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We show that the effective action that results from integrating out massive Kéhler-Dirac fermions
propagating on a curved three-dimensional space is a topological gravity theory of Chern-Simons type. In the
presence of a domain wall, massless, two-dimensional Kéhler-Dirac fermions appear that are localized to the
wall. Potential gravitational anomalies arising for these domain wall fermions are canceled via anomaly
inflow from the bulk gravitational theory. We also study the invariance of the theory under large gauge
transformations. The analysis and conclusions generalize straightforwardly to higher dimensions.
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I. INTRODUCTION

An alternative to the Dirac equation for describing
fermions was proposed many years ago by Kihler [1].
It is based on the simple observation that a natural square
root of the Laplacian is the operator d — d' where d is the
exterior derivative and d' its adjoint. A key difference
that distinguishes the Kéhler-Dirac operator from its
Dirac cousin is the fact that the former can be defined
without reference to a local frame and spin connection.
Thus Kihler-Dirac fermions are not globally equivalent
to Dirac fermions and are well-defined on any smooth
manifold. Nevertheless there is a close connection between
the two in flat space. The Kihler-Dirac equation in
D-dimensional flat space takes the form

(d—d" —m)® =0, (1)
where ® = (a),a)ﬂ,wﬂb, .. "wﬂl”'ﬂn) is a collection of p-form
fields with p running from O to D. In this paper we will
work in Euclidean space. It is straightforward to show that
in even dimensions this can be mapped into a Dirac

equation describing 2P/ degenerate Dirac spinors corre-
sponding to the columns of a 22/2 x 2P/2 matrix ¥ [2,3],

(r9y —m)¥ =0, )

where
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D
‘P = Z a)ﬂl"'ll,}yﬂl e yﬂp' (3)

u=0

Kihler-Dirac fields arise naturally in twisted supersym-
metric theories [4] and are closely related to staggered
fermions [2,5]. Recently, there has been renewed interest in
them in connection with Dai-Freed anomalies [6,7], topo-
logical insulators [8], and symmetric mass generation in
staggered fermion lattice models [9-13]. They have also
been proposed as an ingredient in the construction of chiral
lattice theories [14].

One consequence of this work has been the realization that
massless Kihler-Dirac theories in even dimensions suffer
from a gravitational anomaly, which breaks a global U(1)
symmetry, unique to Ké&hler-Dirac fermions, down to Z,
[15,16]. In four dimensions this anomaly is given by the Euler
density [ €,,.4R® A R°! in contrast to the usual gravita-
tional anomaly of Dirac fermions given by [ R* A R with
R the Riemann tensor [17,18]. It should be noted that since
Kihler-Dirac fermions can be decomposed into Dirac fer-
mions in flat space they do not possess conventional ys
anomalies.

Remarkably this new anomaly survives discretization
since it depends only on the topology of the background
which can be captured exactly in a simplicial approxima-
tion to the space. This Z, symmetry prohibits bare mass
terms but allows for four fermion interactions which can
gap fermions without breaking symmetries for multiples of
two Kihler-Dirac fields [16]. In flat space each such
Kihler-Dirac field can be decomposed into 2P/2*1
Majorana spinors, and we deduce that such theories contain
eight and sixteen Majorana spinors in two and four
dimensions, respectively. These magic fermion numbers
that allow for symmetric mass generation are in agreement
with the cancellation of certain discrete anomalies for Weyl
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fermions—chiral fermion parity in two dimensions and
spin-Z, symmetry in four [6,19].

In this paper we will show that massive Kihler-Dirac
fermions in odd dimensions exhibit further interesting
properties; they yield gravitational Chern-Simons (CS)
theories at low energies. Furthermore, in the presence of
domain walls, these theories contain massless Kédhler-Dirac
fields localized to the domain wall. We show that potential
anomalies for these domain wall fermions, of the type
discussed above, are canceled via anomaly inflow from the
bulk gravitational theory.

1. KAHLER-DIRAC FERMIONS
IN THREE DIMENSIONS

Following our earlier discussion the massless Kéhler-
Dirac (KD) action in three dimensions can be written as

/d3x g®(d — d")®, (4)

where ® = (¢, ¢, ¢,,.¢,.,) is a collection of p-forms
(antisymmetric tensors). Notice that such a field possesses
eight (complex) components in three dimensions.

This action is invariant under a U(1) symmetry of the
form

® - O, ® — Dell, (5)
where the linear operator I" acts on the component p-forms
¢, according to whether it carries an even or odd number of
indices ¢, — (—=1)?¢,. This property implies that I’
anticommutes with the Kihler-Dirac operator which then
ensures the U(1) symmetry of the action. Furthermore, the
operator I can be used to construct projectors P, =
$(I£T) which act naturally on a Kihler-Dirac field to
yield a pair of so-called reduced Kéhler-Dirac fields
O, = P, ®. The Kihler-Dirac operator maps between
@, and ®_ and vice versa.

If we want to map three-dimensional Kihler-Dirac fer-
mions into a set of spinors, we will need the analog of the
matrix expansion given in Eq. (3). Clearly one cannot map
the eight component fields of a Kéhler-Dirac fermion in three
dimensions using just the minimal Dirac matrices corre-
sponding to the Pauli matrices. Instead one must double the
number of components of the spinor with the resulting matrix
representation of the three-dimensional Kihler-Dirac field
employing 4 x 4 gamma matrices." Naively such a field
carries 16 degrees of freedom but this can be reduced to 8
using the projection operators P, described earlier. These
can be implemented in the matrix representation as

'Three-dimensional fermions of this type are called reducible
fermions and correspond to a sum of the two irreducible spinor
representations for spin(3)—see [20,21].

Y, =P, ¥=_(¥Lys¥s). (6)

| =

The use of this four-dimensional representation allows
one to write down a massive three-dimensional Kéihler-
Dirac action which preserves the U(1) symmetry provided
the mass term is taken proportional to y*:

S = / dExTr[¥(r#9, — iy*M)P Y] (7)

This action is invariant under a global spin(3) Lorentz
symmetry L and a global spin(4) flavor symmetry F' which
act on the fields as

¥, - LY FT, Y_ > FY_LY. (8)

Notice that F' should contain L as a subgroup to reflect the
Kihler-Dirac nature of the fermions since under a Lorentz
transformation a Kihler-Dirac field must transform as a
sum of tensor representations. However, to facilitate the
computation of the effective action in the next section
we will treat both symmetries as independent when
gauging the action and impose the Kéhler-Dirac condition
relating the corresponding gauge fields only after the
fermion integration. On a curved space as well as having
gauged the flavor symmetry the action is modified
to [22]

S:/ﬁﬂnmmwm-wmgw,(%

where Eﬂ is a 3-frame corresponding to the background
metric and D, the associated covariant derivative which
acts on the field ¥ as

DY =9,%+QY¥-¥Q,, (10)

where Q, is the three-dimensional spin connection and Qﬂ
is a spin(4) flavor gauge field. Notice that while Kéhler-
Dirac fermions do not require the use of a spin connection,
it is necessary to introduce such an object to do calculations
in the matrix basis where the Kihler-Dirac field is repre-
sented in terms of V.

III. INTEGRATING OUT THE FERMIONS

We will focus on deriving an effective action for Qﬂ
perturbatively in the limit M — oo. If we integrate out the
fermions, we obtain an effective action which can be
written

014509-2
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p+k

k

FIG. 1. One loop contribution to vacuum polarization.

Seir = Trlog (@~ iy*M + Y)P.]
. y
= TI’lOg |:(é’— l}’4M) (I +m P+
4
+ terms independent of V. (11)

Expanding the logarithm the leading term is

b)) o

corresponding to the diagram in Fig. 1. Here Y =V + Vp
where the subscripts indicate whether the gauge field acts
on the left or right of the matrix fermion ¥:

V. =EytQ,, (13)
VR = - AI/JM/AQ”' (14)

. . 2
In momentum space this gives

a1 [ dk —*M —v*M
Sg;lfdd:_/ 3TI' kz 4 2}’”V,4 k"‘ﬁzy >
2) (2n) k*+M (k+p)y+M

X y”V,,P+>. (15)

If we focus on the contribution that is linear in the external
momentum p, we find

2
x BLELEY x T x psOB(—p)QS® (p)

1 1 N2 .
Sg;lfad — _Ixlx <_ > tr(EySy“y[Ey[FyG)

X tr(6apOcnYs)- (16)

Notice that a nonvanishing contribution comes only from
employing V5 at both vertices. The integral 7 is given by

“For more details see the Appendix.

&Pk M

= G @Bt )

(17)
For M > p and rescaling k/M — k,

M o Pk 1 M 1
=7/

S LG @i

Employing the identity Ee*BCES ESEY. = ¢#% we find a
contribution to the effective action of the form

M N+ 1

Squad — i x4 - o

off 1 |M| X a4 X <2> X 87
X /d3X€”5DQﬁB (05Q§D)€ABCD. (19)

This is not gauge invariant. There is, however, a contribu-
tion coming from next order in the expansion of the

logarithm:
1 )4 3
™| (=) ] o

which corresponds to the Feynman diagram in Fig. 2. In
momentum space this gives

Scubic _i/ d3k Tr k_Y4M}/”V k+¢_y4M
eff 3 (2”)3 k2 +M2 H (k+q)2 +M2
—g—v*M
sy u P 21
X}/ 5(k_p)2+M2y vt + ( )

Extracting the leading term which again uses only Vj
yields

FIG. 2. One loop contribution to three gauge boson vertex.
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. AR S s
Sair'® = =i X3 x5 X <— —) w(Er v oy EGEREY < S

3 2 2

3 x Qﬁﬁ(—P)QgD(—Q)QLEF(P + q)tr(6ABOCDOEFYs)

=ix4x 3% <§> x 4 x F x QP (=p)Q5P (—q)Q" (p + q) x5 (28apecper — 38acerper

8

+ Opceaper 1 30an€rcEr — SBDEACEF — 20BEE€ACDF — OcEEABDF T+ ODEEABCE T+ 20BFEACDE T SCFEABDE — SDFEABCE)

1 1\ 4 A A A
=i g (5) e xS Q) AP0 + 0) Censco) 22)

where
g dk M(k* + M?)
) @)+ M) ((k+q)* + M?)((k—p)> +M?)’

(23)

For M > p, q and from rescaling k/M — k

M o Pk 1
S=— S S 24
v |M|X/_°o O HGCE (24)

where 7 is given by Eq. (18). In real space this yields

i .M 1 NN+ 1
Sglflfbm:lXMXA‘-XgX <§) Xg

< / PreGMOEO Qeapep).  (25)

Combining Eq. (25) and Eq. (19) gives the effective action

M i
Secf§ = _M X 4% 871/ d*xe'*eppcp

. R 2 oA AMB A
x <Q§B(aégz;‘3”3’) - ggﬁmggﬂ%?”)

M i
- x d3 MoV
M| 32;1/ XETTEABCD

AAB i‘:yn 1 scmgun
g H > —1—395 Q" , (26)

where F is the spin(4) curvature. It is the unique term in the
effective action that survives the large M limit. Notice that
while this piece of the effective action comes from a ultra-
violet (U.V) convergent integral, this is not true of other terms
arising in S} at finite M. Employing a Pauli-Villars regulator
with mass A leads to the replacement ‘—%ﬁ(%—kﬁ) in
Eq. (26). This modification plays an important role in our later
discussion of domain wall physics and invariance of the
effective action under large gauge transformations in Sec. VIIL.

We now impose the condition that the original Lorentz
symmetry be a subgroup of the spin(4) flavor symmetry by
setting

Q, = QBT + 2ELT,,, AB=1..3, (27)
where €, is the original spin connection with Ty =
1 17a.78] the generators while E, are the additional gauge
fields needed for spin(4). In the next section we will see
that E, can be interpreted as a dynamical frame for an
emergent geometry. Equation (26) is hence a Chern-Simons
term that ensures the effective action on a manifold without
boundary is invariant under gauge transformations of the
spin connection that can be smoothly deformed to the
identity.

IV. GRAVITY INTERPRETATION

We can decompose the spin(4) curvature also under the
original Lorentz group by computing the commutator of the
corresponding spin(4) covariant derivative [D,,D,] and
expanding the resultant expression on the generators in a
manner similar to that given in Eq. (27). This leads to the
following expression:

Fp = (73;;5 - %E@Eﬁ) Tan+ SDLEAT..  (28)
where R, = 0,Q, —9,Q, +[Q,,Q,] is the spin(3) cur-
vature and the remaining components D, E, are recog-
nized as the torsion 7. Notice that we have rescaled the
gauge fields £, by an arbitrary length scale £ to make it
possible to interpret E, as the dimensionless emergent
frame. Substituting these expressions into Eq. (26) yields

M1 )
St =~ M| ) 32ﬂ/d3xe” eanc
V(e _ 8 pope
x SE} R~ 5 7 EVES ). (29)

where we have discarded boundary terms. Clearly the action
rewritten in these variables contains both an Einstein-Hilbert
and cosmological constant term as expected of a gravity
theory [23,24]. However, the relative coefficients of these
terms have been fixed by the requirement that the theory
actually enjoys alocal spin(4) symmetry now interpreted as a
local de Sitter gauge symmetry. Notice that the equation of
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motion for the Chern-Simons theory F,, = 0 now implies
the pair of equations

2

Ry~ 2 ELE =0, T

gl

=0, (30)

nv

corresponding to classical Euclidean de Sitter space and a
torsion-free connection. Of course this identification
between Einstein Hilbert and Chern-Simons theory is still
problematic at the nonperturbative level since in the path
integral the latter necessarily includes degenerate metrics
with a vanishing frame. This is the origin of the topological
character of the gravity theory as discussed in [25].

It is not a surprise that integrating out fermions in odd
dimensions leads to a Chern-Simons theory—this is well-
known in the case of Dirac fermions transforming under
some internal symmetry. What is new here is that if those
fermions are taken to be of Kahler-Dirac type propagating
on a curved background geometry, then the induced Chern-
Simons theory is actually a (topological) theory of gravity.

V. DOMAIN WALL CONSTRUCTION

In the previous section we assumed that the three-
dimensional manifold was compact. It is interesting to
ask what happens in the presence of a boundary or
equivalently if a domain wall is introduced in the system.
Our argument parallels the original discussion by Callan
and Harvey for Dirac fermions and later employed by
Kaplan in his construction of domain wall lattice fer-
mions [26,27].

Let us imagine a manifold of the form M x R with
coordinates (x,., z) where x, parametrize the position on the
domain wall. Let us also allow the fermion mass M to
change sign as a function of the flat coordinate z as shown
in Fig. 3:

M(z) :M0|— (31)

z|’

One expects that massless states appear at z = 0. To see this
let us rewrite the bulk Kéhler-Dirac equation in the form

M,

NV

_MO

FIG. 3. Domain wall.

FP7"D, + 0, —iy’y*M(2)|¥(x.2) =0.  (32)

One can find zero mode solutions of this equation of the
form

Pow = x(2)w(x) (33)

with D,y =0 and w(x) an eigenvector of the

Hermitian operator H = —iy*y* with eigenvalue +1. The
function y(z) must then satisfy

02(2) = =M(2)x(2). (34)

Thus one finds y(z) = e~ol<l corresponding to zero modes
exponentially localized to the domain wall at z = 0. Notice
that Wpy contains just 4 degrees of freedom—the original
reduced field ¥, contained 8 degrees of freedom while the
restriction to fields with H = +1 further halves the number
of degrees of freedom. Four degrees of freedom corre-
sponds to the field content of a two-dimensional Kdhler-
Dirac field propagating on the wall. We can verify this
explicitly by going to a (Euclidean) chiral basis for the
gamma matrices corresponding to

n=(y ) 9

where ¢, = (ic;,I) and 6, = (—ic;, I). This implies that
YV, takes the 2 x 2 block form

v, - (‘”1 0 ) (36)

0 v

and the matrix H takes the form

H= (60’ _l). (37)

The additional requirement that Wy be an eigenstate of H
with eigenvalue 41 shows that y; contains two right-
handed two-dimensional Weyl spinors while y, contains
two left-handed spinors.

The constraint H = 1 for the domain wall fermions also
breaks the original gauge symmetry to spin(2) x spin(2).’
The first factor corresponds to the generator% [r!,7?] and is
associated with the two-dimensional spin connection Q}f
needed to enforce local Lorentz invariance for the domain
wall modes. The second factor corresponds to H itself. The
covariant derivative associated with rotations generated by
H takes the form

Thus all gauge fields associated with the broken generators
must vanish on the domain wall.
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i A
D,¥pw = 0, ¥pw + 5934(H‘PDW - YowH). (38)
Using H¥pw = Wpw this can be rewritten as

D, ¥pw = 0,¥pw + Q2 2 (Ppw — H¥pwH).  (39)

2

If we define the domain wall chiral operator y5 = ysH, the
covariant derivative associated with H becomes

D, ¥pw = 0, ¥y + 9, ¥pw + i Pow,  (40)

where the domain wall reduced field W5y, is given by

Yiw = PoPpw = = (Ppw £ 7 Ppw?’).  (41)

| =

Thus we find that the gauge field €, couples only to a two-
dimensional reduced Kihler-Dirac field on the wall.

A similar feature is seen in the interaction of the domain
wall fermion with the two-dimensional spin connection
Q,,. The corresponding term in the covariant derivative
takes the form

I A2, . A1 A5\
59;2(1}’]72‘PDW - ‘PDWW]72) = lgl%’slPDw- (42)

Thus all gauge interactions on the domain wall couple only
to the reduced Kéhler-Dirac field W5y, .

To summarize we find that the low energy excitations of
the three-dimensional Kihler-Dirac theory in the presence
of a domain wall are massless two-dimensional Kihler-
Dirac fermions Wpyw localized to the wall and described
by a Lorentz invariant action possessing an additional
U(1) symmetry generated by an operator I' = 7° ® 7°. The
operator I" anticommutes with the two-dimensional Kihler-
Dirac operator describing the domain wall fermions and
allows the Kihler-Dirac field to be projected into two
independent reduced Kihler-Dirac fields Wy, and Wgy,.
Only one of these components W5, participates in the
remaining spin(2) x spin(2) gauge symmetry.

VL. ANOMALY INFLOW FOR
KAHLER-DIRAC FERMIONS

At first glance the structure of the domain wall fermion
action appears problematic since it is known that massless
Kihler-Dirac fields in even dimensions suffer from a
gravitational anomaly [15,16] that breaks this U(1)p
symmetry down to Z,. The two-dimensional domain wall
action we derived in the previous section includes a gauged
version of this symmetry (since the gauge field couples to a
I' reduced fermion), and hence one naively expects an
anomaly induced breaking of gauge invariance in the low

energy theory. In this section we will show that there is an
additional contribution which arises from the bulk action
which restores gauge invariance via an anomaly inflow
mechanism.

To show in detail how this occurs we first include a brief
review of the derivation of the anomaly specialized to the
case of two-dimensional domain wall fermions. Under a
U(1)p rotation with parameter a(x) the measure for the
reduced Kihler-Dirac field W5y, transforms by a factor

eifdaxa(x)A(x) with

A(x) = lim TrZe (qﬁneM P P+¢n> (43)

where we have regulated the UV divergence by inserting

(D2 . .
the factor e?®” where ¢, are eigenstates of the domain

wall Kihler-Dirac operator D = y3y"Dﬂ and e represents
the determinant of the frame restricted to the wall
which we denote as ej. Cyclically permuting the trace
we find

M—o0

A= limTr <e#<3>2ﬁ_P+Ze¢n$n>

= lim lim Tr <eﬁ(m2ﬁ_f’+5(x —X')>. (44)

x—x' M—oo
Expanding P? we obtain

A = lim lim —% X Tr((—i737 JeyS e Cicie Fidloe-)

x—x' M=
x 8(x — X’)ys(—iy3y4)>

= lim lim Tr(( )ey eM2(Dﬂeg‘»{’”bFﬁf[ﬁcan])

x—=x' M—co

x 5<x_x/>ys<634>), (43)

where F' contains the surviving nonzero components of the
spin(4) curvature corresponding to the symmetry spin(2) x
spin(2). Expanding the exponential to O(1/M?) to get a
nonzero result for the trace over spinor and flavor indices

A2 . .
and acting with e on the delta function yields

1 1
A=——x <2> r(ey’ o 6>*) el Fidtr(y50,.4034)
v

= — e R (46)

Hv

where R, corresponds to the curvature of the spin con-

ab!

nection Q,,. We have employed the result ec*’ege}, = e
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in the last line. Hence, under a U(1) transformation the
measure for a reduced Kihler-Dirac field transforms as*

/ DIDY — ¢ [ CrelI ek / DPDY. (47)

This naively breaks gauge invariance. However, the
anomaly we have computed for the domain wall fermions
is not the whole story. We showed earlier that the bulk
contains also an induced Chern-Simons term. In general
this also undergoes a nonzero change under a gauge
transformation. In general the variation of the bulk
Chern-Simons action takes the form

M I
6Secf§ M X —— X *¥eppcp
x (9,Q5" - aﬁfzﬁﬁ‘ — 20 MY 5Q5P
M i R
— X —— X et FABSQED 48
\M| 307 X e’ eapcp us O3y (48)

where F is the spin(4) curvature. Under a gauge trans-
formation Qﬁm - Q;W + DB the effective action
changes:
5SSG =

M .
/d3XMX—X€”5 GABCDFAB< DCCD)

1 M
= /d3xEX€” eABC[D g Da (2|M|>

1
= i/d3x5( ) X Tes X e pecqFuge, (49)

where a,b = {1,2} while ¢,d = {3,4} and these indi-
ces are to be contracted using two independent two-
dimensional e¢ symbols corresponding to the product of
the two invariant tensors for spin(2) x spin(2)—the surviv-
ing symmetry on the domain wall. Taking {** = —¢* =
a(x) we find

585 = é/dzxa(x)e’“seaszg. (50)

Thus the gauge transformation of the Chern-Simons term in
the presence of the domain wall generates a contribution
that is equal in magnitude but opposite in sign to that
coming from the anomalous variation of the measure for
the domain wall fermions—Eq. (47). Thus the bulk and

“Taking a(x) to be a constant one finds the measure transforms
by the phase e~#* where y is the Euler characteristic of the two-
dimensional space. If one further replaces the reduced field by a
full Kihler-Dirac field and compactifies the space to S> where
¥ = 2, one obtains the original U(1) global anomaly referred to in
the Introduction. In such a background the phase is just e~*®
which leaves an unbroken Z, subgroup.

boundary variations cancel and the full theory is gauge
invariant. This is anomaly inflow in action for Kéhler-Dirac
fields. That this should occur is guaranteed by the fact that
the Euler characteristic of the bulk theory is zero if it is
taken to be a product of a two-dimensional space and a
circle since y(S') = 0.’

One might worry that the previous argument ignores the
fact that the Chern-Simons term was computed for constant
mass which is certainly not the situation close to the
domain wall. However, it is possible to avoid this problem
if one simply computes the change in the Chern-Simons

current J3* = s Aa‘i between z = oo and z = —oo. One then
finds
1
AJ3 =2 x 2x3—2€””3€A RAE, (51)

where the second factor of 2 arises from the double counting
associated with the fact that A3 # = —AZ4. Comparing this to
the divergence of the U(1) current arising from the domain
wall fermions 0/J3* = — L e#e,5RiE we see that the net
flow of charge off the domain wall is accounted for by the

Chern-Simons current.

VII. INVARIANCE UNDER LARGE GAUGE
TRANSFORMATIONS

It is of course interesting to ask about the invariance of
the theory under large gauge transformations. To facilitate
this analysis it is convenient to again adopt a Euclidean
chiral basis for the gamma matrices. The spin(4) connec-
tion becomes

Q—Qi(ioi O>+El(101
B 0 o 0
while the fermion field takes the form
0 - 0
q;:("’l ) ql_:(_ "’1). (53)
0 w2 0

The Kéhler-Dirac action then separates into two indepen-
dent contributions

0) e

S = / ExE[tr(fr, (P(Q+ E) + iM)y,)

+ w2 (B(Q = E) - iM)y,)], (54)
where tr denotes a trace over a two-dimensional block.
Each such block will then generate its own SU(2) Chern-
Simons term on integration over the fermions:

*Our previous discussion assumed z extends from —oo to oo
but we can replace this by a circle at a price of adding an
antidomain wall at infinity.
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S=1Ics(Q+E)—Ics(Q-E), (55)

where

1
Ics(A) = @Slgn(M) / d3xe””/’

2
X tr (A,,a,,Ap - 3A#A,,A,,> . (56)

The relative minus sign in Eq. (55) arises because of
differing signs of the mass in the two blocks [25].

Under a gauge transformation A, — g(x)A,g™" (x) +
9(x)9,97"(x), each Chern-Simons term transforms, up to
a boundary term, according to

1 M _ _ _
olcs = /d3xeﬂé<ﬁm>u(g‘)ﬂ9 190,97 90597")

M

= —r7n, 57

where the winding number n = 73(SU(2)) = 2.°

Thus naively the level number of the CS term is
k = £1/2 with the partition function changing sign for
odd n. However, once one regulates the theory with a Pauli-
Villars field corresponding to a z-independent cutoff mass
A the coefficients of the Chern-Simons terms (the level
numbers) are shifted to k = 0 and k = 1 in the two regions
z < 0 and z > 0, respectively. Thus we find that the theory
is in fact also invariant under large gauge transformations.

VIII. SUMMARY

We have shown that integrating out massive Kéhler-
Dirac fermions in a curved three-dimensional background
yields a Chern-Simons term. This Chern-Simons term
corresponds to a topological theory of gravity in which
both spin connection and frame emerge from an extended
gauge symmetry—in this case Euclidean de Sitter sym-
metry. Gravity theories of this type were proposed many
years ago [23,24,28] and generalize Witten’s old observa-
tion that three-dimensional gravity can be formally written
as a Chern-Simons gauge theory [29].

In the presence of a domain wall we have shown that
massless two-dimensional Kihler-Dirac fermions appear
on the wall. These are described by a single Kéhler-Dirac
field which can be decomposed into two independent
components called reduced Kéhler-Dirac fields which carry
half the number of degrees of freedom. We find that just one
of these reduced fields participates in the gauge interactions
on the domain wall. Furthermore although the reduced
Kihler-Dirac fermions on the wall suffer from a gravita-
tional anomaly, there is no violation of local gauge

®The normalization of our CS term reflects the nonstandard
trace tr(c%c?) = 26%.

invariance because of anomaly inflow from the bulk
gravitational Chern-Simons term.

It is not hard to generalize this construction to higher
dimensions. For example, the effective long distance action
for massive Kihler-Dirac fermions in five dimensions is also
a topological gravity theory of Chern-Simons type
[23,24,28] with gauge group spin(6) in Euclidean space.
Using the same arguments as for three dimensions it is clear
that massless four-dimensional Kihler-Dirac fermions
invariant under local spin(4) Lorentz transformations and
an additional local U(1) symmetry would then arise in the
presence of a domain wall in such a theory. Again, the
domain wall action will contain a coupling of the U(1) gauge
field to a single reduced Kihler-Dirac field. As in three
dimensions gauge invariance of the theory remains intact
since the gauge variation of the five-dimensional Chern-
Simons term cancels the potentially anomalous variation
arising from the four-dimensional reduced fermions.

One of the conclusions one can draw from our work is
that coupling reduced Kihler-Dirac fermions to gravity in
some even dimensional space is inconsistent due to a
(mixed) gravitational anomaly unless the theory lives on a
domain wall or boundary of a space of one higher
dimension. If this additional dimension is finite, there will
necessarily be an antidomain wall which localizes another
reduced Kihler-Dirac fermion with the opposite eigenvalue
of I'. In this scenario the Chern-Simons current naturally
flows between the two walls and the low energy theory is
manifestly well-defined.

Much of our discussion for Kéhler-Dirac fermions has
paralleled existing arguments for Dirac fermions. In this
paper we have focused on perturbative anomalies and
anomaly inflow. But in [16] it was shown that Kihler-
Dirac fermions also exhibit discrete 't Hooft anomalies.
Canceling these anomalies is a necessary condition for
symmetric mass generation and requires multiples of two
Kihler-Dirac fields or four reduced Kéhler-Dirac fields. If we
take the flat space limit, this constraint translates into the
requirement that the theory contains 16 Majorana spinors in
four dimensions in perfect agreement with results for
gapping edge modes in four-dimensional topological insula-
tors which require cancellation of a seemingly unrelated
’t Hooft anomaly for a spin-Z, symmetry acting on Weyl
fermions. This makes it plausible that theories of Weyl
fermions, which are free of all 't Hooft anomalies and hence
capable of symmetric mass generation, can be written in
terms of Kéhler-Dirac fermions. Furthermore since the
anomalies of Kihler-Dirac fermions survive intact under
discretization, this suggests that they may be important for
constructing lattice mirror models that target chiral theories
in the continuum limit. Indeed numerical simulations of two
flavors of interacting staggered fermions (which are obtained
by discretization of Kéhler-Dirac fermions) show evidence
for the existence of a massive symmetric phase [30]. Further
work is needed to understand these issues in more detail.
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APPENDIX: DETAILS ON THE
COMPUTATION OF S,

For a complete set of basis states ¢,,,

Ser = / FATeS " E (), logl(D - iy M)P.]¢,)

/d3xTr <log[( M)P,] ZE¢n¢n)

= lim [ &xTr(log[(D — iy*M)P_)5(x — 1))

x—x'

= lim [ &xTr <10g[(

3
X/ d’k elk”D”(T(Xx) ,
(2n)?

where o(x, x") is the geodesic biscalar [a generalization of
1(x —x')? in flat space] defined by

v*M)P.]

(A1)

o(x,x") = %g’“’Dﬂo(x, XD,o(x,x). (A2)

Expanding the logarithm and exponential as power series
and using the properties of the geodesic biscalar [31]

o(x,x) =0,
limD, D,o(x, x') = g,
and limD,D,D,o(x,x') =0,
we get
Sur = [ Ea'x / Tr(logl(k - ir*M)P.]).  (A3)

where ¥ = g, y*k". The determinant E has been restored to
make the invariance of real-space and k-space measures
manifest. We can now choose locally flat coordinates to
evaluate the k-space integral. This allows us to reduce the
calculation of S to an equivalent flat space problem:

Setr = lim / d*xTr <10g[(¢7 —iy*M)P,]

&Lk,
ik, (x#—x"") .
X/ (2n) ¢ )
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