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We discuss the interplay between chiral and center sector phase transitions that occur in QCD with an
imaginary quark chemical potential μ ¼ ið2nþ 1ÞπT=3. Based on a finite size scaling analysis in
(2þ 1)-flavor QCD using highly improved staggered quark fermions with a physical strange quark
mass and a range of light quark masses, we show that the endpoint of the line of first-order Roberge-
Weiss (RW) transitions between center sectors is second order for light quark masses ml ≥ ms=320, and
that it belongs to the 3-d, Zð2Þ universality class. The operator for the chiral condensate behaves like an
energylike operator in an effective spin model for the RW phase transition. As a consequence,
for any nonzero value of the quark mass, the chiral condensate will have an infinite slope at the
RW phase transition temperature, TRW. Its fluctuation, the disconnected chiral susceptibility,
behaves like the specific heat in Zð2Þ symmetric models and diverges in the infinite volume limit
at the RW phase transition temperature TRW for any nonzero value of the light quark masses. Our
analysis suggests the critical temperatures for the RW phase transition and the chiral phase transition
coincide in the RW plane. On lattices with temporal extent Nτ ¼ 4, we find in the chiral limit
Tχ ¼ TRW ¼ 195ð1Þ MeV.
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I. INTRODUCTION

Strong interaction matter is described by quantum
chromodynamics (QCD). One of the central problems in
studies of QCD at nonzero temperature (T) and nonzero
values of the chemical potentials (μf) for the different quark
flavors (f) is to establish the phase diagram of the theory.
Aside from the external control parameters ðT; μfÞ this also
includes an exploration of the dependence of the phase
diagram on the quark masses mf. In particular, it is a
longstanding open question whether in the limit of vanish-
ing light quark masses,1 mu ¼ md ¼ 0, the chiral phase
transition is of first or second order [1]. In the former case a
critical light quark mass, mcrit

l , would exist, where the first-
order transition terminates. Evidence for such a scenario
has been found in calculations on coarse lattices that used
an unimproved staggered fermion discretization scheme,

both for Nf ¼ 3 [2–4] and Nf ¼ 2 [5] degenerate light
quarks. This first-order phase transition, however, turns out
to be strongly cutoff dependent [6], with similar behavior
found for Nf ¼ 3 OðaÞ-improved Wilson fermions [7–9].
In fact, recent chirally extrapolated results seem to rule out
a first-order phase transition in the continuum for number
of light flavors being smaller than six [10]. Furthermore,
calculations performed with improved staggered fermions,
using the highly improved staggered quark (HISQ) [11]
or stout [12] discretization schemes, so far did not find
any evidence for the existence of a first order transition
region [13–17].
In cases where a region of first order transitions has been

found, it has also been observed that the upper bound,mcrit
l ,

for such a transition region increases when simulations are
performed with a nonzero, purely imaginary chemical
potential, both for staggered [4,5,18] and Wilson [19]
discretizations. When searching for a possible region of
first order transitions in simulations with an improved
staggered fermion action, it thus is meaningful to try to
establish the existence of such a region in simulations with
an imaginary chemical potential, μ≡ iμi.
QCD thermodynamics at imaginary chemical potential

has a rich phase structure on its own, based on two exact
symmetries, which hold for any quark mass configuration:
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1Here and in the following we will always consider degenerate
values for the light up and down quarks, ml ≡mu ¼ md.
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ZðμÞ ¼ Zð−μÞ; ð1Þ

Z

�
T; i

μi
T

�
¼ Z

�
T; i

μi
T
þ i

2πn
3

�
: ð2Þ

The Zð3Þ periodicity of the QCD partition function with
imaginary quark chemical potential in Eq. (2) corresponds
to the global center subgroup of the SUð3Þ gauge symmetry
[20]. While thermodynamics is invariant under the
shifts in Eq. (2), the phase of the Polyakov loop distin-
guishes between the different center sectors, as indicated in
Fig. 1. At the boundaries between the center sectors,
ðμi=TÞRW ≡ ð2nþ 1Þπ=3, the system undergoes a first-
order phase transition at high temperature and a smooth
crossover at low temperature [20–22]. Thermodynamics is
also invariant under Zð2Þ reflections about the boundaries
between center sectors, ðμi=TÞRW þ ϵ ↔ ðμi=TÞRW − ϵ,
due to the combination of Eqs. (1) and (2).
The question whether a nonzero value mcrit

l of the light
quark masses exists, below which QCD undergoes a first
order chiral phase transition, may then be rephrased
somewhat differently at ðμi=TÞRW, where it is related to
the nature of the endpoint of the line of first order phase
transitions between center sectors at TRW [23,24]. The
dotted line in Fig. 1 represents the analytic continuation of
the chiral transition line TχðμiÞ to imaginary chemical
potentials. For intermediate quark mass values, where this
is a crossover, the endpoint of the RW transition is of
second order in the 3-d, Zð2Þ universality class. On the
other hand, if the chiral transition is of first order, as is
the case for unimproved actions on coarse lattices, the
endpoint of the RW-transition represents a first-order

triple point.2 The boundary between these scenarios,
corresponding to a specific quark mass value mtric

RW, is
marked by a tricritical RWendpoint. The nature of the RW
endpoint thus depends on the quark mass configurations
ðml;msÞ, constituting the so-called Roberge-Weiss plane,
which is analogous to a Columbia plot for ðμi=TÞRW. All
three situations have been observed explicitly as a
function of quark mass for Nf ¼ 2 unimproved Wilson
[25,26] and staggered [27,28] fermions on Nτ ¼ 4, 6,
again with a strong cutoff dependence of the first-order
region.
Here we address the nature of the RW endpoint using

simulations of HISQ fermions on Nτ ¼ 4 lattices for a
physical strange quark mass and a sequence of decreasing
light quark masses. As the chiral limit is approached, it is
conceivable that the chiral and RW transitions split, so that
the cusps of the dotted line in Fig. 1 would not be connected
to the first-order RW-lines. The answer to the question
whether or not Tχ ¼ TRW, when the chiral transition
intersects ðμ=TÞRW, does not seem to be obvious and we
want to address it here. More generally, we will analyze the
influence of the RW phase transition on chiral observables
at nonzero values of the quark masses, determine their
quark mass dependence and explore the interplay between
the RW and the chiral phase transition. Our findings based
on simulations with the HISQ action are fully compatible
with those of a similar previous study using stout-smeared
staggered fermions [14,29].
This paper is organized as follows. In the next section we

describe the lattice setup for our calculations and introduce
the basic observables we are going to analyze. In Sec. III we
present results on the endpoint in the second (n ¼ 1)
Roberge-Weiss plane. Section IV is devoted to an analysis
of chiral observables and the chiral phase transition in the
limit of vanishing light quark masses. We present our
conclusions in Sec. V. Two appendices are devoted to a
summary of all our simulation parameters (Appendix A)
and a new analysis and parametrization of finite size scaling
functions for the order parameter, its susceptibility and the
Binder cumulant in the 3-d, Zð2Þ universality class
(Appendix B).

II. LATTICE SETUP AND OBSERVABLES

All our calculations are done on lattices of size N3
σ × Nτ

with Nτ ¼ 4 and a nonzero imaginary value of the
chemical potential, μ=T ¼ iðμi=TÞRW ¼ ið2nþ 1ÞπT=3,
corresponding to the (nþ 1)th Roberge-Weiss plane
[20]. Although thermodynamics is equivalent in all RW
planes, we will work in the second RW plane (n ¼ 1).

FIG. 1. The QCD phase diagram with imaginary chemical
potential. Vertical lines mark first-order transitions between
different center sectors, the dotted lines represent the analytic
continuation of the thermal transition at zero and real μ, whose
nature depends on the quark masses. The black dots, where the
RW transitions terminate, can then be first-order triple points,
tricritical points or second-order endpoints.

2These two situations are continuously connected by a range of
small quark mass values, for which a first order chiral line
stemming from a first order triple RW endpoint weakens into a
second order endpoint at some nonzero imaginary chemical
potential.
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We use the tree-level HISQ action [11] and a tree-level
improved Symanzik action in the gauge sector. This setup
eliminates Oða2Þ discretization errors at the tree-level. At
vanishing values of the chemical potential the HISQ action
has been used extensively in studies of the thermodynamics
of QCD with two degenerate light up and down quarks (ml)
and a heavier strange quark mass (ms) [30,31]. In particu-
lar, it recently has been used to study thermodynamics close
to the chiral limit of QCD with a strange quark mass tuned
to its physical value and light quark masses corresponding
to a light Goldstone pion mass in the range 55 MeV≲
mπ ≲ 140 MeV [15,32,33].
In our simulations we follow a line of constant physics

determined in calculations with the same action at vanish-
ing chemical potential and for physical values of the
light and strange quark mass [31]. We use the parametri-
zation given in [34] that uses the kaon decay constant
fK ¼ 155.7ð2Þ= ffiffiffi

2
p

MeV [35] to set the scale. The line of
constant physics has been determined by tuning the strange
quark mass to its physical value. The physical value of the
light quark mass is then chosen as ml ¼ ms=27. As the
crossover temperature at nonzero imaginary chemical
potential is shifted toward larger values than those at
μ ¼ 0, our calculations are performed in a range of gauge
couplings, 5.8 ≤ β ≤ 6.1, which corresponds to a param-
eter range typically studied in finite temperature calcula-
tions at μ ¼ 0 on lattices with temporal extent Nτ ¼ 6 [30].
For this range of couplings the line of constant physics,
defined by a strange quark mass tuned to its physical value,
thus is known from these studies.
When approaching the chiral limit, we vary the light

quark mass, while keeping the strange quark mass fixed to
its physical value. The partition function for (2þ 1)-flavor
QCD with two degenerate light quark masses, a strange
quark mass, and identical quark chemical potentials,
ðμi=TÞRW ¼ π, for all flavors may be written as,

ZðT;μiÞ¼
Z

DUdet½MlðiμiÞ�1=2det½MsðiμiÞ�1=4 · exp½−SG�:

ð3Þ

Here Mf ¼ DðiμiÞ þmf · 1 is the staggered fermion
matrix for quarks of mass mf that is obtained after
integrating out the fermion fields of the HISQ action
[11] and SG is the tree level improved Symanzik gauge
action. Further details on the HISQ action as used by
us can be found in [30,31]. To perform calculations at
nonzero values of an imaginary chemical potential we only
needed to replace all temporal link variables, U0̂ðn0; n⃗Þ by
eiμ̃iU0̂ðn0; n⃗Þ, with iμ̃i denoting the imaginary quark
chemical potential in lattice units, i.e., μ̃iNτ ≡ ðμi=TÞRW.
Here Uν̂ðn0; n⃗Þ ∈ SUð3Þ are the standard gauge link
variables defined on a 4-dimensional lattice and pointing
into direction ν̂ at a lattice point ðn0; n⃗Þ.

The light quark masses have been varied toward the
chiral limit, starting at the physical value,ml ¼ ms=27. The
smallest quark mass value used in our calculations,
ml ¼ ms=320, corresponds to a Goldstone pion mass of
about 40 MeV. A summary of the quark mass values and
lattice sizes used in our simulations is given in Table I.
More details on the parametrization of the line of constant
physics are given in [30,31,34].
For each value of the light to strange quark mass ratio,

H ¼ ml=ms, we typically perform calculations at 8–10
values of the gauge coupling that have been chosen such as
to cover temperatures in the range, 0.9≲ T=TRWðHÞ≲ 1.1,
with TRWðHÞ denoting the RW phase transition temper-
ature for given H. At temperatures close to TRWðHÞ we
generated about 200,000 Hybrid Monte Carlo trajectories
of unit length forH ¼ 1=27 and half-unit length for smaller
H. Away from the critical region fewer trajectories have
been generated. Further details on the statistics collected for
different lattice sizes and run parameters are given in
Appendix A. All basic observables needed for the analysis
presented here have been calculated at the end of each
rational hybrid Monte Carlo (RHMC) trajectory.

A. The Polyakov loop and its susceptibility

In the Roberge-Weiss plane [20] a first-order phase
transition occurs at all temperatures above a critical temper-
ature T ≥ TRW. An order parameter for the spontaneous
breaking of the Zð2Þ symmetry between different center
sectors is the expectation value of the imaginary part of the
Polyakov loop, P,

P≡ 1

N3
σ

X
n⃗

Tr
YNτ

n0¼1

U0̂ðn0; n⃗Þ: ð4Þ

While the Euclidean action of QCD is invariant under center
transformations of the gauge links, Uν̂ðnÞ → e2πk=3Uν̂ðnÞ,
an additional phase remains in the Polyakov loop, whose
imaginary part thus changes its sign.
The RW transition can thus be mapped straightforwardly

to an Ising-like effective Hamiltonian, with energylike and
magnetizationlike operators

Heff

T
¼ tEþ hM: ð5Þ

TABLE I. Lattice sizes N3
σ × 4 used for calculations with quark

mass ratios H ¼ ml=ms. The second column gives the corre-
sponding pseudoscalar Goldstone masses mπ .

ml=ms mπ [MeV] Nσ

1=27 135 16, 24, 32
1=160 55 16, 24, 32
1=320 40 24, 32
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In the following, we will use the imaginary part of the
Polyakov loop P for the magnetization, as it couples to the
magnetic fieldlike coupling3 h ¼ μi=T − ðμi=TÞRW. An
alternative order parameter would, e.g., be the quark
number density nf ¼ ðT=VÞ∂ lnZ=∂μf, which is odd under
the Zð2Þ-reflections about the center boundary. It has been
used to study the scaling in the vicinity of the RW transition
in [29,36–38]. The energylike operator will be a super-
position of lattice QCD operators which is even under the
Zð2Þ-reflections about the center boundary.
As we perform calculations on finite lattices at vanishing

external field h, the expectation value of the imaginary part
of the Polyakov loop, hImPi, vanishes exactly at any value
of the temperature. In this case an approximate order
parameter for spontaneous symmetry breaking, commonly
used in finite-size scaling studies, is the absolute value of
ImP. For the finite-size scaling analysis of the RW phase
transition we thus will use as an order parameter M and its
susceptibility χM the observables,

M ¼ hjImPji; ð6Þ

χM ¼ N3
σðhðImPÞ2i − hjImPji2Þ: ð7Þ

We also calculate two ratios of moments of the order
parameter, involving first, second, and fourth ordermoments,
respectively. We consider the order parameter ratio intro-
duced by Kiskis [39,40],

K2ðT;NσÞ ¼ N−3
σ

χM
M2

¼ hðImPÞ2i
hjImPji2 − 1; ð8Þ

and the kurtosis, related to the Binder cumulant [41],

B4ðT;NσÞ ¼
hðImPÞ4i
hðImPÞ2i2 : ð9Þ

In the scaling regime of a 2nd order phase transition, where
contributions from regular terms are negligible, these ratios
are scaling functions with a fixed absolute normalization.
Ratios calculated on different size lattices have unique
crossing points at a phase transition temperature, Tc.
The values at these crossing points are universal, i.e.,
characteristic for a given universality class. From a new
determination of finite-size scaling functions of the 3-d,Zð2Þ
universality class, presented in Appendix B, we obtain for
these universal crossing points K2ðTc;∞Þ ¼ 0.240ð3Þ
and B4ðTc;∞Þ ¼ 1.606ð2Þ.
In order to determine the RW phase transition in the RW-

plane for different values of the quark mass ratio H we

perform a finite-size scaling analysis and compare our
results, obtained at fixed H and for several spatial lattice
sizes Nσ, with scaling functions in the 3-d, Zð2Þ univer-
sality class. If the transition turns out to be second order for
the quark mass value H under consideration, these scaling
functions will describe the behavior of M and χM in the
vicinity of the RW critical point, (T → TRW, Nσ → ∞).
For vanishing external field, h ¼ 0, finite-size scaling

functions are functions of a single scaling variable, zf ¼
zf;0N

1=ν
σ t, with t ¼ ðT − TRWÞ=TRW and zf;0 ¼ 1=ðl1=ν0 t0Þ.

Here the nonuniversal parameters l0, t0 and TRW are
functions of H, and ν is a critical exponent of the 3-d,
Zð2Þ universality class, which is the relevant universality
class for any H ≠ 0, if the RW transition turns out to be
2nd order.
In the limit (T → TRW, Nσ → ∞) two finite-size scaling

functions, fG;L and fχ;L, control the behavior ofM and χM,
respectively,

M ¼ AMN
−β=ν
σ fG;LðzfÞ þ regular ð10Þ

χM ¼ A2
MN

γ=ν
σ fχ;LðzfÞ þ regular; ð11Þ

with critical exponents β, γ, ν which are related to each
other through the hyperscaling relation, γ þ 2β ¼ dν,
where d ¼ 3 in our case. The relation between the
amplitudes of the singular parts follows from Eq. (8).
The scaling functions fG;L and fχ;L for the 3-d, Zð2Þ

universality class have been determined by us from a new
finite-size scaling analysis for the 3-d, λϕ4 model, where
the coupling λ has been tuned to suppress contributions
from corrections-to-scaling in the scaling functions [42,43].
We summarize results on the finite-size scaling functions
fG;L and fχ;L as well as the scaling functions for the ratios
K2 and B4 in Appendix B.

B. Chiral condensate and chiral susceptibility

In the limit of vanishing light quark masses, ml, and for
any value of the strange quark mass (which also may be
infinite), a chiral phase transition occurs in (2þ 1)-flavor
QCD for any value of the imaginary chemical potential μi.
In any Roberge-Weiss plane at μi=T ¼ ð2nþ 1Þπ=3, how-
ever, the standard chiral observables, i.e., the chiral con-
densates and the related chiral susceptibility, also are
sensitive to the Roberge-Weiss phase transition, which
persists also for any nonzero value of the light quark
masses. In the vicinity of this phase transition chiral
observables thus show “unconventional” behavior. In fact,
we will show in the next section, that chiral observables
behave like energylike observables [32,44] in an effective
theory for the Roberge-Weiss phase transition, Eq. (5).
For the study of the properties of the chiral phase

transition we use the additively and multiplicatively renor-
malized order parameter, introduced in [45],

3Note that we have used H to denote the ratio of light and
strange quark masses, which is a magnetic-fieldlike coupling for
the chiral phase transition, while we use h for the magnetic-
fieldlike coupling of the RW phase transition.
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Δls ¼ 2
ms

f4K

�
hψ̄ψil −

ml

ms
hψ̄ψis

�
; ð12Þ

which, for light up (u) and down (d) quark masses, is given
in terms of the light quark condensate hψ̄ψil ¼ ðhψ̄ψiu þ
hψ̄ψidÞ=2 and the strange quark condensate hψ̄ψis. The
condensates are obtained as derivatives of the partition
function, ZðT; V;mu;md;msÞ, with respect to one of the
quark masses, mf,

hψ̄ψif ¼ T
V
∂ lnZðT; V;mu;md;msÞ

∂mf

¼ 1

4

1

N3
σNτ

hTrM−1
f i; ð13Þ

where Mf denotes the staggered fermion matrix for quark
flavors, f ¼ u, d or s. For degenerate light quark masses we
obviously have h…iu ¼ h…id ≡ h…il and we also use the
shorthand notation,Ml ≡Mu ¼ Md. Furthermore, we used
in Eq. (12) the kaon decay constant, fK, for normalization
and to make the order parameter dimensionless.
For the determination of a pseudocritical temperature for

chiral symmetry restoration we use the fluctuations of the
light quark chiral condensate, i.e., the so-called discon-
nected part of the chiral susceptibility, which for two
degenerate light quark flavors is given by,

χdis ¼
1

4

1

N3
σNτ

m2
s

f4K
ðhðTrM−1

l Þ2i − hTrM−1
l i2Þ: ð14Þ

The fluctuations of the chiral order parameter, χdis,
only give rise to a part of the total chiral susceptibility,
χm ¼ msð∂mu

þ ∂md
ÞΔlsjmu¼md

. Both susceptibilities have
pronounced peaks as function of temperature which com-
monly are used to define a pseudocritical temperature Tχ .
The location of pseudocritical temperatures determined
from χdis and χm, respectively, coincide in the chiral limit.
As long as the susceptibilities are not influenced by the
presence of another critical point, their quark mass depend-
ence at low temperature, in the chiral symmetry broken
phase, is dominated by contributions from the light
Goldstone modes with mass mG, which become massless
in the chiral limit, mG ∼ ffiffiffiffiffiffi

ml
p

. A consequence of this is that
the leading quark mass dependence of the chiral order
parameter is proportional to

ffiffiffiffiffiffi
ml

p
. The chiral susceptibility

consequently diverges for all T < Tχ [46],

χdisðT;mlÞ ∼
1ffiffiffiffiffiffi
ml

p ; T < Tχ : ð15Þ

The location of a peak in either χm or χdis defines a
pseudocritical temperature for a chiral transition. In the
absence of any influence from other singularities the peak
height of chiral susceptibilities stays finite at any nonzero

value of the light quark masses (H > 0). In fact, it is a
characteristic feature of phase transitions in the 3-d, OðNÞ
universality classes that for H > 0 the maxima of the order
parameter susceptibility decrease with increasing volume.
In the thermodynamic limit they thus approach the asymp-
totic value from above [47]. In the chiral limit, H → 0, the
chiral susceptibility diverges like χdis ∼H1=δ−1. We note
that this divergence is stronger than that induced by the
Goldstone modes. Thus also the peak in the rescaled
disconnected chiral susceptibility, H1=2χdis will diverge
in the 3-d, OðNÞ universality class.
In the vicinity of the Roberge-Weiss phase transition the

behavior of the chiral observables also is strongly influ-
enced by this transition. In particular, they will show a
volume dependence that is quite different from what one
would expect for a chiral observables in the OðNÞ univer-
sality classes. The chiral condensate as well as the chiral
susceptibility are even operators under the Zð2Þ symmetry
transformation that controls the Ising-like Roberge-Weiss
transition for n ¼ 1, Uν̂ðnÞ → U†

ν̂ðnÞ. In the vicinity of the
RW-transition temperature, the chiral condensate thus may
be considered as an energylike operator in an effective
Hamiltonian for the RW-transition. Since nonvanishing
quark masses, which appear as couplings in the QCD
Lagrangian, do not break the center or reflection
symmetry that controls the RW-transition, these couplings
(masses) will appear, to leading order, only in the energy-
like coupling (reduced temperature) of the effective
Hamiltonian describing the RW-transition. As a conse-
quence the chiral condensate will behave like an energy and
the chiral susceptibility will behave like a specific heat in
the scaling regime of the RW phase transition. For any
nonzero value of the light quark masses, H > 0, this will
lead to a volume dependence of the disconnected chiral
susceptibility that is quite different from that for OðNÞ
symmetric theories. Rather than staying finite in the infinite
volume limit the disconnected chiral susceptibility is
expected to diverge at TRW for any H > 0,

χdis ∼
� jT − TRWðHÞj−α; h ¼ 0; Nσ ¼ ∞

Nα=ν
σ ; h ¼ 0; T ¼ TRWðHÞ ð16Þ

with α being the specific heat critical exponent in the 3-d,
Zð2Þ universality class (see Appendix B).
As we perform calculations on rather coarse lattices with

temporal extent Nτ ¼ 4, and as we use a fermion discre-
tization scheme (staggered fermions) which only preserves
a Uð1Þ subgroup of the full SUð2ÞL × SUð2ÞR flavor
symmetry group, it is expected that the chiral phase
transition for μi=T ≠ ðμi=TÞRW belongs to the Oð2Þ uni-
versality class, if this transition turns out to be a 2nd order
phase transition. Whether this will also be the relevant
universality class to describe the chiral observables in the
limit jhj ¼ jμi=T − ðμi=TÞRWj → 0 crucially depends on
the answer to the question whether or not in the RW-plane
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the chiral transition temperature and the critical temperature
for the RW transition coincide. We will address this
question in Sec. IV.

III. THE ROBERGE-WEISS ENDPOINT

The endpoint of the line of first-order transitions in the
RW plane may be a first or second order transition,
depending on the magnitude of the light quark mass ml
[24,25,28]. If this transition is of 2nd order and
H ≡ml=ms > 0, critical behavior in the vicinity of this
endpoint will be controlled by the 3-d, Zð2Þ universality
class. The volume dependence of, e.g., the maximum of the
order parameter susceptibility at the pseudocritical temper-
ature TpcðNσÞ is distinctively different from that expected in
the case of a first-order transition, that may occur at the RW
endpoint below some critical value of the quark masses,

χMðT;NσÞjTpcðNσÞ∼
�
N1.966

σ ; 3−d; Zð2Þcriticality
N3

σ; 3−d; first order
: ð17Þ

In order to determine the order of the transition at the
endpoint of the RW transition as a function of the light quark
mass we performed simulations with H ∈ ½1=320; 1=27�,
which, in the continuum limit, corresponds to pseudoscalar
Goldstone masses (pion masses) mπ ∈ ½40MeV;135MeV�.
For each value of H we performed calculations on lattices
of size N3

σ × 4 for several values of the spatial lattice

size Nσ . Details on the simulation parameters and the
statistics gathered in our simulations are summarized in
Appendix A. In Fig. 2 we show simulation results for the
order parameterM and its susceptibility χM for three quark
mass ratios, H ¼ 1=27, 1=160 and 1=320.
It is obvious that for all values of H the peak heights of

the order parameter susceptibility [Fig. 2 (bottom)] grow
with increasing volume. The growth rate is substantially
smaller than N3

σ , which one would expect to find in the case
of a 1st order phase transition. We also note that the peak
height of the susceptibility shows only a weak dependence
on the quark mass ratio H.
In Fig. 3 we show results for the order parameter

susceptibility, rescaled by the volume factor expected to
be relevant for a first-order transition (top) and a Zð2Þ
second-order phase transition (bottom), respectively. The
rescaled results, obtained for H ¼ 1=160 on lattices with
spatial extent Nσ ¼ 16, 24, and 32, clearly show that at the
pseudocritical temperature, TRWðNσÞ, a first-order volume
scaling of the peak height is ruled out. The observed
volume dependence is in good agreement with the expected
3-d, Zð2Þ scaling behavior. We find similar results also at
our smallest quark mass value, H ¼ 1=320. We thus
proceed in the following with an analysis of our data in
terms of 3-d, Zð2Þ scaling functions, taking into account
deviations from universal scaling that may arise from
corrections-to-scaling or regular contributions to the free
energy density, wherever needed.
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FIG. 2. The RW order parameter M (upper row) and its susceptibility χM (lower row). From left to right, the figures show results for
light quark masses ms=27, ms=160, and ms=320, respectively. Curves show results from fits using an ansatz motivated by universal
scaling in the 3-d, Zð2Þ universality class as discussed in the text. Solid parts of the curves reflect the fit range and datasets actually used
for the analysis.
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In order to minimize contributions from such terms we
only fitted results obtained on lattices with Nσ ≥ 24. We
first fitted only data for the order parameter using the ansatz
M ¼ AMN

−β=ν
σ fG;LðzfÞ, which depends on three nonuni-

versal parameters, AM, TRW, and zf;0. As regular contri-
butions to the order parameter would be linear in the
external field h, one expects that regular contributions do
not contribute to M in the case of h ¼ 0. Indeed we find
that a fit using the universal scaling ansatz only already
gives a good description of the order parameter calculated
on smaller lattices with extent Nσ ¼ 16. This suggests that

contributions from corrections-to-scaling or regular terms
are indeed negligible for the order parameter. We then used
the parameters AM, zf;0 and TRW obtained from fits to the
order parameter to compare data for χM as well as the
cumulant ratios K2 and B4 with the corresponding scaling
ansätze. While we find that these ansätze describe the
structure of χM and the ratiosK2, B4, we observe deviations
which hint at the importance of contributions from regular
terms or corrections-to-scaling. In order to take, on the one
hand, information from these observables into account but,
on the other hand, keep the number of fit parameters small
we then decided to perform our final data analysis using a
simultaneous fit to the order parameter and its susceptibil-
ity, including a regular contribution to the latter observable,

M ¼ AMN
−β=ν
σ fG;LðzfÞ

χM ¼ A2
MN

γ=ν
σ fχ;LðzfÞ þ χregðtÞ: ð18Þ

We note that in the QCD case, the symmetry broken
phase corresponds to the high temperature region whereas
in the 3-d Ising model this is the low temperature region.
The sign of the scaling variable zf thus needs to be
interchanged when comparing both models, i.e., the non-
universal scaling variable t0 is negative in the case of QCD
with an imaginary chemical potential. Consequently the
infinite volume limit also is approached differently. From
Fig. 10 (right), shown in Appendix B, it is obvious that the
pseudocritical temperatures increase with increasing vol-
ume in the 3-d Ising model. We thus expect the pseudoc-
ritical temperatures to decrease with increasing volume in
the case of QCD. This is apparent from the volume
dependence of the peak locations in the susceptibilities
shown in Fig. 2.
In the fit ansatz for χM we add a regular term

χregðtÞ ¼ a0 þ a1t. This is consistent with the fact that
regular terms do not break the Zð2Þ symmetry and thus are
even functions in the external field h. The coefficients a0
and a1 will depend on the quark mass ratioH. Furthermore,
an implicit quark mass dependence arises through the
dependence of TRW on H. Our final fit, performed
simultaneously to M and χM, thus depends on five
parameters, the nonuniversal parameters AM, TRW, and
zf;0 as well as the leading regular coefficients a0 and a1.
The results for the fit parameters in the universal part of the
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FIG. 3. The order parameter susceptibility χM in the Roberge-
Weiss plane as function of temperature. Results are shown for the
quark mass ratio H ¼ 1=160. The susceptibility has been
rescaled by a volume factor appropriate for the expected
asymptotic scaling in the case of a first (top) and second (bottom)
order transition. Data are plotted relative to the pseudocritical
temperature TRWðNσÞ.

TABLE II. Fit ranges, number of degrees of freedom for the five parameter fits and χ2=dof of the joint fits toM and χM for three values
of the quark mass ratioH ¼ ml=ms. Results for the nonuniversal parameters zf;0 and TRW of the scaling functions, the overall amplitude
AM controlling the strength of the singular contribution to the order parameter M, and the parameters (a0, a1) appearing in the
polynomial ansatz for the regular contribution to χM are given in column 5 to 9 of the table.

ml=ms Fit range [MeV] #dof χ2=dof zf;0 TRW AM a0 a1

1=27 194∶208 19 1.54 −1.22ð3Þ 202.4(1) 0.106(1) 0.096(4) 2.5(9)
1=160 186∶206 29 1.30 −1.09ð3Þ 197.3(1) 0.0962(1) 0.092(2) 1.84(5)
1=320 186∶204 23 1.97 −1.04ð1Þ 196.4(1) 0.0938(1) 0.105(3) 1.82(5)
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fit ansatz, zf;0 and TRW, are then used for translating results
for the cumulant ratios K2 and B4 into a scaling plot. These
cumulant ratios are not fitted, but serve as a consistency
check using the fit parameters we obtain from fits toM and
χM, respectively.
For our fits we use data in a range of temperatures that

deviate maximally about 5% from the critical temperature
TRW. Details on the fit ranges and the resulting chi-squares
of our fits are summarized in Table II. The resulting scaling
fits are shown in Fig. 2. The solid lines indicate the
temperature range and data sets used in the fits. Data
outside this region and those obtained on lattices with
spatial extent Nσ ¼ 16 have not been included in the fits.
This is indicated by dashed lines in Fig. 2. Results for the
three fit parameters that enter the scaling functions and the
two parameters of the polynomial ansatz for the regular part
are summarized in Table II. In Fig. 4 we show the rescaled
order parameterM and its susceptibility χM where the fitted
regular part has been subtracted from the data.
The cumulant ratio K2, introduced in Eq. (8), is con-

structed from M and χM. It approaches zero at high and
ðπ=2 − 1Þ at low temperature, respectively [39]. In the
infinite volume limit results for different lattice sizes
approach a unique crossing point. From our analysis of
the 3-d, Zð2Þ finite size scaling functions, presented in
Appendix B, we find K2ðTRW;∞Þ ¼ 0.240ð3Þ. This
behavior is reflected in the data for K2ðT;NσÞ, shown in
Fig. 5 (top). Deviations from the unique crossing point

result from the regular contribution to χM. In the vicinity of
TRW the leading correction to scaling arising from the
regular term is obtained from Eqs. (8) and (18),

K2;regðTRW; NσÞ ¼
a0 þ a1zf=ðzf;0N1=ν

σ Þ
ðAMfGðzfÞÞ2

N−γ=ν
σ : ð19Þ

The value of K2ðTRW; NσÞ thus approaches the unique
infinite volume value from above, which is consistent with
the data shown in Fig. 5 (top).
In Fig. 5 (bottom) we show the rescaled data for

K2ðT;NσÞ, which only amounts to a change of the temper-
ature axis from T to zf, i.e., it only involves the nonuni-
versal parameters, TRW and zf;0, which are taken from the
joint fit to M and χM.
The qualitative behavior of the Binder cumulant ratio B4

introduced in Eq. (9) is quite similar to that of the ratio K2.
It too has a unique crossing point at TRW, but depends on a
scaling function fBðzfÞ not directly related to those of the
order parameter and its susceptibility. While a comparison
of our simulation data with the scaling function fBðzfÞ is
parameter free, taking care of corrections to this universal
behavior arising from subleading and regular terms does
require additional parameters entering a fit to the data for
B4ðT;NσÞ. We have not done this here. The scaling
function fBðzfÞ, calculated for the 3-d, Zð2Þ universality
class, is given in Appendix B. It yields for the crossing
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FIG. 4. The rescaled data for M (upper row) and χM (lower row) obtained on different size lattices and different values of the light
quark masses, corresponding to H ¼ ml=ms ¼ 1=27 (left), 1=160 (middle) and 1=320 (right). In the case of χM the fit results for the
regular part have been subtracted prior to rescaling the amplitude. Solid lines show the finite size scaling functions for the 3-d, Zð2Þ
universality class. Their extraction from a new calculation using a 3-d improved Ising model [42,43] is given in Appendix B.
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point B4ðTRW;∞Þ≡ fBð0Þ ¼ 1.606ð2Þ. In Fig. 6 we give a
parameter free comparison of data obtained from our QCD
calculations at two different quark mass values to the
scaling function fBðzfÞ. The figure on the top shows that
near the intersection point the B4 data from our larger
volumes are close to universal behavior, providing further
support to the assumption that corrections arising from
subleading and regular terms are unimportant for the
present study.
The results shown for the order parameter as well as its

susceptibility and the various ratios for order parameter
fluctuations clearly show that we do not have any evidence
for the occurrence of a first order phase transition for
H ≥ 1=320, i.e., for Goldstone pion masses larger than
about4 40 MeV. In fact, these observables show good
agreement with the expected finite size scaling behavior in
the 3-d, Zð2Þ universality class. As can be seen from the fit

parameters listed in Table II the amplitude AM and the scale
parameter zf;0, which control the peak height of the
susceptibility χM as well as its width show only a mild
dependence on the quark mass, i.e., on H ≡ml=ms. We
will come back to a discussion of the quark mass depend-
ence of the Roberge-Weiss transition endpoint temperature
after the analysis of the chiral observable in the vicinity of
TRW, which is done in the next section. We note in passing
that the value for TRW which we obtain at H ¼ 1=27 is
consistent with the scaling of the quark number density nf
(an alternative order parameter), as well as with the scaling
of the Lee-Yang edge singularities extracted from nf by
analytic continuation to real μf [36–38].

IV. CHIRAL SYMMETRY RESTORATION
IN THE ROBERGE-WEISS PLANE

As discussed in Sec. II B the chiral condensate and its
susceptibility play a particular role when studying the phase
structure of QCD with an imaginary chemical potential. On
the one hand the chiral condensate is the order parameter
for the chiral phase transition. In the chiral limit, it will
vanish above the chiral phase transition temperature TχðμÞ
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FIG. 5. The order parameter ratio K2ðT;NσÞ as defined in
Eq. (8). Shown are results for K2 as function of temperature (top)
and versus the finite size scaling variable zf (bottom). The figures
are for a light to strange quark mass ratio H ¼ ml=ms ¼ 1=27.
The curves in the figures are obtained from the universal ratio of
scaling functions, fχ;LðzfÞ=f2G;LðzfÞ using the nonuniversal
parameters obtained from the joint fit to M and χM as discussed
in the text.
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FIG. 6. The cumulant ratio B4ðT;NσÞ as defined in Eq. (9).
Shown are results for B4 as function of temperature (top) and
versus the finite size scaling variable zf (bottom). The figures are
for a light to strange quark mass ratio H ¼ ml=ms ¼ 1=160. The
curves in the figures are obtained from the universal finite size
scaling functions fBðzfÞ given in Appendix B.

4We stress that we do not perform a continuum extrapolation
here. All mass and temperature values expressed in physical units
thus should only be used for orientation.
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for any value of the imaginary chemical potential. In the
vicinity of Tχ and for nonzero values of the light quark
masses, the properties of the order parameter Δls and the
chiral susceptibility χm (or χdis) will be controlled by
universal scaling relations in the 3-d, Oð4Þ universality
class,5 if the critical region is not influenced by the presence
of other singularities. The latter scenario becomes of
relevance in the Roberge-Weiss plane, where an additional
Zð2Þ symmetry emerges that leads to a second order phase
transition at nonzero values of the quark mass, as discussed
in the previous section. It thus needs to be clarified to what
extent this transition influences the chiral phase transition,
which in turn is reflected in the properties of Δls and χdis.
In Fig. 7 (top) and (bottom) we show results for Δls and

χdis, respectively. The finite size dependence of the chiral
condensate follows a pattern, which is qualitatively con-
sistent with the finite size scaling behavior of OðNÞ
symmetric spin models. However, in particular when look-
ing at the volume dependence of the chiral susceptibility in
the vicinity of the Roberge-Weiss phase transition temper-
ature, it is clear that the behavior is distinctively different
from that inOðNÞmodels. In the latter case the peak height
of the susceptibilities (slightly) decreases with increasing
volume for any nonzero, fixed values of H [15,47].
However, the results for χdis, presented in Fig. 7 (bottom)
for three values of the light quark masses, clearly show an
increase of the peak height with increasing volume.

The volume dependence of the peak height is weaker
than that of the order parameter susceptibility discussed in
the previous section. This is expected for the susceptibility
of an energylike observable. The finite-size scaling of the
peak height of a specific-heatlike susceptibility is given
by Eq. (16), i.e., χpeakdis ∼ Nα=ν

σ , with α=ν ¼ 0.1726ð65Þ. This
should be compared to an exponent γ=ν ≃ 1.966, which is
the relevant scaling exponent for a magnetizationlike
susceptibility.
On the lattices analyzed so far the peak height of χdis

increases faster than expected for a specific-heatlike observ-
able in the 3-d,Zð2Þ universality class.When comparing the
peak heights on subsequent lattice sizes,Nσ ¼ 16, 24 and 32,
for our largest quark mass ratio, H ¼ 1=27, we find for the
ratios of peak heights ð24=16Þ1.38 and ð32=24Þ0.97, respec-
tively. Already in this case, and even more so for the smaller
quark mass ratios, it is evident from Fig. 7 (bottom) that the
disconnected chiral susceptibility suffer from large finite
volume effects, which become more severe for smaller quark
masses. It thus is conceivable that the lattice sizes used in our
current analysis are not sufficient to determine the correct
scaling exponents for chiral observables.
A similar behavior is found for the temperature deriva-

tive of Δls. Also its peak height increases with increasing
volume, suggesting that Δls will have an infinite slope at
TRW. The observed volume dependence ofΔls and χdis thus
is qualitatively consistent with the finite-size scaling
behavior expected for energylike observables in the vicinity
of a phase transition controlled by Zð2Þ symmetry break-
ing, although a detailed quantitative analysis will require
calculations on larger lattices and smaller quark masses.
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FIG. 7. The chiral condensate versus temperature for H ¼ 1=27 (left), 1=160 (middle), and 1=320 (right) for different volumes.

5As we are working with a staggered fermion formulation on
rather coarse lattices the Oð4Þ symmetry is explicitly broken and
the relevant symmetry group rather is Oð2Þ.
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It is obvious from Fig. 7 that, unlike the order parameter
susceptibility, the disconnected chiral susceptibility shows
a strong quark mass dependence. As discussed in Sec. II,
in a phase with broken chiral symmetry, i.e., for temper-
atures T < Tχ , the disconnected chiral susceptibility will
diverge as H−1=2 for any value of the temperature, due to
the presence of a light Goldstone mode. In Fig. 8 (top) we
show the disconnected chiral susceptibility on the largest
lattice available (Nσ ¼ 32) and in Fig. 8 (bottom) we show
the rescaled susceptibility, H1=2χdisðTÞ. At T < Tpeak

χdis this
rescaled susceptibility seems to approach a constant value,
while for T > Tpeak

χdis it approaches zero.
In the vicinity of a critical point belonging to the 3-d,

OðNÞ universality classes also the peak of the rescaled
susceptibility is expected to diverge in the limit H → 0,
T → Tχ . As can be seen in Fig. 8 the peak height of χdis
clearly rises with decreasingH. However, from the rescaled
data shown in that figure one can deduce that at least for
fixed finite volume the apparent exponent c controlling the
quark mass dependence,

χmax
dis ∼H−c; ð20Þ

is smaller than 1=2. In fact, the ratio of the two sub-
sequent peak values for ðH1; H2Þ ¼ ð1=27; 1=160Þ and for
ðH2; H3Þ ¼ ð1=160; 1=320Þ gives the value c ≃ 0.4 and
0.22, respectively.
While it is thus evident that the chiral susceptibility will

diverge in the chiral limit at low temperatures, quantifying
the quark mass dependence of the peak height and its
interplay with the volume dependence induced by the RW
transition is beyond the scope of our current analysis.
Disentangling the subtle interplay between infinite volume
and chiral limits requires further analyses on larger lattices.
Finally we want to discuss whether or not the chiral

phase transition temperature Tχ and the RW transition
temperature TRW coincide. The temperature at the peak of
χdis, i.e., T

peak
χdis ðHÞ, decreases with decreasing mass. In fact,

this closely follows the quark mass dependence found for
the critical temperatures determined from the scaling fits to
the order parameterM and its susceptibility, χM. In Table III
we summarize results for the location of peaks of the chiral
susceptibility as well as the inflection point of the chiral
order parameter. These results have been obtained using the
largest lattices available, 323 × 4.
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FIG. 8. The disconnected chiral susceptibility χdisc calculated
on lattices of size 323 × 4 for several values of the light quark
masses expressed in units of the strange quark mass
(H ¼ ml=ms) (top) and the same observable rescaled by a factor
H1=2 (bottom) versus temperature.

TABLE III. Pseudocritical temperatures deduced from the
inflection point of the chiral condensate (T infl

Δls
) and the peak of

the disconnected chiral susceptibility (Tpeak
χdis ). Results are from

calculations on a 323 × 4 lattice.

ml=ms T infl
Δls

Tpeak
χdis

1=27 203.9(7) 203.5(2)
1=160 198.1(6) 198.5(2)
1=320 197.2(6) 195.9(6)

FIG. 9. Quark mass dependence of the critical temperature for
the RW phase transition (red band), determined from the location
of peaks in χM, and the pseudocritical temperature for the chiral
phase transition (blue band) obtained from the inflection point of
Δls on lattices of size 323 × 4. The band reflects the variation of
fits using the ansatz given in Eq. (21) with fixed 1=βδ ∈
½0.599; 0.8� as discussed in the text.
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In Fig. 9 we compare the pseudocritical temperatures
obtained from chiral observables on this largest available
lattice with the infinite volume critical temperature of
the RW phase transition. Obviously the pseudocritical
temperatures agree with each other within errors and also
are in good agreement with TRWðHÞ given in Table II.
Differences are about 1 MeV and slightly decrease with
decreasing H.
Our current data suggest that the chiral and RW phase

transitions may coincide in the chiral limit. In that case the
RW endpoint will be a multicritical point [48,49] and one
does not expect to find Zð2Þ or OðNÞ critical behavior. The
critical temperature generally is expected to scale like

TRWðHÞ ¼ TRWð0Þ þ aH1=βδ: ð21Þ

In order to extrapolate the RW phase transition temperature
and the chiral pseudocritical temperatures to the chiral
limit, H → 0, we performed two parameter fits, using
Eq. (21), and keeping the combination of critical exponent
βδ fixed. Since we are not aware of a settled set of
exponents for this specific multicritical case, we used
the range 0.599 ≤ 1=βδ ≤ 0.8, which covers the values
for the three dimensional Oð2Þ (0.599) and Zð2Þ (0.639)
universality classes, as well as mean-field exponents for
critical (2=3) and tricritical (4=5) behavior. Fits with these
ansätze indeed give a viable description of the data for
TRWðHÞ and the pseudocritical temperatures for the chiral
phase transition. The extracted critical temperatures grow
slightly with increasing 1=βδ. Averaging over the fit results
for the four sets of critical exponents given above, we find
for the RW phase transition temperature

TRW ≡ TRWð0Þ ¼ 195.0ð6Þ MeV: ð22Þ

Similarly we find as an estimate for the chiral phase
transition temperature from the results for pseudocritical
temperatures obtained on a 323 × 4 lattice,

Tχ ¼ 195.6ð6Þ MeV: ð23Þ

The corresponding fits are shown in Fig. 9. In view of the
uncertainties regarding our extrapolations and taking into
account that our estimates for the pseudocritical temper-
atures TχðHÞ are not yet extrapolated to the thermodynamic
limit, we quote TRW ¼ 195ð1Þ MeV as our first estimate
for the phase transition temperature in the chiral limit.

V. CONCLUSIONS

We analyzed scaling behavior in the vicinity of the
endpoint of the line of first order phase transitions in the
Roberge-Weiss plane. Our calculations, have been per-
formed in (2þ 1)-flavor QCD using the highly improved
staggered quark action on coarse lattices of size N3

σ × 4.
The strange quark mass has been tuned to its physical

value. By varying the spatial extent of the lattice in the
range 16 ≤ Nσ ≤ 32 we performed a finite size scaling
analysis for different values of the light quark mass
corresponding to the ratios, H≡ml=ms¼ 1=27;1=160;
1=320, which in the continuum limit corresponds to pion
masses in the range 40 MeV≲mπ ≲ 135 MeV.
We find that the RW phase transition at the endpoint of a

line of first order phase transition is second order in the 3-d,
Zð2Þ universality class for the entire quark mass regime
explored by us. The chiral order parameter and the related
disconnected chiral susceptibility show scaling behavior
that is consistent with that of energy- and specific-heatlike
observables in this universality class. The pseudocritical
temperatures obtained from peaks of the disconnected
chiral susceptibility and the susceptibility of the order
parameter for the RW transition differ by at most 1 MeV
at the quark mass ratios considered by us and show
similar quark mass dependence. This suggests that the
RW and chiral phase transition temperatures coincide
or differ by not more than 1 MeV in the chiral limit.
The observed qualitative scenario is thus fully compatible
with an earlier study by functional renormalisation group
methods in the chiral limit [50]. On the coarse lattice used
for these calculations we estimate for the RW transition
temperature in the chiral limit TRW ¼ 195ð1Þ MeV. All
data presented in the figures of this paper can be found
in [51].
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APPENDIX A: STATISTICS AND RUN
PARAMETERS

We summarize here the statistics collected on different
size lattices for the different quark mass and temperature
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TABLE IV. Parameters used in simulations with the HISQ action on lattices of size N3
σ × 4with Nσ ¼ 16, 24, and 32. Calculations are

done on a line of constant physics defined by ml=ms ¼ 1=27 [31]. The strange quark masses, ms in units of the lattice spacing a are
given in column 3. In columns 4 to 6 the number of configurations (Uτ) is given. They have been stored and analyzed after RHMC
trajectories of unit length (τ ¼ 1) for ml ¼ ms=27 and half-length (τ ¼ 1=2) for ml ¼ ms=160 and ms=320.

N3
σ × Nτ ¼ 163 × 4

β T [MeV] ms U1 (ml ¼ ms=27) U1=2 (ml ¼ ms=160) U1=2 (ml ¼ ms=320)

5.850 178.29 0.1424 9120 8140 � � �
5.875 182.98 0.1368 � � � 13680 � � �
5.900 187.79 0.1320 13280 36740 � � �
5.925 192.75 0.1275 81520 36120 � � �
5.940 195.79 0.1248 � � � 36740 � � �
5.950 197.85 0.1230 85660 39280 � � �
5.960 199.93 0.1211 � � � 62540 � � �
5.970 202.03 0.1192 � � � 89820 � � �
5.975 203.09 0.1183 85240 93780 � � �
5.980 204.15 0.1173 � � � � � � � � �
5.990 206.30 0.1155 � � � 51520 � � �
6.000 208.48 0.1138 92380 � � � � � �
6.025 214.01 0.1100 10000 � � � � � �
6.038 216.95 0.1082 10000 � � � � � �

N3
σ × Nτ ¼ 243 × 4

β T [MeV] ms U1 (ml ¼ ms=27) U1=2 (ml ¼ ms=160) U1=2 (ml ¼ ms=320)

5.850 178.29 0.1424 � � � 5380 77060
5.875 182.98 0.1368 � � � 46580 � � �
5.900 187.79 0.1320 41840 32260 69140
5.925 192.75 0.1275 86880 91380 80140
5.940 195.79 0.1248 � � � 163120 92960
5.950 197.85 0.1230 41180 240320 183660
5.960 199.93 0.1211 79860 231880 262980
5.970 202.03 0.1192 116280 234220 229480
5.975 203.09 0.1183 185500 190140 207500
5.980 204.15 0.1173 207300 � � � � � �
5.990 206.30 0.1155 188960 66400 57660
6.000 208.48 0.1138 89140 � � � � � �
6.025 214.01 0.1100 14340 � � � � � �

N3
σ × Nτ ¼ 323 × 4

β T [MeV] ms U1 (ml ¼ ms=27) U1=2 (ml ¼ ms=160) U1=2 (ml ¼ ms=320)

5.850 178.29 0.1424 40180 34900 48560
5.875 182.98 0.1368 � � � 33400 52820
5.900 187.79 0.1320 74560 39600 64440
5.925 192.75 0.1275 73800 116060 85000
5.932 194.16 0.1263 � � � 141760 � � �
5.940 195.79 0.1248 � � � 120460 128220
5.945 196.82 0.1237 � � � 86140 � � �
5.950 197.85 0.1230 73260 267340 136360
5.955 198.88 0.1219 � � � 209420 � � �
5.960 199.93 0.1211 72960 179880 95000
5.970 202.03 0.1192 162502 232320 95000
5.975 203.09 0.1183 256800 94700 95000
5.980 204.15 0.1173 421780 � � � � � �
5.990 206.30 0.1155 37600 � � � 95000
6.000 208.48 0.1138 39700 � � � � � �
6.025 214.01 0.1100 44460 � � � � � �
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values used in our calculations. The temperature values, T,
given in the second column of Table IV are obtained from
the gauge coupling β given in the first column by using the
parametrization of the kaon decay constant in lattice units,
afK [34], along the line of constant physics for physical
light (ml) and strange (ms) quark masses, ml ¼ ms=27.

APPENDIX B: FINITE-SIZE SCALING
FUNCTIONS FOR THE 3-d, Zð2Þ

UNIVERSALITY CLASS

We summarize here our analysis of the finite-size scaling
functions in the 3-d, Zð2Þ universality class, which we have
determined for the purpose of the study presented here. We
used the Zð2Þ symmetric λϕ4 model in three dimensions
[42], with a coupling λ ¼ 1.1 optimized to suppress con-
tributions from corrections-to-scaling in the calculation of
basic observables, e.g., the order parameter M, its suscep-
tibility χM [Eq. (7)] and moments of the order parameter,
which enter the calculation of universal ratios introduced in
Eqs. (8) and (9). This model has been used previously to
determine scaling functions and critical exponents for 3-d,
Zð2Þ symmetric models [42,43]. In our spin model calcu-
lations we used a cluster algorithm program that has been
used previously in studies of Zð2Þ spin models [43].
In the vicinity of a critical point the free energy density of

a thermodynamic system may be written in terms of
singular (fs) and regular (fr) contributions,

fðT; h; NσÞ ≃ b−dfsðb1=νt=t0; bβδ=νh=h0; bl0=NσÞ
þ frðT; h; NσÞ; ðB1Þ

where fs is a homogeneous function of the reduced
temperature t ¼ ðT − TcÞ=Tc, the symmetry breaking field
h and the volume V ¼ N3

σ. Here β, γ, δ and ν are critical
exponents for the 3-d, Zð2Þ universality class of the Ising
model and t0, h0 and l0 are nonuniversal scale parameters.
For the specific λϕ4 model, with λ ¼ 1.1, used in our

simulations, the critical temperature is well known [52]

Tc ¼ 2.665980ð3Þ; ðB2Þ

and the scale parameter t0 ¼ 0.302ð1Þ, which is the only
relevant scale parameter for our analysis, is taken
from Ref. [43].
Also the critical exponents of the 3-d, Zð2Þ universality

class are known quite accurately. For consistency with [43]
we use critical exponents taken from [53]

β ¼ 0.3258ð15Þ; ν ¼ 0.6304ð13Þ; ðB3Þ

and determine other exponents from hyperscaling relations,
e.g., δ ¼ dν=β − 1, γ ¼ dν − 2β, and α ¼ 2 − dν.
Close to the critical point ðt; h; N−1

σ Þ ¼ ð0; 0; 0Þ the
universal critical behavior is controlled by the scaling

function fs. Choosing the scale factor b ¼ Nσ, taking
derivatives with respect to the external field h and finally
choosing h ¼ 0wemay write the order parameterM and its
susceptibility χM as,

M ¼ N−β=ν
σ h−10 f0sðzf; 0; l0ÞÞ þ reg

≡ N−β=ν
σ fG;LðzfÞ þ reg; ðB4Þ

χM ¼ Nγ=ν
σ h−20 f00s ðzf; 0; l0Þ þ reg

≡ fχ;LðzfÞ þ reg; ðB5Þ

with zf ¼ N1=ν
σ t=t0.

The scaling functions fG;L and fχ;L are defined such that
the amplitude AM introduced in Eqs. (10) and (11) equals
unity. The singular part of the order parameter ratio,
introduced in Eq. (8), is then just a ratio of these scaling
functions, i.e.,

K2ðT;NσÞ ¼
fχ;LðzfÞ
f2G;LðzfÞ

þ reg; ðB6Þ

and, similarly the singular part of the Binder cumulant,
introduced in Eq. (9), is given in terms of derivatives of the
scaling function fs, i.e.,

fG,L(0)= 0.880(2)

fG,L

zf

Nσ = 96
= 48
= 36
= 24

 0

 0.5

 1

 1.5

 2

 2.5

 3

-20 -15 -10 -5  0  5  10  15  20

fχ,L(0)= 0.186(4)fχ,L

zf

Nσ = 96
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 0
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 0.1
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FIG. 10. Finite-size scaling functions of the order parameter
(top) and its susceptibility (bottom) as defined in Eqs. (B4) and
(B5), respectively.
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B4ðT;NσÞ ¼
χ4

N3
σχ

2
2

¼ fð4Þs ðzfÞ
ðfð2Þs ðzfÞÞ2

þ reg

≡ fBðzfÞ þ reg; ðB7Þ

where χn ≡ fðnÞðT; 0; NσÞ ¼ − ∂
n

∂hn fðT; h; NσÞjh¼0
.

On finite lattices the singular parts of K2 and B4 have
unique crossing points at T ¼ Tc. From the fits discussed
below we find K2ðTc;∞Þ ¼ 0.241ð4Þ and B4ðTc;∞Þ ¼
1.606ð2Þ.
The order parameter and its susceptibility as well as the

two ratios K2 and B4 have been calculated on lattices of
size Nσ ¼ 16 up to 96. These data are shown in Figs. 10
and 11. Although in these figures the volume dependence
of the rescaled observables, plotted versus the scaling
variable zf, is not apparent, finite volume effects arising
from remaining regular or correction-to-scaling terms are
visible for large jzfj. We thus finally extracted the finite size
scaling functions from our data obtained on lattices of size
N3

σ ¼ 963. This allowed us to ignore any possible correc-
tions from regular terms in our fits.
The behavior of the scaling functions fG;L and fχ;L in the

limit jzfj → ∞ is constrained by demanding that in this
limit the Nσ-dependent prefactors in Eq. (B5) must get
canceled to obtain the T-dependent critical behavior of the
order parameter and its susceptibility at vanishing external
field, i.e.,

fG;LðzfÞ ∼
� ð−zfÞβ; zf → −∞

ðzfÞ−γ=2; zf → ∞
ðB8Þ

fχ;LðzfÞ ∼ jzfj−γ; zf → �∞ ðB9Þ

where the behavior of fG;LðzfÞ in the limit zf → ∞ reflects
the expected volume depends of the order parameter in the
symmetric phase, M ∼ 1=

ffiffiffiffi
V

p
, and ensures that the cumu-

lant ratio K2 approaches a constant value for large zf.

In our fits we used ansätze for the asymptotic regimes
that obey Eqs. (B8) and (B9) and polynomial ansätze for
the region around zf ¼ 0. At the interval boundaries we
match the value, first and second derivative of the poly-
nomial and asymptotic ansätze, respectively. The value for
the matching points has been chosen by hand. In particular
we used the following ansätze,

MNβ=ν
σ ¼ fG;LðzfÞ

¼

8>>>>><
>>>>>:

a−M;∞ · ð−zfÞβ; zf ≤ −10P
7
n¼0 a

−
M;nz

n
f; −10 ≤ zf ≤ 0P

7
n¼0 a

þ
M;nz

n
f; 0 ≤ zf ≤ 10

aþM;∞ · ðzfÞ−γ=2; zf ≥ 10

ðB10Þ

χMN
−γ=ν
σ ¼ fχ;LðzfÞ

¼

8>>>>><
>>>>>:

a−χ;∞ · ð−zfÞ−γ; zf ≤−10P
7
n¼0a

−
χ;nznf; −10≤ zf ≤ 0P

7
n¼0a

þ
χ;nznf; 0≤ zf ≤ 10

ðzfÞ−γðaþχ;∞þaþχ;∞;1 · z
−3ν
f Þ; zf ≥ 10

ðB11Þ

B4 ¼ fBðzfÞ

¼

8>>>>><
>>>>>:

1þ a−B;∞ · ð−zfÞ−3ν; zf ≤ −10P
7
n¼0 a

−
B;nz

n
f; −10 ≤ zf ≤ 0P

7
n¼0 a

þ
B;nz

n
f; 0 ≤ zf ≤ 10

3þ aþB;∞ · z−3νf ; zf ≥ 10

ðB12Þ

Using these ansätze we fitted the data shown in Figs. 10
and 11. In the asymptotic regimes we find

K2(0)=0.241(4)

π/2-1
K2
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FIG. 11. Finite-size scaling functions of the Kiskis ratio (left) and the Binder cumulant (right) as defined in Eqs. (B6) and (B7),
respectively.
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a−M;∞ ¼ 1; aþM;∞ ¼ 1.1575038913

a−χ;∞ ¼ 0.4390718595; aþχ;∞ ¼ 0.7809274598

aþχ;∞;1 ¼ −4.3997992033

a−B;∞ ¼ 1.7048120598; aþB;∞ ¼ −15.1263706281

ðB13Þ
where a−M;∞ ¼ 1 arises from the normalization of the order
parameter scaling function. In the polynomial ansätze for

positive and negative zf we also fix the first three expansion
coefficients to be identical in both regimes, i.e.,
a0−X;n ¼ a0þX;n, for n ¼ 0, 1, 2 and X ¼ M, χ, B. The fit
parameters for the polynomial ansätze in the central fit
interval around zf ¼ 0 are summarized in Table V.
We also note that the fit results for aþM;∞ and aþχ;∞ yield

aþχ;∞=ðaþM;∞Þ2 ≃ 0.58 in good agreement with the infinite
volume value of the ratio K2 in the symmetric phase, i.e.,
K2ðT;∞Þ ¼ π=2 − 1 for T > Tc.
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