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We study a lepton portal dark matter model, motivated by the deviation of theW boson mass reported by
the CDF collaboration. We introduce vectorlike leptons and a scalar dark matter (DM) that exclusively
couples to the extra leptons and muon. The one-loop corrections induced by the new particles can shift the
W boson mass. Besides, the discrepancy in the muon anomalous magnetic moment and the DM density can
simultaneously be explained by this setup, if the vectorlike lepton is lighter than 200 GeV and nearly
degenerate with the DM particle. We also see that the constraints on such a light extra lepton from the
collider experiments can be evaded due to the existence of the DM particle.
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I. INTRODUCTION

The precision measurement of the electroweak (EW)
interaction plays an important role in tests of new physics.
In the Standard Model (SM), a Higgs doublet field develops
a nonvanishing vacuum expectation value (VEV), and then
the Z and W gauge bosons acquire their masses from the
VEV. The mechanism can be tested by the prediction of the
EW precision observables (EWPOs), such as the ρ param-
eter, defined as ρ ≔ m2

W=ðmZ cos θWÞ2, where θW is the
weak mixing angle. It is well known that new fields that
contribute to the EW symmetry breaking can, in general,
affect to the ρ parameter at the tree level, and hence it can
constrain new physics models. Besides, there are loop
corrections to the EWPOs where new particles charged
under the EW symmetry run in the loops.
The CDF collaboration recently announced a new

result of the W boson mass measurement, mCDF
W ¼

80.4335ð94Þ GeV [1]. This value disagrees with the SM
prediction mSM

W ¼ 80.361ð6Þ GeV by about 7σ, and com-
binations of the other previous measurements, mPDG

W ¼
80.379ð12Þ GeV [2]. This new experimental result may
suggest that the W boson mass deviates from the
SM prediction due to the existence of new physics beyond

the SM. It has already been pointed out that the deviation
can be interpreted by the corrections to the oblique
parameters [3–5]. In particular, the T parameter is relevant
to this deviation. In order to explain this discrepancy in
new physics models, there should be a new particle at the
EW scale that is not neutral under the EW symmetry, and/
or mixes with SM particles [3–40]. Such a light particle,
however, tends to be excluded by the constraints from the
LHC experiments if it decays to detectable SM particles. A
way to avoid the limits is that an EW particle responsible
for the mW anomaly decays to an undetectable particle so
that the signals are effectively invisible.
In this work, we propose a solution of the mW anomaly

by introducing vectorlike leptons that has not been studied
yet. The real scalar dark matter (DM) is also introduced to
relax the LHC limits on the vectorlike leptons, as discussed
later. In this model, the scalar DM couples to the SM
leptons via Yukawa couplings involving vectorlike leptons
[41,42]. In Ref. [43], the authors show that the relic density
of DM and another recent anomaly in muon anomalous
magnetic moment,Δaμ ¼ 2.51ð50Þ × 10−9 [44–65], can be
explained simultaneously, when the DM specifically cou-
ples to the muon. The muon anomalous magnetic moment
in the lepton portal model is studied in Refs. [66–72]. We
shall show that the discrepancy in theW boson mass can be
solved in this model as well. The EWPOs have not been
studied in Ref. [43], and hence this paper is a complement
of the previous work.
The rest of this paper is organized as follows. The W

boson mass in the lepton portal DM model is discussed in
Sec. II, and then the DM physics and its relation to Δaμ are
studied in Sec. III. Section IV is devoted to summarize this
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paper. Loop functions used in our analysis are shown in the
Appendix.

II. W BOSON MASS IN LEPTON PORTAL
DM MODEL

A. Model

We briefly review our model in this section. The more
details are shown in Ref. [43]. The terms relevant to new
particles in the Lagrangian are given by

−LNP¼
1

2
m2

XX
2þmLL̄LLRþmEĒLERþλLl̄LXLR

þλRĒLXμRþκL̄LHERþ κ̄ĒLiσ2H†LRþH:c:; ð1Þ

where LL;R and EL;R are SUð2ÞL doublet and singlet
vectorlike leptons, respectively. A real scalar DM field is
denoted by X, which is a singlet under the SM gauge group.
lL ¼ ðνμ; μLÞ, μR and H are the SM leptons in the second
generation and the Higgs doublet, respectively. We neglect
couplings of the scalar DM to the SM Higgs boson in the
scalar potential. In our setup, we assume that the vectorlike
leptons couple exclusively to the second generation lep-
tons, so that the muon anomalous magnetic moment is
explained without lepton flavor violations. We note that a
Z2 symmetry is assigned and only the vectorlike leptons
and the DM particle X are odd to ensure the stability of
the DM.
After the EW symmetry breaking, the vectorlike lepton

masses are given by

ME ¼
�

mL κ̄vH
κvH mE

�
; MN ¼ mL; ð2Þ

where vH ¼ 174 GeV is the Higgs VEV. Note that there is
no mixing between the vectorlike leptons and the SM
leptons. We define the mass eigenstates and diagonalizing
matrices as

�
E0
L

EL

�
¼ UL

�
EL1

EL2

�
;

�
E0
R

ER

�
¼ UR

�
ER1

ER2

�
;

U†
LMEUR ¼ diagðmE1

; mE2
Þ; ð3Þ

and we parametrize the diagonalizing matrices as

UL ¼
�

cL sL
−sL cL

�
; UR ¼

�
cR sR
−sR cR

�
; ð4Þ

where c2A þ s2A ¼ 1ðA ¼ L;RÞ. E0
L;R is a charged compo-

nent in the doublet LL;R. The neutral component in the
gauge basis, NL;R, is already in the mass basis N1.

B. Muon anomalous magnetic moment

In this model, the new physics contribution to the muon
anomalous magnetic moment,Δaμ, is originated from the 1-
loop effects induced by the Yukawa couplings of muon with
the vectorlike leptons and X. Δaμ is evaluated as [73–75]

Δaμ ¼
mμ

16π2m2
X
½ðc2RjλLj2 þ s2LjλRj2ÞmμFðx1Þ

þ cRsLReðλLλRÞmE1
Gðx1Þ

þ ðs2RjλLj2 þ c2LjλRj2ÞmμFðx2Þ
− cLsRReðλLλRÞmE2

Gðx2Þ�; ð5Þ

where xi ¼ m2
Ei
=m2

X (i ¼ 1, 2). The functions F and G are
defined in the Appendix. FormEi

¼ Oð100ÞGeV, sL ≠ 0 or
sR ≠ 0 is required to explain the discrepancy due to the
chirality enhanced effect. This means that both singlet and
doublet vectorlike leptons are necessary to explain Δaμ.

C. Oblique parameters

New physics effects to the EWPOs are well described by
the oblique parameters [76,77]. The one-loop contribution
of the vectorlike leptons, E1, E2, and N1, to the oblique
parameter T is given by [78]

16πs2Wc
2
WT ¼ ðc2L þ c2RÞθþðx; y1Þ þ 2cLcRθ−ðx; y1Þ

þ ðs2L þ s2RÞθþðx; y2Þ þ 2sLsRθ−ðx; y2Þ
− ðc2Ls2L þ c2Rs

2
RÞθþðy1; y2Þ

− 2cLsLcRsRθ−ðy1; y2Þ; ð6Þ

where x ¼ m2
N1
=m2

Z and yi ¼ m2
Ei
=m2

Z. Here, cW ¼ cos θW
and sW ¼ sin θW . The formula for −2πU is given by
replacing the loop functions θ� → χ�. The one-loop
contribution to the S parameter is given by

2πS¼ ðc2Lþ c2RÞψþðx;y1Þþ 2cLcRψ−ðx;y1Þ
þ ðs2Lþ s2RÞψþðx;y2Þþ 2sLsRψ−ðx;y2Þ
− ðc2Ls2Lþ c2Rs

2
RÞχþðy1; y2Þ− 2cLsLcRsRχ−ðy1;y2Þ:

ð7Þ

The loop functions θ�, χ� and ψ� are defined in the
Appendix.
Figure 1 shows the S and T parameters on the left

and right panels, respectively. The horizontal and vertical
axes correspond to mL and mE, respectively. We take
κ ¼ κ̄ ¼ 1.0 in this figure. The W boson mass reported by
the CDF collaboration is explained on the blue line. Note
that the deviation of the W boson mass from the SM
prediction is related to the oblique parameters as [79,80]
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δm2
W

m2
W jSM

¼ α

c2W − s2W

�
−
1

2
Sþ c2WT þ c2W − s2W

4s2W
U

�

∼ −0.007Sþ 0.011T þ 0.0087U; ð8Þ

where α ¼ 1=128 and s2W ¼ 0.22337 are used in the
second equality. The dot-dashed lines correspond to 1σ
range of the CDF result. The lightest vectorlike lepton
mass is less than 90 GeV in the gray region, and is
200 GeV on the dashed line. As discussed later, the
vectorlike lepton lighter than 90 GeV may be excluded
by the LEP experiment. T ≳ 0.15 can be realized by the
light vectorlike lepton, mE1

≲ 200 GeV. S is positive in
our parameter region. We also find U < 0.03, which is
much smaller than the other oblique parameters.
We also compare our predictions of the oblique param-

eters with the results based on the CDF measurement and
the previous works of the PDG. In Ref. [3], the EW fit with
the new CDF measurement and the PDG value are studied.
The favored values of the oblique parameters with U ¼ 0
are given by ðS; TÞ ¼ ð0.15� 0.08; 0.27� 0.06Þ with the
correlation coefficient 0.93 for the analysis with the CDF
result and ðS; TÞ ¼ ð0.05� 0.08; 0.09� 0.07Þ with the
correlation coefficient 0.92 for the analysis based on
the PDG data. Similar values are obtained in Refs. [4,5].
In the SM, S ¼ T ¼ U ¼ 0, the values of χ2 are 60 and 3.7
with the CDF and PDG data, respectively. Thus, the new
data strongly favors the existence of new physics.
Figure 2 shows values of χ from the vectorlike leptons,

L and E, for κ ¼ κ̄ ¼ 1.0. In the (light) red region,
χ < 1ð2Þ for the CDF data, while the blue region are
those for the PDG data. We see that the new CDF result
favors the light vectorlike leptons, and χ < 2 is achieved
where mE1

< 200 GeV, whereas the PDG result favors
heavier vectorlike leptons. The red region almost coin-
cides with the region where the new mW is explained in
Fig. 1. The values at the benchmark points are shown in
Table I. Point (A) fits to the new CDF result and χ ¼ 0.80,
while point (B) fits to the combined PDG result and
χ ¼ 0.65. These points are plotted as the dots in Fig. 2. We

also note that the PDG data also prefers a relatively light
vectorlike lepton, and the point (B) has a 400 GeV
vectorlike lepton.

D. Limits from the collider experiments

The vectorlike lepton should be lighter than 200 GeV to
explain the new CDF result. Such a light vectorlike lepton
may be excluded by direct searches in the collider experi-
ments. If there is no DM particle and a vectorlike lepton
decays to a muon and a SM boson, then the run-1 data at the
LHC [81] rule out most cases [82]. Furthermore, the recent
studies using the run-2 data exclude doubletlike vectorlike
leptons, favored to explain the mW anomaly; the lower
bound on the mass is about 800 GeV [83,84], under the
assumptions that the lepton flavor is different in these
analyses. Therefore the light vectorlike lepton is possibly
excluded by the LHC searches.
In our setup, the vectorlike lepton decays to a DM particle

and muon. In this case, the signal is 2μþ Emiss
T , where Emiss

T
comes from the DM. This signal is studied in the slepton
searches at the LHC [85–89]. As we have already shown in
Ref. [43], the limit for the doublet vectorlike lepton is about
900 GeV if the DM mass is sufficiently light to produce

FIG. 1. Values of S and T parameters for κ ¼ κ̄ ¼ 1.0 with varying the vectorlike masses.

FIG. 2. Values of χ from the vectorlike leptons.
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energetic muons. The limit is, however, much weaker if
Δm ≔ mE1

−mX ≲ 100 GeV since the muons become soft
in this region. There are dedicated searches for signals with
soft leptons and Emiss

T associated with an additional jet [86].
If we use the limit on degenerate sleptons [86] as a
conservative one, then the limit is about 250 GeV for
Δm ∼ 10 GeV, while the limit is less than 100 GeV for
Δm≲ 1 or ≳30 GeV.
The muons are too soft to be detected in the detector for

even smaller Δm, and hence there is no detectable signal
from the vectorlike lepton decays. In this case, we refer to
the limits from the Higgsino searches since the Higgsino
has the same quantum number as the doublet vectorlike
lepton. At the LHC, the monojet searches [90–92] cannot
constrain the Higgsinos due to its large backgrounds.1

Therefore, the current lower limit of the vectorlike lepton
may be about 90 GeV at the LEP experiment [94,95].
To sum up, the vectorlike lepton with 90 < mE1

<
200 GeV can still be viable if the DM is nearly degenerate
with the vectorlike lepton. Limits in the degenerate region
are very sensitive to the mass difference. For instance, there
will be no limits stronger than 90 GeV from the degenerate
slepton searches [86] for Δm≲ 1 GeV or ≳30 GeV. A
dedicated study for the degenerate vectorlike lepton is an
interesting subject but beyond the scope of this paper, and
thus we only take the LEP bound into account while
bearing in mind that there may be an exclusion limit on
certain mass differences.

III. DARK MATTER PHYSICS AND Δaμ
The vectorlike leptons can participate in the DM thermal

production via the Yukawa couplings to the SM leptons and
DM. With the couplings to muon, it also contributes to
Δaμ. We have figured out in Ref. [43] that Δaμ is explained
consistently with the DM relic abundance if the double and
singlet vectorlike leptons have a mass mixing. In this
section, we examine the compatibility of the DM produc-
tion with the muon g − 2 and W boson mass anomalies on
the two benchmark points in Table I.
In the thermal freeze-out scenario, DM relic abundance

is controlled by DM pair annihilation cross section at the
freeze-out temperature Tf ≃mX=20, where DM particles
can be considered as nonrelativistic. In the presence of the
doublet-singlet mixing, the DM couples to both left- and
right-handed muons and the pair annihilation XX → μμ̄ has
the s-wave part,

ðσvÞXX→μμ̄ ≃
ðλLλRÞ2

π

�
cRsLmE1

m2
X þm2

E1

−
cLsRmE2

m2
X þm2

E2

�
2

þOðv2Þ;

ð9Þ

where we neglect the muon mass and assume that λL and λR
are real. Here, v is relative velocity of DM particles. This
process is expressed in terms of a coupling combination
λLλR like the chirality enhanced contribution in Δaμ. This
suggests that the DM abundance can be highly correlated to
Δaμ in this model. In fact, as we discuss in Ref. [43] in
detail, a large new physics contribution Δaμ ∼ 10−8 is
predicted in this model when the s-wave part is mainly
responsible for the DM production. Thus, one needs to
make the s-wave contribution subdominant in the DM
annihilation by, e.g., employing sizable coannihilation or
introducing a large hierarchy between two coupling con-
stants λL;R to invoke the velocity suppressed d-wave
annihilation instead of the s wave.
Figure 3 shows the predicted value of Δaμ on the

benchmark A (left) and B (right). The black solid, dashed,
and dotted lines correspond to λR ¼ λL; 0.01λL, and
5 × 10−4λL, respectively, and the value of λL is fixed to
explain the observed DM abundance in each case. The
purple band represents the 2σ range of Δaμ. We employ
micrOMEGAs_5_2_4 [96] to calculate the DM relic abun-
dance including all coannihilation processes.
We see in Fig. 3 that Δaμ and DM can be consistently

explained on both benchmarks only if the DM is degen-
erate to the lighter vectorlike lepton E1. In this mass
region, the DM pair annihilation is subdominant and
the dominant process is the coannihilation of E1;
E1Ē1 → γh;WW;ZZ; ff̄, where f is the SM fermions.
Although all of the coannihilation processes are compa-
rable, E1Ē1 → γh gives the largest contribution for our
benchmark points due to the large κ and κ̄, which are
favored to deviate the T parameter. Apart from the
coannihilation region, a large Δaμ is predicted due in
part to a large Yukawa coupling constant λL being required
for the DM production, and as a result such a mass region
is strongly disfavored. It also follows from Fig. 3(left) that
for λR=λL ≳ 0.01, Δm ≃ 10 GeV is favored by Δaμ and
DM, and the LHC result is likely to exclude the 135 GeV
vectorlike lepton. While, we find Δm≳ 30 GeV to
explain Δaμ if λR=λL ∼ 5 × 10−4. In this case, the current
LHC limit can be evaded. It should be noted, however, that
λL is sizable with a small λR=λL and λL ≃ 1.8 is required

TABLE I. Benchmark points (A) and (B). κ ¼ κ̄ ¼ 1.0. χCDF
and χPDG are the values of χ with the new CDF and PDG results,
respectively.

A B

ðmL;mEÞ GeV (250,400) (700,500)
ðmE1

; mE2
Þ GeV (135.5, 514.5) (399.3, 800.7)

sL ¼ sR 0.549623 0.86553
ðS; T; UÞ (0.087, 0.228, 0.012) (0.019, 0.050, 0.0004)
mWGeV 80.4371 80.3740
ðχCDF; χPDGÞ (0.80, 4.00) (6.03, 0.65)

1Recently, it has been proposed that mono-W=Z signal may
cover light Higgsinos ∼ 110 GeV with the full run-2 data [93].
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for the DM production when mX ¼ 100 GeV and
λR=λL ≲ 0.01. Otherwise, λL ¼ Oð0.01 − 0.1Þ is enough
to fit the DM abundance. In the benchmark (B), the value of
λL tends to be larger than that of the benchmark (A) mainly
because mE1

is heavier. This tendency is pronounced for a
small λR=λL and, in fact, we find that λL exceeds the
perturbative value

ffiffiffiffiffiffi
4π

p
below mX ≃ 330 GeV when

λR=λL ≲ 0.01. That is why the black dashed and dotted
lines are interrupted in mX ≲ 330 GeV.
We briefly comment on direct and indirect detection

constraints. The DM candidate is a SM gauge singlet and
couples only to the muon, so DM-nucleon scattering arises
at the loop level. Furthermore, it is known that, in the lepton
portal models, a real scalar DM starts the scattering at two-
loop level via diphoton exchanging [97]. The resulting cross
section is highly suppressed and thus well below the reach of
the direct detection experiments. As regards the indirect
detection, gamma-ray searches at Fermi-LAT [98,99] and
H.E.S.S [100], and positron flux measurements at AMS
[101–103] are important. In particular, a real scalar DM with
the lepton portal couplings predicts a sharp photon flux via
virtual internal bremsstrahlung and one-loop processes, and
can be effectively searched by the Fermi/H.E.S.S line
gamma searches [104–106]. If there is no doublet-singlet
mixing, the bound reads mE1

≲ 1.1ð1.2ÞmX at best for a
purely singlet (doublet) vectorlike lepton [43]. Thus, the
mass region of our interest may be within the reach of the
gamma-ray searches. One should note, however, that there is
no detailed study on the gamma ray bound in the case with
both left- and right-handed couplings, so that this Fermi/
H.E.S.S limit cannot be applied directly to this model. For
the AMS positron measurements, the current conservative
lower limit on DMmass is 30 GeV [107], assuming the cross
section of XX → μμ̄ has the canonical size for thermal

production, i.e., ðσvÞXX→μμ̄ ≃ 3 × 10−26 cm3=s. Hence, the
AMS measurements do not provide the relevant limit in
this case.

IV. SUMMARY

In this paper, we studied corrections to the oblique
parameters, which are strongly correlated with the W
boson mass, in the extended SM with the real scalar
DM and the vectorlike leptons. The sizable mixing
between the singlet and doublet vectorlike leptons is
crucial to deviate the oblique parameters. Since the mixing
is induced by the Higgs VEV, the vectorlike leptons should
be close to the EW symmetry breaking scale. In fact, we
found that the lightest vectorlike lepton has to be lighter
than 200 GeV to explain the new CDF result, see Fig. 2.
The light vectorlike lepton may be excluded by the direct
searches at the LHC if it decays to the SM particles. The
new lepton, however, can evade the limit if it decays to a
DM particle whose mass is close to the lepton, so that the
signals are effectively invisible.
As discussed in Ref. [43], the Yukawa couplings

involving muon, a real scalar DM and vectorlike leptons
can resolve the discrepancy in the muon anomalous
magnetic moment, Δaμ. The simultaneous explanation of
the DM and Δaμ requires the sizable mixing in the
vectorlike leptons and the mass degeneracy of the lighter
vectorlike lepton and DM. Interestingly, the former is
required to achieve the shift in W boson mass and the
latter is to avoid the LHC limits. The mass region favored
by those anomalies would be covered by the future gamma-
ray searches utilizing the sharp photon flux from the
galactic DM annihilation.

FIG. 3. The predicted value of Δaμ on the benchmark point A (left) and B (right). The purple band represents the 2σ favored value of
the muon g − 2. For further details, see the text.
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APPENDIX: LOOP FUNCTIONS

The loop functions for Δaμ are defined as

FðxÞ ¼ 2þ 3x − 6x2 þ x3 þ 6x log x
6ð1 − xÞ4 ;

GðxÞ ¼ 3 − 4xþ x2 þ 2 log x
ð1 − xÞ3 : ðA1Þ

The loop functions for the oblique parameters are
defined as

θþðy1; y2Þ ¼ y1 þ y2 −
2y1y2
y1 − y2

log
y1
y2

;

θ−ðy1; y2Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
y1y2

p �
y1 þ y2
y1 − y2

log
y1
y2

− 2

�
; ðA2Þ

and

χþðy1; y2Þ ¼
y1þ y2

2
−
ðy1− y2Þ2

3

þ
�ðy1− y2Þ3

6
−
1

2

y21þ y22
y1− y2

�
log

y1
y2

þ y1− 1

6
fðy1; y1Þþ

y2− 1

6
fðy2; y2Þ

þ
�
1

3
−
y1þ y2

6
−
ðy1− y2Þ2

6

�
fðy1;y2Þ; ðA3Þ

χ−ðy1; y2Þ ¼ −
ffiffiffiffiffiffiffiffiffi
y1y2

p �
2þ

�
y1 − y2 −

y1 þ y2
y1 − y2

�
log

y1
y2

þ fðy1; y1Þ þ fðy2; y2Þ
2

− fðy1; y2Þ
�
; ðA4Þ

ψþðy1; y2Þ ¼
2y1 þ 10y2

3
þ 1

3
log

y1
y2

þ y1 − 1

6
fðy1; y1Þ

þ 5y2 þ 1

6
fðy2; y2Þ; ðA5Þ

ψ−ðy1; y2Þ ¼ −
ffiffiffiffiffiffiffiffiffi
y1y2

p �
4þ fðy1; y1Þ þ fðy2; y2Þ

2

�
: ðA6Þ

Here,

fðy1;y2Þ¼

8>>>><
>>>>:

ffiffiffi
d

p
log

����y1þy2−1þ
ffiffi
d

p
y1þy2−1−

ffiffi
d

p
���� d>0

0 d¼0

−2
ffiffiffiffiffiffijdjp �

tan−1 y1−y2þ1ffiffiffiffi
jdj

p − tan−1 y1−y2−1ffiffiffiffi
jdj

p
�

d<0

;

ðA7Þ

with d ≔ ð1þ y1 − y2Þ2 − 4y1. Note that ψ� are
different from those for vectorlike quarks shown
in Ref. [78].
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