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We present a calculation of the proton momentum and angular momentum decompositions using overlap
fermions on a 2þ 1-flavor RBC/UKQCD domain-wall lattice at 0.143 fm with a pion mass of 171 MeV
which is close to the physical one. A complete determination of the momentum and angular momentum
fractions carried by up, down, strange, and glue inside the proton has been done with valence pion masses
varying from 171 to 391 MeV. We have utilized fast Fourier transform on the stochastic-sandwich method
for connected-insertion parts and the cluster-decomposition error reduction technique technique for
disconnected-insertion parts has been used to reduce statistical errors. The full nonperturbative
renormalization and mixing between the quark and glue operators are carried out. The final results are
normalized with the momentum and angular momentum sum rules and reported at the physical valence
pion mass at MSðμ ¼ 2 GeVÞ. The renormalized momentum fractions for the quarks and glue are hxiq ¼
0.491ð20Þð23Þ and hxig ¼ 0.509ð20Þð23Þ, respectively, and the renormalized total angular momentum
fractions for quarks and glue are 2Jq ¼ 0.539ð22Þð44Þ and 2Jg ¼ 0.461ð22Þð44Þ, respectively. The quark
spin fraction is Σ ¼ 0.405ð25Þð37Þ from our previous work and the quark orbital angular momentum
fraction is deduced from 2Lq ¼ 2Jq − Σ to be 0.134(22)(44).

DOI: 10.1103/PhysRevD.106.014512

I. INTRODUCTION

A quantitative understanding of the proton spin in terms of
its fundamental quark and gluon constituents is an important
and challenging question of hadron physics. Experiments
using polarized deep inelastic lepton-nucleon scattering
(DIS) processes show that the total helicity contribution
from the quarks is just about 25%–30% [1–8] of the proton
spin. The recent analyses [6,9] of the high-statistics 2009

STAR [10] and PHENIX [11] experiments at the Relativistic
Heavy Ion Collider (RHIC) showed evidence of nonzero
glue helicity in the proton.
Lattice QCD provides the ab initio nonperturbative

framework to calculate the spin and momentum moments
of quarks and gluons constituents inside the proton directly
from the QCD action. The intrinsic spin carried by each
quark flavor was first studied by χQCD [12] in the quenched
approximation. Followup calculations with dynamical fer-
mions were carried out on multiple lattice spacings and
pion masses by χQCD [13], Extended Twisted Mass
Collaboration (ETMC) [14,15], and PNDME [16], and they
have provided results consistent with experiment with
Δu ¼ 0.777ð25Þð30Þ, Δd ¼ −0.438ð18Þð30Þ, and Δs ¼
−0.053ð8Þ as averaged by the Flavour Lattice Averaging
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Group (FLAG) [17]. It is worth noting that the current
prediction of Δs from lattice QCD is more precise than
the phenomenological determinations. The gluon spin was
determined in Ref. [18] to be 0.251(47)(16) at the physical
pion mass in the MS scheme at μ2 ¼ 10 GeV2. We further
note that the anomalous Ward identity (AWI) was explicitly
verified with the overlap fermion which has chiral symmetry
[13]. The smallness of the quark spin contribution to the
proton spin had been the major source of mystification in the
“proton spin crisis.” It is now understood that it is due to
the fact that the disconnected insertion is unexpectedly large
and negative which reduces the positive contribution from
the connected insertion [13]. In order to address the angular
momentum fractions, a first attempt to fully decompose the
proton spin was carried out by the χQCD Collaboration in
2013 [19] in the quenched approximation and a lot of
progress has been made with dynamical fermions for
Nf ¼ 2 [15], Nf ¼ 2þ 1þ 1 [20], and one preliminary
Nf ¼ 2þ 1 result with complete nonperturbative renorm-
alization, mixing and normalization [21].
In this paper, we use the nucleon matrix element of the

Belinfante energy-momentum tensor (EMT) to determine
the momentum and angular momentum fractions of the up,
down, strange, and glue constituents of the nucleon. The
quark orbital angular momentum can be obtained by
subtracting the spin component from the total quark angular
momentum. Overlap fermions are used on a 323 × 64 2þ 1-
flavor domain-wall fermion lattice at 0.143 fm with a pion
mass of 171 MeV which is close to the physical one. With a
multimass inverter, we are able to simulate several valence
pion masses and extrapolate the results to the physical pion
mass. We have utilized fast Fourier transform (FFT) on the
stochastic-sandwich method for connected-insertion parts
which enabled us to simulate O(100) combinations of the
initial and final nucleon momenta in the three-point function
(3pt) contraction. With the use of the cluster-decomposition
error reduction (CDER) technique [22], the statistical errors
for all disconnected-insertion parts are greatly reduced. Since
the EMT of each parton species is not separately conserved,
we summarize the final momentum and angular momentum
fractions by considering nonperturbative renormalization
and mixing at MSðμ ¼ 2 GeVÞ and use the momentum
and angular momentum conservation sum rules to normalize
them. The numerical approach of this work is based on
Ref. [23] with major improvements on the disconnected-
insertion parts.
The remaining sections of the paper are organized as

follows: The basic formalism is provided in Sec. II. In
Sec. III, we present the numerical details, such as details of
momentum projection on grid source and FFT on stochas-
tic-sandwich method in Sec. III A; discussions of CDER
fits and systematic estimations are in Sec. III B; and a short
description of the z-expansion fit is in Sec. III C. The details
of the 3pt fits and our final results are presented in Sec. IV.
A brief summary is given in Sec. V.

II. BASIC FORMALISM

The nucleon matrix element of the Belinfante EMT can
be delineated by four gravitational form factors (GFFs)
[24–27] based on their associated spinor structures as

hp0; s0jT fμνgq;gjp; si

¼ 1

2
ūðp0; s0Þ

�
T1ðq2Þðγμp̄ν þ γνp̄μÞ

þ 1

2m
T2ðq2Þðiqαðp̄μσνα þ p̄νσμαÞÞ

þDðq2Þ q
μqν − ημνq2

M
þ C̄ðq2ÞMημν

�
q;g
uðp; sÞ; ð1Þ

where jp; si is the nucleon initial state with momentum p
and spin s; hp0; s0j is the nucleon final state with momentum
p0 and spin s; ū and u are the final and initial nucleon
spinors; q ¼ p0 − p is the momentum transfer; p̄ ¼ ðp0 þ
pÞ=2 is the averaged initial and final momentum; and T1,
T2, D, and C̄ are the four gravitational form factors. At the
q2 → 0 limit, one obtains [26]

Jq;g ¼ 1

2
½T1ð0Þ þ T2ð0Þ�q;g; hxiq;g ¼ T1ð0Þq;g; ð2Þ

in which Jq;g is the total angular momentum fraction for
quarks and glue, respectively, and hxiq;g is the second
moment of the PDF and is the momentum fraction of the
quarks and glue. We will focus on T 4i which is sufficient
for the evaluation of T1ð0Þ and T1ð0Þ þ T2ð0Þ. Following
from the conservation of EMT, the momentum and angular
momentum are conserved with sum rules

hxiq þ hxig ¼ T1ð0Þq þ T1ð0Þg ¼ 1;

Jq þ Jg ¼ 1

2
f½T1ð0Þq þ T2ð0Þq� þ ½T1ð0Þ þ T2ð0Þ�gg

¼ 1

2
: ð3Þ

One implication of these two sum rules is that the sum of
the T2ð0Þ’s for the quarks and gluons is zero [28], that is,

T2ð0Þq þ T2ð0Þg ¼ 0: ð4Þ

The vanishing of total T2ð0Þ, the anomalous gravitomag-
netic moment, in the context of a spin-1=2 particle was first
derived classically from the post-Newtonian manifestation
of the equivalence principle [24]. More recently, this has
been proven [30] for composite systems from the light-
cone Fock space representation. C̄ð0Þ is equal to the spatial
diagonal part of the stress EMT and is the pressure of
the system [31,32]. Due to the conservation of EMT, the
total pressure is zero, i.e., C̄qð0Þ þ C̄gð0Þ ¼ 0. This has
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implication on the confinement from the trace anomaly of
the EMT [32].

A. Quark and gluon operators

The Euclidean quark EMT component T qðEÞ
4i can be

written as

T qðEÞ
4i ¼ð−1Þ i

4

X
f

ψ̄f½γ4D⃗iþγiD⃗4−γ4D⃖i−γiD⃖4�ψf: ð5Þ

The left and right gauge covariant derivatives on the lattice
are

D⃗μψðxÞ ¼
1

2a
½UμðxÞψðxþ aμÞ −U†

μðx − aμÞψðx − aμÞ�;

ψ̄ðxÞD⃖μ ¼
1

2a
½ψ̄ðxþ aμÞU†

μðxÞ − ψ̄ðx − aμÞU†
μðx − aμÞ�;

ð6Þ

with each ψ being a quark field operator on the lattice
and each U a gauge link. The Euclidean gluon EMT

component T gðEÞ
4i is

T gðEÞ
4i ¼ ðþiÞ

�
−
1

2

X3
k¼1

2Trcolor½G4kGki þ GikGk4�
�
; ð7Þ

in which Gμν is the Euclidean field-strength tensor

GðEÞ
μν ðxÞ ¼ 1

8
ðPμνðxÞ − P†

μνðxÞÞ; ð8Þ

with Pμν being the “cloverleaf” link operator

Pμν ¼ UμðxÞUνðxþ μÞU†
μðxþ νÞU†

νðxÞ
þ UνðxÞU†

μðx − μþ νÞU†
νðx − μÞUμðx − μÞ

þ U†
μðx − μÞU†

νðx − μ − νÞUμðx − μ − νÞUνðx − νÞ
þ U†

νðx − νÞUμðx − νÞUνðx − νþ μÞU†
μðxÞ ð9Þ

which is built from the hypercubic (HYP) smeared gauge
links. The difference between the bare matrix elements and
the HYP-smeared matrix elements will be compensated by
the nonperturbative renormalization procedure [33]. More
details of our convention of gamma matrices and operators
can be found in Ref. [19].

B. Three-point correlation functions

The EMT matrix element can be extracted from the
3pt along with the associated two-point correlation function
(2pt) as

GNN
αβ ðp⃗; tÞ ¼

X
x⃗

e−ip⃗·x⃗h0jT½χαðx⃗; tÞχ̄βð0⃗; 0Þ�j0i; ð10Þ

with χαðxÞ ¼ ϵabcuðxÞaα½uðxÞbC̃dðxÞc� the nucleon interpo-
lation field [34] and C≡ γ2γ4 the charge conjugation
operator with C̃ ¼ Cγ5. In the t ≫ 1 limit, the unpolarized
nucleon 2pt C2ptðp⃗; tÞ is

C2ptðp⃗; tÞ≡ Tr½Γ0GNNðp⃗; tÞ�

⟶
t≫1 Z2

p

ðLaÞ3
Ep þm

Ep
e−Epðt−t0Þ þ Ae−E

1
pðt−t0Þ; ð11Þ

in which Γ0 ¼ Pþ ¼ 1þγ4
2

is the unpolarized projection for
the nucleon, Z2

p is the spectral weight,m is the nucleon rest
mass, Ep and E1

p are the ground-state energy and first
excited-state energy, respectively, and A is the spectral
weight associated with the excited-state contamination.
The 3pt of EMT is

G
T q;g

4i
αβ ðtf ; τ; p⃗f ; p⃗iÞ ¼

X
x⃗f ;z⃗

e−ip⃗f ·ðx⃗f−z⃗Þeip⃗i ·z⃗

× h0jT½χαðx⃗f ; tfÞT q;g
4i ðz⃗; τÞχ̄βð0⃗; 0Þ�j0i;

ð12Þ

in which z ¼ fz⃗; τg is the current position, xf ¼ fx⃗f ; tfg is
the sink position, p⃗f is the momentum of the final nucleon,
p⃗i is the momentum of the initial nucleon, and the
momentum transfer is q⃗ ¼ p⃗f − p⃗i. With the unpolar-
ized/polarized projection for the nucleon, we define C3pt as

C4i
3pt;Γα

ðtf ; τ; p⃗f ; p⃗iÞ≡ Tr½ΓαGT q;g
4i ðtf ; τ; p⃗f ; p⃗iÞ�; ð13Þ

with α ∈ f0; 1; 2; 3g, i ∈ f1; 2; 3g, Γ0 ¼ 1þγ4
2

the unpolar-
ized projection for nucleon and Γk ¼ iΓ0γ5γk the polarized
projections. In order to extract Ti, we take the ratios of 3pt
and 2pt functions,

R4i
Γα
ðtf ;τ; p⃗f ; p⃗iÞ≡

C4i
3pt;Γα

ðtf ;τ; p⃗f ; p⃗iÞ
C2ptðp⃗f ; tfÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðp⃗i; tf − τÞC2ptðp⃗f ;τÞC2ptðp⃗f ; tfÞ
C2ptðp⃗f ; tf − τÞC2ptðp⃗i;τÞC2ptðp⃗i; tfÞ

s

⟶
tf≫1

tf−t≫1

a1T1ðQ2Þþa2T2ðQ2Þþa3DðQ2Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0 ðEp0 þmÞEpðEpþmÞp ;

ð14Þ
where the ai are known coefficients which depend on the
momentum and energy of the nucleon, andQ2 ¼ ðp0 − pÞ2
is the momentum transfer squared.
In this paper, we focus on the evaluation of the T1 and

½T1 þ T2� form factors with T 4i by choosing specific
momentum and polarization projection settings. We set
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the initial and final momentum of the nucleon to be the
same to target the T1 form factor,

R4i
Γ0
ðtf ; τ; p⃗; p⃗Þ ¼ piT1ð0Þ; ð15Þ

with i ∈ f1; 2; 3g. The following settings are used to
calculate the ½T1 þ T2� form factor:

R4i
Γj
ðtf ; t; p⃗; 0⃗Þ ¼

−i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s
ϵi;j;kpk½T1 þ T2�ðQ2Þ;

R4i
Γj
ðtf ; t; 0⃗; p⃗Þ ¼

−i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2Ep

s
ϵi;j;kpk½T1 þ T2�ðQ2Þ;

R4i
Γj
ðtf ; t; p⃗;−p⃗Þ ¼

−i
2
ϵi;j;kpk½T1 þ T2�ðQ2Þ; ð16Þ

in which the first two momentum settings have either the
initial or the final momentum equal to 0⃗, while the third
case sets the initial and final momentum of the nucleon in
opposite directions which results in larger momentum
transfers.
Using Wick contractions, the evaluation of 3pt in

Eq. (12) on the lattice gives two topologically distinct
contributions: connected insertions (CI) and disconnected
insertions (DI), which are shown in Fig. 1. In the case of CI,
the ψ=ψ̄ from current T 4i is contracted with the ψ̄=ψ from
the source/sink nucleon interpolating field, whereas, in the
case of DI, the ψ=ψ̄ from the current T 4i is self-contracted
at current position z to form a loop. For the DI case, the
gauge-averaged 3pt can be written as

C4i
3pt;Γα

ðtf ; τ; p⃗f ; p⃗iÞDI ¼
X
z⃗;x⃗f

e−ip⃗f ·x⃗feiq⃗·z⃗ × h0jTr½Γαχðx⃗f ; tfÞχ̄ð0⃗; 0Þ� × ½T 4iðz⃗; τÞ�j0i

¼ hTr½ΓαGNNðp⃗f ; tf ;UÞ� × L4i½τ; q⃗;U�i − hTr½ΓαGNNðp⃗f ; tf ;UÞ�i × hL4i½τ; q⃗;U�i; ð17Þ

in which h� � �i denotes the gauge average andGNNðp⃗; t;UÞ is the nucleon propagator under gauge fieldU and L4i½τ; q⃗;U� is
the current loop of quark/gluon. We have subtracted the uncorrelated part of the loop and of the nucleon propagator. The
quark loop L ¼ L4i

f ½t; q⃗;U� is constructed from the propagator of quark flavor f as

L4i
f ½t; q⃗;U� ¼ i

8a

X
z⃗

eiq⃗·z⃗TrfD−1
f ðzþ ai; z;UÞγ4UiðzÞ −D−1

f ðz − ai; z;UÞγ4U†
i ðz − aiÞ

þD−1
f ðz; z − ai;UÞγ4Uiðz − aiÞ −D−1

f ðz; zþ ai;UÞγ4U†
i ðzÞ

þD−1
f ðzþ a4; z;UÞγiU4ðzÞ −D−1

f ðz − a4; z;UÞγiU†
4ðz − a4Þ

þD−1
f ðz; z − a4;UÞγiU4ðz − a4Þ −D−1

f ðz; zþ a4;UÞγiU†
4ðzÞg; ð18Þ

in which the trace Tr is the trace over color and spin, and D−1
f ðzþ aν; z;UÞ is the quark propagator from point z to point

zþ aν under gauge field U with flavor f. In the case of the gluon 3pt, only DI contributes as in Eq. (17) with the current
loop L ¼ L4i

g ½t; q⃗;U� as

L4i
g ½t; q⃗;U� ¼ ð−iÞ

X
z⃗

eiq⃗·z⃗ ×

�X3
k¼1

Trcolor½G4kðzÞGkiðzÞ þ GikðzÞGk4ðzÞ�
�
; ð19Þ

with the field-strength tensor Gμν defined in Eq. (8).

(a) (b)

FIG. 1. Illustration of the nucleon 3pts with (a) connected insertions (CI) and (b) disconnected insertions (DI).
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C. Operator renormalization, mixings and
normalization

Although the total form factors T1, T2,D, and C̄, such as
TðQ2Þ≡P

i¼u;d;…;g T
iðQ2Þ, are renormalization and scale

invariant, the quark and gluon pieces are not separately
scale independent and conserved. We renormalize our
results at MSðμ ¼ 2 GeVÞ with a nonperturbative renorm-
alization procedure. Since we only consider the operator
T 4i in this paper, a purely multiplicative and linear mixing
renormalization procedure is involved for the T1, T2, and
D form factors and their linear combinations such as
T1ðQ2Þ þ T2ðQ2Þ, namely,

Tu=d;R
CI ¼ ZMS

QQðμÞTu=d;L
CI ;

Tu=d=s
DI ¼ ZMS

QQðμÞTu=d=s;L
DI þ δZMS

QQðμÞ
X

q¼u;d;s

h
Tq;L
CI þ Tq;L

DI

i

þ ZMS
QGðμÞTg;L

DI ;

Tg;R
DI ¼ ZMS

GQðμÞ
X

q¼u;d;s

h
Tq;L
CI þ Tq;L

DI

i
þ ZMS

GGT
g;L
DI ; ð20Þ

in which Tq=g;L
CI and Tq=g;L

DI are the CI and DI bare form
factors under the lattice regularization, respectively.
Reference [35] has done a complete calculation of the
nonperturbative renormalization constants on the 32ID
lattice which are shown in Table I. More precisely, we
calculated the renormalization and mixing coefficients of
both the quark and glue operators under the regularization
independent momentum subtraction scheme (RI/MOM)
scheme nonperturbatively, and then used the perturbative
matching (3-loop for the quark operator renormalization
and 1-loop for the other cases) to convert the RI/MOM
renormalization/mixing coefficients to those under the MS
scheme at 2 GeV. It turns out that the quantum corrections
of the glue operator with either quark or gluon external state
under the RI/MOM scheme are at a few-percent level with
the dimensional regularization used by the MS scheme, but
they are sizeable with the lattice regularization we used.
Particularly, the value of ZGQ is 0.57 when the lattice
spacing is as large as 0.14 fm. Thus we would like to
emphasize here that the nonperturbative renormalization
and mixing calculation is essential to obtain reliable
momentum and angular momentum fraction results.
Since there are no conserved EMT operators on the

lattice due to the lack of infinitesimal translational and
rotational symmetries, we have to normalize the final
results with Eq. (3). A way of normalizing the momentum

and angular momentum fractions is proposed in Ref. [19],
in which the normalization constants for quarks and glue
Nq;L and Ng;L satisfy

Nq;Lhxiq;R þ Ng;Lhxig;R ¼ 1;

Nq;LJq;R þ Ng;LJg;R ¼ 1

2
; ð21Þ

and the normalized quantities are given by

hxiq ¼ Nq;Lhxiq;R; hxig ¼ Ng;Lhxig;R;
Jq ¼ Nq;LJq;R; Jg ¼ Ng;LJg;R: ð22Þ

By solving Eq. (21) we get Nq;L and Ng;L as

Nq;L ¼ −2Jg;R þ hxig;R
2Jq;Rhxig;R − 2Jg;Rhxiq;R ¼ −Tg;R

2

Tq;R
2 Tg;R

1 − Tg;R
2 Tq;R

1

;

Ng;L ¼ 2Jq;R − hxiq;R
2Jq;Rhxig;R − 2Jg;Rhxiq;R ¼ Tq;R

2

Tq;R
2 Tg;R

1 − Tg;R
2 Tq;R

1

;

ð23Þ

in which Tq=g;R
1 and Tq=g;R

2 are the nucleon form factors
from the local current after renormalization. However, the
T2 form factors, which are required in the numerator of
the normalization, are small and have almost no signal
under our current statistics. Given the current situation, we
assume NL ≡ Nq;L ¼ Ng;L and use joint fits to get NL from
the momentum and angular momentum fractions sum rules

NLhxiq;RþNLhxig;R¼1; NLJq;RþNLJg;R¼1

2
: ð24Þ

Note that when the results at several lattice spacings
are available, one can compare the continuum limits of the
quark and gluon momentum and angular momentum
fractions with or without the above normalization, and
take the difference as a systematic uncertainty.

III. NUMERICAL DETAILS

We use overlap fermions on a 323 × 64 ensemble (32ID)
of HYP smeared 2þ 1-flavor domain-wall fermion con-
figurations at a ¼ 0.143 fm and mπ ¼ 172 MeV, gener-
ated by RBC/UKQCD with Iwasaki plus the dislocation
suppressing determinant ratio (DSDR) gauge action
(labeled with ID) [36]. The effective quark propagator of
the massive overlap fermion is the inverse of the operator
ðDc þmÞ [37,38], where Dc ¼ Dov=ð1 −Dov=ð2ρÞÞ is
chiral, i.e., fDc; γ5g ¼ 0 [39]. In the expression of Dc,
the overlap Dirac operatorDov ¼ ρð1þ γ5ϵðγ5Dwð−ρÞÞÞ is
defined through the sign function of γ5Dwð−ρÞ, where
Dwð−ρÞ is the Wilson fermion operator with ρ ¼ −1.5.
A multimass inverter is used to calculate the propagators
on 200 gauge configurations with 6 valence quark masses
which correspond to valence pion masses, 173.76(17),

TABLE I. The nonperturbative renormalization and mixing
constants on the 32ID lattice.

Lattice ZQQ δZQQ ZQG ZGQ ZGG

32ID 1.25(0)(2) 0.018(2)(2) 0.017(17) 0.57(3)(6) 1.29(5)(9)
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232.61(17), 261.34(17), 287.11(17), 325.47(17), and
391.11(17) MeV. Gauge invariant box smearing [40,41]
with box half size of 1.0 fm is applied to have a better
overlap with the nucleon ground state. On each of the
configurations, three source propagators D−1ðyjGÞ are
computed, with G the smeared Z3-noise grid source [42]
with f2; 2; 2; 2g equally spaced points in the fx; y; z; tg
directions, respectively.
For the CI, we use the stochastic-sandwichmethod [13,43]

with FFT described below in Sec. III A 2 to calculate the 3pt.
Low-mode substitution (LMS) on a grid source has been used
to improve signals of the nucleon. In order to estimate the
propagators between current positions and sink positions (at
time slice t0), we generate nnoi sets of high-mode propagators
D−1

H;noiðz; ηjÞ defined in the following Eq. (37). Four source-
sink separations t0¼7;8;9;10ðaÞ¼1.0;1.14;1.29;1.43ðfmÞ
are used to control the excited-state contamination with
nnoi ¼ 2; 3; 4; 5, respectively.
For the DI, we use smeared Z3-noise grids to calculate

the nucleon correlation functions with the spatial location
of the grid chosen randomly on different source time slices.
And we repeat the calculation for 16 different source time
slices on each configuration to have good statistics.
The gluon operator L4i

g ½τ; z⃗;U� is constructed on all the
current positions z to have full statistics. The quark loop
L4i
f ½τ; q⃗;U� with flavor f is calculated based on the point

source propagatorsD−1
f ðyjzÞwith y ¼ z� ax; ay or az. The

low-mode part of this propagator is calculated exactly using
the 900 pairs of low-lying eigenvectors of the overlap Dirac
operator. The high-mode part is estimated with 8 sets of a
4-4-4-2 space-time Z4-noise grid with even-odd dilution.
Each set has a different spatial grid location and an
additional time shift. The 6 valence quark masses used
in the construction of the quark loops vary from light quark
masses to the strange quark region. For the strange quark
DI contributions, we use bare valence strange quark mass
msa ¼ 0.08500 with the nonperturbative mass renormali-
zation constant [44] Zm ¼ 0.8094ð26Þ which gives ms ¼
94.83ð55Þ MeV. This is consistent with our global-fit value
101(3)(6) MeV at 2 GeV in the MS scheme calculated
in [45]. References [46–48] contain more details regarding
the DI calculation.
The total number of propagators we generated is 3 (grid

source propagators) þ14 (sink noises propagators) þ16
(grid source propagators for the nucleon correlation func-
tions)þ8 (propagators for quark loops)¼ 41 on each of the
200 configurations.

A. Connected insertions

1. Momentum projection on grid source

In order to have good signals for the rest of the nucleon
correlation functions, we have developed the grid source
with Z3 noises [42] along with the low-mode substitution

(LMS) method [13,41,43,46,49]. In addition, for 2pts and
3pts with finite source momenta, we have developed the
use of mixed momenta [13,43] to accommodate Z3 noise
grid source and momenta. However, such a mixed-
momenta method has worse signals at certain momenta
and higher computational cost. In this section, we will
describe our new way of applying momentum projection on
a grid source with LMS.
In order to introduce the modification of LMS for source

momentum projection, we start with the fact that contribu-
tions from high-mode, low-mode, and their mixture parts of
the correlation functions can be measured independently
using different source positions and statistics for each
contribution. This has been applied to meson [50–55] and
nucleon [56] correlation functions to improve signals. More
specifically, the quark D−1ðyjxÞ propagator from x to y can
be split into its high-mode and low-mode parts defined as

D−1ðyjxÞ ¼ D−1
L ðyjxÞ þD−1

H ðyjxÞ;

D−1
L ðyjxÞ ¼

X
λi≤λc

1

λi þm
viðyÞv†i ðxÞ; ð25Þ

with λi the low lying overlap eigenvalue and vi the
eigenvector of the ith eigenmode of Dc. λc, the highest
eigenvalue in LMS, is in the range of twice the pion mass
which is much larger than the quark massmwith the number
of eigenmodes nv ∼ 1800 on 32ID. D−1

H ðyjxÞ is calculated
with deflation of the overlap operator using low-mode
eigenvectors vi. Consider the nucleon correlation function
from a point source x ¼ fx⃗; t0g with finite momentum p⃗,

CNðp⃗; tÞ ¼
X
y

e−ip⃗·ðy⃗−x⃗ÞhχðyÞχ̄ðxÞi; ð26Þ

with y ¼ fy⃗; t1g and t ¼ t1 − t0. This nucleon correlation
function can be split into four contributions as

CNðp⃗; tÞ ¼ CN;LLLðp⃗; tÞ þ CN;LLHðp⃗; tÞ þ CN;LHHðp⃗; tÞ
þ CN;HHHðp⃗; tÞ ð27Þ

in which LðH) denotes the low-mode (high-mode) of the
propagators involved in contractions. Since the ensemble
average of each contribution is translationally invariant, we
can measure each piece independently. We can focus on
increasing the signal-to-noise ratio on the most noisy parts
with a different number of sources/statistics for each part.
Combining this idea with LMS under grid source, we first
calculate the first three parts with grid source propagator.
The random Z3 grid source used in LMS is defined as

Gðw⃗0Þ≡
Xn
i

ηiVðw⃗iÞ;

w⃗i ∈ ðx0 þmxΔx; y0 þmyΔy; z0 þmzΔzÞ ð28Þ
where Vðw⃗iÞ is the smeared source centered at w⃗i, ηi is a Z3

noise on each of the grid points w⃗i, w⃗0 ¼ ðx0; y0; z0Þ is the
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starting point of the grid, Δx;y;z ¼ L=2 or L=3 or L=4 � � � is
the offset in the spatial direction respectively, mx;y;z ∈
f0; 1;…; Ls=Δx;y;zg is the offset number in each direction

for each grid point, and n ¼ L3
s

ΔxΔyΔz
is the number of grid

points of the grid source. As the Dirac operator is a linear
operator, the grid source propagator can be written as

D−1ðyjGðw⃗0ÞÞ ¼
Xn
i

ηiD−1ðyjw⃗iÞ

¼
Xn
i

ηiD−1
L ðyjw⃗iÞ þD−1

H ðyjGðw⃗0ÞÞ; ð29Þ

with D−1ðyjw⃗iÞ the propagator from each of the grid points
w⃗i and D−1

H ðyjGðw⃗0ÞÞ the high-mode part of the noise grid-
source propagator. As shown in Ref. [49], nucleon corre-
lation functions fromD−1ðyjGðw⃗0ÞÞ directly will have worse
signals and we can approach an intermediate propagator
coming from the grid source point w⃗i (noting that the high-
mode part is the full noise grid-source propagator) as

D−1
G ðyjw⃗iÞ ¼ ηiD−1

L ðyjw⃗iÞ þD−1
H ðyjGðw⃗0ÞÞ: ð30Þ

The partial nucleon correlation function constructed from
this propagator, but without the portion with all three quarks
in the H modes, is

CG;w⃗i
N ðp⃗; tÞ
¼

X
y

e−ip⃗·ðy⃗−w⃗iÞhCðD−1
G ðyjw⃗iÞ; D−1

G ðyjw⃗iÞ; D−1
G ðyjw⃗iÞÞ

− CðD−1
H ðyjGðw⃗0ÞÞ; D−1

H ðyjGðw⃗0ÞÞ; D−1
H ðyjGðw⃗0ÞÞÞi

ð31Þ

where h…i denotes the ensemble average and CðD−1;
D−1; D−1Þ denotes the nucleon contractions with three
propagators. Since the pure high-mode parts in Eq. (31)
will not give the correct phases for different momenta under
grid sources, we have subtracted them out from the
correlator. With gauge invariance and noise averaging
(hηiηjηkiZ3

¼ δi;jδj;k), it is easy to show that

CG;w⃗i
N ðp⃗; tÞ ¼ CN;LLLðp⃗; tÞ þ CN;LLHðp⃗; tÞ þ CN;LHHðp⃗; tÞ;

ð32Þ

which gives us the first three terms in Eq. (27). Furthermore,
we shall average the contributions from different w⃗i as
1
n

P
i C

G;w⃗i
N ðp⃗; tÞ to have better statistics. The remaining pure

high-mode part CHHH
N ðp⃗; tÞ of Eq. (27) could be calculated

with a point source high-mode propagator D−1
H ðyjxPÞ start-

ing from any position xP. In summary, the new method is

CG
Nðp⃗;tÞ¼

1

n

X
y

e−ip⃗·ðy⃗−w⃗iÞ
�X

i

½CðD−1
G ðyjw⃗iÞ;D−1

G ðyjw⃗iÞ;D−1
G ðyjw⃗iÞÞ−CðD−1

H ðyjGðw⃗0ÞÞ;D−1
H ðyjGðw⃗0ÞÞ;D−1

H ðyjGðw⃗0ÞÞÞ�
�

þ
X
y

e−ip⃗·ðy⃗−x⃗PÞhCðD−1
H ðyjxPÞ;D−1

H ðyjxPÞ;D−1
H ðyjxPÞÞi: ð33Þ

In this construction, the momentum projection for the source
need not be carried out at the propagator level. Instead, it is
implemented at the correlator level, which saves inversion
and contraction time for multiple momenta.

2. FFT on stochastic-sandwich method

In order to approach different current and sink momenta
combinations under the stochastic-sandwich method with

LMS [13,43], we utilize the fact that the low and high
modes for the propagator D−1ðzjxfÞ between the current
and sink can be well separated into multiplication of
functions of sink position xf and current position z. This
facilitates FFT usage on the momenta projection of p⃗f and
p⃗ on xf and z, respectively [57]. Such FFT on the
stochastic-sandwich method can be applied to the CI part
of nucleon 3pts

COu=d

CI;Γα
ðtf ; τ; p⃗f ; p⃗iÞ ¼

�X
x⃗f ;z⃗

e−ip⃗f ·x⃗feiq⃗·z⃗ × Tr½Γαχðx⃗f ; tfÞOu=dðzÞχ̄ð0⃗; 0Þ�
�

ð34Þ

which shares the same variables as in Eq. (12) and Eq. (13) andOu=dðzÞ is any local current for an up/down quark. We use a
point source at ð0⃗; 0Þ in the following instead of a grid source for illustrative purposes. Then the evaluation of the CI part of
Eq. (34) for the up/down quark part can be written as

COu=d

CI;Γα
ðtf ; τ; p⃗f ; p⃗iÞ ¼

X
x⃗f ;z⃗

e−ip⃗f ·x⃗feiq⃗·z⃗ × Tr½MOu=d

α ðxf j0ÞD−1
u=dðxf jzÞOu=dðzÞD−1

u=dðzj0Þ�: ð35Þ
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We can write MOd

α as

ðMOd

α Þbb0ββ0 ðyjxÞ ¼ ϵabcϵa0b0c0 ð½D−1
u ðyjxÞa0a�

ββ0
Tr½ΓαD−1

u ðyjxÞc0c� þ Tr½D−1
u ðyj0Þa0aΓαD−1

u ðyjxÞc0c�
ββ0
Þ; ð36Þ

with the quantity Q≡ ðC̃QC̃−1ÞT for a matrix Q defined in Dirac space and MOu

α ¼ MOu

1;α þMOu

2;α þMOu

3;α þMOu

4;α with

ðMOu

1;αÞaa
0

γγ0 ðyjxÞ ¼ ϵabcϵa0b0c0 ½D−1
d ðyj0Þb0b�

γγ0
Tr½ΓαD−1

u ðyj0Þc0c�;
ðMOu

2;αÞaa
0

γγ0 ðyjxÞ ¼ ϵabcϵa0b0c0 ½ΓαD−1
u ðyj0Þc0cD−1

d ðyj0Þb0b�
γγ0
;

ðMOu

3;αÞcc
0

γγ0 ðyjxÞ ¼ ϵabcϵa0b0c0Tr½D−1
d ðyj0Þb0bD−1

u ðyj0Þa0a�½Γα�γγ0 ;
ðMOu

4;αÞcc
0

γγ0 ðyjxÞ ¼ ϵabcϵa0b0c0 ½D−1
d ðyj0Þb0bD−1

u ðyj0Þa0aΓα�γγ0 :

The low-mode part of the propagator D−1ðxf jzÞ between
the current and sink is calculated exactly and its high-mode
part is calculated with the noise-estimated propagator
D−1

H;noiðz; ηjÞ as

D−1ðzjxfÞ ¼ D−1
L ðzjxfÞ þD−1

H ðzjxfÞ;

D−1
L ðzjxfÞ ¼

X
λi≤λc

1

λi þm
viðzÞv†i ðxfÞ;

D−1
H ðzjxfÞ ¼

1

nnoi

Xnnoi
j¼1

D−1
H;noiðz; ηjÞη†jðxfÞ; ð37Þ

in which ηjðxfÞ is a Z3 noise and nnoi is the number of
noises at the sink position xf . Then, we can decompose CCI
into factorized forms within the sums of the eigenmodes for
the low modes and the nnoi number of noises ηj for the high
modes,

COu=d

CI;Γα
¼

�X
λi≤λc

Tr

�
1

λi þm
GL;Ou=d

i ðq⃗; τÞFL;Ou=d

i;α ðp⃗f ; tfÞ
�

þ
Xnnoi
j¼1

1

nnoi
Tr½GH;Ou=d

j ðq⃗; τÞðFH;Ou=d

j;α ðp⃗f ; tfÞ�
�
;

ð38Þ

where

GL;Ou=d

i ðq⃗;τÞ¼
X
z⃗

eiq⃗·z⃗v†i ðzÞOu=dD−1ðzj0Þ;

FL;Ou=d

i;α ðp⃗f ;tfÞ¼
X
x⃗f

e−ip⃗f ·x⃗fMu=d
α ðxf j0ÞviðxfÞ;

GH;Ou=d

j ðq⃗;τÞ¼
X
z⃗

eiq⃗·z⃗γ5ðD−1
H;noiðz;ηjÞÞ†γ5Ou=dD−1ðzj0Þ;

FH;Ou=d

j;α ðp⃗f ;tfÞ¼
X
x⃗f

e−ip⃗f ·x⃗fMu=d
α ðxf j0ÞηðxfÞ; ð39Þ

in which we have defined D−1ðzj0Þ ¼ D−1
u ðzj0Þ ¼

D−1
d ðzj0Þ to be the light quark propagator, and used

D−1ðxf jzÞ ¼ γ5ðD−1ðzjxfÞÞ†γ5 for the high-mode propaga-
tor D−1

H;noiðz; ηjÞ. It is also straightforward to replace the

point source at ð0⃗; 0Þ with a grid source LMS described in
Sec. (III A 1).
With these implementations, we can have any combi-

nation of q⃗ and p⃗f without much additional cost. This
property is essential for EMT calculations as it enables us to
approach different parts of T μν which require different
nucleon kinematics. Also the averaging over all equivalent
momenta setups gives much higher statistics compared to
the traditional stochastic-sandwich method with similar
computational cost.

B. Disconnected insertions

We have applied the CDER technique [22] to have better control of the statistical uncertainties for the quark and glue DI
parts. The associated 3pts are rewritten as

CO
DI;Γα

ðtf ; τ; p⃗f ; p⃗i;RÞ ¼
� X

x⃗f ;jr⃗j<R
e−ip⃗f ·x⃗feiq⃗·ðx⃗fþr⃗ÞTr½Γαχðx⃗f ; tfÞOðx⃗f þ r⃗; τÞχðG⃗; 0Þ�

�
DI

¼
X

x⃗f ;jr⃗j<R
hTr½e−ip⃗f ·x⃗feiq⃗·ðx⃗fþr⃗ÞΓαGNNðxf ;GÞOðx⃗f þ r⃗; τÞ�is; ð40Þ
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with GNNðxf ;GÞ the grid source nucleon propagator with
LMS frompositionG≡ ðG⃗; 0Þ toxf ≡ ðx⃗f ; tfÞ. The cutoffR is
the distance between the current position and the sinkposition
and hOðzÞOðxfÞis≡hOðzÞOðxfÞi−hOðzÞihOðxfÞi is the
vacuum-subtracted correlation function. It is shown [58]
that, under the assumptions of translation invariance, stability
of the vacuum, existence of a lowest nonzero mass and local
commutativity, hOðzÞOðxfÞis satisfies

hOðzÞOðxfÞis ≤ Ar−
2
3e−Mr ð41Þ

for large enough spacelike distance r ¼ jz⃗ − x⃗f j, withM the
smallest nonzero inverse correlation length for the correlator
and A a constant. This exponential falloff in distance r is
known as the cluster decomposition theorem [58,59]. As
demonstrated in Ref. [22] and utilized in Ref. [13,33], the
signal of the summed correlation function in Eq. (40) for the
DI will saturate at some R which is larger than the corre-
sponding correlation length. But the noise will keep growing
as the two operators fluctuate independently due to the fact
that the variance of the two disconnected operators has a
vacuum insertion. Examples of the correlators in Eq. (40) as a
function of the current-sink separation r for the source-sink
separation 4 (in lattice unit) for the glue DI and strange quark
DI are shown in the left panels of Fig. 2.The correlators fall off
exponentially as expected and go to zero at around 1.5 fm. In

view of cluster decomposition behavior in Eq. (41), we plot
the effective massM as a function of distance r in the middle
panels of Fig. 2 and the fitted values ofM andA are shown in
the legend. We find that the glue and quark DI for T1ð0Þ and
½T1 þ T2� form factors have different correlation lengths
(1=M) and they are treated separately during CDER fits.
Let us first focus on the glue DI and the strange quark DI

for the case with momenta setup pi ¼ pf and q ¼ 0 which
gives T1ð0Þ. Constant fits have been done with different
rmin with fit range ½rmin; 4.0 fm�. The fit results are shown in
red points as a function of rmin in the right panels of Fig. 2
and we have chosen rmin ≥ rcut ¼ 1.5 fm. We note that the
fit errors for those rmin close to rcut are much smaller than
that of the total accumulated sum, the blue line at 4.0 fm.
The latter is the conventional approach with independent
sums of z⃗ and x⃗f . This is the essence of the CDER
technique. In order to estimate the systematic errors
from different fits, we use the Akaike information criterion
(AIC) [60] to average the fit results from different fit ranges
with a weighting factor

ωAIC ¼ exp

�
−
1

2
ðχ2 − 2ndofÞ

�
; ð42Þ

where ndof is the number of degrees of freedom. The
prediction of the central value is

FIG. 2. Example plots for glue (upper panels) and strange quark (lower panels) 3pts at tf ¼ 4, τ ¼ 2 with valence pion mass 174 MeV.
The left panels correspond to the correlation functions in Eq. (40) as a function of the current-sink separation r. The middle panels
correspond to the associated effective mass plots and the bands are the fit results using Eq. (41). The right panels correspond to the
accumulated correlation functions as a function of r. The red lines are fits with errors explained in the text. The gray band is the result of
AIC averages in Eq. (42).
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x̄ ¼
XP
i

wixi; wi ¼
ωAIC;iP
P
i ωAIC;i

; ð43Þ

with P the total number of fits and ωAIC;i the weight factor
for fit i. The errors will be propagated with Jackknife
resampling. The AIC averaged values are shown in gray
bands and given in legends in the right panels of Fig. 2.
Since we have gottenM and A from fitting the correlator,

we could try to estimate a residue by the sum of the
correlator after rcut as

Res ¼
Xr<rmax

r>rcut

Ar−
3
2e−Mr; ð44Þ

in which the sum is over discrete points of the 3D volume and
rmax ∼ 4 fm for the current lattice. For the glue DI, we get
Res ¼ 0.0053ð45Þwith rcut ¼ 1.5 fm which gives the upper
bound of the residue to be Resmax¼0.0053þ0.0045¼
0.0098. This is smaller than the AIC error 0.025. And for

the strange quarkDI, we get Res ¼ 0.00068ð95Þwhich gives
Resmax¼0.00068þ0.00095¼0.00163. This is also smaller
than the AIC error 0.0035.
We have gathered similar results for the glue DI and

strange quark DI for both T1 and ½T1 þ T2� (light quarks DI
have been omitted as they have similar behavior to the
strange quark DI) at different pion masses, source
momenta, and sink momenta in Fig. 3. The blue points
are the AIC averaged values and the red points are plotted
with the same central values as the blue points with error
bounds equal to Resmax. It can be seen that all of the
residues are much smaller than the AIC errors except for a
very few cases at small pion masses which are due to
unstable fits ofM and A. This confirms that our current way
of estimating systematics for CDER with AIC is reliable.

C. z-Expansion fit

In order to fit the ½T1 þ T2�ðQ2Þ form factor and extrapo-
late it to Q2 ¼ 0, we have done a model-independent z-
expansion [61] fit using the following equationwithkmax ≥ 2:

FIG. 3. Comparison of AIC averaged values and Resmax for ½T1�L and ½T1 þ T2�L of glue (upper panels) and strange quark (lower
panels) 3pts at tf ¼ 4, τ ¼ 2 at different valence pion masses. The different subplots correspond to different nucleon momenta p⃗2 for
½T1�L and different Q2 for ½T1 þ T2�L.
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TðQ2Þ ¼
Xkmax
k¼0

akzk

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð45Þ

whereTðQ2Þ represents a nucleon form factor such asT1,T2,
D and their linear combinations such as ½T1 þ T2�; t ¼ −Q2;
tcut ¼ 4m2

π correspond to the two-pion production threshold
with mπ ¼ 172 MeV chosen to be the sea pion mass; and t0
is chosen to be its “optimal” value topt0 ðQ2

maxÞ ¼ tcutð1 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p

Þ tominimize themaximumvalue of jzj,with
Q2

max the maximum Q2 under consideration. And we adopt
the Gaussian prior proposed in [61] with jak=a0jmax ¼ 5 [use
ak=a0 ¼ “0ð5Þ” (a Gaussian prior with central value 0 and
width 5) for all akðk > 1Þ in the fits].

IV. ANALYSIS AND RESULTS

A. Three-point correlation function fits

We adopt the two-state fit formula to fit the quark/gluon
ratio Rμν

Γα
ðtf ; τ; p⃗f ; p⃗iÞ in Eq. (16)

Rμν
Γα
ðtf ; τ; p⃗f ; p⃗iÞ ¼ Aþ B1e

−ΔEpf
ðtf−τÞ þ B2e

−ΔEpi
ðτÞ

þ B3e
−ΔEpi

ðτÞ−ΔEpf
ðtf−τÞ; ð46Þ

where A is the ground-state matrix element, the terms with
B1, B2, and B3 are the contributions from the excited-state

contamination, and ΔEp ¼ E1
p − Ep is the energy differ-

ence between the nucleon ground-state energy Ep and that
of the first excited-state E1

p. In order to stabilize the fit, we
use ΔEp from the fit of the 2pt as a prior for the 3pt fit with
ΔEp ∈ ½300; 800� MeV. The top panels of Fig. 4 show
sample plots for TL

1 ð0Þ for up quark CI, strange quark DI,
and glue components. We treat up and down quark DI
contributions to be the same since we have exact isospin
symmetry in the current simulation. We have used the
energy difference ΔE from 2pt to constrain our fits of
Eq. (46). The source-sink separations t0 ¼ 7, 8, 9, 10 and
t0 ¼ 4, 5, 6, 7, 8, 9 are used for CI and DI fits, respectively.
And 4 points are dropped (2 points close to the source t ¼ 0
and 2 points close to the sink tf ) for each separation. The
gray bands are the fitted results of TL

1 .
To check the convergence of the ground-state matrix

elements, we also calculate the differential summed ratio as

R̃ðtfÞ≡ SRðtfÞ − SRðtf − ΔtÞ
Δt

ð47Þ

with SRðtfÞ≡P
tc<τ<tf−tc Rðtf ; τÞ; tc ¼ 2 and fit R̃ðtfÞ with

a constant, given current statistics. It has been shown
that excited-state contamination is better suppressed com-
pared to the above two-state fit [62–64]. The corresponding
sample fits are shown in the lower panels of Fig. 4. Simple
linear fits are used to extrapolate ground-state matrix
elements which are marked as gray bands. We observe

FIG. 4. The ratio Rðτ; tfÞ (top panels) and R̃ðtfÞ (bottom panels) defined through Eq. (46) and Eq. (47), respectively. The data of up
quark CI, strange quark DI, and glue components with valence pion mass 174 MeV are shown in the left, middle, and right panels,
respectively. The gray bands are the fit predictions of the ground-state matrix elements T1ð0Þ of each component.
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that the error of the gray band shown in the lower left panel
for the up quark CI component is significantly smaller than
that of each data point, whereas for each of the strange
quark DI and glue components (shown in the lower middle
and right panels, respectively) the final fit error is similar
to that of the smallest tf , which has the best statistics
compared with larger tf. The difference comes mainly from
the fact that the data is negatively correlated for the lower
left panel and positively correlated for the lower middle and
right panels. To understand this intuitively, consider a
simple correlated data-averaging model in which

x̄ ¼ 1

n

Xn
i

xi; σ2x̄ ¼ σ2x
1

n

�
1þ 1

n − 1
b

�
; ð48Þ

where all xi have variance σ2x and the data correlation
between different xi is chosen to be b. For a negative value
of b, the final variance σ2x̄ is smaller than σ2x with an
additional enhancement factor 1þ 1

n−1 b compared to the
average of uncorrelated data. On the other hand, a positive
value of b increases the final variance compared to the
uncorrelated case. This partially explains the observed
difference, although we are using correlated fits instead
of direct averaging.
The final predictions of the two-state fits and the

differential summed-ratio fits are labeled on each panel

and they agree very well with each other within errors.
Similar behaviors are observed with different valence
pion masses for the down quark CI and up/down quark
DI components and ½T1 þ T2�LðQ2Þ form factors at differ-
entQ2. This confirms that we have good control of excited-
state contamination under our current statistics. We will
focus on the two-state fits for the following discussions and
estimate systematic uncertainty from excited-state contami-
nation based on the difference between the final predictions
from the two-state fit results and the differential summed-
ratio fit results.

B. Form factor fits

We repeat the above procedure for all of the other cases.
The results of TL

1 ð0Þ for up quark CI, down quark CI, u=d
quark DI, strange quark DI, and glue components as a
function of nucleon momenta p⃗2 are shown in Fig. 5. As
shown in Eq. (15), the calculation of the TL

1 form factor

using the operator T 4i can only be done at p⃗ ≠ 0⃗. This is
why there is not a point at p⃗2 ¼ 0 in each of the panels of
Fig. 5. It can be seen that the results for TL

1 ð0Þ from
different p⃗2 are consistent with each other within uncer-
tainty. Thus we use a simple constant fit of the data points
to give the final predictions which are marked as blue
bands. The fits of the ½T1 þ T2�LðQ2Þ form factors are

FIG. 5. Plots of TL
1 ð0Þ for the up quark CI, down quark CI, u=d quark DI, strange quark DI, and glue components as a function of

nucleon momenta p⃗2 with valence pion mass 174 MeV. In each plot, the blue band corresponds to a constant fit of the data points with
each final result marked with a dashed line at p⃗2 ¼ 0.
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shown in Fig. 6. As shown in Eq. (16), the calculation of the
½T1 þ T2�L form factor using operator T 4i can also only be
done at p⃗ ≠ 0⃗. Thus, we use the z-expansion defined in
Eq. (45) to fit the data points and extrapolate to Q2 ¼ 0 to
get ½T1 þ T2�Lð0Þ for each component.

C. Final results

Repeating the analysis for different valence pion masses,
we gather the results of TL

1 ð0Þ and ½T1 þ T2�Lð0Þ at
different valence pion masses without renormalization
and normalization in Fig. 7. We see clear signals for all

FIG. 6. Plots of ½T1þ T2�LðQ2Þ form factors for the up quark CI, down quark CI, u=d quark DI, strange quark DI, and glue
components as a function of Q2 with valence pion mass 174 MeV. In each plot, the band corresponds to the z-expansion fit with
kmax ¼ 2 to extrapolate to Q2 ¼ 0 which is marked with a dashed line.

FIG. 7. Plots of the TL
1 ð0Þ (left panel) and ½T1 þ T2�Lð0Þ (right panel) at different valence pion masses without renormalization and

normalization. Different colors correspond to up quark CI, down quark CI, up/down quark DI, strange quark DI, and glue components.
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components. The renormalized results of TR
1 ð0Þ and

½T1 þ T2�Rð0Þ at MSðμ ¼ 2 GeVÞ with Eq. (20) are shown
in Fig. 8. The TR

2 ð0Þ after renormalization calculated with
½T1 þ T2�Rð0Þ − TR

1 ð0Þ are shown in Fig. 9. It can been
seen that Tq;R

2 and Tg;R
2 have almost no signals. However,

the total T2 is consistent with zero without normalization.
Since the normalization condition Eq. (21) is proportional
to the TR

2 form factor which will lead to unstable results, we
choose to use the same normalization for the quarks and the
glue in Eq. (24) to normalize our final results under current
statistics. Also, it can be seen that all components are quite
linear in m2

π; thus we perform a joint fit as

T1
i;R ¼ ai1 þ ai2m

2
π; ½T1 þ T2�i;R ¼ bi1 þ bi2m

2
π; ð49Þ

with i denoting each component (up quark CI, down quark
CI, u=d quark DI, strange quark DI, and glue components)
and the ais and bis are free parameters for fitting and the
sum of the TR

1 and ½T1 þ T2�R satisfy the constraints from
Eq. (24) asP

iT1
i;R

NL
1 þ NL

2m
2
π
¼ 1;

P
i½T1 þ T2�i;R
NL

1 þ NL
2m

2
π

¼ 1; ð50Þ

withNL
1 andN

L
2 also free parameters for fitting. The joint fit

results are shown in Fig. 8 with χ2=d:o:f: ∼ 1.1. It can be

FIG. 8. Plots of the TR
1 ð0Þ (left panel) and ½T1 þ T2�Rð0Þ (right panel) at different valence pion masses after renormalization but

without normalization. Different colors correspond to the up quark CI and DI, down quark CI and DI, strange DI, and glue DI. The bands
are linear fit of the data points to extrapolate to the physical pion mass marked with a dashed line.

FIG. 9. Plot of the TR
2 ð0Þ at different valence pion masses after

renormalization but without normalization. Different colors
correspond to the up quark CI, down quark CI, u=d quark DI,
strange quark DI, and glue components.

FIG. 10. Plot of the inverse of the sum of TR
1 ð0Þ and

½T1 þ T2�Rð0Þ which is the normalization factor that we apply
to the TR

1 ð0Þ and ½T1 þ T2�Rð0Þ. The bands are linear fit of the
data points to extrapolate to the physical pion mass marked with a
dashed line.
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seen from the right panel of Fig. 10 that the sum of
momentum fractions and angular momentum fractions are
consistent with each other within current uncertainty which
confirms our assumption in Eq. (24) of using one nor-
malization constant NL at the present stage.
The final renormalized and normalized momentum

fractions hxi and angular momentum fractions 2J are listed
in Table II. We have performed fits using the two-state fits
in Eq. (46) and the differential summed-ratio fits in
Eq. (47). They give similar statistical errors and agree with
each other within uncertainty. Thus, we choose the central
value and statistical error to be given by the results from
two-state fits in Eq. (46) which we believe to have better
control of excited-state contamination under current sta-
tistics. The systematic uncertainties only include the con-
tributions from the excited-state contamination estimated
by taking the central value difference of the results from
the two different fits. Our predictions of the momentum
fractions hxiRu;d;s;g and iso-vector momentum fraction
hxiRu−d are 0.298(12)(24), 0.150(7)(5), 0.043(6)(4), 0.509
(20)(23), and 0.148(10)(29), respectively, which are con-
sistent with the preliminary results from Ref. [33] on the

same ensemble, but with much smaller errors due to the
application of CDER for the DI. Extrapolations of all the
predictions of the momentum fractions to the continuum
and infinite-volume limits are needed in order to be
compared to phenomenological global fits at MSðμ ¼
2 GeVÞ such as the CT14 [65] values hxiRu ¼ 0.348ð5Þ,
hxiRd ¼ 0.190ð5Þ, hxiRs ¼ 0.035ð9Þ, hxiRg ¼ 0.416ð9Þ, and
hxiRu−d ¼ 0.158ð6Þ. Our predictions of the angular momen-
tum percentage fractions h2JiRu;d;s;g are 0.394(20)(47),
0.092(10)(7), 0.052(6)(10), and 0.461(22)(44), respec-
tively. We have also listed the quark spin gA from
Ref. [13] at MSðμ ¼ 2 GeVÞ along with the orbital angular
momentum percentage fractions 2L calculated with 2L ¼
2J − gA which are summarized in Fig. 11. We see that the
quark orbital angular momentum fraction at 0.134(22)(44)
has a relatively small error and is not negligible.

V. SUMMARY

In summary, we have carried out a complete calculation of
proton momentum and angular momentum fractions
at several overlap valence pion masses on a 323 × 64
domain-wall lattice with lattice spacing a ¼ 0.143 fm and
mπ ¼ 171 MeV. We report the renormalized, mixed, and
normalized momentum fractions for the quarks and glue to
be 0.491(20)(23) and 0.509(20)(23), respectively, and the
renormalized and normalized total angular momentum
percentage fractions for quarks and glue to be
0.539(22)(44) and 0.461(22)(44), respectively. The energy-
momentum tensor three-point function (3pt) calculations
include both the connected insertions for up and down
quarks and the disconnected insertions for up/down quark,
strange quark, and glue. We have used complex Z3 grid
sources to increase signals of the nucleon correlation
functions and Z4 noise to estimate the quark loops. We
have also used FFT on CI 3pts along with low-mode
substitution on both the source and sink nucleon. The
new sandwich method of constructing the 2pts and 3pts
with LMS has direct projection of nucleon momentum for
the source, andFFThelps the statistics by averagingdifferent
kinematic configurations having the same Q2. The errors of
DI 3pts for up/down quark, strange quark, and glue are
greatly reduced through the use of the cluster-decomposition

FIG. 11. Summary plot of the quark spin gA from Ref. [13], the
quark orbital angular momentum fraction, and glue angular
momentum fraction.

TABLE II. Renormalized and normalized values of momentum fractions hxi and angular momentum fractions 2J at MSðμ ¼ 2 GeVÞ
on a 323 × 64 domain wall lattice with lattice spacing a ¼ 0.143 fm andmπ ¼ 171 MeV. “Sumq” in the table is the sum of all the quark
CI and DI contributions. “Sum” in the table is the sum of all the quark and glue contributions. The quark spin gA is from Ref. [13] at
MSðμ ¼ 2 GeVÞ. The orbital angular momentum fractions 2L are calculated with 2L ¼ 2J − gA.

uðCIÞ dðCIÞ u=dðDIÞ sðDIÞ Sumq glue Sum

hxi 0.233(12)(26) 0.085(5)(3) 0.065(6)(2) 0.043(6)(4) 0.491(20)(23) 0.509(20)(23) 1.0
2J 0.319(22)(63) 0.017(9)(23) 0.075(7)(16) 0.052(6)(10) 0.539(22)(44) 0.461(22)(44) 1.0
T2 0.086(22)(37) −0.067ð9Þð26Þ 0.010(7)(14) 0.010(6)(14) 0.048(22)(21) −0.048ð22Þð21Þ 0.0
gA [13] 0.917(13)(28) −0.337ð10Þð10Þ −0.070ð12Þð15Þ −0.035ð6Þð7Þ 0.405(25)(37) � � � � � �
2L −0.598ð22Þð63Þ 0.354(9)(23) 0.145(7)(16) 0.087(6)(10) 0.134(22)(44) � � � � � �
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error reduction technique [22,33], especially for the unnor-
malized glue improved by a factor of 3. With the full
nonperturbative renormalization,mixing, and normalization
using momentum and angular momentum sum rules, we
find the momentum fractions and angular momentum
percentage fractions listed in Table II at MSðμ ¼ 2 GeVÞ.
Finally, we should note that this work should be extended to
include other lattices with different volumes and lattice
spacings to control systematic errors from finite volume and
lattice spacing, and the mixed action effects in our current
result can also be eliminated during the continuum
extrapolation.
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