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If non-Abelian gauge fields in SUð3Þ QCD have a line-singularity leading to noncommutativity with
respect to successive partial-derivative operations, the non-Abelian Bianchi identity is violated. The violation
as an operator is shown to be equivalent to violation ofAbelian-likeBianchi identities. Then there appear eight
Abelian-like conserved magnetic monopole currents of the Dirac type in SUð3Þ QCD. Exact Abelian (but
kinematical) symmetries appear in non-Abelian SUð3ÞQCD. Here we try to show, using lattice Monte Carlo
simulations of SUð3Þ QCD, the Abelian dual Meissner effect due to the above Abelian-like monopoles are
responsible for color confinement in SUð3Þ QCD. If this picture is correct, the string tension of non-Abelian
Wilson loops is reproduced fully by that of the Abelian Wilson loops. This is called perfect Abelian
dominance. Furthermore, since the linear potential in Abelian Wilson loops is caused by the solenoidal
monopole currents, the Abelian string tension is fully reproduced by that of Abelianmonopole potentials. It is
called perfect monopole dominance. In this report, the perfect Abelian dominance is shown to exist with the
help of the multilevel method but without introducing additional smoothing techniques like partial gauge
fixings, although lattice sizes studied are not large enough to study the infinite volume limit. Perfectmonopole
dominance on 243 × 4 at β ¼ 5.6 is also shown without any additional gauge fixing but with a million
thermalized configurations. The dualMeissner effect around a pair of static quark and antiquark is studied also
on the same lattice. Abelian electric fields are squeezed due to solenoidal monopole currents and the
penetration length for anAbelian electric field of a single color is the same as that of non-Abelian electric field.
The coherence length is also measured directly through the correlation of the monopole density and the
Polyakov loop pair. The Ginzburg-Landau parameter indicates that the vacuum type is the weak type I (dual)
superconductor. Although the scaling and the infinite-volume limits are not studied yet, the results obtained
above without any additional assumptions as well as more clear previous SUð2Þ results seem to suggest
strongly the above Abelian dual Meissner picture of color confinement mechanism.
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I. INTRODUCTION

Color confinement in quantum chromodynamics (QCD)
is still an important unsolved problem. As a picture of color

confinement, ’t Hooft [1] and Mandelstam [2] conjectured
that the QCD vacuum is a kind of a magnetic super-
conducting state caused by condensation of magnetic
monopoles and an effect dual to the Meissner effect works
to confine color charges. However, in contrast to SUSY
QCD [3] or Georgi-Glashow model [4,5] with scalar fields,
to find color magnetic monopoles which condense is not
straightforward in QCD. If the dual Meissner effect picture
is correct, it is absolutely necessary to find color-magnetic
monopoles only from gluon dynamics of QCD.
An interesting idea to introduce such an Abelian monop-

ole in QCD is to project QCD to the Abelian maximal torus
group by a partial (but singular) gauge fixing [6]. In SUð3Þ

*ishiguro@kochi-u.ac.jp
†a.hiraguchi@nycu.edu.tw
‡tsuneo@rcnp.osaka-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 014515 (2022)

2470-0010=2022=106(1)=014515(11) 014515-1 Published by the American Physical Society

https://orcid.org/0000-0003-1522-5803
https://orcid.org/0000-0002-5769-4301
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.014515&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevD.106.014515
https://doi.org/10.1103/PhysRevD.106.014515
https://doi.org/10.1103/PhysRevD.106.014515
https://doi.org/10.1103/PhysRevD.106.014515
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


QCD, the maximal torus group is Abelian Uð1Þ2. Then
Abelian magnetic monopoles appear as a topological object
at the space-time points corresponding to the singularity of
the gauge-fixing matrix. Condensation of the monopoles
causes the dual Meissner effect with respect to Uð1Þ2.
Numerically, an Abelian projection in various gauges such
as the maximally Abelian (MA) gauge [7,8] seems to
support the conjecture [9,10]. Although numerically inter-
esting, the idea of Abelian projection [6] is theoretically
very unsatisfactory. Especially there are infinite ways of
such a partial gauge-fixing and whether the ’t Hooft scheme
depends on gauge choice or not is not known.
In 2010 Bonati et al. [11] found a relation that the

violation of non-Abelian Bianchi identity (VNABI) exists
behind the Abelian projection scenario in various gauges.
Under the stimulus of the above work [11], one of the
authors (T. S.) [12] found a more general relation that
VNABI is just equal to the violation of Abelian-like
Bianchi identities corresponding to the existence of
Abelian-like monopoles. The Abelian-like monopole cur-
rents satisfy an Abelian conservation rule kinematically.
There can exist exact Abelian (but kinematical) symmetries
in non-Abelian QCD. A partial gauge-fixing is not neces-
sary at all from the beginning. If the non-Abelian Bianchi
identity is broken in QCD, Abelian-like monopoles nec-
essarily appear due to a linelike singularity leading to a
noncommutativity with respect to successive partial deriv-
atives. This is hence an extension of the Dirac idea [13] of
monopoles in Abelian QED to non-Abelian QCD.
In the framework of simplerSUð2ÞQCD, some interesting

numerical results were obtained. Abelian and monopole
dominances as well as the Abelian dual Meissner effect are
seen clearly without any additional gauge-fixing already in
2009 [14,15]. But at that time, no theoretical explanationwas
clarifiedwith respect to Abelian-likemonopoles without any
gauge-fixing. They are now found to be just Abelian-like
monopoles proposed in the above paper [12]. Also, the
existence of the continuum limit of this new kind of Abelian-
likemonopoleswas discussedwith the help of the block-spin
renormalization group concerning the Abelian-like monop-
oles. The beautiful scaling behaviors showing the existence
of the continuum limit are observed with respect to the
monopole density [16] and the infrared effective monopole
action [17]. The scaling behaviors are also independent of
smooth gauges adopted.
Here it is important to note that our confinement picture

[12,16] is completely different from the Abelian projection
scheme [6] and the interpretation proposed in Ref. [11].
Bonati et al. say that gauge invariance of various ’t Hooft
Abelian projections is proved directly with the help of
VNABI. Their statements in contradiction to ours [12,16]
are not however justified as explicitly shown in a separate
work done by one of the authors (T.S.) [18].
It is very interesting to study the new Abelian-like

monopoles in SUð3Þ QCD. To check if the Dirac-type

monopoles are a key quantity of color confinement in the
continuum SUð3Þ QCD, it is necessary to study monopoles
numerically in the framework of lattice SUð3Þ QCD and
to study then if the continuum limit exists. It is not so
straightforward, however, to extend the previous SUð2Þ
studies to SUð3Þ. How to define Abelian-like link fields
and monopoles without gauge-fixing is not so simple as in
SUð2Þ, since a SUð3Þ group link field is not expanded in
terms of Lie-algebra elements defining Abelian link fields
as simply done as in SUð2Þ. There are theoretically many
possible definitions which have the same naive continuum
limit in SUð3Þ. In this work, we introduce a natural
definition of the new-type of lattice Abelian-like fields
and monopoles in SUð3Þ.
The present paper is organized as follows. In Sec. II, we

first review shortly the theoretical background of our new
Abelian-like monopoles published in Ref. [12]. Section III
is devoted to lattice descriptions of the definition of Abelian
link field and Abelian-like monopole in SUð3Þ QCD. In
Secs. IV–VI, the results of numerical simulations on the
lattice are shown. Our conclusions are given in Sec. VII. In
Appendix A, the problem how to define Abelian link fields
out of non-Abelian one is discussed shortly.

II. EQUIVALENCE OF VNABI AND
ABELIAN-LIKE MONOPOLES

First of all, we shortly review the work [12] that the
Jacobi identities of covariant derivatives lead us to con-
clusion that violation of the non-Abelian Bianchi identities
(VNABI) Jμ is nothing but an Abelian-like monopoles kμ
defined by violation of the Abelian-like Bianchi identities
without gauge-fixing. Define a covariant derivative oper-
ator Dμ ¼ ∂μ − igAμ. The Jacobi identities are expressed as
ϵμνρσ½Dν; ½Dρ; Dσ�� ¼ 0. By direct calculations, one gets

½Dρ; Dσ� ¼ ½∂ρ − igAρ; ∂σ − igAσ�
¼ −igGρσ þ ½∂ρ; ∂σ�;

where the second commutator term of the partial deriva-
tive operators cannot be discarded in general, since gauge
fields may contain a line singularity. Actually, it is the
origin of the violation of the non-Abelian Bianchi identities
(VNABI) as shown in the following. The non-Abelian
Bianchi identities and the Abelian-like Bianchi identities
are, respectively: DνG�

μν ¼ 0 and ∂νf�μν ¼ 0. The relation
½Dν; Gρσ� ¼ DνGρσ and the Jacobi identities lead us to

DνG�
μν ¼

1

2
ϵμνρσDνGρσ

¼ −
i
2g

ϵμνρσ½Dν; ½∂ρ; ∂σ��

¼ 1

2
ϵμνρσ½∂ρ; ∂σ�Aν ¼ ∂νf�μν; ð1Þ
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where fμν is defined as fμν ¼ ∂μAν − ∂νAμ ¼ ð∂μAa
ν −

∂νAa
μÞλa=2. Namely Eq. (1) shows that the violation of

the non-Abelian Bianchi identities, if exists, is equivalent to
that of the Abelian-like Bianchi identities.
Let us denote the violation of the non-Abelian

Bianchi identities (VNABI) as Jμ ¼ DνG�
μν and Abelian-

like monopole currents kμ without any gauge-fixing as the
violation of the Abelian-like Bianchi identities:

kμ ¼ ∂νf�μν ¼
1

2
ϵμνρσ∂νfρσ: ð2Þ

Equation (1) shows that

Jμ ¼ kμ: ð3Þ

Due to the antisymmetric property of the Abelian-like
field strength, we get Abelian-like conservation conditions
[19]:

∂μkμ ¼ 0: ð4Þ

If such singularities exist actually in the continuum
QCD, the Abelian dual Meissner effect could be the color
confinement mechanism naturally. It is then very important
to study the Abelian-like monopoles in the framework of
lattice QCD.
As discussed in Introduction, the above authors’ stand-

point seems to work well at least in the framework of
SUð2Þ QCD. Abelian-like monopoles following DeGrand-
Toussaint [20] without additional gauge-fixing could repro-
duce the non-Abelian string tension perfectly for various
coupling constants β and lattice volumes as shown in
Refs. [14,15]. To study the continuum limit more rigor-
ously, the block-spin renormalization studies with respect
to monopole operators after various smooth gauge-fixings
could prove the existence of the gauge-invariant continuum
limit of such Abelian-like monopoles [16,17].

III. LATTICE STUDY OF SUð3Þ QCD

First of all, we define Abelian link fields and Abelian
Dirac-type monopoles on SUð3Þ lattice.

A. Defining an Abelian link field θaμ
from non-Abelian link field UμðsÞ

In the usual lattice SUð3Þ QCD, a non-Abelian link field
UμðsÞ as a SUð3Þ group element is used as a dynamical
quantity defined on a link ðs; μÞ. How to extract an Abelian
link field θaμ having a color a out of UμðsÞ is not trivial
especially without any additional partial gauge-fixing to
Abelian torus groupUð1Þ ×Uð1Þ. There are many possible
ways leading naively to the same a → 0 continuum limit.
We find that the following simple method is a good
candidate being consistent with the previous SUð2Þmethod

adopted in Refs. [15–17]. The situations behind the choice
are discussed in Appendix A. As discussed in Appendix A,
we fix them to maximize the following quantity locally

RA ¼ ReTrfexpðiθaμðsÞλaÞU†
μðsÞg; ð5Þ

where λa is the Gell-Mann matrix and no sum over a is
not taken.

1. The SUð2Þ case
In SUð2Þ, Eq. (5) leads us to

θaμðsÞ ¼ tan−1
�
Ua

μðsÞ
U0

μðsÞ
�
; ð6Þ

where UμðsÞ ¼ U0
μðsÞ þ i

P
a σ

aUa
μðsÞ. This definition is

the same as that used in the previous works [14,15] where
Abelian and monopole dominances were proved numeri-
cally without adopting new additional gauge-fixings.

2. The SUð3Þ case
Equation (5) gives us in SUð3Þ the following Abelian

link fields for example in the λ1 case:

θ1μðsÞ ¼ tan−1
�
ImðU12ðs; μÞ þ U21ðs; μÞÞ
ReðU11ðs; μÞ þ U22ðs; μÞÞ

�
: ð7Þ

Other a ¼ 2–7 cases are fixed similarly. But in the case of
λ8, we have to maximize

R8 ¼ cos t1ReðU11 þU22Þ þ cos 2t1ReðU33Þ
þ sin t1ImðU11 þU22Þ − sin 2t1ImðU33Þ; ð8Þ

where t1 ¼ θ8=2. The maximization of Eq. (8) gives us a
quartic equation with respect to t2 ¼ tanðθ8=ð2 ffiffiffi

3
p ÞÞ. The

quartic equation is easy to solve rather numerically but to
make the solution compact between ½−π; π�, we redefine in
the following way:

θ8 ¼ tan−1
2t2

1 − t22
; ð9Þ

where the range is extended to ½−π; π�. With respect to two
diagonal parts, there are other Weyl symmetric definition
which gives us different numerical results for finite aðβÞ.
But in this paper, we adopt the above definition (9) for
simplicity, since numerically no big difference is found.

B. Definition of Abelian lattice monopoles

Now that the Abelian link fields are defined, we next
define Abelian lattice monopoles. The unique reliable
method ever known to define a lattice Abelian monopole
is the one proposed in compact QED by DeGrand and
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Toussaint [20] who utilize the fact that the Dirac monopole
has a Dirac string with a magnetic flux satisfying the Dirac
quantization condition. Hence we adopt the method here,
since the Abelian-like monopoles here are of the Dirac type
in QCD.
First we define Abelian plaquette variables from the

above Abelian link variables:

θaμνðsÞ≡ ∂μθ
a
νðsÞ − ∂νθ

a
μðsÞ; ð10Þ

where ∂νð∂0νÞ is a forward (backward) difference. Then the
plaquette variable can be decomposed as follows:

θaμνðsÞ ¼ θ̄aμνðsÞ þ 2πnaμνðsÞðjθ̄aμνj < πÞ; ð11Þ

where naμνðsÞ is an integer corresponding to the number of
the Dirac string. Then VNABI as Abelian monopoles is
defined by

kaμðsÞ ¼ −
1

2
ϵμαβγ∂αθ̄

a
βγðsþ μ̂Þ

¼ 1

2
ϵμαβγ∂αnaβγðsþ μ̂Þ;

JμðsÞ≡ 1

2
kaμðsÞλa: ð12Þ

This definition (12) of VNABI satisfies the Abelian
conservation condition (4) and takes an integer value which
corresponds to the magnetic charge obeying the Dirac
quantization condition.

IV. PERFECT ABELIAN DOMINANCE

First of all, we calculate Abelian static potentials using
the Abelian link variables (7). We generate therma-
lized gauge configurations using the SUð3Þ Wilson
action at coupling constants β ¼ 5.6, 5.7 and 5.8 where
the lattice spacings aðβ¼5.6Þ¼0.2235 ½fm�, aðβ ¼ 5.7Þ ¼
0.17016 ½fm� and aðβ ¼ 5.8Þ ¼ 0.13642 ½fm� are cited
from Ref. [21]. The lattice sizes are N3

s × Nt ¼ 123 × 12

at β ¼ 5.6, 5.7, 5.8 and 163 × 16 at β ¼ 5.6.
By using the multilevel noise reduction method

[22–26], we evaluate the Abelian static potential VA from
the correlation function (PLCF) of the Abelian Polyakov
loop operator

Pa
A ¼ exp

"
i
XNt−1

k¼0

θa4ðsþ k4̂Þ
#
; ð13Þ

separated at a distance r as

Va
AðrÞ ¼ −

1

aNt
lnhPa

Að0ÞP�a
A ðrÞi: ð14Þ

The sublattice sizes adopted are 2a at β ¼ 5.6, 5.7 and 3a at
β ¼ 5.8. The parameters for the multilevel algorithm here
we used are summarized in Table I.

We show convergence behaviors in a configuration with
respect to internal updates Niup concerning a non-Abelian
PLCF in Fig. 1 and also an Abelian PLCF in Fig. 2 on
163 × 16 lattice at β ¼ 5.6. From Fig. 1, we get almost
convergence around Niup ∼ 104 in non-Abelian PLCF. On
the other hand, in the case of Abelian PLCF, even around
Niup ∼ 107, convergence is not good enough for large
r > 6. Due to the limited computer resources, we fix
Niup ¼ 107 and try to increase number of configurations
as much as possible. Since global color symmetry is not
broken, we adopt only a ¼ 1 color case in this calculation.

TABLE I. Simulation parameters for the measurement of static
potential using the multilevel method. Nsub is the sublattice size
divided and Niup is the number of internal updates in the
multilevel method.

β N3
s × Nt aðβÞ [fm] Nconf Nsub Niup

5.60 123 × 12 0.2235 6 2 5000000
5.60 163 × 16 0.2235 6 2 10000000
5.70 123 × 12 0.17016 6 2 5000000
5.80 123 × 12 0.13642 6 3 5000000
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FIG. 1. Convergence history of the non-Abelian PLCF at β ¼
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163 × 16 lattice.
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The results are fairly good as seen from Figs. 3–6. We see a
flattening behavior at r ≥ 5 in Fig. 4 and at r ≥ 7 in Fig. 6
respectively due to insufficient number of internal updates
Niup. Since increasing the number of internal updates more
is impossible, we tune the fitting range at smaller r region
as shown in Table II. We try to fit the data to a usual

function VðrÞ ¼ σr − c=rþ μ and find almost the same
string tension σ and the Coulombic coefficient c as shown
in Table II, indicating almost perfect Abelian dominance.
Here the number of independent vacuum configurations is
6 in all cases. The errors are determined by the jackknife
method. Results similar to those obtained in the case of
SUð2Þ gauge theory [14,15] are shown also in the case of
SUð3Þ gauge theory. Our results of the string tension are
consistent with theoretical observations on the basis of
reasonable assumptions [27,28].
Due to insufficient computer resources, the continuum

limit and the infinite volume limit are not studied yet, and
estimates of various systematic errors are incomplete.
Nevertheless, the results obtained are very interesting
because they are the first to show Abelian dominance
for the string tension in SUð3Þ gauge theory without any
additional gauge fixing.
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FIG. 3. The static quark potentials from non-Abelian and
Abelian PLCF at β ¼ 5.6 on 123 × 12 lattice.
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FIG. 4. The static quark potentials from non-Abelian and
Abelian PLCF at β ¼ 5.7 on 123 × 12 lattice.
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FIG. 5. The static quark potentials from non-Abelian and
Abelian PLCF at β ¼ 5.8 on 123 × 12 lattice.
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FIG. 6. The static quark potentials from non-Abelian and
Abelian PLCF at β ¼ 5.6 on 163 × 16 lattice.

TABLE II. Best fitted values of the string tension σa2, the
Coulombic coefficient c, and the constant μa for the potentials
VNA, VA. FR means the fitting range.

σa2 c μa FRðr=aÞ χ2=Ndf

β ¼ 5.6; 123 × 12

VNA 0.2368(1) −0.384ð1Þ 0.8415(7) 2–5 0.0004
VA 0.21(5) −0.6ð6Þ 2.7(4) 3–6 0.42

β ¼ 5.6; 163 × 16
VNA 0.239(2) −0.39ð4Þ 0.79(2) 3–8 0.0903
VA 0.25(2) −0.3ð1Þ 2.6(1) 2–5 0.6044

β ¼ 5.7; 123 × 12
VNA 0.159(3) −0.272ð8Þ 0.79(1) 1–5 0.5362
VA 0.145(9) −0.32ð2Þ 2.64(3) 1–4 0.2226

β ¼ 5.8; 123 × 12
VNA 0.101(3) −0.28ð1Þ 0.82(1) 1–5 0.8013
VA 0.102(9) −0.27ð2Þ 2.60(3) 1–5 0.9993

MONOPOLES OF THE DIRAC TYPE AND COLOR CONFINEMENT … PHYS. REV. D 106, 014515 (2022)

014515-5



V. PERFECT MONOPOLE DOMINANCE

If the Abelian dual Meissner effect due to Abelian
monopole currents is the essence of color confinement
in QCD, the SUð3Þ string tension is reproduced completely
by a solenoidal current due to the Abelian monopole.
Namely the so-called perfect monopole dominance is
expected to occur with respect to the string tension.
Already in SUð3Þ QCD, almost perfect monopole domi-

nance is shown inMAgauge in a restricted case [29].Herewe
investigate the monopole contribution without any gauge-
fixing to the static potential in order to examine the role of
monopoles for confinement in a gauge independentway. The
monopole part of the Polyakov loop operator is extracted as
follows. Using the lattice Coulomb propagator Dðs − s0Þ,
which satisfies ∂ν∂0νDðs−s0Þ¼−δss0 , the temporal compo-
nent of the Abelian fields θa4ðsÞ are written as

θa4ðsÞ ¼ −
X
s0
Dðs − s0Þ½∂0νθaν4ðs0Þ þ ∂4ð∂0νθaνðs0ÞÞ�: ð15Þ

Inserting Eq. (15) and then Eq. (11) to the Abelian Polyakov
loop (13), we obtain

Pa
A ¼ Pa

ph · P
a
mon;

Pa
ph ¼ exp

�
−i

XNt−1

k¼0

X
s0

Dðsþ k4̂ − s0Þ∂0νθ̄aν4ðs0Þ
�
;

Pa
mon ¼ exp

�
−2πi

XNt−1

k¼0

X
s0

Dðsþ k4̂ − s0Þ∂0νnaν4ðs0Þ
�
:

ð16Þ
We call Pa

ph the photon and Pa
mon the monopole parts of the

AbelianPolyakov loopPa, respectively [30]. The latter is due
to the fact that the Dirac strings naν4ðsÞ lead to the monopole
currents in Eq. (12) [20]. Note that the second term of
Eq. (15) does not contribute to the Abelian Polyakov loop
in Eq. (13).
Since Eq. (16) contains the non-local Coulomb propa-

gator Dðs − s0Þ and the Polyakov loop is not written as a
product of local operators along the time direction, the
above multilevel method [22] cannot be applied. Without
such a powerful noise reduction method, it is hard to
measure the Polyakov loop correlation function at zero
temperature with the present available computer resource.
Thus we consider a finite temperature T ≠ 0 system in the
confinement phase. We set T ¼ 0.8Tc and simulate the
Wilson action on the 243 × 4 lattice with β ¼ 5.6. To check
scaling, we tried to do simulations on lattices having the
time distances Nt ¼ 6 (β ¼ 5.75) and Nt ¼ 8 (β ¼ 5.9)
also corresponding to the same T ¼ 0.8Tc. Unfortunately
however it is found that we need too large number of
vacuum configurations to get meaningful results on such
larger lattices. Hence we restrict ourselves to the above
smallest lattice.

A. Noise reduction by gauge averaging
and simulation parameters

Since the signal-to-noise ratio of the correlation func-
tions of PA, Pph and Pmon are very small without any
smooth gauge fixing, we adopt a noise reduction method
[14]. For a thermalized gauge configuration, we produce
many gauge copies applying random gauge transforma-
tions. Then we compute the operator for each copy, and
take the average over all copies. It should be noted that
as long as a gauge-invariant operator is evaluated, such
copies are identical, but they are not if a gauge-variant
operator is evaluated as in the present case. Also since
the global color invariance exists with respect to colors of
Abelian monopoles, we include the different color con-
tributions into the average. The results obtained with this
method are gauge-averaged and so gauge-invariant. We
show the simulation parameters of the SUð3Þ case and
for comparison, as well as previous SUð2Þ case [15] in
Table III. In practice, we prepare a few hundred or a
thousand of gauge copies for each independent gauge
configuration (see Table III). We also apply one-step
hypercubic blocking (HYP) [31] to the temporal links for
further noise reduction. The short-distance part of the
potential may be affected by HYP.

TABLE III. Simulation parameters for the measurement of the
static potential from PA, Pph, and Pmon in SUð3Þ and SUð3Þ.
NRGT is the number of random gauge transformations. The SUð2Þ
data are cited from Ref. [15].

β N3
s × Nt aðβÞ [fm] Nconf NRGT

SUð3Þ 5.60 243 × 4 0.2235 910000 400
SUð2Þ 2.43 243 × 8 0.1029(4) 7000 4000

TABLE IV. Best fitted values of the string tension σa2, the
Coulombic coefficient c, and the constant μa for the potentials
VNA, VA, Vmon, and Vph. Here Vmon in SUð3Þ alone is fitted in
terms of VðrÞ ¼ σrþ μ. Others are fitted by VðrÞ ¼ σr−
c=rþ μ. FR means the fitting range. One of the SUð2Þ data
are cited for comparison from Ref. [15].

SUð3Þ (243 × 4)

σa2 c μa FRðr=aÞ χ2=Ndf

VNA 0.178(1) 0.86(4) 0.99(1) 5–9 1.23
VA 0.16(3) 0.9(11) 2.5(3) 5–9 1.03
Vmon 0.17(2) 2.9(1) 4–7 1.08
Vph −0.0007ð1Þ 0.046(3) 0.945(1) 3–10 7.22e − 08

SUð2Þ (243 × 8)
VNA 0.0415(9) 0.47(2) 0.46(8) 4.1–7.8 0.99
VA 0.041(2) 0.47(6) 1.10(3) 4.5–8.5 1.00
Vmon 0.043(3) 0.37(4) 1.39(2) 2.1–7.5 0.99
Vph −6.0ð3Þ × 10−5 0.0059(3) 0.46649(6) 7.7–11.5 1.02
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B. Static potentials

SUð3Þ studies are found to be very much difficult and
time consuming as seen from Table III. We need much
more gauge configurations than expected from the previous
SUð2Þ study before getting meaningful signal to noise
ratio. In the case of N3

s × Nt ¼ 243 × 4, we need to use
about a million configurations with additional 400 random
gauge copies per each. Since global color invariance is not
broken, we take averages over a ¼ 1–5 five colors to
improve statistics. We get data suggesting perfect Abelian
and monopole dominances as shown in Table IV. We obtain
good signals for the Abelian, the monopole and the photon
contributions to the static potential as shown in Fig. 7.
We try to fit the potentials in Fig. 7 to the function
VðrÞ ¼ σr − c=rþ μ and extract the string tension and
the Coulombic coefficient of each potential as summari-
zed in Table IV. Here Vmon alone is fitted in terms of
VðrÞ ¼ σrþ μ. Abelian dominance is seen again in this
case. Moreover, we can see monopole dominance, namely,

only the monopole part of PLCF is responsible for the
string tension. The photon part has no linear potential.

VI. THE ABELIAN DUAL MEISSNER
EFFECT IN SUð3Þ

A. Simulation details of the flux-tube profile

In this section, we show the results with respect to the
Abelian dual Meissner effect. In the previous work [15]
studying the spatial distribution of color electric fields and
monopole currents, they used the connected correlations
between a non-Abelian Wilson loop and Abelian operators
in SUð2Þ gauge theory without gauge fixing. We apply the
same method to SUð3Þ gauge theory without gauge fixing.
Here we employ the standard Wilson action on the 243 × 4
lattice with the coupling constant β ¼ 5.60 as done in
the previous section. To improve the signal-to-noise ratio,
the APE smearing is applied to the spatial links and the
hypercubic blocking [31] is applied to the temporal links.
We introduce random gauge transformations to improve the
signal to noise ratios of the data concerning the Abelian
operators. All simulation parameters are listed in Tables V
and VI.
To measure the flux-tube profiles, we consider a con-

nected correlation functions as done in [32–35]:

ρconnðOðrÞÞ ¼ hTrðPð0ÞLOðrÞL†ÞTrP†ðdÞi
hTrPð0ÞTrP†ðdÞi

−
1

3

hTrPð0ÞTrP†ðdÞTrOðrÞi
hTrPð0ÞTrP†ðdÞi ; ð17Þ

where P denotes a non-Abelian Polyakov loop, L indicates
a Schwinger line, r is a distance from a flux-tube and d is a
distance between Polyakov loops. We use the cylindrical
coordinate ðr;ϕ; zÞ to parametrize the q–q̄ system as shown
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FIG. 7. The SUð3Þ static quark potentials from PLCF at β ¼
5.60 on 243 × 4 lattice (up). For comparison, the SUð2Þ static
quark potentials from PLCF at β ¼ 2.43 on 243 × 8 lattice
(down) cited from Ref. [15].

TABLE V. Simulation parameters for the measurement of
Abelian color electric fields Ea

i and monopole currents k2.
Nconf , NRGT and Nsm are numbers of configurations, random
gauge transformations and smearing, respectively.

Ea
i

Nconf NRGT Nsm

d ¼ 3 20000 100 90
d ¼ 4 20000 100 90
d ¼ 5 80000 100 120
d ¼ 6 80000 100 120

k2

Nconf NRGT Nsm

d ¼ 3 80000 0 90
d ¼ 4 160000 0 90
d ¼ 5 960000 0 120
d ¼ 6 960000 0 120
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in Fig. 8. Here the definition of the cylindrical coordinate
ðr;ϕ; zÞ along the q–q̄ axis is shown.

B. The spatial distribution of color electric fields

First, we show the results of Abelian color electric fields
using an Abelian gauge field θ1μðsÞ. To evaluate the Abelian
color electric field, we adopt the Abelian plaquette as an
operator OðrÞ. We calculate a penetration length λ from the
Abelian color electric fields for d ¼ 3, 4, 5, 6 at β ¼ 5.6
and check the d dependence of λ. To improve the accuracy
of the fitting, we evaluate OðrÞ at both on-axis and off-axis
distances. As a result, we find the Abelian color electric
fields EA

z alone are squeezed as in Fig. 9. We fit these
results to a fitting function,

fðrÞ ¼ c1 expð−r=λÞ þ c0: ð18Þ

Here λ, c1 and c0 are the fit parameters. The parameter λ
corresponds to the penetration length. Additionally, we
calculate the penetration lengths of non-Abelian color
electric fields at on-axis to compare them with those of
Abelian color electric fields. We find both are almost the
same as shown in Tables VII and VIII. We confirm that the
penetration length of Abelian color electric fields reproduce
the penetration length of non-Abelian color electric fields.

C. The spatial distribution of monopole currents

Next, we show the result of the spatial distribution of
Abelian-like monopole currents. We define the Abelian-
like monopole currents on the lattice as in Eq. (12). In this
study we evaluate the connected correlation (17) between
k1ðr;ϕ; zÞ and two non-Abelian Polyakov loops. As a
result, we find the spatial distribution of monopole currentsFIG. 8. The cylindrical coordinate.
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FIG. 9. The Abelian color electric field around static quarks for
d ¼ 5 at β ¼ 5.6 on 243 × 4 lattices.

TABLE VII. The penetration length λ of Abelian color electric
fields at β ¼ 5.6 on 243 × 4 lattices.

d λ=a c1 c0 χ2=Ndf

3 0.91(1) 0.0100(2) −0.000002ð8Þ 1.31628
4 1.10(6) 0.0077(4) −0.00005ð4Þ 0.972703
5 1.09(8) 0.0068(6) −0.00001ð4Þ 0.995759
6 1.1(1) 0.0055(8) −0.00008ð7Þ 0.869692

TABLE VIII. The penetration length λ of non-Abelian color
electric fields at β ¼ 5.6 on 243 × 4 lattices.

d λ=a c1 c0 χ2=Ndf

3 0.92(2) 0.83(3) −0.0011ð9Þ 1.4559
4 0.98(6) 0.66(5) −0.0004ð32Þ 0.866868
5 1.12(6) 0.57(3) −0.0004ð20Þ 1.21679
6 1.23(20) 0.36(6) −0.0001ð43Þ 3.13162

TABLE VI. Simulation parameters for the measurement of the
dual Ampère’s law and Abelian monopole currents kai for the
distance d ¼ 3. Nconf , NRGT, and Nsm are numbers of configu-
rations, random gauge copies and smearing, respectively.

Nconf NRGT Nsm

ðrotEaÞϕ and ∂tBa
ϕ 20000 100 90

kaϕ 11200 3000 90
kar and kaz 9600 3000 90
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FIG. 10. The profile of monopole current kϕ; kz; kr with d ¼ 3

at β ¼ 5.6 on 243 × 4 lattices.
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around the flux-tube at β ¼ 5.6. Only the monopole current
in the azimuthal direction, k1ϕ, shows the correlation with
two non-Abelian Polyakov loops as presented in Fig. 10.

D. The dual Ampère’s law

In previous SUð2Þ researches [15], they investigated the
dual Ampère’s law to see what squeezes the color-electric
field. In the case of SUð2Þ gauge theory without gauge
fixings, they confirmed the dual Ampère’s law and the
monopole currents squeeze the color-electric fields. In this
subsection we show the results of the dual Ampère’s law in
the case of SUð3Þ gauge theory. The definition of monop-
ole currents gives us the following relation,

ðrotEaÞϕ ¼ ∂tBa
ϕ þ 2πkaϕ; ð19Þ

where index a is a color index.
As a results, we confirm that there is no signal of the

magnetic displacement current ∂tBa
ϕ around the flux-tube

for d ¼ 3 at β ¼ 5.6 as shown in Fig. 11. It suggests that the
Abelian-like monopole current squeezes the Abelian color
electric field as a solenoidal current in SUð3Þ gauge theory
without gauge fixing, although more data for larger d are
necessary.

E. The vacuum type in SUð3Þ gauge
theory without gauge fixing

Finally, we evaluate the Ginzburg-Landau parameter,
which characterizes the type of the (dual) superconducting
vacuum. In the previous result [15], they found that the
vacuum type is near the border between type I and type II
dual superconductors by using the SUð2Þ gauge theory
without gauge fixing. We apply the same method to SUð3Þ
gauge theory.
To evaluate the coherence length, we measure the

correlation between the squared monopole density and
two non-Abelian Polyakov loops by using the disconnected
correlation function [15,36],

hk2ðrÞiqq̄ ¼
hTrPð0ÞTrP†ðdÞPμ;ak

a
μðrÞkaμðrÞi

hTrPð0ÞTrP†ðdÞi

−
�X

μ;a

kaμðrÞkaμðrÞ
�
: ð20Þ

We fit the profiles to the function,

gðrÞ ¼ c01 exp
�
−

ffiffiffi
2

p
r

ξ

�
þ c00; ð21Þ

where ξ, c01, and c00 are the fit parameters. The parameter ξ
corresponds to the coherence length. We plot the profiles of
hk2ðrÞiqq̄ in Fig. 12. As a result, we could evaluate the
coherence length ξ for d ¼ 3, 4, 5, 6 at β ¼ 5.6 and find
almost the same values of ξ=

ffiffiffi
2

p
for each d as shown in

Table IX. Using these parameters λ and ξ, we could
evaluate the Ginzburg-Landau (GL) parameter. The GL
parameter κ ¼ λ=ξ can be defined as the ratio of the
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FIG. 11. The dual Ampère’s law with d ¼ 3 at β ¼ 5.6 on
243 × 4 lattices.
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FIG. 12. The squared monopole density with d ¼ 5 at β ¼ 5.6
on 243 × 4 lattices.

TABLE IX. The coherence length ξ=
ffiffiffi
2

p
at β ¼ 5.6 on 243 × 4

lattices.

d ξ=
ffiffiffi
2

p
a c01 c00 χ2=Ndf

3 1.04(6) −0.050ð3Þ 0.0001(2) 0.997362
4 1.17(7) −0.052ð3Þ −0.0003ð2Þ 1.01499
5 1.3(1) −0.047ð3Þ −0.0006ð3Þ 0.99758
6 1.1(1) −0.052ð8Þ −0.0013ð5Þ 1.12869

TABLE X. The Ginzburg-Landau parameters at β ¼ 5.6 on
243 × 4 lattice.

d
ffiffiffi
2

p
κ

3 0.87(5)
4 0.93(7)
5 0.83(9)
6 0.9(2)
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penetration length and the coherence length. If
ffiffiffi
2

p
κ < 1,

the vacuum is of the type I and if
ffiffiffi
2

p
κ > 1, the vacuum is of

the type II. We show the GL parameters in SUð3Þ gauge
theory in Table X. We find that the vacuum is of the type I
near the border between type I and type II, although the
study is done at one gauge coupling constant β ¼ 5.6. This
is the first direct result of the vacuum type in pure SUð3Þ
gauge theory without gauge fixing, although different β
data are necessary to show the continuum limit.

VII. CONCLUDING REMARKS

In this work, we have investigated Abelian dominance,
monopole dominance, and the dual Meissner effect in pure
SUð3Þ gauge theory with respect to Abelian-like monopoles
without gauge fixing.We have confirmed that these Abelian-
like monopoles reproduce the non-Abelian string tension
almost perfectly at one gauge coupling constant. And also,
we have decided thevacuum type as the type I near the border
between type I and II by the penetration length from the
Abelian color electric fields and the coherence length from
the squared monopole density. It is the first Monte-Carlo
studies of pure SUð3Þ QCD with respect to Abelian-like
monopoles without any artificial additional assumption such
as introduction of partial gauge-fixing.
There are other works [32,35,37] studying the vacuum

type in SUð3Þ QCD, measuring non-Abelian electric fields
around static quark pairs. Then using a parametrization of
the longitudinal component of color electric field around
the flux source suggested from the usual superconductor
studies, they determine the GL parameter κ. The obtained
values of κ are different from 0.243(88) in [37], 0.178(21)
in [32] corresponding to Type I to 1.8(6) [35] (Type II),
depending on the method and assumptions adopted. All of
them are however indirect contrary to our study here.
In contrast to our old SUð2Þ results done in Refs. [14,15],

the SUð3Þ analyses are unexpectedly hard to get any mean-
ingful results. Especially, we require almost a million
vacuum configurations in proving almost perfect monopole
dominance. Nevertheless, we get promising results showing
our new Abelian-like monopoles play a key role in color
confinement also in SUð3Þ as well as in SUð2Þ. However
scaling studies in SUð3Þ case are not done yet totally. To this
purpose, we believe that employing smooth gauge fixings
will be helpful to confirm the scaling behavior corresponding
to the continuum limit. This is to be done in the near future.
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APPENDIX: EXTRACTION OF REAL ABELIAN
LINK VARIABLES IN SUð3Þ

On the lattice, QCD is usually formulated in terms of link
fields UμðsÞ as a non-Abelian SUð3Þ group element. It is
not at all trivial to extract Lie-algebra gauge fields Aa

μðsÞ for
a ¼ 1–8 from UμðsÞ. When we studied SUð2Þ case in
Refs. [14,15], we simply extended the method extracting an
Abelian gauge field A3

μðsÞ used in MA gauge studies [8] to
a case keeping SUð2Þ gauge symmetry and defined Aa

μðsÞ
for a ¼ 1–3. This can be done, since in SUð2Þ, UμðsÞ is
expanded in terms of the Lie-algebra elements as follows:

UμðsÞ ¼ U0
μðsÞ þ i

X3
a¼1

Ua
μðsÞσa: ðA1Þ

In MAG case, an Abelian link field θ3μðsÞ is defined as

θ3μðsÞ ¼ arctan
U3

μðsÞ
U0

μðsÞ
ðmod 2πÞ:

Hence we simply extended this definition to other compo-
nents having color a ¼ 1 and 2 also, since without any
partial gauge-fixing like MAG, SUð2Þ symmetry is not
broken. This definition works very well as seen from the
numerical results obtained in Refs. [14–17]
However in SUð3Þ, the situation is completely different.

To get a relation like Eq. (A1), we first diagonalize UμðsÞ
by a unitary matrix VðsÞ. Then we get

UμðsÞ ¼ VðsÞ

0
BB@

Λ1
μðsÞ 0 0

0 Λ2
μðsÞ 0

0 0 Λ3
μðsÞ

1
CCAV†ðsÞ:

Since the diagonal part can be written in terms of 3 × 3 unit
matrix and diagonal Gell-Mann matrices λ3 and λ8.
Formally we can get a relation like (A1) in SUð3Þ, but
the coefficients of the Gell-Mann matrices λa are not real in
general. Hence we cannot adopt the same simple definition
as done in (A1). But here it is interesting to note that the
same definition (A1) in SUð2Þ can be obtained also by
maximizing the norm

RA ¼ ReTrfexpðiθaμðsÞσaÞU†
μðsÞg;

as done in Eq. (5). This definition can be extended easily to
SUð3Þ as adopted here in Eq. (5).
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