with the results of Ref. [24].
To turn this yield into Ωχh2 for a massive relic, we use

Ωχh2¼mχY
χ
∞
s0
ρc
h2

¼ s0
ρc
h2×

45

2π2

�
pχ!

ðpχ−qχÞðpχ−1Þ
� 1

pχ−1ð2.89γÞ 1
pχ−1

×
m

3=2
pχ−1

−2
χ

g�S;χ

�ð3pχþ lχ−9=2Þx3pχþlχ−9=2
χ

σ0;pχ
MPl

� 1
pχ−1

: ðC13Þ

By replacing the value of γ, we find the final expression
used in Sec. II C.
We can also use Eq. (C7) to find an expression for xfo

during a MD epoch as well. In this case, we find

xfo ¼ Eq: ðB15ÞjHðmχÞ→HMDðmχÞ
lχ→lχþ1=2 : ðC14Þ

APPENDIX D: ADDITIONAL SCENARIOS

In the body of the paper, we reported the viable mass
window and Γϕ values for a few ðpχ;ϕ; qχ;ϕ; lχ;ϕÞ scenarios
and assuming geometric cross sections. Our general for-
mulas in Eqs. (12) and (16) can be used for other values of
these quantities as well. We include a few more mass
window plots in Figs. 6–9; comparing these figures to
Fig. 3 can provide us with intuition on the effect of various
parameters on the viable DM mass range.
We show the viable mass window for the case of pχ ¼

qχ þ 1 ¼ 5 in Fig. 6; we find a large viable parameter space
similar to the case of pχ ¼ qχ þ 1 ¼ 4; see the bottom plot
in Fig. 3.
In the top (bottom) panel in Fig. 7, we show the viable

mass range and Γϕ values with ðpχ;ϕ; qχ;ϕ; lχ;ϕÞ ¼ ð2; 0; 0Þ
[ðpχ;ϕ; qχ;ϕ; lχ;ϕÞ ¼ ð3; 2; 0Þ], similar to the top (middle)
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panel in Fig. 3 but with a cross section much smaller than
the geometric cross section for χ particles. As expected,
decreasing the cross section shifts the viable parameter
space to lower mχ values.
In Fig. 8, we keep ðpχ;ϕ; qχ;ϕÞ ¼ ð2; 0Þ and use the

geometric cross sections for each freeze-out but vary the
value of lχ;ϕ. We find that increasing lχ (lϕ) slightly shifts
the viable parameter space to lower mχ (mϕ) values.
However, the effect of lχ;ϕ on the viable mass range is
clearly not as strong as that of pχ;ϕ.
These plots can be compared to those in Fig. 9, where we

keep lχ;ϕ ¼ 0 and instead change pχ;ϕ. We again observe a
shift to lower mχ or mϕ values, respectively, when pχ or pϕ

increases; the effect of changing pχ;ϕ is clearly stronger
than changing lχ;ϕ in Fig. 8.

FIG. 7. Similar to Fig. 3 but with smaller σ0;χ values. Lowering this freeze-out cross section slightly shifts the viable parameter space to
lower mχ values.

FIG. 8. Similar to Fig. 3 but with different lχ and lϕ values. We find that increasing each of these quantities slightly shifts the parameter
space to lower values of mχ or mϕ, respectively. We note that the effect of changing lχ;ϕ is much smaller than changing pχ;ϕ, via
comparison to the top plot in Fig. 3.

FIG. 6. Similar to Fig. 3 but with pχ ¼ qχ þ 1 ¼ 5. We still
find a large viable parameter space.
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