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We show that the effective action that results from integrating out massive Kähler-Dirac fermions
propagating on a curved three-dimensional space is a topological gravity theory of Chern-Simons type. In the
presence of a domain wall, massless, two-dimensional Kähler-Dirac fermions appear that are localized to the
wall. Potential gravitational anomalies arising for these domain wall fermions are canceled via anomaly
inflow from the bulk gravitational theory. We also study the invariance of the theory under large gauge
transformations. The analysis and conclusions generalize straightforwardly to higher dimensions.
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I. INTRODUCTION

An alternative to the Dirac equation for describing
fermions was proposed many years ago by Kähler [1].
It is based on the simple observation that a natural square
root of the Laplacian is the operator d − d† where d is the
exterior derivative and d† its adjoint. A key difference
that distinguishes the Kähler-Dirac operator from its
Dirac cousin is the fact that the former can be defined
without reference to a local frame and spin connection.
Thus Kähler-Dirac fermions are not globally equivalent
to Dirac fermions and are well-defined on any smooth
manifold. Nevertheless there is a close connection between
the two in flat space. The Kähler-Dirac equation in
D-dimensional flat space takes the form

ðd − d† −mÞΦ ¼ 0; ð1Þ

where Φ¼ðω;ωμ;ωμν;…;ωμ1���μDÞ is a collection of p-form
fields with p running from 0 to D. In this paper we will
work in Euclidean space. It is straightforward to show that
in even dimensions this can be mapped into a Dirac
equation describing 2D=2 degenerate Dirac spinors corre-
sponding to the columns of a 2D=2 × 2D=2 matrix Ψ [2,3],

ðγμ∂μ −mÞΨ ¼ 0; ð2Þ

where

Ψ ¼
XD
μ¼0

ωμ1���μpγ
μ1 � � � γμp : ð3Þ

Kähler-Dirac fields arise naturally in twisted supersym-
metric theories [4] and are closely related to staggered
fermions [2,5]. Recently, there has been renewed interest in
them in connection with Dai-Freed anomalies [6,7], topo-
logical insulators [8], and symmetric mass generation in
staggered fermion lattice models [9–13]. They have also
been proposed as an ingredient in the construction of chiral
lattice theories [14].
One consequence of this work has been the realization that

massless Kähler-Dirac theories in even dimensions suffer
from a gravitational anomaly, which breaks a global Uð1Þ
symmetry, unique to Kähler-Dirac fermions, down to Z4

[15,16]. In four dimensions this anomaly is given by theEuler
density

R
ϵabcdRab ∧ Rcd in contrast to the usual gravita-

tional anomaly of Dirac fermions given by
R
Rab ∧ Rab with

R the Riemann tensor [17,18]. It should be noted that since
Kähler-Dirac fermions can be decomposed into Dirac fer-
mions in flat space they do not possess conventional γ5
anomalies.
Remarkably this new anomaly survives discretization

since it depends only on the topology of the background
which can be captured exactly in a simplicial approxima-
tion to the space. This Z4 symmetry prohibits bare mass
terms but allows for four fermion interactions which can
gap fermions without breaking symmetries for multiples of
two Kähler-Dirac fields [16]. In flat space each such
Kähler-Dirac field can be decomposed into 2D=2þ1

Majorana spinors, and we deduce that such theories contain
eight and sixteen Majorana spinors in two and four
dimensions, respectively. These magic fermion numbers
that allow for symmetric mass generation are in agreement
with the cancellation of certain discrete anomalies for Weyl
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fermions—chiral fermion parity in two dimensions and
spin-Z4 symmetry in four [6,19].
In this paper we will show that massive Kähler-Dirac

fermions in odd dimensions exhibit further interesting
properties; they yield gravitational Chern-Simons (CS)
theories at low energies. Furthermore, in the presence of
domain walls, these theories contain massless Kähler-Dirac
fields localized to the domain wall. We show that potential
anomalies for these domain wall fermions, of the type
discussed above, are canceled via anomaly inflow from the
bulk gravitational theory.

II. KÄHLER-DIRAC FERMIONS
IN THREE DIMENSIONS

Following our earlier discussion the massless Kähler-
Dirac (KD) action in three dimensions can be written as

Z
d3x

ffiffiffi
g

p
Φ̄ðd − d†ÞΦ; ð4Þ

where Φ ¼ ðϕ;ϕμ;ϕμν;ϕμνλÞ is a collection of p-forms
(antisymmetric tensors). Notice that such a field possesses
eight (complex) components in three dimensions.
This action is invariant under a Uð1Þ symmetry of the

form

Φ → eiαΓΦ; Φ̄ → Φ̄eiαΓ; ð5Þ

where the linear operator Γ acts on the component p-forms
ϕp according to whether it carries an even or odd number of
indices ϕp → ð−1Þpϕp. This property implies that Γ
anticommutes with the Kähler-Dirac operator which then
ensures the Uð1Þ symmetry of the action. Furthermore, the
operator Γ can be used to construct projectors P� ¼
1
2
ðI � ΓÞ which act naturally on a Kähler-Dirac field to

yield a pair of so-called reduced Kähler-Dirac fields
Φ� ¼ P�Φ. The Kähler-Dirac operator maps between
Φþ and Φ− and vice versa.
If we want to map three-dimensional Kähler-Dirac fer-

mions into a set of spinors, we will need the analog of the
matrix expansion given in Eq. (3). Clearly one cannot map
the eight component fields of aKähler-Dirac fermion in three
dimensions using just the minimal Dirac matrices corre-
sponding to the Pauli matrices. Instead one must double the
number of components of the spinorwith the resultingmatrix
representation of the three-dimensional Kähler-Dirac field
employing 4 × 4 gamma matrices.1 Naively such a field
carries 16 degrees of freedom but this can be reduced to 8
using the projection operators P� described earlier. These
can be implemented in the matrix representation as

Ψ� ¼ P�Ψ ¼ 1

2
ðΨ� γ5Ψγ5Þ: ð6Þ

The use of this four-dimensional representation allows
one to write down a massive three-dimensional Kähler-
Dirac action which preserves the Uð1Þ symmetry provided
the mass term is taken proportional to γ4:

S ¼
Z

d3xTr½Ψ̄ðγμ∂μ − iγ4MÞPþΨ�: ð7Þ

This action is invariant under a global spinð3Þ Lorentz
symmetry L and a global spinð4Þ flavor symmetry F which
act on the fields as

Ψþ → LΨþF†; Ψ̄− → FΨ̄−L†: ð8Þ

Notice that F should contain L as a subgroup to reflect the
Kähler-Dirac nature of the fermions since under a Lorentz
transformation a Kähler-Dirac field must transform as a
sum of tensor representations. However, to facilitate the
computation of the effective action in the next section
we will treat both symmetries as independent when
gauging the action and impose the Kähler-Dirac condition
relating the corresponding gauge fields only after the
fermion integration. On a curved space as well as having
gauged the flavor symmetry the action is modified
to [22]

S ¼
Z

d3x ÊTr½Ψ̄ðÊμ
Aγ

ADμ − iγ4MÞPþΨ�; ð9Þ

where Êμ is a 3-frame corresponding to the background
metric and Dμ the associated covariant derivative which
acts on the field Ψ as

DμΨ ¼ ∂μΨþ ΩμΨ − ΨΩ̂μ; ð10Þ

where Ωμ is the three-dimensional spin connection and Ω̂μ

is a spinð4Þ flavor gauge field. Notice that while Kähler-
Dirac fermions do not require the use of a spin connection,
it is necessary to introduce such an object to do calculations
in the matrix basis where the Kähler-Dirac field is repre-
sented in terms of Ψ.

III. INTEGRATING OUT THE FERMIONS

We will focus on deriving an effective action for Ω̂μ

perturbatively in the limit M → ∞. If we integrate out the
fermions, we obtain an effective action which can be
written

1Three-dimensional fermions of this type are called reducible
fermions and correspond to a sum of the two irreducible spinor
representations for spinð3Þ—see [20,21].
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Seff ¼ Tr log ½ð∂ − iγ4M þ =VÞPþ�

¼ Tr log

�
ð∂ − iγ4MÞ

�
I þ =V

=∂ − iγ4M

�
Pþ

�

¼ Tr log

��
I þ =V

=∂ − iγ4M

�
Pþ

�

þ terms independent of V: ð11Þ

Expanding the logarithm the leading term is

−
1

2
Tr

��
=V

=∂ − iγ4M

�
2

Pþ

�
ð12Þ

corresponding to the diagram in Fig. 1. Here =V ¼ VL þ VR
where the subscripts indicate whether the gauge field acts
on the left or right of the matrix fermion Ψ:

VL ¼ Êμ
Aγ

AΩμ; ð13Þ

VR ¼ −Êμ
Aγ

AΩ̂μ: ð14Þ

In momentum space this gives2

Squadeff ¼ 1

2

Z
d3k
ð2πÞ3 Tr

�
=k − γ4M
k2 þM2

γμVμ
=kþ p − γ4M
ðkþ pÞ2 þM2

× γνVνPþ

�
: ð15Þ

If we focus on the contribution that is linear in the external
momentum p, we find

Squadeff ¼ −
1

2
×
1

2
×

�
−
1

2

�
2

trðÊγ5γ4γEγFγGÞ

× Êμ
EÊ

δ
F Ê

ν
G × I × pδΩ̂AB

μ ð−pÞΩ̂CD
ν ðpÞ

× trðσABσCDγ5Þ: ð16Þ

Notice that a nonvanishing contribution comes only from
employing VR at both vertices. The integral I is given by

I ¼
Z

d3k
ð2πÞ3

M
ðk2 þM2Þððkþ pÞ2 þM2Þ : ð17Þ

For M ≫ p and rescaling k=M → k,

I ¼ M
jMj ×

Z
∞

−∞

d3k
ð2πÞ3

1

ðk2 þ 1Þ2 ¼
M
jMj ×

1

8π
: ð18Þ

Employing the identity ÊϵABCÊμ
AÊ

δ
BÊ

ν
C ¼ ϵμδν we find a

contribution to the effective action of the form

Squadeff ¼ −i
M
jMj × 4 ×

�
1

2

�
4

×
1

8π

×
Z

d3xϵμδνΩ̂AB
μ ð∂δΩ̂CD

ν ÞϵABCD: ð19Þ

This is not gauge invariant. There is, however, a contribu-
tion coming from next order in the expansion of the
logarithm:

1

3
Tr

��
=V

=∂ − iγ4M

�
3

Pþ

�
; ð20Þ

which corresponds to the Feynman diagram in Fig. 2. In
momentum space this gives

Scubiceff ¼ i
3

Z
d3k
ð2πÞ3 Tr

�
=k − γ4M
k2 þM2

γμVμ
=kþ =q − γ4M
ðkþ qÞ2 þM2

× γδVδ
=k − p − γ4M
ðk − pÞ2 þM2

γνVνPþ

�
: ð21Þ

Extracting the leading term which again uses only VR
yields

FIG. 1. One loop contribution to vacuum polarization.

FIG. 2. One loop contribution to three gauge boson vertex.2For more details see the Appendix.
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Scubiceff ¼ −i×
1

3
×
1

2
×

�
−
1

2

�
3

trðÊγ5γ4γGγ4γHγ4γIÞÊμ
GÊ

δ
HÊ

ν
I ×I× Ω̂AB

μ ð−pÞΩ̂CD
δ ð−qÞΩ̂EF

ν ðpþ qÞtrðσABσCDσEFγ5Þ

¼ i× 4×
1

3
×

�
1

2

�
4

× ϵμδν ×I× Ω̂AB
μ ð−pÞΩ̂CD

δ ð−qÞΩ̂EF
ν ðpþ qÞ× 1

8
ð2δABϵCDEF − 3δACϵBDEF

þ δBCϵADEF þ 3δADϵBCEF − δBDϵACEF − 2δBEϵACDF − δCEϵABDF þ δDEϵABCF þ 2δBFϵACDEþ δCFϵABDE − δDFϵABCEÞ

¼ i× 4×
1

3
×

�
1

2

�
4

× ϵμδν ×I× Ω̂AM
μ ð−pÞΩ̂MB

δ ð−qÞΩ̂CD
ν ðpþ qÞð2ϵABCDÞ; ð22Þ

where

I ¼
Z

d3k
ð2πÞ3

Mðk2 þM2Þ
ðk2 þM2Þððkþ qÞ2 þM2Þððk− pÞ2 þM2Þ :

ð23Þ

For M ≫ p, q and from rescaling k=M → k

I ¼ M
jMj ×

Z
∞

−∞

d3k
ð2πÞ3

1

ðk2 þ 1Þ2 ¼ I ; ð24Þ

where I is given by Eq. (18). In real space this yields

Scubiceff ¼ i ×
M
jMj × 4 ×

1

3
×

�
1

2

�
4

×
1

8π

×
Z

d3xϵμδνΩ̂AM
μ Ω̂MB

δ Ω̂CD
ν ð2ϵABCDÞ: ð25Þ

Combining Eq. (25) and Eq. (19) gives the effective action

SCSeff ¼ −
M
jMj ×

i
4 × 8π

Z
d3xϵμδνϵABCD

×
�
Ω̂AB

μ ð∂δΩ̂CD
ν Þ − 2

3
Ω̂AM

μ Ω̂MB
δ Ω̂CD

ν

�

¼ −
M
jMj ×

i
32π

Z
d3xϵμδνϵABCD

× Ω̂AB
μ

�
FCD
δν

2
þ 1

3
Ω̂CM

δ Ω̂MD
ν

�
; ð26Þ

where F is the spinð4Þ curvature. It is the unique term in the
effective action that survives the large M limit. Notice that
while this piece of the effective action comes from a ultra-
violet (U.V) convergent integral, this is not true of other terms
arising in SCSeff at finiteM. Employing a Pauli-Villars regulator
with mass Λ leads to the replacement M

jMj→ð M
jMjþ Λ

jΛjÞ in

Eq. (26). Thismodificationplays an important role in our later
discussion of domain wall physics and invariance of the
effective actionunder largegauge transformations inSec.VII.
We now impose the condition that the original Lorentz

symmetry be a subgroup of the spinð4Þ flavor symmetry by
setting

Ω̂μ ¼ ΩAB
μ TAB þ 2EA

μT4A; A; B ¼ 1…3; ð27Þ

where Ωμ is the original spin connection with TAB ¼
1
4
½γA; γB� the generators while Eμ are the additional gauge

fields needed for spinð4Þ. In the next section we will see
that Eμ can be interpreted as a dynamical frame for an
emergent geometry. Equation (26) is hence a Chern-Simons
term that ensures the effective action on a manifold without
boundary is invariant under gauge transformations of the
spin connection that can be smoothly deformed to the
identity.

IV. GRAVITY INTERPRETATION

We can decompose the spinð4Þ curvature also under the
original Lorentz group by computing the commutator of the
corresponding spinð4Þ covariant derivative ½Dμ; Dν� and
expanding the resultant expression on the generators in a
manner similar to that given in Eq. (27). This leads to the
following expression:

Fμν ¼
�
RAB

μν −
2

l2
EA
½μE

B
ν�

�
TAB þ 4

l
D½μEA

ν�T4A; ð28Þ

where Rμν ¼ ∂μΩν − ∂νΩμ þ ½Ωμ;Ων� is the spinð3Þ cur-
vature and the remaining components D½μEν� are recog-
nized as the torsion Tμν. Notice that we have rescaled the
gauge fields Eμ by an arbitrary length scale l to make it
possible to interpret Eμ as the dimensionless emergent
frame. Substituting these expressions into Eq. (26) yields

SCSeff ¼ −i
M
jMj ×

1

32π

Z
d3xϵμνλϵABC

×
1

l
EA
μ

�
RBC

νλ −
8

3l2
EB
νEC

λ

�
; ð29Þ

where we have discarded boundary terms. Clearly the action
rewritten in these variables contains both an Einstein-Hilbert
and cosmological constant term as expected of a gravity
theory [23,24]. However, the relative coefficients of these
terms have been fixed by the requirement that the theory
actually enjoys a local spinð4Þ symmetry now interpreted as a
local de Sitter gauge symmetry. Notice that the equation of
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motion for the Chern-Simons theory Fμν ¼ 0 now implies
the pair of equations

Rμν −
2

l2
E½μEν� ¼ 0; Tμν ¼ 0; ð30Þ

corresponding to classical Euclidean de Sitter space and a
torsion-free connection. Of course this identification
between Einstein Hilbert and Chern-Simons theory is still
problematic at the nonperturbative level since in the path
integral the latter necessarily includes degenerate metrics
with a vanishing frame. This is the origin of the topological
character of the gravity theory as discussed in [25].
It is not a surprise that integrating out fermions in odd

dimensions leads to a Chern-Simons theory—this is well-
known in the case of Dirac fermions transforming under
some internal symmetry. What is new here is that if those
fermions are taken to be of Kähler-Dirac type propagating
on a curved background geometry, then the induced Chern-
Simons theory is actually a (topological) theory of gravity.

V. DOMAIN WALL CONSTRUCTION

In the previous section we assumed that the three-
dimensional manifold was compact. It is interesting to
ask what happens in the presence of a boundary or
equivalently if a domain wall is introduced in the system.
Our argument parallels the original discussion by Callan
and Harvey for Dirac fermions and later employed by
Kaplan in his construction of domain wall lattice fer-
mions [26,27].
Let us imagine a manifold of the form M × R with

coordinates ðxμ; zÞwhere xμ parametrize the position on the
domain wall. Let us also allow the fermion mass M to
change sign as a function of the flat coordinate z as shown
in Fig. 3:

MðzÞ ¼ M0

z
jzj : ð31Þ

One expects that massless states appear at z ¼ 0. To see this
let us rewrite the bulk Kähler-Dirac equation in the form

½γ3γμDμ þ ∂z − iγ3γ4MðzÞ�Ψðx; zÞ ¼ 0: ð32Þ

One can find zero mode solutions of this equation of the
form

ΨDW ¼ χðzÞψðxÞ ð33Þ

with γ3γμDμψ ¼ 0 and ψðxÞ an eigenvector of the
Hermitian operator H ¼ −iγ3γ4 with eigenvalue þ1. The
function χðzÞ must then satisfy

∂zχðzÞ ¼ −MðzÞχðzÞ: ð34Þ

Thus one finds χðzÞ ¼ e−M0jzj corresponding to zero modes
exponentially localized to the domain wall at z ¼ 0. Notice
that ΨDW contains just 4 degrees of freedom—the original
reduced field Ψþ contained 8 degrees of freedom while the
restriction to fields withH ¼ þ1 further halves the number
of degrees of freedom. Four degrees of freedom corre-
sponds to the field content of a two-dimensional Kähler-
Dirac field propagating on the wall. We can verify this
explicitly by going to a (Euclidean) chiral basis for the
gamma matrices corresponding to

γμ ¼
�

0 σμ

σ̄μ 0

�
; ð35Þ

where σμ ¼ ðiσi; IÞ and σ̄μ ¼ ð−iσi; IÞ. This implies that
Ψþ takes the 2 × 2 block form

Ψþ ¼
�
ψ1 0

0 ψ2

�
; ð36Þ

and the matrix H takes the form

H ¼
�
σ3 0

0 −σ3

�
: ð37Þ

The additional requirement that ΨDW be an eigenstate of H
with eigenvalue þ1 shows that ψ1 contains two right-
handed two-dimensional Weyl spinors while ψ2 contains
two left-handed spinors.
The constraint H ¼ 1 for the domain wall fermions also

breaks the original gauge symmetry to spinð2Þ × spinð2Þ.3
The first factor corresponds to the generator 1

4
½γ1; γ2� and is

associated with the two-dimensional spin connection Ω̂12
μ

needed to enforce local Lorentz invariance for the domain
wall modes. The second factor corresponds to H itself. The
covariant derivative associated with rotations generated by
H takes the form

FIG. 3. Domain wall.

3Thus all gauge fields associated with the broken generators
must vanish on the domain wall.
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DμΨDW ¼ ∂μΨDW þ i
2
Ω̂34

μ ðHΨDW −ΨDWHÞ: ð38Þ

Using HΨDW ¼ ΨDW this can be rewritten as

DμΨDW ¼ ∂μΨDW þ i
2
Ω̂34

μ ðΨDW −HΨDWHÞ: ð39Þ

If we define the domain wall chiral operator γ̂5 ¼ γ5H, the
covariant derivative associated with H becomes

DμΨDW ¼ ∂μΨþ
DW þ ∂μΨ−

DW þ iΩ̂34
μ Ψ−

DW; ð40Þ

where the domain wall reduced field Ψ�
DW is given by

Ψ�
DW ¼ P̂�ΨDW ¼ 1

2
ðΨDW � γ̂5ΨDWγ̂

5Þ: ð41Þ

Thus we find that the gauge field Ω̂34 couples only to a two-
dimensional reduced Kähler-Dirac field on the wall.
A similar feature is seen in the interaction of the domain

wall fermion with the two-dimensional spin connection
Ω̂12. The corresponding term in the covariant derivative
takes the form

i
2
Ω̂12

μ ðiγ1γ2ΨDW − ΨDWiγ1γ2Þ ¼ iΩ̂12
μ γ̂5Ψ−

DW: ð42Þ

Thus all gauge interactions on the domain wall couple only
to the reduced Kähler-Dirac field Ψ−

DW.
To summarize we find that the low energy excitations of

the three-dimensional Kähler-Dirac theory in the presence
of a domain wall are massless two-dimensional Kähler-
Dirac fermions ΨDW localized to the wall and described
by a Lorentz invariant action possessing an additional
Uð1Þ symmetry generated by an operator Γ̂ ¼ γ̂5 ⊗ γ̂5. The
operator Γ̂ anticommutes with the two-dimensional Kähler-
Dirac operator describing the domain wall fermions and
allows the Kähler-Dirac field to be projected into two
independent reduced Kähler-Dirac fields Ψ−

DW and Ψþ
DW.

Only one of these components Ψ−
DW participates in the

remaining spinð2Þ × spinð2Þ gauge symmetry.

VI. ANOMALY INFLOW FOR
KÄHLER-DIRAC FERMIONS

At first glance the structure of the domain wall fermion
action appears problematic since it is known that massless
Kähler-Dirac fields in even dimensions suffer from a
gravitational anomaly [15,16] that breaks this Uð1ÞΓ̂
symmetry down to Z4. The two-dimensional domain wall
action we derived in the previous section includes a gauged
version of this symmetry (since the gauge field couples to a
Γ̂ reduced fermion), and hence one naively expects an
anomaly induced breaking of gauge invariance in the low

energy theory. In this section we will show that there is an
additional contribution which arises from the bulk action
which restores gauge invariance via an anomaly inflow
mechanism.
To show in detail how this occurs we first include a brief

review of the derivation of the anomaly specialized to the
case of two-dimensional domain wall fermions. Under a
Uð1ÞΓ̂ rotation with parameter αðxÞ the measure for the
reduced Kähler-Dirac field Ψ−

DW transforms by a factor

ei
R

d2xαðxÞAðxÞ with

AðxÞ ¼ lim
M→∞

Tr
X
n

e

�
ϕ̄ne

1

M2ðDÞ2P̂−Pþϕn

�
; ð43Þ

where we have regulated the UV divergence by inserting

the factor e
1

M2ðDÞ2 where ϕn are eigenstates of the domain
wall Kähler-Dirac operator D ¼ γ3γμDμ and e represents
the determinant of the frame restricted to the wall
which we denote as eaμ. Cyclically permuting the trace
we find

A ¼ lim
M→∞

Tr

�
e

1

M2ðDÞ2P̂−Pþ
X
n

eϕnϕn

�

¼ lim
x→x0

lim
M→∞

Tr

�
e

1

M2ðDÞ2P̂−Pþδðx − x0Þ
�
: ð44Þ

Expanding D2 we obtain

A ¼ lim
x→x0

lim
M→∞

−
1

4
× Tr

�
ð−iγ3γ4Þeγ5e 1

M2ð□þ1
2
eμaeνbσ

abFcd
μν ½σcd;:�Þ

× δðx − x0Þγ5ð−iγ3γ4Þ
�

¼ lim
x→x0

lim
M→∞

Tr

�
ðσ34Þeγ5e 1

M2ð□þ1
2
eμaeνbσ

abFcd
μν ½σcd;:�Þ

× δðx − x0Þγ5ðσ34Þ
�
; ð45Þ

where F contains the surviving nonzero components of the
spinð4Þ curvature corresponding to the symmetry spinð2Þ×
spinð2Þ. Expanding the exponential to Oð1=M2Þ to get a
nonzero result for the trace over spinor and flavor indices

and acting with e
1

M2□
2

on the delta function yields

A ¼ −
1

4π
×

�
1

2

�
trðeγ5σabσ34ÞeμaeνbFcd

μνtrðγ5σcdσ34Þ

¼ −
1

8π
ϵμνϵcdRcd

μν; ð46Þ

where Rμν corresponds to the curvature of the spin con-
nection Ω̂12. We have employed the result eϵabeμaeνb ¼ ϵμν
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in the last line. Hence, under a Uð1Þ transformation the
measure for a reduced Kähler-Dirac field transforms as4

Z
DΨ̄DΨ → e−

i
8π

R
d2xαðxÞϵμνϵcdRcd

μν

Z
DΨ̄DΨ: ð47Þ

This naively breaks gauge invariance. However, the
anomaly we have computed for the domain wall fermions
is not the whole story. We showed earlier that the bulk
contains also an induced Chern-Simons term. In general
this also undergoes a nonzero change under a gauge
transformation. In general the variation of the bulk
Chern-Simons action takes the form

δSCSeff ¼ −
M
jMj ×

i
32π

× ϵμδνϵABCD

× ð∂μΩ̂AB
δ − ∂δΩ̂AB

μ − 2Ω̂AM
μ Ω̂MB

δ ÞδΩ̂CD
ν

¼ −
M
jMj ×

i
32π

× ϵμδνϵABCDFAB
μδ δΩ̂

CD
ν ; ð48Þ

where F is the spinð4Þ curvature. Under a gauge trans-
formation Ω̂AB

μ → Ω̂AB
μ þDμζ

AB the effective action
changes:

δSCSeff ¼ −
Z

d3x
M
jMj ×

i
32π

× ϵμδνϵABCDFAB
μδ ðDνζ

CDÞ

¼ i
Z

d3x
1

16π
× ϵμδϵABCDFAB

μδ ζ
CD

∂z

�
M

2jMj
�

¼ i
Z

d3xδðzÞ × 1

16π
× ϵμδϵabϵcdFab

μδ ζ
cd; ð49Þ

where a; b ¼ f1; 2g while c; d ¼ f3; 4g and these indi-
ces are to be contracted using two independent two-
dimensional ϵ symbols corresponding to the product of
the two invariant tensors for spinð2Þ × spinð2Þ—the surviv-
ing symmetry on the domain wall. Taking ζ34 ¼ −ζ43 ¼
αðxÞ we find

δSCSeff ¼
i
8π

Z
d2xαðxÞϵμδϵabRab

μδ : ð50Þ

Thus the gauge transformation of the Chern-Simons term in
the presence of the domain wall generates a contribution
that is equal in magnitude but opposite in sign to that
coming from the anomalous variation of the measure for
the domain wall fermions—Eq. (47). Thus the bulk and

boundary variations cancel and the full theory is gauge
invariant. This is anomaly inflow in action for Kähler-Dirac
fields. That this should occur is guaranteed by the fact that
the Euler characteristic of the bulk theory is zero if it is
taken to be a product of a two-dimensional space and a
circle since χðS1Þ ¼ 0.5

One might worry that the previous argument ignores the
fact that the Chern-Simons term was computed for constant
mass which is certainly not the situation close to the
domain wall. However, it is possible to avoid this problem
if one simply computes the change in the Chern-Simons
current J34μ ¼ δSeff

δA34
μ
between z ¼ ∞ and z ¼ −∞. One then

finds

ΔJ343 ¼ 2 × 2 ×
1

32
ϵμν3ϵABRAB

μν ; ð51Þ

where the second factor of 2 arises from the double counting
associatedwith the fact thatAAB

μ ¼ −ABA
μ . Comparing this to

the divergence of the Uð1Þ current arising from the domain
wall fermions ∂μJ34μ ¼ − 1

8π ϵ
μνϵABRAB

μν we see that the net
flow of charge off the domain wall is accounted for by the
Chern-Simons current.

VII. INVARIANCE UNDER LARGE GAUGE
TRANSFORMATIONS

It is of course interesting to ask about the invariance of
the theory under large gauge transformations. To facilitate
this analysis it is convenient to again adopt a Euclidean
chiral basis for the gamma matrices. The spinð4Þ connec-
tion becomes

Ω̂ ¼ Ωi

�
iσi 0

0 iσi

�
þ Ei

�
iσi 0

0 −iσi

�
; ð52Þ

while the fermion field takes the form

Ψþ ¼
�
ψ1 0

0 ψ2

�
; Ψ̄− ¼

�
0 ψ̄1

ψ̄2 0

�
: ð53Þ

The Kähler-Dirac action then separates into two indepen-
dent contributions

S ¼
Z

d3xÊ½trðψ̄1ðDðΩþ EÞ þ iMÞψ1Þ

þ trðψ̄2ðDðΩ − EÞ − iMÞψ2Þ�; ð54Þ

where tr denotes a trace over a two-dimensional block.
Each such block will then generate its own SUð2Þ Chern-
Simons term on integration over the fermions:

4Taking αðxÞ to be a constant one finds the measure transforms
by the phase e−iχα where χ is the Euler characteristic of the two-
dimensional space. If one further replaces the reduced field by a
full Kähler-Dirac field and compactifies the space to S2 where
χ ¼ 2, one obtains the originalUð1Þ global anomaly referred to in
the Introduction. In such a background the phase is just e−4iα
which leaves an unbroken Z4 subgroup.

5Our previous discussion assumed z extends from −∞ to ∞
but we can replace this by a circle at a price of adding an
antidomain wall at infinity.
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S ¼ ICSðΩþ EÞ − ICSðΩ − EÞ; ð55Þ

where

ICSðAÞ ¼
1

32π
signðMÞ

Z
d3xϵμνρ

× tr

�
Aμ∂νAρ −

2

3
AμAνAρ

�
: ð56Þ

The relative minus sign in Eq. (55) arises because of
differing signs of the mass in the two blocks [25].
Under a gauge transformation Aμ → gðxÞAμg−1ðxÞ þ

gðxÞ∂μg−1ðxÞ, each Chern-Simons term transforms, up to
a boundary term, according to

δICS ¼
Z

d3xϵμνδ
�

1

96π

M
jMj

�
trðg∂μg−1g∂νg−1g∂δg−1Þ

¼ M
jMj πn; ð57Þ

where the winding number n ¼ π3ðSUð2ÞÞ ¼ Z.6

Thus naively the level number of the CS term is
k ¼ �1=2 with the partition function changing sign for
odd n. However, once one regulates the theory with a Pauli-
Villars field corresponding to a z-independent cutoff mass
Λ the coefficients of the Chern-Simons terms (the level
numbers) are shifted to k ¼ 0 and k ¼ 1 in the two regions
z < 0 and z > 0, respectively. Thus we find that the theory
is in fact also invariant under large gauge transformations.

VIII. SUMMARY

We have shown that integrating out massive Kähler-
Dirac fermions in a curved three-dimensional background
yields a Chern-Simons term. This Chern-Simons term
corresponds to a topological theory of gravity in which
both spin connection and frame emerge from an extended
gauge symmetry—in this case Euclidean de Sitter sym-
metry. Gravity theories of this type were proposed many
years ago [23,24,28] and generalize Witten’s old observa-
tion that three-dimensional gravity can be formally written
as a Chern-Simons gauge theory [29].
In the presence of a domain wall we have shown that

massless two-dimensional Kähler-Dirac fermions appear
on the wall. These are described by a single Kähler-Dirac
field which can be decomposed into two independent
components called reduced Kähler-Dirac fields which carry
half the number of degrees of freedom.We find that just one
of these reduced fields participates in the gauge interactions
on the domain wall. Furthermore although the reduced
Kähler-Dirac fermions on the wall suffer from a gravita-
tional anomaly, there is no violation of local gauge

invariance because of anomaly inflow from the bulk
gravitational Chern-Simons term.
It is not hard to generalize this construction to higher

dimensions. For example, the effective long distance action
for massive Kähler-Dirac fermions in five dimensions is also
a topological gravity theory of Chern-Simons type
[23,24,28] with gauge group spinð6Þ in Euclidean space.
Using the same arguments as for three dimensions it is clear
that massless four-dimensional Kähler-Dirac fermions
invariant under local spinð4Þ Lorentz transformations and
an additional local Uð1Þ symmetry would then arise in the
presence of a domain wall in such a theory. Again, the
domainwall actionwill contain a coupling of theUð1Þ gauge
field to a single reduced Kähler-Dirac field. As in three
dimensions gauge invariance of the theory remains intact
since the gauge variation of the five-dimensional Chern-
Simons term cancels the potentially anomalous variation
arising from the four-dimensional reduced fermions.
One of the conclusions one can draw from our work is

that coupling reduced Kähler-Dirac fermions to gravity in
some even dimensional space is inconsistent due to a
(mixed) gravitational anomaly unless the theory lives on a
domain wall or boundary of a space of one higher
dimension. If this additional dimension is finite, there will
necessarily be an antidomain wall which localizes another
reduced Kähler-Dirac fermion with the opposite eigenvalue
of Γ. In this scenario the Chern-Simons current naturally
flows between the two walls and the low energy theory is
manifestly well-defined.
Much of our discussion for Kähler-Dirac fermions has

paralleled existing arguments for Dirac fermions. In this
paper we have focused on perturbative anomalies and
anomaly inflow. But in [16] it was shown that Kähler-
Dirac fermions also exhibit discrete ’t Hooft anomalies.
Canceling these anomalies is a necessary condition for
symmetric mass generation and requires multiples of two
Kähler-Dirac fields or four reducedKähler-Dirac fields. Ifwe
take the flat space limit, this constraint translates into the
requirement that the theory contains 16 Majorana spinors in
four dimensions in perfect agreement with results for
gapping edge modes in four-dimensional topological insula-
tors which require cancellation of a seemingly unrelated
’t Hooft anomaly for a spin-Z4 symmetry acting on Weyl
fermions. This makes it plausible that theories of Weyl
fermions, which are free of all ’t Hooft anomalies and hence
capable of symmetric mass generation, can be written in
terms of Kähler-Dirac fermions. Furthermore since the
anomalies of Kähler-Dirac fermions survive intact under
discretization, this suggests that they may be important for
constructing lattice mirror models that target chiral theories
in the continuum limit. Indeed numerical simulations of two
flavors of interacting staggered fermions (which are obtained
by discretization of Kähler-Dirac fermions) show evidence
for the existence of a massive symmetric phase [30]. Further
work is needed to understand these issues in more detail.

6The normalization of our CS term reflects the nonstandard
trace trðσaσbÞ ¼ 2δab.
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APPENDIX: DETAILS ON THE
COMPUTATION OF Seff

For a complete set of basis states ϕn,

Seff ¼
Z

d3xTr
X
n

Ê ðϕ̄n log½ðD − iγ4MÞPþ�ϕnÞ

¼
Z

d3xTr

�
log½ðD − iγ4MÞPþ�

X
n

Êϕnϕ̄n

�

¼ lim
x→x0

Z
d3xTrðlog½ðD − iγ4MÞPþ�δðx − x0ÞÞ

¼ lim
x→x0

Z
d3xTr

�
log½ðD − iγ4MÞPþ�

×
Z

d3k
ð2πÞ3 e

ikμDμσðx;x0Þ
�
; ðA1Þ

where σðx; x0Þ is the geodesic biscalar [a generalization of
1
2
ðx − x0Þ2 in flat space] defined by

σðx; x0Þ ¼ 1

2
gμνDμσðx; x0ÞDνσðx; x0Þ: ðA2Þ

Expanding the logarithm and exponential as power series
and using the properties of the geodesic biscalar [31]

σðx; xÞ ¼ 0;

lim
x→x0

DμDνσðx; x0Þ ¼ gμν;

and lim
x→x0

DμDνDασðx; x0Þ ¼ 0;

we get

Seff ¼
Z

Ê d3x
Z

1

Ê

d3k
ð2πÞ3 Trðlog½ð=k − iγ4MÞPþ�Þ; ðA3Þ

where =k ¼ gμνγμkν. The determinant Ê has been restored to
make the invariance of real-space and k-space measures
manifest. We can now choose locally flat coordinates to
evaluate the k-space integral. This allows us to reduce the
calculation of Seff to an equivalent flat space problem:

Seff ≡ lim
x→x0

Z
d3xTr

�
log½ð=∂ − iγ4MÞPþ�

×
Z

d3k
ð2πÞ3 e

ikμðxμ−x0μÞ
�
: ðA4Þ
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