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Flow-based sampling in the lattice Schwinger model at criticality
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Recent results suggest that flow-based algorithms may provide efficient sampling of field distributions
for lattice field theory applications, such as studies of quantum chromodynamics and the Schwinger model.
In this work, we provide a numerical demonstration of robust flow-based sampling in the Schwinger model
at the critical value of the fermion mass. In contrast, at the same parameters, conventional methods fail to

sample all parts of configuration space, leading to severely underestimated uncertainties.
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I. INTRODUCTION

Many important physical systems across particle and
condensed matter physics can be described in the language
of quantum field theory (QFT). Lattice field theory (LFT) is
the only known systematically improvable approach to
ab initio calculations of QFTs in nonperturbative regimes,
such as quantum chromodynamics (QCD) at low energies.
LFT is based on the path-integral formulation of QFT,
discretized on a Euclidean spacetime lattice. Monte Carlo
techniques render the high-dimensional discretized path
integral tractable by recasting the problem as statistical
sampling: the expectation value of some observable O can
be computed as

(0) :%/dUe‘SE(U)(’)(U)z%Z(’)(Ui), (1)

where Z is the partition function, S is the Euclidean action,
and {U,} is a set of N samples of the lattice-field degrees of
freedom distributed as p(U) = exp[—Sg(U)]/Z. Statistical
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uncertainties decrease as 1/+/N as the estimate converges to
the true value.

In theories such as QCD, for which exact sampling
algorithms are not known, Markov chain Monte Carlo
(MCMC) techniques are typically used. However, field
samples or “configurations” from MCMC are correlated,
i.e., subsequently generated configurations are not sta-
tistically independent. Depending on the MCMC approach,
these “autocorrelations” may grow as the system is tuned
towards criticality [1], e.g., to describe universal properties
of condensed matter theories or access the continuum or
large-N . limits of gauge theories [2,3]. Autocorrelations
may become especially severe if MCMC updates are
unlikely to generate transitions between modes that are
separated in configuration space. This effect, known as
“freezing,” can prevent effective exploration of the distri-
bution for any practical sample size, amounting to an in-
practice violation of ergodicity—a necessary condition for
the validity of MCMC.

Importantly, this affects hybrid Monte Carlo (HMC), the
state-of-the-art algorithm for sampling QCD field configu-
rations, which generates samples by continuously evolving
the fields through configuration space via Hamiltonian
dynamics [4]. These dynamics make the algorithm sus-
ceptible to freezing due to the topological properties of
gauge fields, which divide the distribution into different
modes or “topological sectors.” As the system is tuned
towards criticality, increasingly large potential barriers

Published by the American Physical Society
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FIG. 1. Demonstration of underestimated uncertainties when

using HMC, in contrast to flow-based sampling which provides
consistent results converging to a baseline value (black). Top
panel: estimates of the chiral condensate () in the Schwinger
model at critical parameters § = 2.0, « = 0.276,and L = 16, as a
function of the sample size N. Bottom panel: scaling of the
statistical uncertainty §(py). Flow-based sampling (blue) con-
verges to the baseline value with uncertainties scaling as 1/v/N.
Meanwhile, HMC (gray, red) exhibits seemingly convergent
uncertainties that are in fact severely underestimated, as indicated
by the discrepancy with the baseline and sudden jumps when
tunneling events occur (red).

suppress tunneling between sectors, presenting a well-
known obstacle to extending the reach of state-of-the-art
lattice QCD calculations [1,5,6] (formalisms for lattice
QCD at fixed topological charge are also being explored
[7-9]). In contrast, emerging flow-based sampling algo-
rithms [10-16] propose random hops throughout configu-
ration space, unaffected by density barriers. Promising
results of flow-based samplers and related approaches in
theories without fermions [11,12,17,18], without gauge
fields [14], or away from criticality [19] suggest that these
methods may provide a path towards mitigating freezing in
this context.

In this paper, we show that flow-based sampling can
circumvent topological freezing in a fermionic gauge
theory at criticality. Specifically, we provide a numerical
demonstration in the Schwinger model (two-dimensional
quantum electrodynamics) at the critical value of the
fermion mass, illustrating that the flow-based approach
is robust at sample sizes where HMC fails. A stark example
is shown in Fig. 1, where HMC estimates of a key
observable in the theory appear to be converging to a
biased value, while in fact the uncertainty is underestimated
due to insufficient sampling of the different topological
sectors. In contrast, the flow-based sampling estimate is
accurate with reliable uncertainties.

II. FLOW-BASED SAMPLING FOR THE
SCHWINGER MODEL

Normalizing flow models [20-22] are based on applying
a diffeomorphic “flow” transformation f to (possibly
high-dimensional) samples z drawn from a base distribu-
tion, r(z). This procedure yields samples U = f(z)
distributed according to the model density ¢(U) =
r(z)|detaf/dz|~'. Flow-based sampling uses the model
q to approximate a target distribution p. Neural networks
can be used to construct an expressive and trainable flow,
which can be optimized by minimizing the distance
between p and ¢. Provably exact sampling that corrects
for deviations between p and ¢ can be obtained with
independence Metropolis [23,24] or reweighting; we use
the former in this work. These may be applied a posteriori,
enabling embarrassingly parallel sampling that can provide
practical advantages over HMC and sequential algorithms
incorporating flows [17-19].

Here, we apply flow-based sampling to the N, =2
Schwinger model, a strongly interacting (1+ 1)d U(1)
gauge theory coupled to two fermions that exhibits similar
features to QCD: confinement, spontaneous chiral sym-
metry breaking due to a chiral condensate, and nontrivial
topology [25,26]. It commonly serves as a toy model for
QCD, and is often used for testing new approaches to LFT
[19,27-33], including methods using quantum technolo-
gies [34-36]. It has also been used to study properties of
QFTs [26,37-46].

Wick rotating, discretizing, and integrating out the
fermionic degrees of freedom yields a Euclidean lattice
Schwinger model action amenable to Monte Carlo sam-
pling [47-49],

Sp(U) = =B _ReP(x) —logdet D[U|'D[U],  (2)

given in terms of gauge links U,(x) at position x in
direction p. The first term is the gauge action, where S
is the inverse of the squared gauge coupling, and the
plaquette P(x) is the smallest possible Wilson loop—a
gauge-invariant product of links around a 1 x 1 square.
It is defined as P(x) = Uy(x)U;(x + 0)Uj(x + 1)U (x),
where /i is the unit vector in the p direction. The second
term, given in terms of the Wilson Dirac operator D
[50,51], encodes the effect of fermions and gauge-fermion
interactions. The bare fermion mass m;, is controlled by the
hopping parameter k = 1/(4 + 2my) that parametrizes D.

To achieve efficient sampling via a flow-based approach,
it is critical to incorporate the physical properties of the
target distribution. For the Schwinger model specifically,
gauge invariance imposes strong constraints on the target
distribution, which we build into our models using the
framework of gauge-equivariant flows on compact mani-
folds developed in Refs. [11,12,52]. Another challenge is
sampling of theories with fermionic degrees of freedom.
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Out of the four treatments in Ref. [14], here we consider a
“marginal sampler” using exact evaluation of the fermion
determinant. The model thus approximates a distribution of
gauge links that encodes the effect of fermions as a
nonlocal effective action for the gauge degrees of freedom.

Following Ref. [11], gauge-equivariant flows are con-
structed by composing a sequence of equivariant coupling
layers. Each coupling layer updates an ‘“‘active” subset of
the links conditioned on a disjoint “frozen” subset.
Different partitionings are used in each layer so that all
variables are updated. In each layer, gauge-invariant closed
Wilson loops are computed from the frozen links and fed
into a “context function” constructed from neural networks.
The outputs are used to parametrize the transformation of
the active links, which is constrained to commute with
gauge transformations. Combined with a gauge-invariant
base distribution, this yields a gauge-invariant model.

Unlike in the x =0 limit of pure-gauge theory, the
Schwinger model exhibits long-range correlations, with the
correlation length defined by the inverse of the mass of the
lightest particle. At criticality, the correlation length
diverges; this demands new architectural features over
those developed previously in Ref. [11] to model ultralocal
U(1) dynamics. First, we use a subset of active links that is
locally more sparse, with each active link completely
surrounded by frozen ones, to allow for better propagation
of information. Second, we provide larger 2 x 1 Wilson
loops along with 1 x 1 plaquettes as inputs for context
functions. Third, our architecture includes dilated convo-
lutions, which have translational equivariance and better
context aggregation, i.e., an exponential expansion of the
receptive field without loss of resolution or coverage [53].
Fourth, we parametrize our transformations using highly
expressive neural splines [54]. Finally, we decay the
learning rate over the course of training.

We train this flow model for the Schwinger model at
criticality and compare the performance of flow-based
MCMC using this model against that of HMC. At finite
lattice spacing, a diverging correlation length is realized by
tuning k to its critical value, resulting in a vanishing
renormalized fermion mass. To achieve this, we take f =
2.0 and x = 0.276, which correspond to the near-critical
parameters found in Ref. [47]. We use a square lattice of
extent L = 16. Details of the architecture, training scheme,
and HMC parameters are in the Supplemental Material [55].

III. ADVANTAGES OF FLOW-BASED SAMPLING

A clear illustration of the advantages of flow-based
sampling for the Schwinger model at criticality is given
in Fig. 1, which compares estimates of the chiral con-
densate from HMC with those from flow-based MCMC.
This quantity

() = TeD7 U 3)

is a simple fermionic observable whose value is correlated
with the topological sectors and is therefore sensitive to
freezing. We quantify uncertainties using the integrated
autocorrelation time with the “gamma method” [56] and
compute the baseline result using an augmented version of
HMC that efficiently samples topological sectors. Clearly,
the single frozen HMC stream yields estimates that are
manifestly inconsistent with the baseline result, indicating
severely underestimated uncertainties even at very large
sample sizes, N ~ 10°. The dataset of samples from six
independent HMC streams can incorporate information
from multiple topological sectors even in the presence of
freezing. However, as the figure shows, this estimate is still
biased for N ~ 10° samples with incorrect uncertainties
deceptively scaling as 1/v/N. The estimate becomes
consistent with the ground truth only when N > 10°.
The uncertainty, however, catastrophically increases—a
clear indication of an ergodicity problem. This analysis
suggests that affordable HMC stream lengths may not be
sufficient to diagnose bias. By contrast, flow-based results
converge smoothly to the baseline value, with errors scaling
as 1/ V/N.

Figure 2 provides a more direct illustration of freezing in
the Monte Carlo histories of topological quantities.
The topological sectors of the Schwinger model are
distinguished by the integer-valued topological charge.
A common discretization is [42]

0= %Z:Im log P(x), (4)
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FIG. 2. Monte Carlo history of the topological charge, Q (top),
and the sign of the real part of the determinant of the Dirac
operator, ¢ (bottom). Results shown are based on three different
streams of configurations: two HMC streams (red and gray) and a
stream from our flow model (blue). In HMC, Q exhibits ultra-
violet fluctuations associated with discretization effects, but o
rarely changes—an indication that true tunneling events between
sectors are infrequent. Thus the HMC streams show clear
evidence of topological freezing, while flow-based MCMC mixes
rapidly.
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where the imaginary part of the complex logarithm is
restricted to (—z, z]. Due to lattice artifacts, this observable
fluctuates even when the topological sector is fixed.
A better-suited observable to identify true tunneling events
was proposed in Ref. [47]:

o = sign(Re det D). (5)

The value of o is positive (negative) for even (odd)
topological sectors, and changes in its value are correlated
with tunneling events.

Results for these observables based on two Markov chains
generated with HMC (with different random number seeds)
and one with flow-based sampling are illustrated in Fig. 2. In
the first HMC stream, Q appears to fluctuate without any
evidence of freezing. However, o is completely frozen for all
samples shown, implying that these fluctuations arise from
discretization effects and do not correspond to tunneling
events between topological sectors. In the second HMC
stream, we see an abrupt change in the behavior of Q. This
coincides with a change in ¢, confirming that a true tunneling
event has occurred. By contrast, flow-based sampling exhib-
its rapid fluctuation in both Q and ¢, demonstrating sampling
which rapidly mixes topological sectors.

A fair and comprehensive comparison of the costs of
HMC and flow-based MCMC requires quantifying three
factors for each: setup costs, the raw computational cost of
a sampling step, and the sampling efficiency (i.e., the
degree of autocorrelation). Setup costs—predominantly,
equilibration for HMC and training for flows—are par-
ticularly difficult to compare in this case. Full equilibration
of HMC requires observing and discarding many tunneling
events, which occur stochastically, while training costs for
the flow-based approach may vary over orders of magni-
tude depending on the training scheme. Raw computational
costs may be measured directly, but depend strongly on
implementation details. On the same GPU hardware, we
find that flow-based MCMC steps are ~10 times less
expensive than HMC trajectories, due to the frequent
inversions of the Dirac operator in HMC. However, there
is room for optimization in both cases.

Nevertheless, disregarding setup and raw computational
costs, an approximate comparison of sampling efficiency is
sufficient to show the advantage of flow-based sampling
over HMC. Each algorithm exhibits some characteristic
time between tunneling events; a chain with many times
that number of steps will be required to incorporate
information from all topological sectors with appropriate
weights. For these HMC parameters, we find tunneling
events are separated by ~20 k trajectories on average.
Meanwhile, sampling with our flow model, the topological
sector changes every ~6 steps on average. Thus, for this
model at the parameters investigated, we estimate that the
advantage in sampling efficiency of flow-based MCMC
over HMC is more than three orders of magnitude.

IV. CONCLUSION AND OUTLOOK

In this paper, we demonstrate for the first time that
flow-based sampling can be applied to lattice gauge
theories with fermion content at criticality. Specifically,
we have developed an architecture that can successfully
model long-range correlations in the Schwinger model at
vanishing renormalized fermion mass. The resulting flow-
based sampler does not suffer from topological freezing at
these parameters and thus outperforms HMC by orders of
magnitude. These results represent an important milestone
in first-principles calculations in gauge field theories with
fermions, such as QCD, using provably exact machine
learning.

Importantly, the flow models developed in this work—
and in particular, their features which allow long-range
correlations to be modeled—may serve as an “engine” to
improve a much broader class of sampling algorithms. For
example, flow-based MCMC updates may be interleaved
with steps of HMC [16] or other MCMC algorithms [57].
Such composite algorithms may provide improved sam-
pling over either method alone. Furthermore, our technical
advances can be adapted for more general MCMC
schemes, e.g., generalizations of the HMC algorithm
[17,18], stochastic normalizing flows [58—60], or hierar-
chical multilevel MCMC schemes [19].

Challenges remain on the road to large-scale applica-
tions, such as state-of-the-art QCD calculations. The
sampling approach here employs exact evaluation of the
fermion determinant, but more scalable approaches will be
needed for larger volumes and theories in higher dimen-
sions; extending the machine-learned stochastic determi-
nant estimators of Ref. [14] to lattice gauge theories
presents a promising opportunity. If the success demon-
strated here for the Schwinger model can be extended to
other theories, and in particular at scale, it will have
widespread impact across nuclear and particle physics,
as well as in condensed matter applications.
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