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We consider the renormalization properties of non-Hermitian Yukawa theories involving a pseudoscalar
(axion) field at or near four dimensions. The non-Hermiticity is PT symmetric where P is a linear operator
(such as parity) and T is an antilinear idempotent operator (such as time reversal). The coupling constants
of the Yukawa and quartic scalar coupling terms reflect this non-Hermiticity. The path integral representing
the field theory is used to discuss the Feynman rules associated with the field theory. The fixed point
structure associated with the renormalization group has PT symmetric and Hermitian fixed points. At two
loops in the massless theory, we demonstrate the flow from Hermitian to non-Hermitian fixed points. From
the one-loop renormalization of a massive Yukawa theory, a self-consistent Nambu–Jona-Lasinio gap
equation is established and its real solutions are discussed.
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I. INTRODUCTION

Quantum field theories have provided successful theories
of fundamental (high-energy particle) physics, of condensed
matter, and (of aspects) of gravitational physics. In order to
go beyond the field-theoretic description provided by the
Standard Model (SM) of particle physics, it is necessary to
extend the framework. Two such extensions are

(i) First, within the familiar quantum mechanical
assumption of Hermiticity, the SM framework is
embedded in more general approaches, exemplified
by grand unified theories, supersymmetry, super-
gravity, and string/brane theory (in higher spatial
dimensions).

(ii) Second, starting in 1998 [1], in the context of
quantummechanics (one-dimensional quantum field
theory), non-Hermitian PT symmetric theories [2]
were shown to allow unitary time evolution.1 P is a
linear idempotent operator (such as parity) and T is
an antilinear idempotent operator (such as time
reversal). In PT symmetric quantum mechanics

the energy eigenvalues are real and bounded below.
This development has led to the study of PT
symmetric quantum field theories [3–12].2

A major driver for the explosion of interest in quantum
mechanical PT symmetry has been the massive activity,
both theoretical and experimental, in material science and
optics [15].
It is the purpose of this work to discuss the foundations

of a (3þ 1)-dimensional PT symmetric quantum field
theory of fermion and axion fields, from the point of view
of its renormalization and dynamical mass generation for
both axions and fermions. The structure of the article is as
follows: in Sec. II we set up in detail the path-integral
formalism describing the quantum field theory of our
model, paying special attention to itsPT symmetric nature.
In Sec. III, we present the renormalization, in (3þ 1)
dimensions, of our field-theoretic model, which involves a
chiral Yukawa interaction of a fermion field ψ with a
pseudoscalar (axionlike) field ϕ in the presence of a quartic
self-interaction forϕ. The fields have baremasses. In Sec. IV,
we discuss the renormalization group for this massive
Yukawa theory, allowing for appropriately defined non-
Hermitian fixed points in the space of couplings of the

1A new inner product on the Hilbert space is used, which
replaces the conventional Dirac inner product.
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2A more general form of non-Hermiticity, known as pseudo-
Hermiticity, is discussed in the Appendix and also can lead to
unitary time evolution [13,14] on a Hilbert space with an
unconventional inner product.
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model. We study the behavior of the various (perturbative)
coupling parameters at one loop, derive the beta functions of
the renormalization group (RG), and determine the RG fixed
points and study their stability. We also discuss the RG
flows of the couplings and masses. In Sec. V, following the
approach of Nambu and Jona–Lasinio [16,17] (who consid-
ered a nonrenormalizable model with quartic fermion inter-
actions, a prototype for dynamical mass generation for
fermions), we study the dynamical mass generation in our
model, by letting the baremass terms go to zero.We compare
the resultant masses with those from the nonperturbative
ones obtained in [9,10] following Schwinger-Dyson (SD)
methods (in the absence of the quartic scalar coupling). In
Sec. VI we discuss briefly the results of the renormalization
of themodel at two loops and demonstrate a renormalization-
group flow also fromHermitian to non-Hermitian couplings.
Finally, conclusions and outlook are given in Sec. VII.
A technical discussion on pseudo-Hermiticty, giving back-
ground essential for understanding PT symmetry and non-
Hermiticity, is given in the Appendix.

II. OUR MODEL, MOTIVATION, AND
FORMULATION

Our axion field theory is a generalization of the simplest
scalar quantum field theory with a non-Hermitian PT sym-
metric potential defined by the D-dimensional Hamiltonian
density:

HPT ¼ 1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2 þ gϕ2ðiϕÞδ: ð1Þ

ϕ is a pseudoscalar field and δ > 0 is real. H is non-
Hermitian but PT symmetric because ϕ changes sign under
P; ϕ remains unchanged under T and i changes sign under
T . This Hamiltonian density is the field-theoretic analogue
of the PT symmetric quantum mechanical Hamiltonian [1]

H ¼ p2 þ x2ðixÞδ ð2Þ
which launched the field of PT symmetry. Dorey et al.
[18,19] demonstrated the surprising feature that for δ > 0 the
eigenvalues of H are all discrete, real, and positive even
though it is notDiracHermitian. It is necessary to broaden the
class covering the Hamiltonian equation (1) in order to be
able to apply the ideas of PT symmetry to phenomenologi-
cally interesting models.3 Furthermore it is now realized that
PT symmetry is part of a much broader class of models
which is denoted as pseudo-Hermitian [13] (see the
Appendix).

Recently, we have discussed dynamical mass generation
[9–11] for fermions and pseudoscalar gravitational axion
fields in effective field theories containing Yukawa type
interactions between the axions and the fermions. These
models arise in scenarios for radiative Majorana sterile
neutrino masses [10]. These Yukawa interactions can be
both Hermitian and non-Hermitian but PT symmetric.
Although motivated by the issue of dynamical mass gen-
eration, a nonperturbative phenomena, our emphasis in this
work is on understanding the model within the context of a
more fundamental non-Hermitian quantum field theory
where the effects of renormalization need to be considered.
A more fundamental model goes beyond the Yukawa
interactions in the effective theory to include quartic and
cubic couplings in the scalar field. This leads us to consider
the generalized Lagrangian L:

L ¼ 1

2
∂μϕ∂

μϕ −
M2

2
ϕ2 þ ψði=∂ −mÞψ − igψγ5ψϕ

þ u
4!
ϕ2ðiϕÞδ ¼ LB þ LF; ð3Þ

where

LB ¼ 1

2
∂μϕ∂

μϕ −
M2

2
ϕ2 þ u

4!
ϕ2ðiϕÞδ; ð4Þ

and

LF ¼ ψði=∂ −mÞψ − igψγ5ψϕψ : ð5Þ

The scalar model of Eq. (1) is contained within this
Lagrangian as LB. In [10] the analysis was done in the spirit
of effective Lagrangians and so the quartic coupling, which
emerges from the requirement of renormalizability, was not
included.Whenwe discuss renormalizability, we require that
δ ¼ 2.4 Equation (3) represents the most general renorma-
lizable Lagrangian involving our ϕ and ψ fields in four
dimensions. For u < 0 the quartic interaction is Hermitian;
for u > 0 the quartic coupling is non-Hermitian.5 At the
nonperturbative level, PT symmetric quartic scalar
Hamiltonians lead to one-point and, more generally, odd-
number-point Greens functions. When δ ¼ 1, L will have a
term ihϕ3 where h is a coupling constant; unlike ϕ3 theory,
with a real coupling such a theory is PT symmetric and is a
sensible theory.
In order to define a quantum theory, whether we do this

through a Schrödinger equation (for quantum mechanical
theories) or more generally through path integrals for
D-dimensional quantum field theories, we need to specify
boundary conditions. So if we analytically continue a3There is no proof that, in all cases for which a PT symmetry

can be defined, the spectrum is purely real. The spectrum will
depend on the precise boundary conditions in the problem. If the
entire energy spectrum is not real, the symmetry is said to be
broken. However, for a large class of models, it has been found
that the spectrum is real (and bounded below).

4Renormalizability for general δ is discussed in [20,21].
5This remark has to be understood within the context of the

deformation implied by δ and boundary conditions in path
integrals.
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coupling in some way (the particular sense is specified for
the relevant coupling) it is absolutely necessary to show
how the boundary conditions are affected. Once these
boundary conditions are determined then it will be clear
what Hermiticity or non-Hermiticity means.
The introduction of fermions in a PT context needs a

discussion and is a comparatively unexplored area within
the study of PT quantum field theories. For applications
of PT symmetry to fundamental physics it is important
to incorporate fermions [9–12,22–25]. In this new area it
is not possible currently to match the rigor applied to
conventional Hermitian field theories. However, we plan
to lay some foundations. In the discussion of Feynman
rules, P and T symmetries are connected to the issue of
path integrals [26] and their boundary conditions. In the
context of Lorentz invariant pseudoHermitian field the-
ories, we shall touch on the role CPT symmetry [27]
(where C is the charge conjugation operator), and is a
fundamental symmetry of Hermitian Lorentz invariant
field theories. The understanding of the role of PT type
symmetry in relativistic quantum mechanics and field
theory for fermions is less developed than for the bosonic
case. All the above mentioned PT symmetric field-
theoretic systems are relativistic, and for which the
generation of real masses can, in principle, be understood
as a consequence of the existence of an underlying
antilinear symmetry [28–30].

A. Bosonic path integrals and boundary conditions

We shall start off in the simplest context: bosonic path
integrals with discrete P and T symmetries. The action that
will be considered is of the following type:

SðφÞ ¼
Z

dD x

�
1

2
ð∂μφÞ2 þ VðφÞ

�
: ð6Þ

The canonical form of VðφÞ used in the study of PT
symmetry is

VðφÞ ¼ u
4!
φ2ðiφÞδ ð7Þ

with u and δ real. The action of PT on VðφÞ is determined
through the following:

P∶ φ → −φ

T ∶ φ → φ

T ∶ i → −i: ð8Þ

The potential VðφÞ isPT symmetric for all values of δ.PT
is an example of an antilinear symmetry (since T is
antilinear). Pseudo-Hermiticity relies on the presence of
an antilinear symmetry. For δ ¼ 2 we have the negative
quartic potential which is conventionally an unstable
potential and energies of states have an imaginary part.

The above PT symmetric formulation, involving a com-
plex deformation of the potential, leads to a theory in
D ¼ 0 and D ¼ 1 with real energies. There are strong
grounds to expect this to hold for D > 1. The purpose of
this section is to formulate the analysis in D ¼ 0 in such
a way that the generalization to D > 0 is clear (but may
have complications such as renormalization). The path in
φ space, because of the deformation parametrized by δ, is
taken (and required) to explore the complex φ plane. The
presence of PT symmetry results in a left-right sym-
metry of the deformed path, i.e., a reflection symmetry in
the imaginary φ axis. This left-right symmetry is respon-
sible for real energy eigenvalues. If, for example, we
have T ∶ φ → −φ then we do not have PT symmetry for
general δ, the boundary conditions are different, and the
left-right symmetry of the deformed paths no longer
holds. If the Lagrangian (e.g., for δ ¼ 2) formally shows
PT symmetry for T ∶ φ → −φ the physical conse-
quences of the different assignments of P and T are
entirely different; one case may give an acceptable
physical theory with left-right symmetry and real eigen-
values, while the other case with up-down symmetry
would not have real eigenvalues which are bounded
below. We will consider below the Euclidean version
of the path integral to improve the convergence of the
path integral.

1. The quartic potential

The partition function for D ¼ 0 has the form

Z ¼
Z
C
dφ exp

�
−
�
1

2
m2φ2 −

1

4!
uφ4

��
: ð9Þ

Z represents a zero-dimensional field theory [2] and the
path-integral measure is the measure for contour integra-
tion. The study of this toy model (which can formally be
investigated as a field theory with Feynman rules) will help
in understanding the role of Stokes wedges [31] in path
integrals. For u > 0 the integral with the contour −∞ <
φ < ∞ does not exist. For u < 0 the integral with the
contour exists in the Stokes wedges − π

8
< argφ < π

8
and

7π
8
< argφ < 9π

8
. Hence, the conventional Hermitian theory

can use the contour −∞ < φ < ∞ which goes through the
center of both Stokes wedges. It is straightforward to see
that there are four possible Stokes wedges, each with an
opening of π=4. In a PT symmetric context, the partition
function can exist for a contour C in the complex φ plane,
chosen to lie in the Stokes wedges: − 3π

8
< argφ < − π

8
and

− 7π
8
< argφ < − 5π

8
(see Fig. 1). These Stokes wedges are

left-right symmetric and so the PT symmetric theory has
real eigenvalues which are bounded below.

PT SYMMETRIC FERMIONIC FIELD THEORIES … PHYS. REV. D 106, 015009 (2022)

015009-3



2. The cubic potential

An analysis similar to that for the quartic potential can be
carried out for the cubic potential [32] partition function ZPT

3

ZPT
3 ¼

Z
C
dz exp−

�
1

2
m2φ2 þ i

3!
g̃φ3

�
; ð10Þ

where g̃ is real. The associated Stokes wedges are f− π
3
<

argðφÞ < 0g and f−π < argðφÞ < − 2π
3
g (see Fig. 2) and the

integral converges along the realφ axis. Ifφ isT odd, thePT
conjugate of f− π

3
< argðφÞ < 0g is f0 < argðφÞ < π

3
g. The

two Stokes wedges are contiguous and so the contour C can
be deformed off to ∞ and the theory would be trivial.
From the above discussions it should be clear that in the

presence of both cubic and quartic potentials, the Stokes
wedges are determined by the quartic potential.

3. Fermionic path integrals and their role
in PT symmetry

An essential feature of our model is the presence of
fermions [33]. Since our method of analysis is based on path
integralswe need to estimatewhether the findings on bosonic
path integrals are modified by the presence of fermions.
The fermionic part of the path integral is in terms of
Grassmann numbers which are anticommuting numbers
and so Gaussians of Grassmann numbers truncate; at this
level there should not be any additional convergence issues in
the fermionic theory. To investigate further, since fermions

appear quadratically in LF, they can be formally integrated
out in the partition function Zeff associated with Eq. (3):

Zeff ¼
Z

Dϕ exp ½−SBðφÞ� det ðγμ∂μ þ imþ igγ5φÞ ð11Þ

where

det ðγμ∂μ þ imþ igγ5φÞ

¼
Z

Dψ†Dψ exp ð−ψ†½γμ∂μ þ imþ igγ5φ�ψÞ: ð12Þ

These fermionic determinants have beenwidely studied using
Feynman-diagram representations (see Figs. 3 and 4), and are
complicated.
The formal expressions for these determinants are

generally nonlocal; these determinants are approximated
using semiclassical methods but even this is nontrivial to do
rigorously. On making approximations there is an indica-
tion that corrections to the bosonic part of the Lagrangian is
of the form −u2φ4 and g4φ4 [33]. Consequently quantum
fluctuations may lead to non-Hermitian behavior even if the
starting Lagrangian is Hermitian [34]. This issue has
relevance within the context of the renormalization group.

B. The measure of the path integral

The path integral formulation is regularly used to
compute correlation (Schwinger) functions in conventional

FIG. 1. PT symmetric Stokes wedges for quartic potential.

FIG. 2. PT symmetric Stokes wedges for cubic potential.

FIG. 3. The master vertex for the functional determinant.
Continuous lines with arrows denote fermions. The dashed line
ending in the dark blob denotes an external scalar field source.

FIG. 4. Lowest functional vertices for the determinant, includ-
ing disconnected graphs. The symbols are as in Fig. 3.
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quantum field theories involving scalar, vector, and spinor
fields. The advantage of this approach is that there is no
need to construct a Hamiltonian, the Hilbert space, and
equation of motion. For these very same reasons this
approach is being advocated by us for PT symmetric
field theories and is, in our opinion, the way forward.
However, in the earlier discussion we have been somewhat
nonspecific about details of the path-integral measure
except to assume that the properties that we are accustomed
to in contour integration and complex analysis continue to
serve us well. Since many works on PT quantum mechan-
ics rely on Hilbert-space methods and modified inner
products in the non-Hermitian PT -symmetry context,
we will give additional supporting arguments for the
path-integral approach which makes a connection with
the Hilbert-space methods used in discussing pseudo-
Hermiticity (see the Appendix).

1. The calculation of Green’s functions

Since the Dirac inner product of quantum mechanics (the
L2 norm), when applied to PT -symmetric Hamiltonians,
leads to a nonunitary quantum-mechanical theory, in the
canonical operator approach unitarity is restored through
the introduction of a modified inner product [13].6 Unlike
the inner product in Hermitian quantum mechanics, this
modified inner product is not uniquely determined and is
dependent on the Hamiltonian. Through examples, we shall
compare the calculation of a two-point function in the path-
integral and canonical approaches. Such examples provide
evidence for the conjecture that for the calculation of
Green’s functions (within both a Minkowski and an
Euclidean framework), the determination of the C operator
(or equivalently the Hilbert-space metric) is not necessary
(at least for a class of models where the non-Hermiticity lies
in the interaction part of the Hamiltonian). This evidence
stimulated a formal justification of these findings [35].
The evidence is based on both an exactly soluble PT -

symmetric quantum-mechanical model (the Swanson
model) and also on an a perturbative treatment of the
imaginary cubic potential [32]. We shall then outline an
argument which justifies, in a general context, conclusions
deduced from these two models.
The C operator [36] can be written as

C ¼ expðQÞP; ð13Þ

whereQ is Hermitian andP is the linear parity operator [2].
Moreover η ¼ expð−QÞ, where η is the metric in the
pseudo-Hermitian formulation of PT symmetry. The con-
ventional adjoint H† of a Hamiltonian H satisfies

H† ¼ expð−QÞH expðQÞ ð14Þ

and this leads to an associated Hermitian Hamiltonian h
which is defined as

h ¼ exp

�
−
Q
2

�
H exp

�
Q
2

�
: ð15Þ

C. The Swanson model

The classical Swanson Hamiltonian (with a > 0, b > 0,
and c pure imaginary) [35,37] HS is

HS ¼ ax2 þ bp2 þ 2cxp ð16Þ

from which we deduce (up to a total derivative) a classical
Lagrangian LS ¼ _x2

4b − ãx2 where ã ¼ a − c2
b . LS is a scaled

Lagrangian for a Hermitian harmonic oscillator and leads to
a Hermitian Hamiltonian

hSðx; PÞ ¼ bP2 þ ãx2 ð17Þ

with P ¼ pþ ðc=bÞx. Using conventional techniques such
as path integrals for Hermitian Hamiltonians, the time-
ordered n-point Greens functions Gnðt1; t2;…; tnÞ can be
calculated.
From the theory of pseudo-Hermitian Hamiltonians there

is a similarity transformation (determined by a Q function)
which relates the two. The ground states of the two
Hamiltonians are also related by this similarity transfor-
mation:

jΩhSi ¼ exp

�
−
Q
2

�
jΩHS

i: ð18Þ

Since G2ðt; tÞ ¼ hΩhS jx2jΩhSi, we can rewrite it as

G2ðt; tÞ ¼ hΩHS
j exp

�
−
Q
2

�
x2 exp

�
−
Q
2

�
jΩHS

i: ð19Þ

Moreover, in this case, it is possible to find a Q which
depends just on x, and so

G2ðt; tÞ ¼ hΩHS
j exp ð−QÞx2jΩHS

i; ð20Þ

the form expected in a non-Hermitian framework. Hence,
in this simple case a path-integral computation and one
using a PT -symmetric framework with a PT inner product
give the same result.

D. The imaginary cubic potential

An example of a model which is not exactly soluble but
can be solved by using perturbation theory is provided by
the Hamiltonian

6The formulations in terms of either pseudo-Hermiticity (see
the Appendix) or an invertible metric operator or a C operator [32]
are entirely equivalent.
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HC ¼ 1

2
p2 þ 1

2
x2 þ ig̃x3 ð21Þ

with g̃ real.
The associated classical Lagrangian is

LC ¼ 1

2
ð_x2 − x2Þ − ig̃x3: ð22Þ

From our earlier discussion of Stoke’s wedges, we
know that the edge of the Stoke’s wedges coincides with
the real x axis; so conventional Feynman rules are valid and
lead to [38]

G1 ¼ −
3

2
ig̃þ 33

2
ig̃3 þOðg̃5Þ: ð23Þ

This result coincides with the quantum mechanical calcu-
lation using HC and the PT -symmetric inner product, i.e.,
h0j exp ð−QÞxj0i for a suitable operatorQ [39]. Hence, we
have further evidence supporting the conjecture which
prompted the investigation of Jones and Rivers [37] to
be discussed next.

E. General argument

A quantum field theory is characterized by its Green’s
functions. The Schwinger-Dyson equations (SDEs) [26],
which are c-number equations, determine the Green’s
functions of a field theory. The SDEs can be derived from
the partition function Z½j� where jðxÞ denotes a source
field. For definiteness we will consider a pseudoscalar
field ϕðxÞ (in a spacetime dimension D) with an action
S½ϕ� ¼ R LðϕðxÞ; ∂μϕðxÞÞdDx where LðϕðxÞ; ∂μϕðxÞÞ is
the Lagrangian density. We can take for definiteness

LðϕðxÞ; ∂μϕðxÞÞ ¼
1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 −UðϕÞ ð24Þ

where UðϕÞ is, in general, a non-Hermitian Hamiltonian.
Z½j� can be represented in two ways: one in terms of a path
integral denoted by Z1½j� and the other in terms of a time-
ordered product of operators denoted by Z2½j�. We shall
use the relation between the two expressions to argue that
the path integral approach does not require, as far as the
computation of Green’s functions is concerned, explicit
knowledge of the non-Hermitian metric. The expressions
for Z1½j� and Z2½j� are

Z½j� ¼ Z1½j� ¼
Z

Dϕ exp

�
−S½ϕ� þ

Z
jðxÞϕðxÞ

�
ð25Þ

and

Z½j� ¼ Z2½j� ¼ hΩjηT
�
exp

�
i
Z

dxjðxÞϕðxÞ
��

jΩi; ð26Þ

where jΩi denotes the vacuum state. The metric operator η
is time independent.
From (25) we obtain the SDE on requiring thatZ

Dϕ
δ

δϕðxÞ exp
�
−S½ϕ� þ

Z
dyϕðyÞjðyÞ

�
¼ 0: ð27Þ

The Green’s functions are obtained from

Gnðx1; x2;…; xnÞ ¼
1

Z½j�
�
−i

δ

δjðx1Þ
��

−i
δ

δjðx2Þ
�

…

�
−i

δ

δjðxnÞ
�
ZðjÞjj¼0: ð28Þ

The path- integral measure is formally encoded in Dϕ, but,
in the derivation of the SDEs, it is not necessary to specify
this measure precisely. The main assumption is that the path
integral exists. From (27) we deduce that�

−
δS

δϕðxÞ
����
ϕðx0Þ¼ δ

δjðx0Þ

þ jðxÞ
�
ZðjÞ ¼ 0: ð29Þ

Alternatively we can derive the SDEs using Z2½j�. The
derivation starts from the Heisenberg equations of motion.
H is given by

H ¼
Z

dx

�
1

2
π2 þ 1

2
ð∇ϕÞ þ 1

2
m2ϕ2 þ UðϕÞ

�
ð30Þ

with π ¼ ∂0ϕ and we assume ½H; η� ¼ 0. The Heisenberg
equations of motion (in natural units and using notation
which does not distinguish between classical and operator
fields) can be shown to be:

ð∂2 þm2ÞϕðxÞ þU0ðϕðxÞÞ ¼ 0 ð31Þ

where

∂0ϕ ¼ i½H;ϕ� ð32Þ

and

∂0π ¼ i½H; π�: ð33Þ

The assumption that these Heisenberg equations [(32),
(33)] are valid for a pseudo-Hermitian Hamiltonian H will
now be justified. For H to be pseudo-Hermitian with
respect to an inner product η (discussed earlier) a necessary
condition is that

η exp ðiHÞ ¼ exp ðiH†Þη: ð34Þ

In Hilbert space a ket jψSi in the Schrödinger picture is
related to a ket jϕHi in the Heisenberg picture by
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jϕHi ¼ exp ðiHtÞjψSi: ð35Þ

Similarly, for the corresponding bras

hϕHj ¼ hψSj exp ð−iH†tÞ: ð36Þ

For an operator O in the Schrödinger picture

hψSjηOjψSi ¼ hϕHj exp ðiH†tÞηO exp ð−iHtÞjϕHi
¼ hϕHjη exp ðiHtÞO exp ð−iHtÞjϕHi
¼ hϕHjηOHjϕHi ð37Þ

where

OH ¼ exp ðiHtÞO exp ð−iHtÞ: ð38Þ

Hence, even in the case of pseudo-Hermitian Hamiltonians,
the Heisenberg picture operator OH obeys the standard
form of the Heisenberg equations of motion.
In the canonical formulation Z2½j�, we shall adapt the

Symanzik construction for SDE in the presence of a source.
The metric appears explicitly in this formulation. In this
construction the expectation values of fields are determined
by the known classical equations of motion and the equal
time commutation relations. If we find that the SDE are the
same in the path integral and canonical approaches, then we
can deduce that the path integral formulation (without an
explicit implementation of η) leads to a correct calculation
of Green’s functions in the case of pseudo-Hermitian
Hamiltonians. For a given xμ ¼ ðx0; x⃗Þ (and with all fields
below operator-valued) [26]

Z2½j� ¼ hΩjηðEð∞; x0ÞEðx0;−∞ÞÞjΩi ð39Þ

and formally�
−i

δ

δjðxÞ
�

p
Z2½j� ¼ hΩjηEð∞; x0ÞϕðxÞpEðx0;−∞ÞjΩi:

ð40Þ

where

Eðx00; x0Þ ¼ T

�
exp

�
i
Z

x0
0

x0

dy0

Z
dy⃗jðy0; y⃗Þϕðy0; y⃗Þ

��
:

ð41Þ

Hence,

0 ¼ hΩjηEð∞; x0Þ
�
−

δS
δϕðxÞ

�
Eðx0;−∞ÞjΩi; ð42Þ

and

0 ¼
�
ð∂2 þm2Þ

�
−i

δ

δjðxÞ
�
þ U0

�
−i

δ

δjðxÞ
��

Z2½j�

þ hΩjηEð∞; x0Þ∂20ϕðxÞEðx0;−∞ÞjΩi
− ∂

2
0hΩjηEð∞; x0ÞϕðxÞEðx0;−∞ÞjΩi: ð43Þ

The last two terms in (43) can be simplified further. We first
note that

∂0hΩjηðEð∞; x0Þϕðx0; x⃗ÞEðx0;−∞ÞÞjΩi
¼ hΩjηðEð∞; x0Þπðx0; x⃗ÞEðx0;−∞ÞÞjΩi

since ϕðx0; x⃗Þ commutes with itself at equal times.
Differentiating again with respect to x0 we obtain

∂
2
0hΩjηðEð∞; x0Þϕðx0; x⃗ÞEðx0;−∞ÞÞjΩi
¼ hΩjηðEð∞; x0Þ∂20ϕðx0; x⃗ÞEðx0;−∞ÞÞjΩi þ jðxÞ:

ð44Þ

Using (44) in (43), we finally find (29) again but using the
inner product η this time. This demonstration has been
confined to scalar theories. In our earlier discussion the
fermions did not bring any qualitatively different issues into
defining the boundary conditions of the path integral;
consequently this derivation should formally still be valid.

F. Renormalization and the path integral measure

Recent works [23–25] on local PT -fermionic quantum
field theory have not addressed the essential issue of
renormalization [34] which arise due to quantum fluctua-
tions. Now that, in the context of PT field theories, we
have presented a full discussion of the quantization
procedure through path integrals, we will give a detailed
analysis of renormalization and the RG within our simple
model theory studied as an effective theory in the context of
axion physics [10,11] (involving a Yukawa coupling of a
Dirac fermion field ψ to ϕ, a real pseudoscalar field). The
Yukawa coupling can be real or imaginary.
Given the possibility that some non-Hermitian field

theories may be a basis for fundamental theories, we
aim to study the model as a quantum field theory. The
renormalization group leads to coupling constants running
with the energy scale. The connection between Hermitian
and non-Hermitian couplings through these flows will be
examined. In addition, on noting that the existence of an
underlying antilinear (PT ) [1,10,11] symmetry [28–30] in
the models allows for real energy eigenvalues, we shall
examine, using the renormalizability of the model, dynami-
cal mass generation for the fermion and pseudoscalar fields.
In the case of small couplings, our analysis yields non-
perturbative results for the generated (real) masses, which
agree with a (one-loop) SD analysis [10,11] for the model
without axion self-interaction.
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G. Issues on CPT and CPT invariance

CPT ð≡ΘÞ invariance [27], where C is the conventional
charge conjugation operator of Dirac [41,42], should not be
confused with the C operator (13) discussed in Sec. II B.
This invariance has been proved for Hermitian Lorentz
invariant theories and is sometimes referred to as the
(Hermitian) CPT theorem. Θ is an important symmetry
that relates matter and antimatter, for example, the equality
of masses and lifetimes, and opposite charges, for particles
and antiparticles. It is important to discuss the fate of this
symmetry in local relativistic non-Hermitian quantum field
theories. This is still an open issue. For the conventional
CPT theorem, one expects the violation of this symmetry
in the presence of general non-Hermitian couplings. Purely
phenomenological considerations were adopted in an early
study [40], to discuss potential experimental searches for
general non-Hermitian Θ-violating quantum field theories.
In what follows we shall concentrate only on our type of
Lagrangian (3). For the case of a purely imaginary g
coupling and positive u the theory is pseudo-Hermitian
(see the discussion of pseudo-Hermiticity in the Appendix
and boundary conditions on a Feynman path integral in
Sec. II A).
The Yukawa interaction, if non-Hermitian with the Dirac

inner product, turns out to be CPT odd [41,42]. This can
lead, in principle, to observable consequences [40]. In this
work and in [10,11] the antiparticle state can be defined
perturbatively in the Yukawa coupling. However, from a
foundational view point it would be interesting to see
whether, on restricting to pseudo-Hermitian theories, one
can define, in principle, a new set of C, P, and T operators
such that the resultant new Θ operator is an antilinear
symmetry of the non-Hermitian theory. In a general PT
symmetric (or pseudo-Hermitian) case, the Hamiltonian H
is not Hermitian and so the conventional antiunitary CPT
operator does not map a particle state into an antiparticle
state. As noted in Sec. II B (see also the Appendix),
corresponding to a pseudo-Hermitian H there is a
Hermitian h related by a Hermitian Hilbert-space auto-
morphism [η̃ ¼ η1=2, where η is defined in Eq. (34)]:

h ¼ η̃Hη̃−1: ð45Þ

The new inner product ⟪:j:⟫ for the non-Hermitian oper-
ators is given by h:jη̃2:i.
This statement is strictly valid for finite dimensional

quantum mechanical pseudo-Hermitian systems. Were we
to assume the validity of the mapping (45), though, in
quantum field-theoretic systems, it would be possible in
principle [using a similarity transformation η̃ cf. Eq. (55)]
to construct a CPT operator that can define the antiparticle
state nonperturbatively in pseudo-Hermitian field theories.7

However the existence of well-defined similarity trans-
formations which lead to a useful CPT operator needs
further investigation.
There is another perspective on CPT invariance of

pseudo-Hermitian field theories, which uses complex
Lorentz transformations, see [30], to claim that the conven-

tional CPT operator ( dθCPT ) is the correct CPT operator
for pseudo-Hermitian Hamiltonians. We believe this asser-
tion to be unproven. In that work, it is asserted that there are
two conditions under which a CPT invariance theorem for
non-Hermitian systems would be valid. The first is the
existence of an antilinear symmetry, which replaces
Hermiticity, and ensures the time independence of the
appropriate inner products that enter the non-Hermitian
theory. The second condition is the extension of the
requirement of Lorentz invariance, to encompass invariance
under complex Lorentz transformations. This approach is
not applicable to our case. In the work of [30], the field
operator iψγ5ψ is CPT and picks up a þ1 phase (under
appropriate normalization of the phases in the definition of
P, T , and C) under the application of the pertinent
transformation. For conventional [30] CPT invariance to
hold, the Yukawa interaction with a pseudoscalar ϕ would
require a T -odd transformation of ϕ (see II A) and a real
coupling. However, our term with purely imaginary
Yukawa coupling is CPT odd under our assumed trans-
formations (8); so the considerations of [30] do not apply.
On the other hand, the non-Hermitian self-interactions of
axions in our model satisfy the criteria of [30] for CPT
invariance.
The first criterion of [30], the existence of an antilinear

symmetry, such as PT , is guaranteed in our case as well,
thus leading to either reality of the energy spectrum, or at
least the appearance of the energy eigenvalues in complex
conjugate pairs. In what follows we shall examine dynami-
cal mass generation with real eigenvalues in our Yukawa-
system with axion self-interactions (3) [(4), (5)] and
demonstrate (in Sec. V) that this is possible in the model
with Hermitian Yukawa interactions and non-Hermitian
CPT even axion self-interaction couplings, under some
circumstances, which we shall specify (see also [10,11]). In
the non-Hermitian perturbative Yukawa-interaction case,
however, as we shall see, dynamical mass generation, when
applied naively, i.e., via the replacement of the real Yukawa
couplings by the purely imaginary ones, leads to unac-
ceptably large masses (above the UV cutoff), which are
thus not self-consistent. It should be noted that in [10,11],
for a model with an attractive CPT -even four-fermion
interaction and an anti-Hermitian Yukawa interaction, one
can obtain dynamical masses for fermions and pseudosca-
lars, of approximately equal magnitude proportional to
jgjΛ, where Λ is the ultraviolet cutoff, and g is the Yukawa
coupling [as in (3)]. We shall now give a simple argument
to show how this might be understood using the conven-

tional dθCPT .7Lattice field theories on a finite lattice are finite dimensional
and are a viable regularization of continuum field theories.
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In quantum mechanics we have

ð dθCPT bH� − bH dθCPT ÞjEi ¼ δjEi ≠ 0; ð46Þ

where bH is a non-Hermitian Hamiltonian operator with an
energy eigenstate jEi, and � denotes standard complex
conjugation and jEi denotes the antiparticle energy eigen-

state, defined by dθCPT jEi ¼ jEi.
Hence,

bH jEi ¼ ðE⋆ − δÞjEi: ð47Þ

In our case, E ¼ E1 þ iμ, with E1, μ ∈ R. Here, E1

corresponds to the real dynamical masses from the earlier
SD analysis [10,11], while iμ ∝ hψγ5ψi, μ ∈ R would
represent the purely imaginary chiral condensate, corre-
sponding to an anti-Hermitian chiral mass for the fermions.
In [9] we have argued that it is not possible, for energetic

reasons, to generate dynamically, using SD analysis, a
nonzero non-Hermitian condensate hψγ5ψi; i.e., dynami-
cally one should have μ ¼ 0. We interpret this result as
implying that, in the massive phase of the system, the mass
eigenvalue of the non-Hermitian operator ψγ5ψ on an
energy eigenstate jEi > would vanish

ψγ5ψ jEi ¼ 0: ð48Þ

For our anti-Hermitian Yukawa model (3), we obtain

dθCPT ψðxÞγ5ψðxÞdθCPT −1 ¼ −ψð−xÞγ5ψð−xÞ

⇒
Z

d4x½dθCPT ;ψðxÞγ5ψðxÞ�jEi
¼ 2

Z
d4x dθCPT ψð−xÞγ5ψð−xÞjEi ¼ 0 ð49Þ

where in the last equality we took into account (48), and the
interpretation that the mass eigenvalues of the Hamiltonian
operator are associated with the dynamically generated
masses for the various fields (fermions and axions) in the
system.
The result (49) implies that the non-Hermitian Yukawa

interactions do not affect the equality of the dynamically
generated masses between particle and antiparticle
(fermion or boson) states, in this system. Thus, the SD
treatment of [10,11] and also the analysis by Nambu and
Jona-Lasinio (NJL) [16] in this work provides a correct
framework within our anti-Hermitian Yukawa framework
for a description of dynamical mass generation for both
fermions and (pseudo)scalars. The calculation of the correct
form of the Θ operator using such ideas as the similarity
transformation remains to be done for non-Hermitian
theories, having antilinear symmetries such as PT .

III. THE YUKAWA MODEL

The massive Yukawa model is given by the bare
Lagrangian in three-space and one-time dimensions in
terms of bare parameters (emphasised through the use of
the subscript 0)8:

L ¼ 1

2
∂μϕ0∂

μϕ0 −
M2

0

2
ϕ2
0 þ ψ0ði=∂ −m0Þψ0

− ig0ψ0γ
5ψ0ϕ0 þ

u0
4!

ϕ4
0: ð50Þ

L is renormalized through mass, coupling constant, and wave
function renormalizations; we will take the spacetime dimen-
sionality D to be 4 − ϵ where ϵ is a small parameter.
Furthermore, ϵ is a useful small parameter in the analysis
of fixed points. It is the simplest nontrivial renormalizable
model of a Dirac fermion field ψ0 interacting with a
pseudoscalar field ϕ0. If g0 is real then the Yukawa term is
Hermitian and g20 > 0. If g0 is purely imaginary, then the
Yukawa term is non-Hermitian but it is PT symmetric, with
our definitions of the discrete symmetriesP,T to be discussed
below [cf. (51) and (53)], and g20 < 0. u0 is real but it can be
positive or negative. If u0 > 0 the quartic term is non-
Hermitian (in aMinkowski formulation). Ifu0 < 0 the quartic
term is Hermitian. Thus, both couplings allow the possibility
of showing non-Hermitian but PT symmetric behavior. For
thenon-Hermitian case foru (in theEuclideanpicture) thepath
integral contour in the ϕ plane has a pair of PT symmetric
Stokes wedges (see Fig. 1) which means that the contour
asymptotically needs to end up in these wedges. Moreover, in
this non-Hermitian case there are three ϕ-saddle points (or
configurations such as bounces depending onD); the fluctua-
tions around the trivial saddle point give standard perturbation
theory and Feynman rules. The nontrivial saddle points give
rise to (non-perturbative) instanton-like contributions. So
renormalization flows near Gaussian fixed points and quartic
Hermitian fixed points using Feynman rules should be a
reasonable indicator of the scale dependence of couplings of
the theory.
In the Dirac representation of gamma matrices, the

conventional discrete transformations on ψ0 that we use
[41] are9

8Our Minkowski-metric signature convention is ðþ;−;−;−Þ.
For our discussion of dynamical mass generation the ϕ3 coupling
is not going to be considered any further since our original
Yukawa model does not require it for a consistent perturbative
renormalization, i.e., g̃ is not generated through renormalization.

9We remark that in Ref. [23] a rather different T trans-
formation was used (related to the discrete symmetries of the
Dirac equation [41]); the action of T on a spinor wave function ψ
produces the complex conjugate field iγ1γ3ψ⋆ð−t; x⃗Þ. Such a
transformation is a symmetry of the Lagrangian. The form of
these transformations in the Weyl representation of the γ matrices
are discussed in [42]. The Lagrangian is invariant under these
transformations.
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Pψ0ðt; x⃗ÞP−1 ¼ γ0ψ0ðt;−x⃗Þ;
T ψ0ðt; x⃗ÞT −1 ¼ iγ1γ3ψ0ð−t; x⃗Þ;
Cψðt; x⃗ÞC−1 ¼ iγ2ψ†ðt; x⃗Þ; ð51Þ

where C denotes the charge conjugation operator [41] (not
to be confused with the C operator) and T is the antilinear
operator time-reversal operator. Also, under the action of P
and T , the pseudoscalar field ϕðt; x⃗Þ transforms as10

Pϕ0ðt; x⃗ÞP−1 ¼ −ϕ0ðt;−x⃗Þ; T ϕ0ðt; x⃗ÞT −1 ¼ ϕ0ð−t; x⃗Þ:
ð53Þ

In this articlewe are interested in determining the conditions
under which there is dynamical mass generation. We stress
that the results of our study here (and also those in [9–11])
demonstrate the possibility of generating dynamically real
masses in non-Hermitian theories. We use Feynman rules
(discussed earlier in this article) at a perturbative level, which
are valid for weak pseudo-Hermitian interactions.
We now come to the pseudoscalar self-interaction term

in (50). For u, δ > 0, in any space dimension, the non-
Hermitian scalar potential,

uϕ2ðiϕÞδ; ð54Þ

is PT symmetric.
For δ ≠ 0 the choice of T odd for ϕ would spoil PT

symmetry, and so is not of interest.We have seen in our earlier
discussion of Stokes wedges that the limit δ → 2, where
u ¼ u0, gives a non-Hermitian but PT symmetric theory; of
course the term (54) is non-Hermitian for every4 > δ > 0 and
u > 0. PT symmetric Hamiltonians are pseudo-Hermitian.
Explicitly, the Lagrangian interaction term (54) is

pseudo-Hermitian and can be derived by a similarity
transformation from the Hermitian interaction ϕ2þδ [30]11:

− ϕðt ¼ 0; x⃗Þ2ðiϕðt ¼ 0; x⃗ÞÞδ ¼ Sϕðt ¼ 0; x⃗Þ2þδS−1;

S ¼ exp

�
−
π

2

Z
d3xΠðt ¼ 0; x⃗Þϕðt ¼ 0; x⃗Þ

�
; ð55Þ

where Πðt; x⃗Þ is the canonical momentum of ϕðt; x⃗Þ, in the
free theory, satisfying the (equal-time) canonical commu-
tation relations ½ϕðt; x⃗Þ;Πðt; x⃗0Þ� ¼ iδð3Þðx⃗ − x⃗0Þ.12
In this work we will study the renormalization of the

Yukawa theory (50) and determine its fixed point structure
and the corresponding stability of the fixed points. We shall
discuss RG flows that interpolate between Hermitian and
non-Hermitian fixed points, and discuss mass generation
for the fermion and axion fields using the method of
Nambu and Jona-Lasinio [16,17]. Hence, we shall study
mass generation for both axions and fermion fields using
mass renormalizations calculated perturbatively, and exam-
ine the effects of the self-interaction on mass generation by
comparing our results with some of the nonperturbative
masses discussed in [10,11]. This discussion will be a
prelude to the full Schwinger-Dyson treatment, with the
inclusion of axion self interactions reserved for a future
publication.
The renormalized Lagrangian (where the renormalized

parameters are without the subscript 0) is given by

L ¼ 1

2
ð1þ δZϕÞ∂μϕ∂μϕ −

M2
0

2
ð1þ δZϕÞϕ2

þ ð1þ δZψ Þψði=∂ −m0Þψ
− ig0ð1þ δZψÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δZϕ

p
ψγ5ψϕþ u0

4!
ð1þ δZϕÞ2ϕ4

ð56Þ

where we have introduced the multiplicative renormaliza-
tions Zϕ, Zψ , Zg, Zu, Zm, and ZM defined through

ϕ0 ¼
ffiffiffiffiffiffi
Zϕ

p
ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δZϕ

p
ϕ; ð57Þ

ψ0 ¼
ffiffiffiffiffiffi
Zψ

p
ψ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δZψ

p
ψ ; ð58Þ

10We note that, in quantum mechanics [1], under T one has
i → −i as a consequence of the action of T on the Heisenberg
commutator between position (x̂) and momentum (p̂) operators:
T ½x̂; p̂�T −1 ¼ −½x̂; p̂� ¼ −i (ℏ ¼ 1 in natural units), from which
it follows immediately that

T iT −1 ¼ −i: ð52Þ
In canonical quantization of field theory [6,41], the above
Heisenberg-commutator argument is extended to equal-time
canonical commutators between fields and their canonical con-
jugate momenta, and, thus, the property (52) is understood to
be valid for quantum field-theoretic systems as well, and should
be imposed when considering time-reversal transformations
in the field theory lagrangian.

11In fact, exploiting the time independence of the respective
Hamiltonian, it suffices to evaluate the similarity transformation
only for t ¼ 0.

12In arriving at (55), we use the Baker-Hausdorff formula

eABe−A ¼ Bþ ½A; B� þ
X∞
n¼2

1

n!
½A; ½A;…½A; B�;…�;

and took into account the following result of the canonical field-
theoretic (equal-time) commutation relation:

−
π

2

�Z
d3xΠðt ¼ 0; x⃗Þϕðt ¼ 0; x⃗Þ;ϕðt ¼ 0; y⃗Þ2þδ

�
¼ þi

π

2
ð2þ δÞϕðt ¼ 0; y⃗Þ2þδ; δ > 0;

which stems from the fact that ½; � is a linear operator that behaves
like a derivative with respect to the field ϕ.
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M2
0Zϕ ¼ M2 þ δM2 ¼ M2ZM; ð59Þ

m0Zψ ¼ mþ δm ¼ mZm; ð60Þ

g0Zψ

ffiffiffiffiffiffi
Zϕ

p ¼ gþ δg ¼ gZg; ð61Þ

u0ðZϕÞ2 ¼ uþ δu ¼ uZu: ð62Þ

This Yukawa model is the natural field-theoretic version
of the quantum mechanical model considered in [23],
which can be considered as a free theory but with both
conventional and axial mass terms. The axial mass becomes
a dynamical field in our model within a Yukawa term; the
Yukawa coupling g can be purely imaginary g2 < 0 [9–11]
due to the aforementioned PT symmetry of the relativistic
theory [9,30].13 It was noted in [23] that the absence of a
conventional mass term led to broken PT symmetry14 and
so it is natural, at the perturbative level, to consider a
massive theory. Moreover, one approach to dynamical mass
generation [16], the one that we will follow, is to consider a
theory with a mass which is then determined self-consis-
tently through a gap equation [17].
The massless variant of the Yukawa theory

(M0 ¼ m0 ¼ 0), with no quartic term, has recently been
studied using unrenormalized Schwinger-Dyson equa-
tions [10,11] with a momentum cutoff Λ. The emphasis
was on effective theory for energy and momentum scales
below Λ. Earlier work has suggested a link between
renormalization and emergence of non-Hermiticity [34].
Our fermionic model (3), a natural generalization of the
canonical scalar model (1), shows the interplay of non-
Hermiticity and PT symmetry. The associated renorm-
alization group allows us to discuss the energy depend-
ence of the couplings and the Hermiticity of the theory.
We should note that in [10,11] non-Hermiticity was
examined only for the coupling g. Here, we examine
PT symmetric non-Hermiticity in the self-interaction of
the pseudoscalar field (54) as well. Nonetheless, as we
will find that the dynamically generated fermion masses
will acquire a nonperturbative form, similar in structure to
the one derived in [10,11] for real coupling g.

IV. RENORMALZATION GROUP ANALYSIS OF
THE MASSIVE YUKAWA THEORY

We shall use dimensional regularization of the mas-
sive Yukawa theory with spacetime dimension D ¼ 4 − ϵ

and ϵ > 0. At one loop the renormalization group
equations are

dg
dt

¼ 5g3

16π2
−
ϵg
2

ð63Þ

du
dt

¼ 48g4 − 3u2 þ 8g2u
16π2

− uϵ ð64Þ

dm
dt

¼ −
g2m2

16π2
ð65Þ

dM
dt

¼ 1

32π2M
½4g2ðM2 − 2m2Þ − um2� ð66Þ

where d
dt ≡ μ d

dμ, with μ being the mass scale introduced
in the method of dimensional regularization. The study of
ϵ-dependent fixed points was initiated by Wilson and
Fisher [43].
It is also interesting to consider a change of variables

from ðm;M; gÞ to ðσ;M; yÞ where m ¼ σM and y ¼ g2 in
order to see any correlation in the behavior of m and M
under renormalization. The β functions are then polyno-
mials in these variables. From (63), (64), (65), and (66) we
deduce that

dM
dt

¼ M
32π2

½4yð1 − 2σ2Þ − σ2u� ð67Þ

dσ
dt

¼ −
σ

32π

�
4y

�
1 − 2σ2

�
1þ M

128π

��
− uσ2

�
ð68Þ

dy
dt

¼ 5

8π2
y2 − ϵy ð69Þ

du
dt

¼ 48y2 − 3u2 þ 8yu
16π2

− uϵ: ð70Þ

Equations (63) and (64) form a closed set; their solutions
feed into Eqs. (65) and (66). Similarly (69) and (70) form a
closed set.
Our strategy will be to use a combination of dom-

inant-balance ideas for equations [31], geometric meth-
ods from the theory of dynamical systems and direct
solution of differential equations to determine flows to
the Hermitian and non-Hermitian regions of parameter
space. Our conclusions will be valid within the context
of the above (approximate) one-loop renormalization
group equations.
In the next section we shall analyze the two-loop

renormalization group flows for a massless Yukawa theory,
a model that was previously used in a Schwinger-Dyson
analysis of mass generation [10,11].

13We note that purely imaginary couplings, upon renormali-
zation, are consistent in our models, in the sense that the
respective counterterms Zg ¼ 1þOðg2Þ, Zψ , and Zϕ in (61)
are real.

14A system with broken PT symmetry is one in which there
are some energy eigenvalues which occur in complex conjugate
pairs. A system with unbroken PT symmetry is one in which all
the energy eigenvalues are real.
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A. The behavior of the g and u coupling constants

The fixed points of g are g� where g� ¼ g�� ¼ �
ffiffiffiffiffiffiffi
8π2ϵ
5

q
and the trivial fixed point g� ¼ 0.15 The related fixed points
u� for u are determined by

48g�4 − 3u�2 þ 8g�2u� ¼ 16π2ϵu�: ð71Þ
The solutions for u� are u� ¼ 0 and u�� ¼ u�ϵ where

u� ¼ 8

3
g20 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64

9
g40 þ 64

r
ð72Þ

and g0 ¼
ffiffiffiffiffi
8π2

5

q
∼ 3.97, which gives uþ ∼ 84.97 and

u− ∼ −0.75. Thus, we observe that u− is negative and,
therefore, according to our discussion below (54) in
Sec. III, is a Hermitian fixed point. On the other hand,
uþ is positive and, thus, is a non-Hermitian fixed point.16 At
the level of fixed points, non-Hermiticity is therefore
introduced through the u coupling. On the other hand, g
remains real at the fixed points. In summary, the various
fixed points [in the ðg; uÞ plane], denoted by ðg�; u�Þ, are
given below:
(1) (0,0)
(2) ð0;− 16π2

3
ϵÞ

(3) ðg�þ; u�þÞ
(4) ðg�þ; u�−Þ
(5) ðg�−; u�þÞ
(6) ðg�−; u�−Þ

which will be denoted by fi, i ¼ 1;…; 6. The ϵ-dependent
fixed points are examples of Wilson-Fisher fixed points
[43]. Let us first discuss the linear stability of these fixed
points.

1. Stability of fixed points in the (u;g) plane

We denote deviations from the fixed points by δg ¼
g − g� and δu ¼ u − u�. Linear stability analysis around
the fixed point gives

d
dt

�
δg

δu

�
¼ Mðg�; u�; ϵÞ

�
δg

δu

�
: ð73Þ

In order to avoid algebraic complexity we will
consider the stability using a numerical value for ϵ ¼
:0101321 which leads to g�� ¼ �:4, u�þ ¼ :887953 and
u�− ¼ −:461286. Eigenvalues for M at the fixed point fi
are λi1 and λi2. The corresponding (un-normalized) two-
dimensional eigenvectors are ei1 and ei2. Thus, we have
(1) λ11 ¼ −.0101321 and λ12 ¼ −.00506605with e11 ¼

ð0
1
Þ and e12 ¼ ð1

0
Þ,

(2) λ21 ¼ .0101321 and λ12 ¼ −.00506605 with e21 ¼
ð0
1
Þ and e22 ¼ ð1

0
Þ,

(3) λ31 ¼ −.0357646 and λ32 ¼ .0101321 with e31 ¼
ð0
1
Þ and e32 ¼ ð .37403.927417Þ,

(4) λ41 ¼ .0155004 and λ42 ¼ .0101321 with e41 ¼ ð.0
1
Þ

and e42 ¼ ð 0904311−.995903Þ,
(5) λ51 ¼ −:0357646 and λ52 ¼ :0101321 with e51 ¼

ð0
1
Þ and e52 ¼ ð .37403

−.927417Þ,
(6) λ61 ¼ .0155004 and λ62 ¼ .0101321 with e61 ¼ ð0

1
Þ

and e62 ¼ ð0.0904311.995903 Þ.
A fixed point fi is
(i) a sink if λi1 < 0 and λi2 < 0
(ii) a source if λi1 > 0 and λi2 > 0
(iii) a saddle point if λi1 > 0 and λi2 < 0 or vice versa.
These fixed points help to organize the renormaliza-

tion group flow through their basins of attraction. If an
eigenvalue is 0, then a nonlinear analysis is required around
the fixed point to determine its stability. We note that
t → ∞ is a flow to high energy; the flow t → −∞ is a flow
to low energy. An energy ofOð1Þ corresponds to t ¼ 0. We
shall consider the fixed points for m and M later.

2. The renormalization group flow for u and g

We shall consider the solutions of the coupled flow
equations (63) and (64) [and the closely related equa-
tions (71) and (72)]. We can rewrite (63) as

dg
dt

¼ 5g
16π2

ðg − gþÞðg − g−Þ: ð74Þ

For g ≫ gþ (74) simplifies to

dg
dt

¼ 5

16π2
g3 ð75Þ

and leads to

g2 ¼ y ¼ −
1

2ðcþ 5t
16π2

Þ ð76Þ

where c is a constant of integration. At t ¼ 0, if the theory
is Hermitian, then c is negative. As t increases, g increases

but remains Hermitian until at finite time t ¼ 16π2jcj
5

the
approximation of small g, and thus perturbative renormal-
ization, breaks down.
For g ≪ g− we again have (75) and c is negative for a

theory which is Hermitian at a scale μ ∼ 1. In the IR, g
remains small. In the UV, g moves towards g ¼ 0 but then
veers away to large positive values of g where perturbation
theory is not trustworthy.
For 0 < g < gþ it is clear that g → 0 as t → ∞. As

t → −∞ we have g → gþ. As ϵ → 0 there is a bifurcation
where the fixed points gþ, g−, 0 coalesce. The trivial fixed
point is unstable both in the IR and the UV.

15The sign of g distinguishes separate parts of “theory” space.
16In another Hermitian model, to be discussed later, the

possibility of flow to a non-Hermitian quartic self-coupling fixed
point has also been noticed [44].
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We will now consider the flow of u using (70). The
solution of (69) is

yðtÞ ¼ −
8dðϵÞπ2ϵ

5ðeϵt − dðϵÞ ð77Þ

where dðϵÞ ¼ e8π
2ϵc1ð> 0Þ and c1 is a constant of integra-

tion. The resultant solution of (70) for uðtÞ is

uðtÞ ¼ 8dðϵÞπ2ϵ
 
1þ

ffiffiffiffiffiffiffiffi
145

p
−
c2ð

ffiffiffiffiffiffiffiffi
145

p
− 1Þe

ffiffiffiffiffiffiffi
29=5

p
ϵt

ðeϵt − dðϵÞÞ
ffiffiffiffiffiffiffi
29=5

p
Þ

!�
 
15ðeϵt − dðϵÞÞ

 
1þ c2e

ffiffiffi
29
5

p
ϵt

ðeϵt − dðϵÞÞ
ffiffiffiffiffiffiffi
29=5

p
!!

ð78Þ

where c2 is an integration constant. This is complicated to
analyze. If we keep away from the region of the fixed points
near the origin, by considering ϵ → 0, the solutions in (77)
and (78) can be simplified to

yðtÞ ¼ −
1

5
8π2

tþ c1
ð79Þ

and

uðtÞ ¼ 8π2½1 − ffiffiffiffiffiffiffiffi
145

p þ ð1þ ffiffiffiffiffiffiffiffi
145

p Þð8c1π2 þ 5tÞ
ffiffiffi
29
5

p
c2�

3ð8c1π2 þ 5tÞð1þ c2ð8c1π2 þ 5tÞ
ffiffiffiffiffiffiffi
29=5

p
Þ

:

ð80Þ

For g to be non-Hermitian at t ¼ 0, we have y < 0, and so
c1 > 0; so as t → ∞, y remains non-Hermitian but slowly
vanishes. In the infrared (IR), as t decreases from t ¼ 0, y
increases but remains non-Hermitian; perturbation theory
becomes unreliable.
In the Hermitian case, y > 0 at t ¼ 0 and so c1 is

negative. As t increases from t ¼ 0 y remains Hermitian but
increases until perturbation theory is invalid.
For u to be real we need (8c1π2 þ 5t) to be non-negative.

This requires c2 ¼ 0 and so

uðtÞ ¼ −
8π2ð ffiffiffiffiffiffiffiffi

145
p

− 1Þ
3ð8c1π2 þ 5tÞ : ð81Þ

The implication of a non-Hermitian g (c1 > 0) for u is
that it is Hermitian (i.e., u < 0) at t ¼ 0. As t → ∞, u falls
off to 0 but remains Hermitian. In the IR, u increases until
perturbation theory is unreliable.
The implication of a Hermitian g (c1 < 0) is that u is

non-Hermitian (i.e., u > 0) and remains so in the IR. The
self-interaction coupling u increases in the UV until the
perturbative analysis becomes unreliable. In the IR, u falls
off but remains non-Hermitian.

3. The renormalization group flow for m and M

The fixed points forM and σ can be deduced17 from (67)
and (68). Let ðu�; y�Þ denote any of the fixed points that we
have already found. The possible fixed points are

(i) (M� ¼ 0, σ� ¼ 0)
(ii) (M� ¼ 0, lðy�; σ�Þ ¼ 0)
(iii) (lðy�; σ�Þ ¼ 0, σ� ¼ 0)

where lðy; σÞ ¼ 4yð1 − 2σ2Þ − uσ2. On analyzing these
possibilities, we find the fixed points are σ� ¼ M� ¼ 0
in addition to the fixed points for u and g.
The beta functions associated with (67)–(70) are

βyðy; ϵÞ ¼
5y2

8π2
− ϵy ð82Þ

βuðy; u; ϵÞ ¼
48y2 − 3u2 þ 8yu

16π2
− uϵ ð83Þ

βσðy; u; σ;MÞ ¼ −
σ

32π

�
4y

�
1 − 2σ2

�
1þ M

128π

��
− uσ2

�
ð84Þ

βMðy; u; σ;MÞ ¼ M
32π2

½4yð1 − 2σ2Þ − σ2u�: ð85Þ

In (y, u, σ, M) space consider δy≡ y − y�, δu≡ u − u�,
δσ ≡ σ − σ�, and δM ≡M −M�. These linear deviations
around a generic fixed point ðy�; u�; σ�;M�Þ satisfy

d
dt

0BBB@
δy

δu

δσ

δM

1CCCA ¼ N

0BBB@
δy

δu

δσ

δM

1CCCA ð86Þ

where N is a 4 × 4 matrix whose nonzero elements are
given by

N11 ¼ ∂yβyðy�; ϵÞ ¼
5y�

4π2
− ϵ ð87Þ

N21 ¼ ∂yβuðy�; u�; ϵÞ ¼
8u� þ 96y�

16π2
ð88Þ

N22 ¼ ∂uβuðy�; u�; ϵÞ ¼
8y� − 6u�

16π2
− ϵ ð89Þ

N31 ¼ ∂yβσðy�; u�; σ�;M�Þ ¼ −
M�σ�2

16π2
þ σ�3

4π2
−

σ�

8π2
ð90Þ

N32 ¼ ∂uβσðy�; u�; σ�;M�Þ ¼ σ�3

32π2
ð91Þ

17In principle, the poles of the Green’s function and m and M
are distinct.
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N33 ¼ ∂σβσðy�; u�; σ�;M�Þ

¼ −
M�σ�y�

8π2
þ 3σ�2ðu�

8
þ y�Þ

4π2
−

y�

8π2
ð92Þ

N34 ¼ ∂Mβσðy�; u�; σ�;M�Þ ¼ −
σ�2y�

16π2
ð93Þ

N41 ¼ ∂yβMðy�; u�; σ�;M�Þ ¼ M�ð1 − 2σ�2Þ
8π2

ð94Þ

N42 ¼ ∂uβMðy�; u�; σ�;M�Þ ¼ −
M�σ�2

32π2
ð95Þ

N43 ¼ ∂σβMðy�; u�; σ�;M�Þ ¼ −
M�ðσ�u� þ 8σ�y�Þ

16π2
ð96Þ

N44 ¼ ∂MβMðy�; u�; σ�;M�Þ ¼ 4ð1 − 2σ�2Þy� − σ�2u�

32π2
:

ð97Þ

The fixed points in the space (y, u, σ, M) are
(i) f7 ¼ ð0; 0; 0; 0Þ
(ii) f8 ¼ ð0;− ϵ

2
; 0; 0Þ

(iii) f9 ¼ ðy�þ; u�þ; 0; 0Þ
(iv) f10 ¼ ðy�þ; u�−; 0; 0Þ
Recall the values of the fixed points used earlier in the

ðg; uÞ plane: yþ� ¼ gþ�2 ¼ 0.16, uþ� ¼ 0.887953, and
u−� ¼ −0.461286. In terms of m and M, the fixed points
are m ¼ m� ¼ 0 andM ¼ M� ¼ 0. From (65) and (66) we
note that near these fixed points, for nontrivial g,

dm
dt

¼ −
g�2

8π2
m; ð98Þ

dM
dt

¼ g�2

8π2
M: ð99Þ

Since (98) and (99) do not depend on u�, they are not
affected by non-Hermiticity. We note that

(i) A small deviation of m increases (decreases) in the
IR (UV).

(ii) A small deviation of M increases (decreases) in the
UV (IR).

V. DYNAMICAL MASS GENERATION

A nonperturbative approach to dynamical mass gener-
ation was pioneered by NJL [16], extending the mechanism
for the generation of a mass gap in superconductivity to
relativistic particle physics. In their model, NJL discussed
dynamical chiral symmetry breaking via the generation of
fermion masses through appropriate bilinear fermion con-
densates that were formed as a result of attractive (non-
renormalizable) four-fermion contact interactions. They
restricted their discussion to one loop, and found that

fermion mass generation was possible when the coupling of
the four-fermion interactions exceeded a critical value.
In our approach, we shall use the model (50), which, in

contrast to the NJL model [16], is renormalizable and does
not contain four-fermion interactions. It contains, however,
Yukawa interactions and pseudoscalar self-interactions. As
shown below, these interactions suffice to generate dynami-
cal masses for both fermion and pseudoscalar fields, for
small values of the Hermitian (real) coupling of the Yukawa
interaction. We shall make use of the arguments of [9],
according to which the dynamical generation of a non-
Hermitian chiral-fermion-mass term m5ψγ5ψ is not ener-
getically favorable, to discuss only dynamical generation of
a Dirac-type mass for the fermion ψ and a mass for the
pseudoscalar (axionlike) field ϕ.
We shall use the simplified (one-loop) [17] NJL

approach to check the possibility of dynamical mass
generalization in our model (50). Within the context of
our renormalizable theory, the NJL approach starts with a
Lagrangian with nonzero renormalized masses m and M
[17]. We will denote the massless free Lagrangian by L0

(which contains the kinetic terms for the ϕ and ψ fields) and
the interaction Lagrangian by Lint (which contains the
Yukawa and pseudoscalar self-interaction terms); thus the
full Lagrangian L is�
L0 −mψψ −

1

2
M2ϕ2

�
þ
�
Lint þ Δmψψ þ 1

2
ΔM2ϕ2

�
:

ð100Þ

At the end of the calculation of the two-point one-particle-
irreducible (1PI) functions for the scalar and the fermion,
we set M2 ¼ ΔM2 and Δm ¼ m [17]. The renormalized
two-point 1PI functions for the fermion and scalar are
assumed to behave like

Γð2Þ
f ðpÞ ¼ fZfðγνpν −mÞ ð101Þ

Γð2Þ
s ðpÞ ¼ Z̃sðp2 −M2Þ ð102Þ

for p2 ≪ m2, M2, where Z̃f and Z̃s are finite renormaliza-
tions. From renormalized one-loop perturbation theory for
the fermion two-point function we can readily show that18

mþ g2m
16π2

Z
1

0

dx

�
γ þ log

�
Δðx;m;MÞ

4πμ2

��
¼ 0 ð103Þ

where γ is the Euler constant and

Δðx;m;MÞ ¼ xm2 þ ð1 − xÞM2: ð104Þ

18One loop involving two Yukawa vertices contributes to the
fermion self-energy [see Fig. 5(a)].
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From renormalized one-loop perturbation theory for the
scalar two-point function we can also show that19

M2 þ uM2

2

�γ − 1þ log M2

4πμ2

16π2

�
þ g2

4π2

�
m2

�
γ − 1þ log

�
m2

4πμ2

���
¼ 0: ð105Þ

This approach [17] to dynamical mass generation is
approximate and relies on perturbative renormalizability. In
order to analyze (104) and (105) it is convenient first to
introduce dimensionless variables

a ¼ m
2
ffiffiffi
π

p
μ

and b ¼ M2

4πμ2
: ð106Þ

In terms of a and b, (104) and (105) read

1 ¼ −
g2

16π2

Z
1

0

dxðγ þ log ½xa2 þ ð1 − xÞb�Þ ð107Þ

and

bþ ub
32π2

ðγ − 1þ logbÞ þ g2a2

4π2
ðγ − 1þ log a2Þ ¼ 0;

ð108Þ

respectively. It is straightforward to show that

Z
1

0

dx log½xa2 þ ð1 − xÞb�

¼ 1

a2 − b
½a2 log a2 − a2 − b log bþ b�

which has a vanishing limit as a2 → b (a consistency
requirement). For notational simplification we let

g2 ≡ g2

4π2
and u≡ u

32π2
: ð109Þ

Then, Eq. (107) becomes�
1þ g2γ

4
−
g2

4
ð1 − loga2Þ

�
a2

¼ b

�
g2

4
ðlog b − 1Þ þ 1þ g2γ

4

�
ð110Þ

and (108) becomes

ub log b ¼ −ð−uð1 − γÞ þ 1Þb − g2a2ðγ − 1þ log a2Þ:
ð111Þ

We shall study the possible solutions of (110) and (111) in
various limits. Since our fixed points for u and g have been
found in perturbation theory, we will not strictly adhere to
their values at fixed points in considering the landscape of
regimes where dynamical mass generation may be possible.
This landscape will guide future nonperturbative studies
using the Schwinger-Dyson equations, which will appear in
a forthcoming publication. We will consider the following
limiting cases:

(i) If a2 and b are both small, then from (110) we have
approximately the leading behavior

g2

4
a2 log a2 ¼ g2

4
b log b ð112Þ

which is certainly compatible with a2 ¼ b.
Assuming then that a2 ≃ b, we observe from

(111) that the leading behavior gives

ub log b ¼ −g2a2 log a2 ð113Þ

which would imply that a solution with small a2 and
small b is possible if

u ≃ −g2: ð114Þ

From (110) we can also deduce that

b ≈ exp

�
−

4

g2
− γ

�
: ð115Þ

FIG. 5. (a) One-loop diagram contributing to the quantum
corrections of the fermion self-energy in the model (50). Dashed
lines correspond to pseudoscalar fields, while continuous lines
indicate fermions. (b) One-loop diagrams contributing to the
quantum corrections of the pseudoscalar self-energy.

19Two Feynman diagrams contribute to the (pseudo)scalar self-
energy, one involving a fermion loop and the other a (pseudo)
scalar loop [see Fig. 5(b)].
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So g and u would both have to be Hermitian and
small for bð≃a2Þ to remain small. It is assumed that
g2 is positive to avoid getting a b which is too large,
and so we stay here within the Hermitian Yukawa
interactions. Hence, in this approach a solution with
small a2 and b is only compatible with small g in the
Hermitian case [We remind the reader that, accord-
ing to our discussion below (54) in Sec. III, negative
u corresponds to the Hermitian theory].
Hence, mass generation can take place with u

small and negative, for small g2. A Wilson-Fisher
point that is qualitatively similar is g2 ¼ .4ϵ and
u ¼ −.0783ϵ.
By substituting a2 ¼ b in (108) and using (115),

we obtain

u ¼ −g2
g2 þ 3

g2 þ 4
; ð116Þ

which corrects (114) with higher orders in the
Yukawa coupling.
Using definitions (106) and (109), we then arrive

at the following expression for the dynamically
generated fermion and axion masses, assumed to
be approximately equal in magnitude:

m≃M ¼ μ̃ exp

�
−
8π2

g2

�
; μ̃≡ ffiffiffiffiffiffi

4π
p

e−γ=2μ: ð117Þ

μ̃ is the transmutation mass parameter redefined, in
the standard way, to absorb the Euler’s constant γ.
Given that g is perturbatively small in our analysis,
the dynamically generated masses (117) are non-
perturbative in the real Yukawa coupling g.
It must be noted that the form of the solution (117)

is identical to the one generated through a
Schwinger-Dyson approach in [10], in the Hermi-
tian-Yukawa-interaction case, upon the replacement
of the UV cutoff Λ in the effective theory of that
work with the transmutation mass μ̃ in our approach.
However, there is an essential difference in our case
from that of [10], in that there is a nontrivial self
interaction, which is necessarily nonvanishing, and
its coupling is proportional to the negative of the
square of the Yukawa coupling (116). The couplings
are both in the Hermitian regime. Any possible non-
Hermitian regime in this analysis would lead to the
generation of very large masses, which is physically
unacceptable in perturbation theory.

(ii) Let us look for solutions with b ≪ a2. We deduce
from (110) that

loga2¼
�
−
4

g2
þ1− γ

�
−

b
a2

�
1− γ−

4

g2

�
þb logb

a2

ð118Þ

and from (108) that

ub logb¼ −bð1þ uðγ − 1ÞÞ− g2a2ðγ − 1þ loga2Þ:
ð119Þ

For b ≪ a2 we have approximately from (118) that

a2 ≃ exp

�
1 − γ −

4

g2

�
: ð120Þ

Hence

ub logb ¼ −ðuðγ − 1Þ þ 1Þbþ 4a2: ð121Þ

In order to be compatible with b ≪ a2, dominant
balance requires

ub logb ≃ 4a2 ð122Þ

and also

ju logbj ≫ juð1 − γÞ − 1j: ð123Þ

Since a2 is positive and b is small, from (122) we
have u < 0 and so

− logb ≫ 1 − γ þ 1

juj : ð124Þ

From (120) and (122) we can show that for Her-
mitian u and g there is a possibility of generating
masses in this regime when juj is an order of
magnitude smaller than g.

(iii) Let us look for solutions with b ≫ a2. This case
includes the possibility of zero fermion mass as well.
From (111) we have on invoking dominant balance

b ≈ exp

�
1 − γ −

1

u

�
: ð125Þ

For b to be small we require small positive u, i.e., u
is non-Hermitian. From (110) we have

a2 ¼ b

�
4 − g2

u

4þ γg2

�
: ð126Þ

Consequently we require

u ≈
g2

4
: ð127Þ

This indicates that solutions with b ≫ a2 may
be viable when u and g2 have the same posi-
tive sign. Hence, in this mass regime we have a
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Hermitian Yukawa coupling case, g2 > 0, and an
anti-Hermitian scalar self-interaction. In this case,
we deduce that both axion and fermion dynamically
generated masses are extremely suppressed for
perturbatively small real Yukawa couplings g. As
already mentioned, zero fermion masses are also
compatible with this scenario. For anti-Hermitian
Yukawa couplings, as considered in [9–11], g2 < 0
(i.e., purely imaginary g ¼ iğ, ğ ∈ R), this case leads
to very large axion masses for jğj ≪ 1. We stress
once again that our results above point to an
essential difference from the studies in [9–11],
where self-interactions of the axions were not
considered; here the pseudoscalar self-interaction
coupling u is necessarily nontrivial for consistency
of the quantum theory.

VI. TWO-LOOP RENORMALIZATION GROUP
ANALYSIS: RENORMALIZATION GROUP

FLOWS BETWEEN HERMITIAN AND
NON-HERMITIAN FIXED POINTS

The presence of both Hermitian and non-Hermitian fixed
points within our models might be the result of the one-loop
nature of our approximation. It is of course, in general,
difficult to rule out this possibility without some parameter
in the theory which can control the contributions of higher
loops. However we have analyzed a two-loop renormali-
zation flow [45,46] for a similar, but massless, Yukawa
model given by the Lagrangian LMY . In what follows, we
shall demonstrate that in such a model, there is a renorm-
alization-group flow between Hermitian and non-
Hermitian fixed points.
The Lagrangian LMY is

LMY ¼ 1

2
ð∂ϕÞ2 þ iψγμ∂μψ þ igϕψγ5ψ −

u
4!
ϕ4 ð128Þ

where ψ is a massless Dirac-fermion field and ϕ is a
massless pseudoscalar field, g denotes the Yukawa cou-
pling, and u denotes the self-interaction of ϕ. We shall
consider u > 0 (the Hermitian case) but allow g to be real or
imaginary. From the consideration of the convergence of
path integrals given earlier, we know that the usual
Feynman rules are valid. If u were to go towards a negative
u fixed point, according to the renormalization group flow,
a resulting juj, which is not small, might be indicative of an
interesting behavior. If juj is small then the Feynman rules
would be still valid since the Feynman rules give an
approximation to the behavior near the trivial saddle point
of the path integral.
We define for notational convenience

g̃≡ g2

16π2
and h≡ u

16π2
: ð129Þ

The loop calculation involves 14 topologically distinct
graphs. In [45,46] the calculation of the beta function βg̃ for
g̃ gives20

βg̃ ¼ 10g̃2 þ 1

6
h2g̃ − 4hg̃2 −

57

2
g̃3 ð130Þ

and the calculation of the beta function βh for h gives

βh ¼ 3h2 þ 8hg̃− 48g̃2 −
17

3
h3 − 12g̃h2 þ 28hg̃2 þ 384g̃3:

ð131Þ

We can show that there are four fixed points ðg̃i; hiÞ;
i ¼ 1;…; 4 where

g̃1 ¼ 0 h1 ¼ 0 ð132Þ

g̃2 ¼ 0 h2 ¼ 0.529412 ð133Þ

g̃3 ¼ −0.00570795 h3 ¼ 0.525424 ð134Þ

g̃4 ¼ 0.234024 h4 ¼ 1.01657: ð135Þ

In this two-loop calculation we note the appearance of a
non-Hermitian [purely imaginary, cf. (129)] Yukawa cou-
pling g at the i ¼ 3 fixed point.

A. Stability analysis

A linear stability analysis at the fixed point ðg̃i�; hi�Þ in
the ðg̃; hÞ coupling space gives
(1) for i ¼ 2 the eigenvalues −1.58824, 0.0467128
(2) for i ¼ 3 the eigenvalues −1.51242, −0.0479488
(3) for i ¼ 4 the eigenvalues −13.1652, −2.34048.

None of these fixed points are IR stable (where all the
eigenvalues are positive).
The trivial fixed point i ¼ 1 requires a separate nonlinear

analysis. The flow near the trivial fixed point is approxi-
mated by

dg̃
dt

¼ 10g̃2 ð136Þ

dh
dt

¼ 3h2 þ 8hg̃ − 48g̃2: ð137Þ

The solution of (136) [for g̃ðtÞ] is

g̃ðtÞ ¼ g̃0
1 − 10g̃0t

ð138Þ

20In D ¼ 4 − ϵ the beta functions for the couplings in the
model would have ϵ-dependent terms determined by the engi-
neering dimensions of the couplings in the noninteger D
dimensions.
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with g̃ð0Þ ¼ g̃0. For g̃0 > 0 (the Hermitian case) the flow is
away from g̃ ¼ 0 in the UV (t → ∞); in fact, we observe
from (138), that in the UV limit, the coupling g̃ approaches
0, but from negative values, that is, there is a flow from
Hermitian to non-Hermitian Yukawa couplings. The point
g̃ ¼ 0 is IR (t → 0) stable though. For the non-Hermitian
case, g̃0 < 0, the renormalization group flow in the UV is
towards g̃ ¼ 0. The Yukawa coupling stays non-Hermitian
during the flow. In the IR, the renormalization flow is away
from g̃ ¼ 0.
Let us consider the behavior of hðtÞ with hð0Þ≡ h0; the

solution of (137) is

hðtÞ ¼ g̃0
11.0416þ 13.0416ð1 − 10g̃0tÞ2.40832c
3ð1 − 10g̃0tÞ½1þ ð1 − 10g̃0tÞ2.40832c�

ð139Þ

where c ¼ 3.68053g̃0−h0
−4.3472g̃0þh0

. (The sign of c is not important for
the stability analysis.) For the Hermitian case, g̃0 > 0, the
renormalization group leads to a flow away from h ¼ 0
towards a non-Hermitian value of h in the UV and a flow
towards h ¼ 0 in the IR. For the non-Hermitian case,
g̃0 < 0, hðtÞ flows to 0 in the UV and in the IR hðtÞ flows
away from h ¼ 0 through Hermitian values of h. Hence, we
see an interplay of Hermitian and non-Hermtian behavior in
the renormalization group behavior.21

The possible connection between Hermitian and non-
Hermitian fixed points that we have noticed is unlikely to
be an artifact. There is some independent evidence that this
happens in other theories although the possible connection
with PT symmetry was not realized. This independent
evidence has been found in a more complicated model, a
chiral Yukawa model [44], with the Standard Model
symmetry implemented only at the global level. The flow
of the quartic scalar coupling from positive to negative
values was observed. However whether aPT interpretation
is valid in detail remains to be explored.

VII. CONCLUSIONS AND OUTLOOK

In this work we have laid the foundation for the analysis
of field theories involving PT symmetric interactions
between a pseudoscalar and a Dirac fermion using a
path-integral formulation.. We have studied a perturbative
renormalization-group analysis of the model, given in (3),
involving a self-interacting pseudoscalar (axionlike) field
coupled to fermions. The model, without axion self-
interactions (and axion potentials) has previously been
considered from the point of view of dynamical mass
generation within a Schwinger-Dyson framework [10,11].
We have noted here that quantum consistency at the
perturbative level requires the presence of a nontrivial

quartic ϕ4 coupling, which is proportional to the square of
the Yukawa interaction g2, to leading order in perturbation
theory in g.
Motivated by the models of [10,11], we have consi-

dered both Hermitian (g2 > 0) and anti-Hermitian (g2 < 0)
Yukawa couplings. As a preparation for a full Schwinger-
Dyson treatment, which we postpone to a future publica-
tion, we have studied here the possibilities for a one-loop
dynamical mass generation for both axions and fermions
using a method due to Nambu and Joan-Lasinio.
We have focused here on a one-loop dynamical mass

generation for both axion and fermion fields in the model
(3), which we have studied in various limits. Depending
on the sign of the squared coefficient, one can obtain
Hermitian or anti-Hermitian axion self-interactions. In the
Hermitian Yukawa interaction case, for the case of equal
masses of axions and fermions, we have recovered the
nonperturbative expression for the dynamically gene-
rated masses of axions and fermions, discussed in
[10,11] (but in the presence of the axion self-interaction
quartic coupling u).
We have also managed to demonstrate that there is a

renormalization-group flow between Hermitian and non-
Hermitian fixed points in the theory, which also manifests
itself at two loops in a model with no bare axion and
fermion masses. This last result might be interpreted as a
spontaneous appearance of non-Hermiticity in this class
of models, in analogy to the situation characterizing
Nambu–Jona-Lasinio theories with four-fermion inter-
actions. The reader should also recall that, as far as the
quartic (pseudoscalar) coupling u is concerned, there is a
flow from the Hermitian case (u < 0), corresponding to a
positive ϕ4 potential [cf. (50)], to the non-Hermitian (PT
symmetric) case (u > 0Þ that corresponds to an upside
down ϕ4 self-interaction potential.
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APPENDIX: ASPECTS OF
PSEUDOHERMITICITY

It was pointed out by Mostafazadeh [13] that PT
symmetry was part of a more general framework known
as pseudo-Hermiticity. We know that PT symmetry
implies

21It would interesting to compare the non-Hermiticity in our
model with spontaneous non-Hermiticity discussed in [25] within
the traditional NJL model.
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H ¼ P−1H†P ¼ PH†P ðA1Þ

since P ¼ P† and P2 ¼ 1.
In quantum mechanics any operator H (acting on a

Hilbert spaceH) is pseudo-Hermitian if it can be related to
its adjoint by

H† ¼ ηHη−1 ðA2Þ

where η is a bounded automorphism of the Hilbert space (η
can be chosen to be Hermitian). Pseudo-Hermiticity is a
generalization of both Hermiticity andPT symmetry. If the
usual model-independent inner product on H is written as
hji then

hϕjHψi ¼ hH†ϕjψi: ðA3Þ

The pseudo-Hermitian H can have both real and com-
plex conjugate eigenvalues. Let us consider a form on H
defined by

hϕjψiη ≡ hϕjηjψi ¼ hϕjηψi ¼ hηϕjψi: ðA4Þ

The adjoint with respect to this inner product, bH say, is
defined by

hbHϕjψiη ¼ hϕjHψiη ¼ hϕjηHψi ðA5Þ

¼ hH†ηϕjψi ¼ hηη−1H†ηϕjψi ðA6Þ

¼ hη−1H†ηϕjψiη: ðA7Þ

So bH ¼ η−1H†η and

bH ¼ H: ðA8Þ

In order to have a probabilistic interpretation for the
quantum mechanics in terms of this inner product, it is
necessary to choose η to be a positive operator η ¼ η̃†η̃. We
can write

H ¼ η̃−1ðη̃−1Þ†H†η̃†η̃ ðA9Þ

and so

η̃Hη̃−1 ¼ ðη̃−1Þ†H†η̃† ¼ ðη̃Hη̃−1Þ†: ðA10Þ

If we identify

h ¼ η̃Hη̃−1 ðA11Þ

then from (A10) we find

h ¼ h†: ðA12Þ

Hence, for any pseudo-Hermitian H we can, in principle,
find a corresponding Hermitian h using a similarity trans-
formation q which may not be unique. This argument
would also be valid for other pseudo-Hermitian operators.
This result has been found in a quantum system with a finite
number of degrees of freedom. For a field theory with an
infinite number of degrees of freedom it may be possible to
formally construct η̃ and requires further investigation
[cf. Eq. (55)].
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