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Using the Coulomb gauge formulation of QED, we present a lattice QCD procedure to calculate the πþπþ

scattering phase shift including the effects of the Coulomb potential, which appears in this formulation. The
approach described here incorporates the effects of relativity and avoids finite-volume corrections that
vanish as a power of the volume in which the lattice calculation is performed. This is the first step in
developing a complete lattice QCD calculation of the electromagnetic and isospin-breaking light-quark mass
contributions to ε0, the parameter describing direct CP violating effects in KL → ππ decay.
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I. INTRODUCTION

Because of the ΔI ¼ 1=2 rule, electromagnetic (EM)
effects enter the standard model prediction for the indirect
CP violation parameter ε0 enhanced by as much as a factor
of 20. Their uncertainty contributed one of the largest
systematic errors in the recent lattice QCD calculation of
this quantity [1]. While substantial progress has been made
using chiral perturbation theory and the large N expansion
in estimating these effects, there is strong motivation to
develop an ab initio lattice QCD calculation of ε0 in the
standard model that includes these effects to first order in the
fine structure constant α and in the isospin-breaking, light-
quark mass difference mu −md (which will be referred to
below as mu −md effects).
In this paper, we present a first step toward this goal by

developing a method to compute πþπþ scattering, includ-
ing a significant portion of the isospin breaking effects
through first order in α and mu −md. The electromagnetic
interaction is treated in Coulomb gauge, in which
EM effects come from two sources: the instantaneous
Coulomb interaction between the field-theoretical charge
densities and the emission and absorption of transverse
photons. Only the calculation which includes the instan-
taneous Coulomb potential is analyzed in this paper.
Determining the effects of the transverse photons are left
for future work.

The instantaneous Coulomb interaction behaves at large
distances as 1=r, which makes its treatment in a lattice
QCD calculation difficult. The method presented here
overcomes these difficulties and gives a result with
finite-volume errors that fall exponentially as expð−MLÞ
as the system size L increases, where M is a QCD mass
scale, most likely the pion mass. The Coulomb potential VC
is written as the sum of a truncated, finite range potential
VTC and the remaining long-range piece VTC, which we
refer to as the complement of the truncated Coulomb
potential. Since our calculation is performed to first order
in α, these two pieces can be computed separately, and the
results simply added.
Because both VTC and mu −md are finite-range inter-

actions, their effects on the s-wave πþπþ scattering phase
shift can be computed using Lüscher’s relation [2] between
the quantized finite-volume energies and the infinite-
volume scattering phase shifts, now expanded through first
order in α and mu −md,

δ0ðsÞ ¼ δð0Þ0 ðsÞ þ δTC0 ðsÞ þ δΔm0 ðsÞ þ δTC0 ðsÞ: ð1Þ

Here, the zeroth order term δ0ðsÞ is the usual I ¼ 2 s-wave
ππ scattering shift determined in a standard finite-volume
lattice QCD calculation. The terms δTC0 ðsÞ (first-order in
VTC) and δΔm0 ðsÞ (first-order in mu −md) can be deter-
mined from this same finite-volume quantization condition
by evaluating the expectation values of energy operators
constructed from VTC and mu −md between finite-volume,
zeroth-order energy eigenstates. A first calculation of δTC0
and δΔm0 is already underway.
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By choosing a sufficiently large truncation radius when defining VTC and VTC, we can insure that the effects of VTC can
be determined in an analytic calculation, which requires the properties of only on shell pions. Showing this to be the case

and deriving the resulting formula for the contribution δTC0 ðsÞ from VTC is the major objective of this paper. The final

formula determining δTCl is

δTCl ¼ −pωp

Z
∞

0

w2dw

�Z Z
d3r2d3r1ρ̄ðr2ÞVTCðw⃗ − r⃗2 þ r⃗1Þρ̄ðr1Þ

�
· ½cos δljlðpwÞ þ sinðδlÞnlðpwÞ�2e−μw; ð2Þ

where p is the single-pion momentum, ωp the correspond-
ing single-pion energy, jl and nl the usual regular and
singular spherical Bessel functions, and μ a conventional
infrared regulator needed to make the Coulomb phase shifts
well-defined. The quantity ρ̄ðrÞ is the Fourier transform of
the pion form factor, needed to remove finite-volume,
power-law corrections. While this formula is valid for
arbitrary angular momentum l, most of the discussion
presented here is specialized to the case l ¼ 0.
The paper is organized as follows. Section II gives a brief

overview of the problem of computing the isospin-breaking
EM and mu −md contributions to ε0 and the larger strategy
of which the current paper is a part. In Sec. III, we recall the
Coulomb gauge treatment of QED and present the proposed
method to compute the scattering of two identical, charged
spin-zero particles, including the combined effects of QCD
and the instantaneous Coulomb potential where the latter is
included only to first order in α. The usual finite-volume
quantization method that can be used to determine theOðαÞ
contributions of VTC to the πþπþ scattering phase shift is
described in Sec. IV, while in Sec. V, we present the details
of an analytic calculation of the OðαÞ contributions of VTC
to this phase shift. The analytic results of this section are
expressed in terms of on shell properties of QCD specified
by the πþπþ scattering phase shift in the absence of
electromagnetic corrections and the πþ electromagnetic
form factor. Finally, conclusions and future plans are
described in Sec. VI. The paper has two appendixes.
Appendix A presents a general derivation for the application
of QEDL [3] to determine the EM contribution to the πþπþ

scattering phase shift in the nonrelativistic limit. In
Appendix B, this method is studied in a numerical example
to determine empirically the possible size of the finite-
volume errors.

II. LATTICE QCD CALCULATION
OF ε0 TO ORDER α

The K → ππ decays are important to our understanding
of CP violation from the weak interaction. Indirect CP
violation in the KL → ππ decay arises from the admixture

of the CP-even combination of K0 and K0 mesons in the

long-livedKL state. It is described by the parameter εwhose
measured magnitude is 2.228ð11Þ × 10−3. Direct CP vio-
lation arises from the CP-odd component of KL, which can
also directly decay into two pions. It is described by the
parameter ε0 whose value is 3 orders of magnitude smaller
than ε. Due to its small size, direct CP violation in K → ππ
decay, represented by the parameter ε0, is very sensitive to
new physics.
The experimental measurement determines the direct

CP-violating ratio Reðε0=εÞ ¼ 16.6ð2.3Þ × 10−4 [4,5]. The
current standard model prediction for this quantity com-
puted using lattice QCD is given by Reðε0=εÞ ¼
21.7ð2.6Þð6.2Þð5.0Þ × 10−4 [1]. Here, the first error is
statistical, the second is systematic, and the third arises
from the neglect of electromagnetism and the effects of the
isospin-violating mass difference, mu −md that are the
topic of this paper.
For most processes, electromagnetic corrections are on

the order of the fine structure constant α ¼ 1=137.
However, the quantity ε0=ε involves with equal weight
the amplitudes A0 and A2 for the decay of a K0 meson into
two pions in the isospin 0 and isospin 2ππ states,
respectively. Since A2 is suppressed relative to A0 by a
factor of 22, a feature called the ΔI ¼ 1=2 rule, the
electromagnetic modifications to A0 can in principle induce
corrections to A2, which are 22 times larger than this usual
1=137 scale. Such effects can then propagate into the
standard model prediction for Reðε0=εÞ.
These electromagnetic effects have been extensively

studied using chiral perturbation theory [6–11]. In fact, it
was the recent estimate of these isospin-breaking effects
given in Ref. [11] that was used in Ref. [1] and appears
above as an estimate of the error resulting from the neglect
of these effects. Given the difficulty of this calculation and
the large size of these corrections to Reðε0=εÞ, an ab initio
calculation of these effects using lattice QCD would be of
value. In this section, we outline a possible strategy for
including electromagnetic and mu −md effects in a lattice
QCD calculation of ε0 and work out in detail the first step in
this strategy. The approach presented here builds upon that
proposed in Ref. [12]. See also the related paper of Cai and
Daviodi [13].

CHRIST, FENG, KARPIE, and NGUYEN PHYS. REV. D 106, 014508 (2022)

014508-2



There are a number of important challenges that must be
addressed if the electromagnetic and mu −md contribu-
tions to ε0 are to be computed using lattice methods:
(1) The calculation of K → ππ depends heavily on the

finite-volume methods of Lüscher [2] and Lellouch
and Lüscher [14], which rely on the exponentially
localized finite-range interactions of QCD. Adding
electricity and magnetism (EM) introduces long-
range interactions, inconsistent with the Lellouch-
Lüscher strategy. This problem is dramatically
illustrated by the fact that the scattering phase shifts,
which play a central role in the finite-volume treat-
ment of Lellouch and Lüscher, are not even defined
when EM effects are included, with the long-
distance wave functions acquiring phases that grow
logarithmically with distance, ∼η lnðkrÞ, where k is
the center-of-mass (CoM) momentum of the scatter-
ing particles, r the CoM separation of the outgoing
particles, and η ¼ me2=ð4πkÞ is the Sommerfeld
parameter with �e their charge and m their mass.

(2) The usual treatment of K → ππ decay relies on
isospin symmetry to distinguish two independent ππ
final states, one with I ¼ 0 and the other with I ¼ 2.
Electromagnetism and mu −md effects break iso-
spin symmetry, allowing the ππ states with I ¼ 0
and I ¼ 2 to mix. As a result, the final state
scattering that is part of the K → ππ decay becomes
a coupled, two-channel problem, requiring a more
complex treatment of both the finite-volume eigen-
states and the infinite-volume decay processes.

(3) A process such asK → ππ decay, which involves the
acceleration of charge, will contain well-known
infrared singularities [15–17] that are removed by
a careful treatment of the possible, near-degenerate
final states, which include the intended ππ state as
well as states with one or more emitted photons in
addition to the two pions. While the effects of such
soft radiation can be computed using standard
methods for the case of the infinite-volume decay,
possible photon emission (which need not have
especially low energy) in a finite-volume lattice
calculation may introduce additional complications
making the already challenging two-channel prob-
lem described above into a problem with four
channels, two of which are three-particle channels.

We intend to carry out this calculation of the first-order
EM andmu −md contributions to ε0 by exploiting the linear
character of such a first-order calculation. We will separate
the problem into simpler pieces which can be computed
independently and then added together to obtain the final
result. The first step in this divide-and-conquer approach
treats the effects of electromagnetism in Coulomb or
radiation gauge. As is reviewed in the next section, in
Coulomb gauge, the EM vector potential A⃗ is required to be

transverse, ∇⃗ · A⃗ ¼ 0, and the resulting EM Hamiltonian

divides into two separate terms. The first is the familiar
1=jr⃗j Coulomb potential coupling two charge density
operators evaluated at equal times and separated by the
displacement r⃗. The second, independent piece involves the
coupling of transverse photons to the spatial components of
the EM current operator. These two components describe
different physical phenomena in the rest frame of the kaon,
and their effects can be treated separately. Since a lattice
calculation is performed in a fixed reference frame, usually
a finite-volume system in which the kaon is at rest, no
added difficulties are introduced by the choice of such a
Lorentz noncovariant gauge.
The Coulomb potential gives the largest effect of

electromagnetism when the charged pions are moving at
nonrelativistic velocities, effects which are familiar from
nonrelativistic quantum mechanics. Its long-range, 1=r
character complicates the usual finite-volume methods of
lattice QCD and introduces singular effects resulting from
the scattering of charged particles at long distances,
including the logarithms of r present in the asymptotic
behavior of scattering solutions. It is this Coulomb poten-
tial component of the EM problem that we will discuss in
this paper.
The second component of the Coulomb-gauge

Hamiltonian is the photon-current interaction, which emits
and absorbs massless photons. This component is the
source of the usual infrared divergences but, as with the
Coulomb interaction, also includes singular short-distance
effects that require careful treatment. This part of the
problem is not treated in the present paper. However, for
both the Coulomb and radiation parts, the long-distance
EM effects, which may be incompatible with the finite
volumes used in lattice QCD, are expected to be funda-
mentally classical. This suggests that these long-distance
effects can be separated and computed analytically, leaving
the portion of the problem to be treated using lattice
methods free of these long-distance EM difficulties.
For the case of the Coulomb potential, this separation of

short- and long-distance effects is easily achieved by
writing the Coulomb potential as the sum of two pieces,

e2

4πjr⃗j ¼
e2

4πjr⃗j θðR − rÞ þ e2

4πjr⃗j θðr − RÞ; ð3Þ

where we refer to the fixed separation R as the truncation
radius and the two terms on the right-hand side of Eq. (3) as
the short-distance truncated Coulomb potential VTCðrÞ (the
left-hand term) and the long-distance compliment of the
truncated Coulomb potential VTCðrÞ (the right-hand term).
In the interest of simplicity, we use a sharp theta function to
limit the ranges over which VTC and VTC are nonzero. In a
lattice calculation, such a sharp cutoff would be unwise,
potentially introducing large lattice spacing errors. Thus, in
an actual lattice calculation, θðR − rÞ should be replaced by
a function that is smooth at the lattice scale.
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Given the linearity of the first order correction that we
wish to compute, we can treat these two terms separately.
The effects of VTCðrÞ can be directly combined with those
of QCD in a lattice calculation, provided we choose 2R to
be smaller than the linear size of the volume used in this
QCDþ QED calculation. As wewill show, the second term
can be treated analytically if R is sufficiently large that
terms which decrease exponentially for large R can be
neglected.
In the present paper, we treat a portion of the Coulomb

potential problem, studying πþπþ scattering and derive
results that can be combined with a lattice QCD calculation
to obtain the πþπþ scattering phase shift accurate to first
order in α, including both the effects of QCD and the full
Coulomb potential. As we will show, this combined lattice
QCD and analytic calculation can be carried out with the
only finite-volume errors being those which vanish expo-
nentially in the linear extent of the volume used for the
lattice QCD calculation. In a practical use of our result,
there will be power-law corrections that result from the
usual neglect of phase shifts for those partial waves with
angular momentum l larger than some minimum value. The
remaining part of the Coulomb problem needed for the
calculation of ε0 requires examining the two-channel πþπ−

and π0π0 scattering and the effects of the Coulomb
potential on the actual K → ππ decay. This problem has
been treated in the nonrelativistic case in our earlier
proceedings [12], and we plan to provide a solution to
this problem including relativistic effects in a later paper.
The second part of the problem of computing the EM and

mu −md contributions to ε0 requires determining the effects
of the transverse radiation. In a fashion similar to our
approach to the Coulomb potential, we plan to divide the
transverse photons into two groups whose energies lie
above or below a boundary energy EB. Those photons with
energy Eγ < EB can be treated classically using the usual
Bloch-Nordsiek methods, while those whose energy Eγ >
EB will be treated explicitly using lattice QCD in a finite
volume with linear extent L. The correctness of the
classical treatment requires that EB=ΛQCD ≪ 1 so that
structure-dependent effects can be neglected. At the same
time, the accurate treatment of the hard radiation using
finite-volume lattice QCD requires 1=L ≪ EB. These
combined requirements will result in the neglect of cor-
rections behaving as a power of 1=ðΛQCDLÞ. This treatment
of the radiation part of the EM problem is our long term
strategy and the focus of current study.
Our use of the truncated Coulomb potential, which

allows us to include QED in a finite-volume lattice
calculation, is different from the more conventional
approach of called QEDL [3]. If specialized to the
Coulomb potential alone, the QEDL approach would
express the 1=r Coulomb potential in a finite spatial
volume of size L3 as a conventional periodic Fourier series
over wave numbers k⃗ ¼ 2πðn1; n2; n3Þ=L for integers

fnig1≤i≤3 from which the ill-defined term with k⃗ ¼
ð0; 0; 0Þ has been omitted. When beginning this project,
we examined this approach to QED in a finite volume and
present some of our results in appendixes to this paper.
Here our results are closely related to those of Beane and

Savage [18] and Beane et al. [19]. However, the treatment
presented in Appendix A may provide a useful compliment
to this earlier work since it does not involve an effective
range approximation to the energy dependence of the
scattering phase shift. We choose to use the truncated
Coulomb potential because this position-space approach
appears easier to understand and the absence of new power-
law finite-volume corrections may be an important advan-
tage in a calculation in which power-law finite-volume
effects are being exploited to determine the scattering phase
shifts. In Appendix B, we investigate the size of the power-
law finite-volume corrections to the scattering phase shifts
determined numerically in the case of nonrelativistic
quantum mechanics with a simple scattering potential
and find a large 1=L correction, which gives an easy-to-
correct energy shift and a small upper bound on the 1=L3

corrections, suggesting that the QEDL approach may also
work well for the problem at hand.

III. LATTICE QCD CALCULATION OF π + π +

SCATTERING INCLUDING COULOMB EFFECTS

As described above, we propose to compute the QED
corrections to πþπþ scattering by using the Coulomb-
gauge formulation of QED. In that approach, the
Minkowski-space QED Lagrangian is written as

LEM ¼ 1

2

Z
d3rfð∂tA⃗ðr⃗ÞÞ2 − ð∇⃗ × A⃗ðr⃗ÞÞ2 þ j⃗ðr⃗Þ · A⃗ðr⃗Þg

−
1

2

Z
d3rd3r0ρðr⃗Þ 1

4πjr⃗ − r⃗0j ρðr⃗
0Þ; ð4Þ

a standard textbook result [20] for the quantum treatment of
the electromagnetic field. Here, j⃗ðr⃗Þ and ρðr⃗Þ are the
current and charge density operators for the quarks to
which the EM field couples. This is the treatment of QED
that is used in the lattice calculation described in Sec. IV.
However, in Sec. V, where we study the EM interactions of
pions at large distances, we will use “scalar” QED, and j⃗ðr⃗Þ
and ρðr⃗Þ will be written in terms of the pion field and its
spatial and temporal derivatives. Since we plan to compute
EM corrections to first order in α, the two interaction terms
on the right-hand side of Eq. (4) can be treated independ-
ently and the results simply added together in the end. This
will allow us to consider separately the Coulomb inter-
action with its long-range distortion of the two-particle
scattering problem and the interaction j⃗ · A⃗ of the transverse
photons, which requires the Bloch-Nordsiek treatment [15].
In this paper, we will focus on the corrections arising from
the second term, the Coulomb interaction.
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In our next step, this Coulomb potential is itself further
divided into two terms VTC and VTC,

VTC ¼ 1

2

Z
d3rd3r0ρðr⃗Þ θðR − jr⃗ − r⃗0jÞ

4πjr⃗ − r⃗0j ρðr⃗0Þ ð5Þ

VTC ¼ 1

2

Z
d3rd3r0ρðr⃗Þ θðjr⃗ − r⃗0j − RÞ

4πjr⃗ − r⃗0j ρðr⃗0Þ; ð6Þ

where contributions to VTC come only from separations
jr⃗ − r⃗0j < R, while VTC involves only separations
jr⃗ − r⃗0j > R. Note, we will distinguish the operators VTC
and VTC defined in Eqs. (5) and (6), which contain a factor
of 1

2
and do not depend on r from the functions VTCðrÞ and

VTCðrÞ, defined following Eq. (3), which do depend on r
and do not contain the factor of 1

2
.

As is discussed in greater detail in Sec. IV, the finite-
range VTC term can be used directly in a lattice calculation
to determine its contribution to the πþπþ scattering phase
shift. Both the QCD interactions and those implied by VTC
have a finite range and can be used with Luscher’s finite-
volume quantization condition to determine their com-
bined contribution to the πþπþ scattering phase shift. We
can then Taylor expand this quantization condition in α.
The α0 term in this expansion gives the usual finite-
volume result, determining the QCD scattering phase shift
in terms of the computed finite-volume energy. The first-
order term in this expansion of Luscher’s quantization
condition will determine the first order contribution to that
phase shift coming from VTC in terms of the first-order
shift in the finite-volume energy arising from the VTC term
in the QCDþ QED Hamiltonian, a quantity that can
be directly computed from lattice QCD as is derived
in Sec. IV.
The contribution of VTC to the πþπþ scattering phase

shift appears inaccessible to the methods of lattice QCD
because of its infinite range. However, as a result of the
minimum separation R that enters VTC, the effects of VTC
come from large distances, where we will show that they
can be calculated analytically in terms of the QCD πþπþ
scattering phase shift and the pion electromagnetic form
factor if the center-of-mass energy is below the four-pion
threshold.

IV. NUMERICAL TREATMENT OF VTC

Because of the spatial cutoff at the distance R, the
truncated Coulomb potential VTC can be used in a standard

finite-volume lattice QCD calculation to determine its
contribution to the πþπþ scattering phase shift. As in
lattice QCD calculations that include QEDL, we can add
VTC to QCD either perturbatively to some finite order in α
or nonperturbatively, including all orders in α. Since we
wish to preserve the separation of the Coulomb interaction
and the transverse radiation, it is natural to carry out this
portion of the calculation to first order in α. We begin with
Lüscher’s finite-volume quantization condition [2],

δ0ðpÞ þ ϕðqÞ ¼ nπ; ð7Þ

where for simplicity, we focus on the case of practical
interest, that of s-wave scattering. If E is the energy of a
two-pion state in a finite volume with sides of length Lwith
periodic boundary conditions, then p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=2Þ2 −m2

p
must obey Eq. (7) for integer n. The function ϕðqÞ obeys

tanϕðqÞ ¼ −
π3=2q

Z00ð1; qÞ
; ð8Þ

where

Z00ðs; qÞ ¼
1ffiffiffiffiffiffi
4π

p
X
n⃗∈Z3

ðn⃗2 − q2Þ−s; ð9Þ

and q ¼ pL=ð2πÞ.
We then expand the quantized energy E ¼ Eð0Þ þ

αEð1Þ þ � � � in a power series in α. If we perform a similar

expansion of the phase shift δ0ðpÞ ¼ δð0Þ0 ðpÞ þ αδð1Þ0 ðpÞ þ
� � � then Eq. (7) can also be expanded to relate the lattice
result for Eð1Þ to the desired order-α contribution of VTC to
the scattering phase shift,

δð1Þ0 ðpð0ÞÞ ¼−
�
dδ0ðpÞ
dp

þdϕðqÞ
dq

L
2π

�
p¼pð0Þ

Eð0Þ

4pð0ÞE
ð1Þ; ð10Þ

where pð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEð0Þ=2Þ2 −m2

q
.

The first-order energy Eð1Þ can be determined directly
from a lattice calculation in the spatial volume L3. IfOππðtÞ
is a suitable ππ interpolating operator localized at the time
t, which is invariant under the allowed lattice translations
and rotations, then using first-order perturbation theory,
Eð1Þ can be determined from the ratio of correlation
functions,

Eð1Þ ¼ hO†
ππðtfÞ 12

R
V

R
V d

3r2d3r1ρðr⃗2; tVÞVTCðjr⃗2 − r⃗1jLÞρðr⃗1; tVÞOππðtiÞi
hOππðtfÞOππðtiÞi

; ð11Þ
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provided tf − tV and tV − ti are each sufficiently large that
Eq. (11) is actually determining the matrix element of VTC
between the ground state of the πþπþ system and itself,
while excited states are suppressed. Here, we have modified
the argument of VTC to insure the translational symmetry
supported by the periodic boundary conditions imposed on
the lattice volume in which it is being used,

jr⃗2− r⃗1jL¼
�X3

i¼1

ðmin½jðr2Þi−ðr1Þij;L− jðr2Þi−ðr1Þij�Þ
2

�1
2

:

ð12Þ

One additional minor complication that must be
addressed in this calculation is the renormalization of the
πþ mass that results from the Coulomb interaction. This
mass shift can be computed from a three-point function very
similar to that appearing in Eq. (11) in which the πþπþ
interpolating operator Oππ is replaced by an interpolating
operator for a single pion. This shift in mass can be
eliminated by adding a first-order shift αmð1Þ to the quark
mass. The quantity mð1Þ would be chosen so that when this
order-α mass term is combined with the Coulomb potential
the πþ mass is not changed from its original value. This
first-order mass term should then be included in the
calculation of Eð1Þ described in Eq. (11) by simply adding
it to the Coulomb potential operator in that equation. The
resulting value for Eð1Þ could then be used in Eq. (10) to
determine the first-order EM contribution to the scattering
phase shift for two πþ particles, each with a fixed physical
mass, the same mass that was used in the original order-α0

QCD calculation.

V. ANALYTIC TREATMENT OF VTC

In this section, we will calculate the contribution of VTC
to the πþπþ scattering phase shift δl to first order in α in
terms of two quantities: (i) the phase shift δl without QED
corrections and (ii) the electromagnetic form factor of the
pion. This infinite-volume, order-αVTC correction can be

added to the correction determined numerically to first
order in VTC using lattice QCD as described in the previous
section to obtain the entire contribution of the instantaneous
Coulomb potential to the πþπþ scattering phase shift. This
combined result should have only finite-volume errors that
fall exponentially as the volume grows with the exception
of the power-law corrections that come from omitting the
scattering from higher partial waves in usual treatment of
finite-volume quantization and whatever approximations
are introduced when determining the πþ form factor.

A. General formulation

This analytic calculation can be performed by working
with the usual relativistic Lipmann-Schwinger equation,
which expresses the full πþπþ scattering amplitude as a
sum of products of two-particle irreducible kernels con-
nected by pairs of pion propagators as shown in Fig. 1. We
will refer to this sum as the Lipmann-Schwinger series. As
is conventional in such discussions, we will treat the
composite pion in QCD as an elementary particle in a
relativistic ðϕ†ϕÞ2 field theory working to arbitrary order in
a perturbation expansion in the ðϕ†ϕÞ2 interaction. This
will result in a somewhat physical discussion of the pion
structure, here introduced by the ðϕ†ϕÞ2 coupling, whose
space-time scale is set by the pion mass. As we explore the
approximations necessary for the validity of our approach,
we will be able to estimate their size and appreciate the
bounds on the scattering energy that must be imposed. We
will then assume that the relations established are universal
and will also hold true in the physical QCD problem
provided that the spatial scale R appearing in VTC is larger
than the distance scale of QCD so that the differences in
structure between QCD and this ðϕ†ϕÞ2 model become
irrelevant. This requirement of universal behavior, inde-
pendent of quark structure, implies that the truncation
radius obey R ≫ ΛQCD

The on shell center-of-mass ππ scattering amplitude
MlðEÞ for angular momentum l that is determined by the
graphs shown in Fig. 1 can be defined by

FIG. 1. A graphical expansion of the full scattering amplitude M (with the label M) in terms of products factors of the two-particle
irreducible kernel (with the label K) joined by dressed pion propagators, shown as a pion with a lightly shaded bubble representing a
sum of all one-particle reducible graphs. This is the standard expression for the complete scattering amplitudeM that is useful to discuss
two-particle scattering below the four-particle threshold can include the effects of the Coulomb interaction VTC.
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iMlðEÞδl0lδm0m ¼ 1

4π

Z Z
dΩp̂0dΩp̂Y�

l0m0 ðp̂0ÞMððp⃗0;ωpÞ; ð−p⃗0;ωpÞ; ðp⃗;ωpÞ; ð−p⃗;ωpÞÞYlmðp̂Þ: ð13Þ

Here, the pion three-momenta p⃗ ¼ pp̂ and p⃗0 ¼ pp̂0 are proportional to the two unit vectors over whose directions we are
integrating. The pion energies are given by ωp ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, where m is the pion mass and the total energy E in the

center-of-mass system is given by E ¼ 2ωq.
The amplitude Mðp4; p3; p2; p1Þ can be obtained directly from the usual connected time-ordered product,

Y4
i¼1

�
p2
i þm2

i

�Y4
i¼1

Z �Z
d4xi

�
eið−p4x4−p3x3þp2x2þp1x1Þhϕðx4Þϕðx3Þϕ†ðx2Þϕ†ðx1Þiconn

¼ ð2πÞ4δ4ðp4 þ p3 − p2 − p1ÞMðp4; p3; p2; p1Þ; ð14Þ

which must be evaluated on shell with ðpiÞ4 ¼ ωp for
1 ≤ i ≤ 4. For E < 4m, the unitarity of the scattering
matrix implies that MlðEÞ can be written as

MlðEÞ ¼ 32π
ωp

p
e2iδl − 1

2i
: ð15Þ

Except for a change in overall sign of the metric, these are
similar to the conventions of Ref. [21]. We will use a
Minkowski metric ð1; 1; 1;−1Þ so that analytic continu-
ation between Euclidean and Minkowski formulations can
be accomplished by changes in phase of the energy or time
arguments.
In fact, in the discussion below, we will begin with a

Euclidean-space version of Eq. (14), which defines the
amplitude MEðp4; p3; p2; p1Þ for Euclidean arguments.
The amplitude ME is defined by an equation identical to

Eq. (14), except that the time ordered product is to be
computed using a Euclidean path integral or a Hilbert-space
formalism in which the time-dependent fields are defined
using exponentials of the Hamiltonian without the usual
factor of i. In addition, the four-vector dot products that
appear in the Fourier transforms from position to momen-
tum space in the Euclidean version of Eq. (14) use the
Euclidean metric (1,1,1,1). In the discussion below, we will
explicitly analytically continue the amplitude ME to
obtain M.
In order to discuss this analytic continuation concretely,

it is useful to remove the momentum-conserving delta
function from Eq. (14), to write the equation in terms of the
total incoming Euclidean four-momentum P and two
relative four-momenta p and p0 which are defined by
the rewritten version of Eq. (14),

MEðp0; p; PÞ ¼
Z Z Z

d4yd4x2d4x1e−ip
0y
�
ϕ

�
y
2

�
ϕ

�
−
y
2

�
ϕ†ðx2Þϕ†ðx1Þ

�
amp

eiðP2þpÞx2eiðP2−pÞx1 ; ð16Þ

where we have used momentum conservation and transla-
tional invariance to reduce the number of four-vectors on
which ME depends from four to three and to evaluate the
connected four-point function at the location x4 þ x3 ¼ 0.
In the center-of-mass system among the three four-momenta
p0, p, and P, onlyP has a nonzero energy component. In the
standard approach to analytic continuation from Euclidean
to Minkowski space, the real Euclidean energy P0 is
changed in phase as P0 → e−iθP0, with θ increasing from
zero to π=2. In order to avoid potential exponential
divergence in the integrals over ðx1Þ0 and ðx2Þ0, these
integration variables are also rotated in phase in the opposite
direction: ðxiÞ0 → eiθðxiÞ0, i ¼ 1; 2. This procedure then
requires the time-dependent Euclidean Green’s function
hϕðy

2
Þϕð− y

2
Þϕ†ðx2Þϕ†ðx1Þi to be analytically continued in

the time.

Although this approach to analytic continuation will not
be used below, this interpretation is useful to determine
precisely what Minkowski amplitude results after this
analytic continuation is performed. By design, the resulting
Minkkowski-space Fourier transform will contain the phase
whose dependence on the total four-momentum P is
P⃗
2
· ðx⃗1 þ x⃗2Þ þ P0

2
ððx1Þ0 þ ðx2Þ0Þ. With our conventions,

this is the correct phase for an incoming, positive energy
only if P0 ¼ −E, where E ¼ 2ωp. Thus, when performing
this analytic continuation, we will begin with P0 ¼ −E and
carry out the phase rotation P0 ¼ −Ee−iθ, increasing θ
from zero to π=2.
Since we wish to calculate the first order effects of VTC on

the ππ phase shift, we will consider those terms in which
VTC enters one of the components appearing in the
Lipmann-Schwinger series shown in Fig. 1. The VTC
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interaction can enter in three ways as illustrated Fig. 2. In the
first case, VTC contributes to the self-energy graph appearing
in one of the pion propagators connecting the two-particle
irreducible kernels as shown in graph (a) of Fig. 2. The
second and third cases arise when VTC appears in the Bethe-
Salpeter kernel and are distinguished by a property of the
resulting kernel. Since the VTC interaction involves the
fourth components of two electromagnetic currents at
positions ðz⃗2; tÞ and ðz⃗1; tÞ multiplied by the function
θðjz⃗2 − z⃗1j − RÞ=jz⃗2 − z⃗1j, we are representing this OðαÞ
insertion graphically by two vertices at the positions ðz⃗2; tÞ
and ðz⃗1; tÞ joined by a wavy line corresponding to this
position-dependent function and referred to here as a
“photon” line. If cutting this line separates the graph in
the kernelK into two parts then the corresponding amplitude
is of type (c). Otherwise it is of type (b). We will refer to
these three cases as insertions of types (a), (b), and (c).

As we will see, the VTC contributions from graphs of
type (a) and (b) are exponentially suppressed for large R.
This will be demonstrated in the next section by an analytic
continuation from Euclidean space in which the evalua-
tions of the self-energy and Bethe-Salpeter kernel graphs
remain in Eulidean space where the exponential suppres-
sion coming from the large spacelike separation of the two
vertices in VTC can be easily seen. Diagrams of type (c),
which contain the Coulomb scattering of two far-separated
pions, will therefore contain all of the relevant effects of
VTC and are evaluated in Sec. V C.

B. Analytic continuation

In order to show that the contribution VTC to graphs of
type (a) and (b) is exponentially suppressed for large R for
the case of πþπþ scattering at an energy below the four-
pion threshold, we will first demonstrate that these self-
energy and kernel subgraphs can be evaluated in Euclidean
space even after the original Euclidean amplitude ME has
been analytically continued to physical Minkowski ener-
gies. To show this, we propose a particular procedure to
carry out this analytical continuation in which the external
lines and the internal two-pion loop integrals shown
explicitly in Fig. 1 are evaluated in momentum space
and the loop integration contours distorted to avoid the
singularities as this continuation is carried out. However,
during this process the self-energy and kernel graphs will
be evaluated as functions of position, and those positions
(and the amplitudes in which they appear) will remain in
Euclidean space.
Anticipating this strategy, we express both the self-

energy and two-particle irreducible kernels as Fourier
transforms of Euclidean, position-space functions,

DðP; kÞ ¼
Z

d4xhϕð0Þϕ†ðxÞi1PIeiðkþP
2
Þx ð17Þ

KðP; k0; kÞ ¼
Z Z Z

d4yd4x2d4x1e−ik
0y
�
ϕ

�
y
2

�
ϕ

�
−
y
2

�
ϕ†ðx2Þϕ†ðx1Þ

�
2PI;amp

eiðkþP
2
Þx2eið−kþP

2
Þx1 : ð18Þ

Both expressions are to be evaluated in Euclidean space and
Fourier transformed with Euclidean four-momenta. Note
we have used the translational invariance of both types of
diagram to remove one of the space-time arguments from
each Green’s function.
The Green’s functions appearing in Eqs. (17) and (18)

are intended to be entirely general including both arbitrary
orders in the ðϕ†ϕÞ2 interaction and zeroth or first order in
VTC. While VTC results from electromagnetism, since it
contains only operators that are evaluated at the same time,

it does not change the structure of the intermediate states
that determine the time dependence of these Green’s
functions. As a result, the possible presence of VTC in
these Green’s functions will be ignored when discussing
their Euclidean time dependence.
With this approach, it is straightforward to perform

the needed analytic continuation in the total incoming
energy E from its Euclidean to its Minkowski value:
replace E by e−iθE and vary θ from zero to π=2. This
complex variable E enters the amplitudes appearing in the

(a)

(b) (c)

FIG. 2. Corrections to the subdiagrams appearing in Fig. 1 that
are first-order in VTC. Diagram (a) is the correction to the dressed
pion propagator expressed as two full pion propagators connected
by a sum of one-particle reducible graphs (with darker shading),
which cannot be separated into two parts by cutting a single pion
line. (Here, two subgraphs joined by a photon line are viewed as
connected.) Diagram (b) shows the correction to the two-particle
irreducible kernel which cannot be divided into two disconnected
parts if the VTC photon line is cut. Diagram (c) represents the
class of two-particle irreducible diagrams that can be divided into
two disconnected parts when the VTC photon line is cut.
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Lipmann-Schwinger series in two places. First, it appears
in the exponents written explicitly in Eqs. (17) and (18).
Since the exponential function is analytic, the continuation
can be easily performed. However, when E becomes
imaginary, the Fourier integrals acquire an exponentially
growing factor, and we must demonstrate these integrals
remain convergent.
Second, E appears in the internal propagators shown in

Fig. 1. Here, the variation in E from a real to an imaginary
value will force the integration contour over the loop
variable k0 to be distorted to avoid the singularities that
move as the phase of E changes. The motion of these
singularities is shown by the dotted lines in Fig. 1. This
distortion of the contours of the loop energies will require a
further analytic continuation of the kernel and self-energy
functions, which can also be carried out since these energy
variables also appear explicitly in analytic exponential
functions. Of course, we must demonstrate that this further
introduction of exponentially growing time dependence
does not cause these internal Fourier transforms to diverge.
Thus, our demonstration that the contribution of VTC

when appearing in diagrams of type (a) and (b) is expo-
nentially suppressed as R increases proceeds in two steps.
First, we will show that the analytic continuation described
above is possible, allowing the actual evaluations of the
quantities D and K to be performed in Euclidean space.

Second, we examine the case when VTC appears in either of
these Euclidean-space quantities and use their Euclidean-
space character to show this exponential suppression as R
increases.
To address the first step, we examine the convergence of

the integrals over time in Eqs. (17) and (18) when the
Euclidean energy appearing in the time-dependent expo-
nent has become imaginary. For the self-energy case
described by Eq. (17), we can see from Fig. 3 that the
magnitude of the imaginary part of k0 will be nonzero when
E=2 > ωk and can be limited to E=2 − ωk < E=2 −m.
Thus, the largest exponential growth than can result from
the continued Fourier transform shown in Eq. (17) with the
exponent P0

2
þ k0 takes the form, expfðE −mÞx0g.

However, the Euclidean-space, one-particle-irreducible,
self-energy graphs which enter Eq. (17) themselves
decrease exponentially as the time separation x0 increases.
This decreasing behavior will be determined by the least
massive intermediate state that can appear between the two
interpolating operators ϕð0Þ and ϕ†ðxÞ in Eq. (17), which
must be a three-pion state with energy no smaller than 3m.
Thus, our analytic continuation strategy will fail when
E − 4m > 0, reminding us of the known requirement that
we stay below the four-pion threshold in our study of
physical ππ scattering.

FIG. 3. Diagram showing the treatment of the contour of k0 integration needed in the two-pion loop integrals that appear explicitly in
the Lipmann-Schwinger series, using the momentum assignment shown in Fig. 1. The change in the incoming Euclidean energy from
E → −ijEj causes the distortion of the k0 contour from the vertical axis to the new contour C. This diagram refers to Euclidean-space
coordinates but follows an unconventional assignment of directions for the real and imaginary k0 axes to give it a more familiar,
Minkowski-space orientation.
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The behavior of the analytically continued expression
given in Eq. (18) for the two-particle irreducible kernel is
very similar. Now there are three time integrals which may
diverge as the time separations among the arguments in
Eq. (18) grow. In examining the behavior expected, we
might distinguish the case where this kernel is the first or
last factor in the Lipmann-Schwinger series from the case
where it appears somewhere in the middle. Since we are
working in the center-of-mass system, the variables k0 or k00
would be zero in the first case, while they can have an
imaginary part as large as E=2 −m in the second. Thus, we
will consider the second case since it includes the first.
It is convenient to replace the variables x2 and x1 in

Eq. (18) by the average and relative coordinates X ¼
ðx2 þ x1Þ=2 and x ¼ ðx2 − x1Þ. Given the symmetry
between the values �y0 and between the values �x0,
we will chose both x0 and y0 to be positive. Further, we
will first consider the case where X0 is negative and its
magnitude is larger than ðx0 þ y0Þ=2. This case is illus-
trated in Fig. 4. Because we are discussing the dependence
of the two-particle irreducible kernel on its four time
coordinates, such a one-dimensional figure is sufficient for
a general discussion. An amputated pion line joins the two-
particle-irreducible kernel K at each of the 4 times, � y0

2

and� x0
2
þ X0, which implies that at each of these times the

number of pions much change by an odd number. If we
include the fact the kernel must be both one- and two-
particle irreducible, the allowed minimum number of pions
appearing in the three intermediate states between these 4
times must be those shown in Fig. 4.
We conclude that the dependence of the integrand on the

3e times x0, y0, and X0 is given by

½ey0ðE2−mÞex0ðE2−mÞe−X0E�½e−3mjy0je−4mj−y0
2
−ðx0

2
þX0Þje−3mjx0j�

¼ e
x0þy0

2
ðE−4mÞe−X0ðE−4mÞ: ð19Þ

The first three factors on the left-hand side come from the
exponents in the Fourier transform appearing in Eq. (18)
while the remaining three factors come from inserting
three-pion states between ϕðy0

2
Þ and ϕð− y0

2
Þ and between

ϕ†ðx0
2
þ X0Þ and ϕ†ð− x0

2
þ X0Þ, while a four-pion inter-

mediate state must be inserted between ϕð− y0
2
Þ

and ϕ†ðx0
2
þ X0Þ.

Inspecting the right-hand side of Eq. (19), we recognize
that the integrand decreases if any of the three positive
quantities y0, x0, and −X0 is increased provided E is below
the four-pion threshold, E < 4m. If we treat y0 and x0 as
fixed, we can then discuss the behavior of the integrand as
X0 increases from it assuming large negative value. As X0

increases, we reach the point where the lower end of the
interval ½y0

2
;− y0

2
� collides with the upper end of the interval

½x0
2
þ X0;−

x0
2
þ X0�. At this point, the X0 behavior of the

integrand changes from expf−X0ðE − 4mÞg to
expf−X0ðE − 2mÞg. Thus, the integrand now decreases
as X0 becomes more positive. Continuing to increase X0,
the next change in behavior occurs when one of the two
intervals ½y0

2
;− y0

2
� and ½x0

2
þ X0;−

x0
2
þ X0� lies within the

other, and the X0 behavior becomes more rapidly decreas-
ing expf−X0Eg. Next as X0 increases further and these two
intervals partially overlap and then separate the exponential
decrease becomes steeper, changing to expf−X0ðEþ
2mÞg and finally, expf−X0ðEþ 4mÞg. Thus, the maximum
is reached when − y0

2
¼ x0

2
þ X0, at which point the inte-

grand behaves as expfðy0 þ x0ÞðE − 4mÞg, insuring con-
vergence for E < 4m and providing the analyticity needed
for our explicit Euclidean-space evaluation at physical
energies below the four-pion threshold. The case, where
− y0

2
¼ x0

2
þ X0, could have been anticipated as giving the

largest contribution since it avoids the situation with a four-
pion intermediate state, e.g., in Fig. 4 the case where the “4
pions” segment has zero length.
We conclude that the Minkowski-space ππ scattering

amplitude can be determined from the Lipmann-Schwinger
series in which the self-energy corrections and two-particle
irreducible kernel are computed in Euclidean space. This
implies that when VTC appears in those subgraphs, its
contribution will be suppressed exponentially when R
becomes large. In each case, the two vertices introduced
by VTC, separated by the distance R, must be joined by at
least two Euclidean pion propagators so that the VTC
contribution will decrease exponentially as R grows—the
property that we wish to establish.
We should point out that an estimate of this exponential

decrease given by expf−2mRg coming simply from two
sequences of single pion propagators joining one VTC
vertex to the other is an overestimate of the rate of decrease
because of the exponential growth of the Fourier transform

FIG. 4. Diagram showing the ordering of arguments used in Eq. (19) with time increasing from right to left. The average time of the
two incoming vertices is X0, which is chosen negative, while the earliest outgoing vertex (at the time −y0=2) is assumed to be later than
the latest incoming vertex (at the time x0=2þ X0). The times of the four vertices are marked by crosses, while the average incoming and
average outgoing times are each shown as vertical lines. The minimum number of intermediate pions which appear in the amplitude
KðP; k0; kÞ in each interval is also indicated.
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factors discussed above. For example, once the large spatial
separation R has been introduced into the self-energy or
kernel subdiagrams from VTC, there will be an advantage to
a diamond pattern, such as that shown Fig. 5 for the case of
a self-energy subdiagram, in which the two spatially
separated vertices in VTC are joined to two temporally
separated vertices. With this arrangement, the exponential
suppression associated with the time separation of the two
additional vertices is partially compensated by the expo-
nentially growing Fourier factors. For the case shown in
Fig. 5, such a diamond geometry leads to a weakened
exponential suppression. The total exponent corresponding
to the four pion propagators shown in Fig. 5 can be
minimized by the choice of z0 ¼ x0=2 and a value of x0,
which grows as E approaches 4m, giving a reduced
exponential falloff ∝ expf−R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð4m − EÞp g, which varies

from the expected expf−2mRg when E ¼ 2m to zero as E
increases to the four-pion threshold.

C. Lipman-Schwinger equation solution to first
order in VTC

The result of the previous section shows that the
contribution to πþπþ scattering from VTC will come only
from diagrams of type (c) in Fig. 2 once terms that are
exponentially suppressed for large R have been neglected.
In this section, we will evaluate that contribution, in this
same, exponentially accurate approximation. This calcu-
lation receives contributions from the four diagrams shown
in Fig. 6. While the diagrams shown in that figure involve
the off shell Bethe-Salpeter scattering kernel and off shell
pion electromagnetic vertex, the presence of VTC will be
shown to restrict their evaluation to an on shell, long-
distance region allowing them to be evaluated directly in
terms of infinite-volume scattering data and the on shell
pion form factor, both quantities that can be directly
determined from lattice QCD or, if we choose, from a
combination of experiment and dispersion theory/phenom-
enology. The result will be an explicit formula determining
the contribution of VTC to the πþπþ scattering phase shift.
This is the missing component that was omitted from the
phase shift calculation using finite-volume lattice methods,
which include only VTC. We note that all of the variables
and formulas in this and later sections are expressed using
Minkowski space conventions.
This calculation can be cast into a suggestive form by

expressing the first-order contribution of VTC to Ml of
Eq. (13) given by the sum of the four classes of diagram
shown in Fig. 6 as a product of incoming and outgoing
factors multiplied by the VTC scattering kernel,

FIG. 5. An example of the insertion of the potential VTC into a
self-energy graph that can be used to estimate the rate of
exponential decrease of such an amplitude as the truncation
radius R increases. The location in space and time of each of the
four vertices is shown. As is discussed in the text, the contribution
of graphs with this topology in the Lipman-Schwinger series will
decrease for large R as expf− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð4m − EÞp
Rg.

(a)

(c) (d)

(b)

FIG. 6. The four types of diagram that must be evaluated to determine the correction to the scattering phase shift arising from VTC.
Here, the pion self-energy insertions on the internal lines are not shown. In this section, a self-energy insertion carrying four-momentum
k is written as the product of a free-particle propagator and a function of k2 which is absorbed into the off shell scattering amplitudeM.
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MTC;l ¼
1

2lþ 1

Xl

m¼−l

Z Z
d4k0d4kΨout

lm ðk0; PÞ�KTCðk0; k; PÞΨin
lmðk; PÞ: ð20Þ

Here, the VTC scattering kernel KTCðk0; k; PÞ is shown as diagram (c) in Fig. 2 and can be written in momentum space after
the total momentum conserving delta function has been removed,

KTCðk0; k; PÞ ¼ −2
Z Z

d4y2d4y1

Z
d3z

Z Z
d4x2d4x1e−iðk

0þP
2
Þy2e−ið−k0þP

2
Þy1

×

�
ϕðy2Þρ

�
z
2

�
ϕ†ðx2Þ

�
1PI

VTCðzÞ
�
ϕðy1Þρ

�
−
z
2

�
ϕ†ðx1Þ

�
1PI

eþiðkþP
2
Þx2eið−kþP

2
Þx1 : ð21Þ

The factor of 2 results from a combination of the four
equivalent contractions contributing to KTCðk0; k; PÞ and
the factor of 1

2
appearing in the operator VTC defined in

Eq. (6). This expression is analogous to that appearing in
Eq. (18) for the complete scattering kernel, except we have
used translation symmetry to fix the origin at the midpoint
between the locations of the two charge density operators.
As suggested by Fig. 6, Ψin=out

lm ðk; PÞ can be separated
into two components,

Ψin=out
lm ðk; PÞ ¼ ψ0

lmðk; PÞ þ ψ in=out
lm ðk; PÞ: ð22Þ

The first component, ψ0
lmðx; PÞ, is constructed from the

plane wave component of the incoming state, which
corresponds to no initial/final state scattering beyond that
resulting from VTC. The second component includes all
initial/final scattering and involves the full off shell
scattering amplitude MðEÞ defined in Eq. (14). We will
now consider in turn the calculation of the contribution
from ψ0

lmðk; PÞ and then ψ in=out
lm ðk; PÞ.

1. Plane wave, ψ0
lmðk;PÞ, contribution

The plane wave part, ψ0
lmðk; PÞ can be deduced directly

from Eqs. (13), (14), and (16),

ψ0
lmðk; PÞ ¼

1

ð2πÞ4
Z

d4xe−ik⃗·x⃗
�

1ffiffiffiffiffiffi
4π

p
Z

dΩp̂eip⃗·x⃗Ylmðp̂Þ
�

ð23Þ

¼ 1ffiffiffiffiffiffi
4π

p
p2

δðjk⃗j − pÞδðk0ÞYlmðk̂Þ: ð24Þ

Here, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=2Þ2 −m2

p
and p⃗ ¼ pp̂. Although

ψ0
lmðk; PÞ can be easily determined as in Eq. (24), when

we consider the second term, ψ in=out
lm ðk; PÞ, it will be

simplest to directly evaluate its contribution to the product
½KTCΨ

in=out�ðk0; PÞ. If this is done for ψ0
lmðk; PÞ, we find

½KTCψ
0
lm�ðk0; PÞ ¼ −2

Z
d3z

Z
d3k

�
Γ0

�
k0 þ P

2
;

�
k⃗;
E
2

��
eiðk⃗−k⃗

0Þ·z⃗VTCðjz⃗jÞ

· Γ0

�
−k0 þ P

2
;

�
−k⃗;

E
2

��
1ffiffiffiffiffiffi
4π

p
p2

δðjk⃗j − pÞYlmðk̂Þ
�

ð25Þ

¼ −
1ffiffiffi
π

p
Z

d3z
Z

dΩp̂Γ0

�
k0 þ P

2
;

�
p⃗;

E
2

��
eiðp⃗−k⃗

0Þ·z⃗VTCðjz⃗jÞ

· Γ0

�
−k0 þ P

2
;

�
−p⃗;

E
2

��
Ylmðp̂Þ: ð26Þ

As in previous equations, the two arguments of the pion
vertex function Γ0ðq0; qÞ are four-vectors, but here, the
incoming four-momenta are written out as an explicit
combination ðq⃗; q0Þ of spatial, q⃗, and temporal, q0, com-
ponents.

An important simplifying step in the present discussion
and that below considering ψ in=out

lm ðk; PÞ involves the treat-
ment of the vertex functions Γ0ðP2 � k0; P

2
� kÞ. For both of

these functions to be on shell, four conditions must be
obeyed

CHRIST, FENG, KARPIE, and NGUYEN PHYS. REV. D 106, 014508 (2022)

014508-12



k0 ¼ k00 ¼ 0 jk⃗j ¼ jk⃗0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E
2

�
2

−m2

s
: ð27Þ

If these conditions are obeyed then each vertex function
can be expressed in terms of a single covariant form
factor F depending only on the momentum transfer
ðk0 − kÞ2 ¼ jk⃗ − k⃗0j2,

Γ0

�
�k0 þ P

2
;�kþ P

2

�
¼ EFððk⃗0 − k⃗Þ2Þ: ð28Þ

We can then introduce a charge density function ρ̄ðrÞ given
by

ρ̄ðjr⃗jÞ ¼ 1

ð2πÞ3
Z

d3qeiq⃗·r⃗Fðq⃗2Þ: ð29Þ

Thus, if Eq. (27) is obeyed, we can write

Γ0

�
�k0 þ P

2
;�kþ P

2

�
¼ E

Z
d3re�ðk⃗−k⃗0Þ·r⃗ρ̄ðrÞ: ð30Þ

Here the extra bar has been introduced to distinguish the
real function ρ̄ðrÞ from the operator ρðrÞ introduced in
Sec. III.
These on shell conditions are obeyed for the case that ψ0

appears in both the right and left factors. As we will see
below for the case of ψ in=out, in the limit of large R, the
effect of the two single-pion poles in the integrand of the
integrals over the four-vectors k and k0 in Eq. (20) is also to
limit the contributing values of k and k0 to those obeying the
conditions in Eq. (27). Thus, in the case where k and k0 are
off shell, we will view Eq. (30) as an approximation where
terms that vanish on shell have been dropped. Since those
unwanted terms will come with factors which cancel the
poles which contribute to the large R limit, the neglect of
these terms is justified, as we will see, if terms that fall
exponentially for large R are neglected.
For the case at hand, if Eq. (30) is used to replace each of

the two vertex functions in Eq. (26), that equation can be
rewritten as

½KTCψ
0
lm�ðk0; PÞ ¼ −

E2ffiffiffi
π

p
Z Z Z Z

d3wdΩp̂d3r2d3r1

× ρ̄ðjr⃗2jÞVTCðjw⃗ − r⃗2 þ r⃗1jÞρ̄ðjr⃗1jÞeiw⃗·ðp⃗−k⃗
0ÞYlmðp̂Þ; ð31Þ

provided we assume that k0 can be treated as on shell and substitute z⃗ ¼ w⃗ − r⃗2 þ r⃗1.
This result for the plane wave piece ψ0 takes a recognizable form if we examine the case where the plane wave factor ψ0

also appears as the left-hand factor and use the standard decomposition of the plane wave eiw⃗·ðp⃗−p⃗0Þ in spherical harmonics
and spherical Bessel functions. If we define M00

TC;l
as the resulting purely plane wave contribution to MTC;l then following

the conventions of Ref. [22], we find

M00

TC;l
¼ 1

2lþ 1

Xl

m¼−l

Z Z
d4k0d4kψ0

lmðk0; PÞ�KTCðk0; k; PÞψ0
lmðk; PÞ ð32Þ

¼ −2E2

Z Z Z
d3wd3r2d3r1j2l ðpwÞ

· ρ̄ðjr⃗2jÞVTCðjw⃗ − r⃗2 þ r⃗1jÞρ̄ðjr⃗1jÞ ð33Þ

¼ 32π
ωp

p
δTC0l ; ð34Þ

where to obtain Eq. (34) we have expanded Eq. (15) to first-
order in α to relate the expression computed in Eq. (33) to

the scattering phase shift δTC0l caused by VTC alone,
assuming no strong interaction scattering (but including
the effects of the pion form factor). If Eq. (34) is solved for

δTC0l , we obtain

δTC0l ¼ −
pωp

4π

Z Z Z
d3wd3r2d3r1j2l ðpwÞρ̄ðjr⃗2jÞVTCðjw⃗ − r⃗2 þ r⃗1jÞρ̄ðjr⃗1jÞ; ð35Þ

the standard relativistic Born approximation for the scattering of two identical mesons, each with a charge distribution
ρ̄ðjr⃗jÞ, by the potential VTC.

2. Interacting ψ in=out
lm ðk;PÞ contribution

The second scattering term ψ in=out
lm ðk; PÞ in Eq. (22) takes a similarly simple form for the case ofKTC. Wewill examine the

case of ψ in
lmðk; PÞ, starting with the explicit definition of the Feynman amplitude implied by the left-hand factor in diagrams

(a) or (d) of Fig. 6,
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ψ in
lmðk; PÞ ¼ −

1ffiffiffiffiffiffi
4π

p ð2πÞ4
1

½ðP
2
þ kÞ2 þm2�½ðP

2
− kÞ2 þm2�

Z
dΩp̂Mðk; p; PÞYlmðp̂Þ; ð36Þ

where we begin with the four-momentum k and the scattering amplitude MEðk; p; PÞ, defined in Eq. (16), in Euclidean
space. As in the previous examination of ψ0

lmðk; PÞ, we study the combination of the kernel KTCðk0; k; PÞ with ψ in
lmðk; PÞ,

½KTCψ
in
lm�ðk0; PÞ ¼

Z Z
d3zd4kΓ0

�
k0 þ P

2
; kþ P

2

�
eiðk⃗−k⃗

0Þ·z⃗VTCðjz⃗jÞΓ0

�
−k0 þ P

2
;−kþ P

2

�

·
1ffiffiffiffiffiffi

4π
p ð2πÞ4

1

½ðP
2
þ kÞ2 þm2�½ðP

2
− kÞ2 þm2�

Z
dΩp̂Mðk; p; PÞYlmðp̂Þ: ð37Þ

Note that the combinatoric factor of 2 that appeared as a
prefactor in Eq. (25) is absent here because of an additional
factor of 1

2
that must be introduced when K and M are

combined. Since both K and M are defined as amputated
Green’s functions, they each contain a combinatoric factor
of 2 that will appear only once for the contractions joining
the K and M subdiagrams. The factor of 1

2
removes this

extra factor.

The next step is to perform the integral over k0 along the
contour C shown in Fig. 7. Here we have reproduced Fig. 3
but adopted the more familiar Minkowski labeling, where
the abscissa is the real part of k0, which is now a standard
Minkowski energy, while the ordinate is the imaginary part
of k0. We have also shown the location of the k0 branch
points corresponding to the three-pion state with total
spatial momentum k⃗.

FIG. 7. Diagram showing the treatment of the k0 contour of integration when evaluating the first-order contribution of VTC in Eq. (36).
This is a copy of Fig. 3 but with the integration variable k0 shown as a Minkowski rather than a Euclidean energy. This change is
accomplished by relabeling the axes used in Fig. 3. The familiar two-particle threshold occurs when as E increases, the pole at E

2
− ωk

collides with the pole at − E
2
þ ωk, and when k ¼ 0 at the end point of the integral over jk⃗j. In this diagram, we also show the location in

the k0 plane of the three-particle branch cuts that arise from the k0 dependence of the self-energy and two-particle irreducible kernel.
These are shown as horizontal dotted lines extending to the right from the points � E

2
þ 3ωk

3
and to the left from the points � E

2
− 3ωk

3
,

moved below or above the real line for clarity.
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Wewill simplify the integral over k0 in Eq. (37) by using
Cauchy’s theorem to move the contour in that figure to the
right. As shown in Fig. 7, the new contour has two parts.
The first is a closed, circular clockwise contour C1

surrounding the pole at k0 ¼ ωk − E
2
. The second piece

is a vertical contour C2 parallel to the imaginary axis with a

real part obeying j − E
2
þ ωk; E2 − ωkj < Reðk0Þ < 3m − E

2
.

We will evaluate the contribution of the contour C1 and
show that for E < 4m, the contribution from the contour C2

to Eq. (20) vanishes exponentially as R increases. The
contribution from C1 can be evaluated from Cauchy’s
theorem so that Eq. (37) becomes

½KTCψ
in
lm�ðk0; PÞ ¼

iffiffiffiffiffiffi
4π

p
Z Z

d3z
d3k
ð2πÞ3

·

�
Γ0

�
k0 þ P

2
; kþ P

2

�
VTCðjz⃗jÞΓ0

�
−k0 þ P

2
;−kþ P

2

�

·
eiðk⃗−k⃗

0Þ·z⃗

4ωkEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
− E

2
Þ

Z
dΩp̂MEðk; p; PÞYlmðp̂Þ

�
k0¼ωk−E

2

: ð38Þ

For the previous case of ψ0
lm, we were able to simplify this

expression by introducing a charge density ρ̄ðr⃗Þ and
expressing each of the vertex functions Γ0ð�k0 þ P

2
;�

kþ P
2
Þ as a Fourier transform of ρ̄ðr⃗Þ. We can introduce

the same simplification in this case as well but first we must
show that for large R both of the vertex functions in Eq. (38)
can be replaced by their on shell values. This simplification
is not immediately possible here because the integration over
k0 carried out when deriving Eq. (38) evaluated only the
vertex function Γ0ðk0 þ P

2
; kþ P

2
Þ on shell. For the other

vertex function, the time component of the incoming four-
momentum is −k0 þ E

2
¼ E − ωk. Thus, some added steps

are needed to show that both vertex functions can be
replaced by their on shell values.
As a result, we will continue to work with Eq. (38) and

use Cauchy’s theorem a second time to evaluate the integral
over the magnitude of k⃗ exploiting the limit that R (which
provides a lower bound on jz⃗j) is large. We begin by using
polar coordinates to represent the vector k⃗: k⃗ ¼ kk̂,
expressing k⃗ as the product of the magnitude k and the
unit vector k̂, which is determined by the polar coordinates
θ and ϕ in the usual way k̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ.
Defined in this way, the variable k enters the amplitudes

Γ0 and ME in the exponent of a factor that performs an
exponentially convergent Fourier transform. Thus, we
expect these amplitudes to be analytic functions of k in
the region around the real line. We will express the function

eik⃗·z⃗ in the usual series [22],

eik⃗·z⃗ ¼
X
l0;m0

4πil
0
jl0 ðkzÞYl0m0 ðẑÞY�

l0m0 ðk̂Þ: ð39Þ

Here k ¼ jk⃗j and z ¼ jz⃗j where the context should prevent
confusion with the four vectors k and z. Since R is large, we
will replace the spherical Bessel function jl0 ðkzÞ by its
asymptotic form,

jl0 ðkzÞ ≍
eiðkz−πl0

2
Þ − e−iðkz−πl0

2
Þ

2ikz
: ð40Þ

Next we recognize that the integral in the right-hand term of
this equation over the interval 0 ≤ k < ∞ is exactly the
same as the integral of the left-hand term over the interval
−∞ > k ≤ 0 allowing us to rewrite integral over k⃗ in
Eq. (38) in polar coordinate but with the integral over k
extending over the entire real line,

Z
d3k

eiðkr−πl
2
Þ−e−iðkr−πl

2
Þ

2ikr
→

Z
dΩk̂

Z
∞

−∞
k2dk

eiðkr−πl
2
Þ

2ikr
: ð41Þ

This transformation of the integral of the second term on
the left-hand side of this equation to an integral over
negative values of k can be justified by performing a
simultaneous change in the sign of the variable k and the
sign of the direction of k̂ by performing a parity trans-
formation on the integration variable k̂. This has no effect
on the variable k⃗ ¼ kk̂ appearing in Eq. (38). However, in

the product jl0 ðkzÞY�
l0m0 ðk̂Þ, it changes the e−ðikz−πl0

2
ÞY�

l0m0 ðk̂Þ
term into eþðikz−πl0

2
ÞY�

l0m0 ðk̂Þ.1
With this change of coordinates, the contribution to

Eq. (38) from the term with specific values of l0 and m0
becomes

1This argument is most easily presented using the asymptotic
form of jl0 . However, it is also true if used to transform all of the
terms in jl0 with one sign of the exponent into the terms with the
other sign; i.e., a transformation between the two terms that
appear when jl0 is written in terms of spherical Hankel functions
of the first and second kind.

π − π SCATTERING, QED, AND FINITE-VOLUME … PHYS. REV. D 106, 014508 (2022)

014508-15



½KTCψ
in
lm�l0m0 ðk0; PÞ ¼

ffiffiffiffiffiffi
4π

p
i
Z

d3z
Z

∞

−∞

kdkdΩk̂

ð2πÞ3 4πe−ik⃗
0·zYl0m0 ðẑÞYl0m0 ðk̂Þ�

·

�
Γ0

�
k0 þ P

2
; kþ P

2

�
VTCðjz⃗jÞΓ0

�
−k0 þ P

2
;−kþ P

2

�

·
eikjzj

2ijz⃗j
1

4ωkEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
− E

2
ÞÞ

Z
dΩp̂MEðk; p; PÞYlmðp̂Þ

�
k0¼ωk−E

2

: ð42Þ

The integrand in Eq. (42) contains poles at k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE
2
Þ2 −m2

q
� iϵ. Because of the positive imaginary coefficient of the

variable k in the exponent of the integrand, we can shift the integration contour, adding a positive imaginary constant. We
can then write the expression in Eq. (42) as the integral over this shifted horizontal contour with a positive imaginary part

added to the Cauchy-theorem contribution from the pole at k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE
2
Þ2 −m2

q
þ iϵ that must be crossed as the integration

contour is shifted.
Neglecting the contribution from the shifted contour, which falls exponentially with increasing R (and hence increasing

jz⃗j), we retain only the contribution from this pole,

½KTCψ
in
lm�l0m0 ðk0; PÞ ¼

ffiffiffiffiffiffi
4π

p i
ð2πÞ216ωp

Z
d3z

Z
dΩk̂e

−ik⃗0·zYl0m0 ðẑÞYl0m0 ðk̂Þ�

·

�
Γ0

�
k0 þ P

2
; kþ P

2

�
VTCðjz⃗jÞΓ0

�
−k0 þ P

2
;−kþ P

2

�

·
eikjz⃗j

jz⃗j
Z

dΩp̂MEðk; p; PÞYlmðp̂Þ
�

k¼
ffiffiffiffiffiffiffiffiffiffi
ðE
2
Þ2−m2

p
k0¼0

: ð43Þ

We should also observe that the contribution to the k0
integral in Eq. (37) coming from the displaced contour C2,
which we have neglected has no singularity for real values
of k if E < 4m and hence, can contribute only to a term
falling exponentially in R for large R, justifying its
omission.
We have now established the result described in Sec. V

C 1 following Eq. (30): since the large R behavior comes

from the on shell form factors, we can neglect any off shell
contribution and replace Γ0ð�k0 þ P

2
;�kþ P

2
Þ by the

Fourier transform of a charge density as given in Eq. (30).
Once justified, this simplification is best made earlier in

our derivation of the large R behavior of the
½KTCψ

in
lm�ðk0; PÞ. Thus, we return to Eq. (38) but now

written in terms of the charge density,

½KTCψ
in
lm�ðk0; PÞ ¼

iE2ffiffiffiffiffiffi
4π

p
Z Z Z Z

d3zd3r2d3r1
d3k
ð2πÞ3

·

�
eiðk⃗−k⃗

0Þ·r⃗2 ρ̄ðr⃗2ÞVTCðjz⃗jÞe−iðk⃗−k⃗
0Þ·r⃗1 ρ̄ðr⃗1Þ

·
eiðk⃗−k⃗

0Þ·z⃗

2ωkEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
− E

2
Þ

Z
dΩp̂MEðk; p; PÞYlmðp̂Þ

�
k0¼ωk−E

2

: ð44Þ

We then repeat the steps used to set jk⃗j ¼ jp⃗j but will work
with the combined plane wave factor that now appears in
Eq. (44),

eiðk⃗−k⃗
0Þ·ðr⃗2þz⃗−r⃗1Þ ≡ eiðk⃗−k⃗

0Þ·w⃗; ð45Þ

expanding eik⃗·w⃗ in spherical harmonics, combining the
terms in jlðkwÞ so that the k contour runs from −∞ to

þ∞, shifting the k contour into the positive imaginary half-
plane and keeping the k ¼ þjp⃗j pole.
With this altered treatment, the vector k⃗ appears only in

the factor eik⃗·w⃗ and the scattering amplitude MEðk; p; PÞ.
When we expand the factor eik⃗·w⃗ in spherical harmonics,

the angular integral over the direction of k⃗ then selects only
the term where what was labeled l0 in Eq. (43) now must

CHRIST, FENG, KARPIE, and NGUYEN PHYS. REV. D 106, 014508 (2022)

014508-16



equal l, assuming that the scattering amplitude MEðk; p; PÞ is rotationally symmetric. The resulting simpler expression
becomes

½KTCψ
in
lm�ðk0; PÞ ¼

iE
4

ffiffiffi
π

p
Z

d3we−ik⃗
0·w⃗YlmðŵÞ

·
eipw

w

�Z Z
d3r2d3r1ρ̄ðr2ÞVTCðw⃗ − r⃗2 þ r⃗1Þρ̄ðr1Þ

�
MlðEÞ: ð46Þ

We can now combine these results for ½KTCψ
ð0Þ
lm � and ½KTCψ

in
lm�l0m0 by adding the results given in Eqs. (31) and (46),

½KTCΨ
in
lm�l0m0 ðk0; PÞ ¼ −

Z
d3we−ik⃗

0·wYlmðŵÞ

·

�Z Z
d3r2d3r1ρ̄ðr2ÞVTCðw⃗ − r⃗2 þ r⃗1Þρ̄ðr1Þ

�

·
ffiffiffiffiffiffi
4π

p
E2

�
2
il sinðpjw⃗j − πl

2
Þ

pjw⃗j þ 1

16πωp

eipjw⃗j

jw⃗j
	
32π

ωp

p
e2iδl − 1

2i


�
: ð47Þ

¼ −4
ffiffiffi
π

p
E2

Z
d3we−ik⃗

0·wYlmðŵÞ

·

�Z Z
d3r2d3r1ρ̄ðr2ÞVTCðw⃗ − r⃗2 þ r⃗1Þρ̄ðr1Þ

�
eiδl il sinðpjw⃗j − πl

2
þ δlÞ

pjw⃗j : ð48Þ

The full result including the both the factors Ψoutðk0; PÞ on the left and Ψinðk; PÞ on the right as in Eq. (20) and choosing
the first-order term in an expansion of Eq. (15) in powers of α is given by

δTCl ¼ p
32πωp

MTC;le
−2δl ð49Þ

¼ −pωp

Z
∞

0

w2dw

�Z Z
d3r2d3r1ρ̄ðr2ÞVTCðw⃗ − r⃗2 þ r⃗1Þρ̄ðr1Þ

�
· ½cos δljlðpwÞ þ sinðδlÞnlðpwÞ�2e−μw: ð50Þ

Here, we have replaced the leading asymptotic behavior of
the spherical Bessel functions jlðpwÞ and nlðpwÞ by those
functions without approximation to reinstate the complete
result of our derivation, restoring terms which fall as
powers of 1=R but which had been omitted for clarity
when l > 0.
We have also introduced the factor expf−μwg, which

depends on the screening mass μ into Eq. (50) to regulate
the long-distance logarithmic singularity that would other-
wise be present in the integral over w. This singularity is the
manifestation in perturbation theory of the long-range
character of the Coulomb potential, which appears in exact
solutions of the Schrodinger and Dirac equations as a
common phase that depends logarithmically on the radial
variable w. Since this is a common phase, equal for all
partial waves, it does not enter most physical quantities,
which implies that for small μ, the μ dependence introduced
arbitrarily into Eq. (50) will also not appear in the final
physical quantities that we wish to calculate. For example,

the quantity ηþ− that measures CP violation in the neutral
kaon decay into two charged pions [23] is a ratio of decay
amplitudes into a common πþπ− final state from which this
phase will naturally cancel.
Equation (50) provides the analytic method to calculate

the contribution of VTC to the πþπþ scattering phase shift in
terms of physical QCD properties: the ππ scattering phase
shift δl and the Fourier transform ρ̄ðjr⃗jÞ of the πþ

electromagnetic form factor Fðq2Þ. The result applies to
the fully relativistic case provided the center-of-mass
energy E < 4m and that R is sufficiently large that omitted
terms falling exponentially in R can be omitted. The ππ
scattering phase shift δl can be determined by the usual
application of Lüscher’s finite-volume quantization meth-
ods. The convolution of two factors of the charge density
with the potential VTC can be most easily determined by
expanding the function VTCðw⃗þ r⃗2 − r⃗1Þ assuming
jw⃗j ≫ jr⃗ij. The leading term is determined by the pion’s
charge and the 1=R2 terms by its charge radius.
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VI. CONCLUSION

As a first step in calculating the electromagnetic and
mu −md contributions to the measure of direct CP viola-
tion ε0, we have presented in detail a method to determine
the contribution of the Coulomb potential to the πþπþ
scattering phase shift. If the quantization of QED is carried

out in Coulomb gauge with ∇⃗ · A⃗ ¼ 0, this is well-defined
and will give the complete EM contribution when the
effects of transverse radiation are included.
The calculation of these Coulomb effects is itself

separated into two parts: one in which the separation r
of the two charge operators in the Coulomb energy is less
than R (referred to as the truncated Coulomb potential,
VTC), and a second in which this separation is greater than
R, VTC. The effects of VTC can be directly determined from
a finite-volume, lattice QCD calculation, while those of
VTC can be obtained from an analytic expression which we
derive.
Given the finite range of QCD and the truncated potential

VTC, their contributions to the πþπþ scattering phase shift
can be computed with the standard finite-volume methods
giving a result with finite-volume errors, which fall
exponential in the spatial extent L of the volume, with
the exception of power-law corrections arising from the
usual neglect of scattering phase shifts for angular
momenta l ≥ 4. Similarly, the analytic expression given
in Eq. (50) determines the contribution of VTC to expo-
nential accuracy in the truncation radius R in terms of the
πþπþ scattering phase shift without EM corrections and the
pion form factor. This control of the power-law finite-
volume corrections may be important when exploiting
finite-volume quantization in which the results themselves
are power-law, finite-volume effects.
In two appendixes, we discuss the use of the QEDL

approach to EM corrections again considering the Coulomb
potential but in the nonrelativistic limit. We present a
derivation of a QEDL, finite-volume quantization condi-
tion, which determines the EM corrections to scattering
phase shift that does not involve an effective range
approximation and provides an alternative to the earlier
treatment of Bean and Savage [18]. We also carry out a
numerical study which suggests that this QEDL approach
gives accurate results in spite of the presence of uncon-
trolled 1=L3 corrections.
Two important future steps are required for a complete

lattice calculation of the electromagnetic and mu −md
contributions to ε0. First, the current Coulomb potential
treatment must be generalized to the two-channel I ¼ 0 and
I ¼ 2 ππ system and the K → ππ decay analyzed. This was
outlined in Ref. [12] for the nonrelativistic case. Second,
the contribution of transverse radiation must be included
which requires the usual treatment of infrared divergences
and the effects of three-particle ππγ states. Each is the
subject of on-going study.
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APPENDIX A: QEDL FINITE-VOLUME
QUANTIZATION

The QEDL finite-volume formulation of QED [3] is
widely used in lattice QCD calculations to include the
effects of EM. In this approach, the Coulomb potential or
photon propagator is written as a Fourier series appropriate
for a function defined in a finite volume and obeying
periodic boundary conditions. The singular modes at zero
wave number are discarded. The resulting Coulomb
potential or photon propagator is convenient to use in
such a volume but differs from the corresponding physical
quantity by terms that behave as 1=Ln for n ≥ 1. These
power law imperfections in the QEDL formulation lead to
lattice results with finite-volume errors that also fall as
powers of 1=L with the first few terms taking universal,
point-charge values. However, those errors falling with
higher powers of 1=L will be unknown and must be
removed by studying multiple volumes and extrapolating
L → ∞. For a recent reference on this topic, see the paper
of Davoudi et al. [24].
For a problem of the sort being studied here in which the

quantization of finite-volume energies plays an essential
role, the need when using QEDL to extrapolate L → ∞
creates potentially serious difficulties. This motivates the
truncated Coulomb potential approach developed in this
paper in which such new power-law finite-volume correc-
tions are avoided. Nevertheless, given the frequent use of
QEDL, we present in this appendix a nonrelativistic
derivation of a finite-volume quantization condition that
might be used in a QEDL calculation to determine the EM
corrections to the low-energy πþπþ scattering phase shift.
In the following Appendix B, we investigate its accuracy in
a numerical study of a simple potential model. For the
example studied, we find accurate results for finite L
without the need for an L → ∞ extrapolation.
The derivation given in this appendix can be viewed as

an alternative to that presented by Beane and Savage [18]
and used by Beane, et al. [19]. In contrast to Ref. [18], we
express the quantization condition directly as an explicit
formula for the resulting πþπþ phase shift rather than as a
condition on the scattering length and effective range,
defined in a fashion appropriate for a Coulomb scattering
problem, which would correspond to that phase shift.
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1. Properties of the QEDL approximation to the
Coulomb potential

The QEDL potential is simply the Fourier-transformed
Coulomb potential in a finite volume with the zero-mode
omitted,

VQEDL
ðr⃗Þ ¼ e2

L3

X
n⃗≠0⃗

eip⃗n⃗·r⃗

p2
n⃗

; ðA1Þ

where p⃗n⃗ ¼ 2π
L ðn1; n2; n3Þ, with the integers ni, 1 ≤ i ≤ 3

giving the three components of the vector n⃗ and 0⃗ ¼
ð0; 0; 0Þ is the zero mode.
We are interested in the l ¼ 0 component of this

potential near the origin and how it deviates from the
Coulomb potential, e2=4πr, at short distances. This is most
easily done by noting the similarities between the QEDL
potential and the periodic Helmholtz function G0, intro-
duced in Lüscher’s discussion [2] of finite-volume energy
quantization,

VQEDL
ðr⃗Þ ¼ lim

k→0
− e2

	
G0ðr⃗; kÞ −

1

L3k2



; ðA2Þ

where

G0ðr⃗; kÞ ¼
1

L3

X
n⃗

eip⃗n⃗·r⃗

k2 − p2
n⃗

: ðA3Þ

Substituting the known spherical harmonic expansion of
the periodic Helmholtz function and evaluating the limit of
vanishing k, we obtain the standard result,

VQEDL
ðr⃗Þ ¼ e2

4π

	
1

r
þ Z00ð1; 0Þ
π3=2ðL=2πÞ þ

2πr2

3L3

þO
�
r4

L5
Yl¼4ðr̂Þ

�

; ðA4Þ

where Z00 is the standard zeta function,

Z00ðs; q2Þ ¼
1ffiffiffiffiffiffi
4π

p
X
n⃗

1

ðn2 − q2Þs : ðA5Þ

The difference between the Coulomb potential and the
QEDL potential is plotted in Fig. 8 for L ¼ 4. Even
when approaching the boundary of the box, about which
the QEDL potential is symmetric, the difference between the
QEDL and Coulomb potentials is well represented by the
two leading correction terms in Eq. (A4) with the largest
deviations seen in those directions where the greatest
distance from the origin can be reached. However, small
direction-dependent discrepancies can also be seen.
From Eq. (A4), we see that near the origin the QEDL

potential resembles the classical e2=4πr Coulomb potential

plus additional power-law terms. The second term acts as
an energy shift whose effects in the problem at hand can be
completely removed. This term corresponds to the univer-
sal 1=L term in QED self-energy calculations [24,25]. The
third term can be recognized as the potential energy due to a
uniform charge distribution making the total charge in the
volume zero. This and higher-order unphysical terms will
combine with the finite-range strong interactions to intro-
duce “structure-dependent” errors, which can be removed
by an explicit L → ∞ extrapolation. These are related to
the structure-dependent 1=L3 terms found in QEDL self-
energy calculations [24,25].

2. Lüscher finite-volume quantization extended
to include QEDL

Following this brief description of the properties of the
VQEDL

ðrÞ, we will use this potential and derive an approxi-
mate quantization condition, which relates the energy
eigenvalues of two-particle eigenstates of the combined
QCD and QEDL Hamiltonian in a periodic volume of side
L to the infinite-volume scattering phase shift that results
from their combined effects. In contrast with the earlier
sections of this paper, we consider the scattering of two
scalar particles in the nonrelativistic limit. In this case, our
use of the Coulomb potential and neglect of transverse
radiation can be justified as giving the leading order
contribution in a nonrelativistic expansion.
We follow the standard approach of treating an alternative

nonrelativistic problem in which the QCD interaction is
replaced by a simple scattering potential VSðrÞ in non-
relativistic quantum mechanics. Since the relation obtained
between finite-volume energies and the scattering phase
shifts arises from the constraint that the large r behavior of
the scattering solution obeys periodic boundary conditions
in a finite volume, we expect this same relation to hold for
QCD, where the large r behavior of the scattering states
depends on the scattering phase shifts in the same way.
The result described here is a generalization of that

obtained by Lüscher to include the effects of the Coulomb
potential and the approach used in its derivation follows
closely that of Ref. [2]. This problem was studied earlier by
Beane and Savage [18] who present a similar quantization
condition specialized to the low energy region where an
effective range approximation is valid. However, the
method used by Beane and Savage is general and could
be used to obtain the result presented here.
In fact, the derivation given here and that of Bean and

Savage differ in the same way as do the treatment presented
by Lüscher in Ref. [2] and that of van Baal [26]. While
Lüscher’s treatment matches the asymptotic form of the full
“strong-interaction” solution to the behavior of the finite-
volume Helmholtz equation solution outside the range of
the strong-interaction potential, van Ball, following Huang
and Yang [27], replaces that potential by a simpler pointlike
pseudopotential creating a problem, which can be solved
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explicitly in a finite, cubic volume. The resulting relation-
ship between the quantized finite-volume energy in this
psuedopotential problem and the phase shift predicted by
that pseudopotential is precisely the usual one.
Adding the Coulomb potential significantly changes the

quantized finite-volume energies because of the long range
behavior of the Coulomb potential. Further, as discussed
above, the Coulomb potential itself must be modified if it is

to be consistent with the introduction of periodic boundary
conditions. For simplicity, we will consider the case where
only the s-wave phase shift that appears in the infinite-
volume scattering problem defined by the potential VSðrÞ
alone (without the Coulomb potential) is nonzero.
Specifically, we consider the finite-volume energy eigen-

states ψV
Eðr⃗Þ of the nonrelativistic quantum mechanical

Hamiltonian,

FIG. 8. Left: The QEDL potential (solid black line), its difference from the Coulomb potential (solid blue line), and the two leading
correction terms of Eq. (A4) (dashed black line) in a box of size L ¼ 4. Right: The QEDL potential (solid black line), its difference from
the Coulomb potential (solid blue line), the two leading correction terms in Eq. (A4) (dashed blue line), and the r2 correction term alone
(dashed black line), each divided the Coulomb potential VC. For the upper, middle, and lower rows r is the distance from the origin along
a line parallel to an edge, a face diagonal, or a body diagonal, respectively.
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�
−∇2

2μ
þ VSðrÞ þ VQEDL

ðrÞ
�
ψV
Eðr⃗Þ ¼ EψV

Eðr⃗Þ; ðA6Þ

where VSðrÞ is a finite-range potential which plays the role
of the strong interaction between two identical spin-zero
particles with reduced mass μ. We examine the behavior of
the wave function ψV

E in a region where r lies outside of the
region of radius r0 in which VSðrÞ is nonzero, r > r0 and,
to reduce the ðr=LÞn errors introduced by using QEDL, we
also require r ≪ L where L is the length of the spatial side
of the finite volume. Following Lüscher, we consider two
descriptions of the finite-volume energy eigenstate ψV

Eðr⃗Þ
in this region.
The first is given by the Green’s function GQEDL

ðr⃗Þ,
which obeys a Helmholtz equation that now includes the
QEDL potential,

ð∇2 þ k2 − 2μVQEDL
ðrÞÞGQEDL

ðr⃗Þ ¼ δðr⃗Þ ðA7Þ

If the function GQEDL
ðr⃗Þ is expanded in spherical harmon-

ics, those components with l > 0 will be regular in the
entire volume V and should agree with corresponding terms
in a partial wave expansion of ψV

Eðr⃗Þ provided E ¼ k2=2μ,
since we are assuming that for l > 0 the phase shifts δl
induced by VSðrÞ are zero. Thus, for l > 0, we expect that
the contributions to GQEDL

ðr⃗Þ with angular momentum l
will solve Eq. (A6) throughout the volume V. The l ¼ 0
component of GQEDL

ðr⃗Þ will not solve Eq. (A6) with
nonzero VSðrÞ and will be singular as r → 0. In this
appendix, we will use GQEDL

evaluated to first order in α.
The second description of the finite-volume energy

eigenstate ψV
Eðr⃗Þ in the region r0 ≤ r ≪ L is provided

by the spherical Coulomb functions F l and Gl, which solve
the Schrödinger equation, including the physical Coulomb
potential, and replace the spherical Bessel functions jlðkrÞ
and nlðkrÞ, which appear in Lüscher’s treatment. Here, we
assume that for r=L sufficiently small, we can ignore the
difference between the potential VQEDL

, which appears in
Eqs. (A6) and (A7), and the usual Coulomb potential,
which appears in the equations obeyed by F l and Gl. These
functions are known to all orders in a perturbation
expansion in e2 and can be easily simplified to a first-
order form.
The spherical Coulomb functions appear in the r ≥ r0

description of the infinite-volume scattering solutions ψEðrÞ
and obey Eq. (A6) if VQEDL

is replaced by e2=ð4πrÞ.
Specifically, if we consider an infinite-volume energy
eigenstate ψE;lðrÞ with energy E and orbital angular
momentum l, for r ≥ r0, it can be written

ψE;lðrÞ ¼ alfcos δ̄lF lðη; krÞ þ sin δ̄lGlðη; krÞg; ðA8Þ

where the Sommerfield parameter η ¼ μe2=ð4πkÞ, δ̄l is the
scattering phase shift for this combined Coulomb plus

strong interaction problem, and al is a normalization factor.
Recall that the large r behaviors ofF l and Gl are determined
by their asymptotic forms,

F lðη; ρÞ ∼ sin

�
ρ − η lnð2ρÞ − 1

2
πlþ σl

�
ðA9Þ

Glðη; ρÞ ∼ cos

�
ρ − η lnð2ρÞ − 1

2
πlþ σl

�
; ðA10Þ

where

σl ¼ argðΓðlþ 1þ iηÞÞ; ðA11Þ

with the usual Γ function,

ΓðzÞ ¼
Z

∞

0

dte−ttz−1: ðA12Þ

Thus, for large r

ψE;lðrÞ ∼ cos δ̄lF lðη; krÞ þ sin δ̄lGlðη; krÞ ðA13Þ

¼ sin

�
kr − η lnð2krÞ − 1

2
πlþ σl þ δ̄l

�
: ðA14Þ

The lnð2krÞ dependence present in the large-r behavior of
ψE;lðrÞ appears in the functions F lðη; krÞ and Glðη; krÞ so
that δ̄l is a well-defined phase that is conventionally used to
describe the remaining combined effects of the “strong”
and Coulomb interactions. The phase shift δ̄l is the infinite-
volume quantity that we would like to determine from a
finite-volume calculation.
Our Coulomb finite-volume quantization condition is

then obtained by requiring that these two descriptions of the
s-wave component of finite-volume solution ψV

Eðr⃗Þ agree in
the region where both are valid: r0 ≤ r ≪ L. If we neglect
the differences between VQEDL

and e2=ð4πrÞ, then these
two representations of the s-wave part of the finite-volume
solution ψV

Eðr⃗Þ must be the same and the most accessible
way to compare them is to extend both into the region near
r ¼ 0, where, since they are identical, they must have the
same ratio of regular to singular parts. Thus, we must
examine the small r behavior of the l ¼ 0 component of the
Green’s function GQEDL

ðr⃗Þ determined by Eq. (A7) and the
spherical Coulomb functions F 0 and G0 in Eq. (A8).
Equating the ratios of the regular and singular parts in
each description will then provide the quantization con-
dition determining the phase shift δ̄0.
In Eq. (A4), we show the 1=L and 1=L3 terms that appear

for small r=L in the difference between the Coulomb
potential and VQEDL

. Both terms are potential sources of
error in the phase shifts determined from this quantization
condition. While we do not attempt to characterize the
errors introduced by the r2=L3 term in Eq. (A4), we can
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easily remove the 1=L error by equating the ratio of the
singular and regular s-wave parts of the QEDL Helmholtz
solutionGEðr⃗Þ evaluated at the finite-volume energy Ewith
those of the spherical Coulomb functions F 0 and G0

combined with the phase shift δ̄ as in Eq. (A8) evaluated
at the energy E0 ¼ Eþ ΔE, where

ΔE ¼ −
e2Z00ð1; 0Þ
2π3=2L

: ðA15Þ

In the remainder of the appendix, we will distinguish with
primes the energy and momentum (E0 and k0) that appear in
the infinite-volume, Coulomb-potential quantities from the
energy and momentum (E and k) that appear in the
corresponding finite-volume quantities.
The small r behavior of the spherical Coulomb functions

F l and Gl is well known [28] and for l ¼ 0, ρ ¼ k0r and
η0 ¼ e2μ=ð4πk0Þ can be written

F 0ðη0; ρÞ ∼ c0ρ½1þ η0ρþ � � �� ðA16Þ

G0ðη0; ρÞ ∼
1

c0
½1þ 2η0ρflnð2ρÞ þ Re½ψðiη0Þ�

þ 2γE − 1g þ � � ��; ðA17Þ

where

c0 ¼
�

2πη0

e2πη
0 − 1

�1
2

; ðA18Þ

ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function and γE ¼
0.57721… is Euler’s constant.
Next, we examine the finite-volume Helmholtz equation

solution GQEDL
ðr⃗Þ and determine its behavior for small r.

As a first step, we rewrite the differential equation, Eq. (A7)
obeyed by GQEDL

ðr⃗Þ as the Lipman-Schwinger integral
equation,

GQEDL
ðr⃗Þ ¼

Z
V
d3r0G0ðr⃗ − r⃗0Þ½δðr⃗0Þ

þ 2μVQEDL
ðr⃗0ÞGQEDL

ðr⃗0Þ�; ðA19Þ

whereG0ðr⃗Þ is the Helmholtz solution with e2 ¼ 0 given in
Eq. (A3). Equation (A19) can be expanded through first
order in e2 giving

GQEDL
ðr⃗Þ ≈ G0ðr⃗Þ þ

Z
V
d3r0G0ðr⃗ − r⃗0Þ2μVQEDL

ðr⃗0ÞG0ðr⃗0Þ:

ðA20Þ

Now we must determine the singular and regular parts of
the right-hand side of Eq. (A20). We will determine the
singular parts first. This can be done in position space,
where we argue that for small r, the finite-volume solution

G0ðr⃗; EÞ can be approximated by its infinite-volume
counterpart,

G∞
0 ðr⃗Þ ¼

Z
d3k

eiq⃗·r⃗

ð2πÞ3
1

−q⃗2 þ k2
ðA21Þ

¼ −
1

4π

eikr

r
: ðA22Þ

The singular part of the zeroth order term in Eq. (A20) is
given immediately by Eq. (A22). However, the singular
part of the first-order term can also be found using this same
expression for G∞

0 ðr⃗Þ by evaluating

Z
V
d3r0G0ðr⃗ − r⃗0ÞVQEDL

ðr⃗0ÞG0ðr⃗0Þ ðA23Þ

≈
Z
V
d3r0G∞

0 ðr⃗ − r⃗0ÞVCðr⃗0ÞG∞
0 ðr⃗0Þ ðA24Þ

¼ e2

ð4πÞ3
Z

d3r0
eikjr⃗−r⃗0j

jr⃗ − r⃗0j
eikr

0

ðr⃗0Þ2 ðA25Þ

≈
e2

32π2

Z
∞

0

dr0eikr0
Z

1

−1

d cosðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 − 2rr0 cosðθÞ

p ðA26Þ

≈
e2

ð4πÞ2
Z

∞

0

dr0eikr0
	
1

r
θðr − r0Þ þ 1

r0
θðr0 − rÞ



ðA27Þ

≈
e2

ð4πÞ2 ðlnð1=krÞ þ � � �Þ; ðA28Þ

where the dots represents terms that are constants or of
higher order as r → 0. Since we are interested in the
singularity at r ¼ 0, we need not be concerned about the
large r0 region in the integral appearing above. This
behavior can be controlled, for example, by giving k a
small, positive imaginary part.
Finally, we must determine the regular part, specifically

the limit at r ¼ 0 of the right-hand side of Eq. (A20) after
the singular part determined above has been removed. Now,
the behavior of these functions in the entire periodic volume
becomes important, and the simple, infinite-volume for-
mulas used in the above discussion of the logarithmic
singularity are not adequate. Lüchser has done this for the
G0ðr⃗Þ term in Eq. (A20) and found

lim
r→0

G0ðr⃗Þ ∼ −
1

4πr
−

1

4π2L

X
n⃗

1

½ðn⃗Þ2 − ðkL
2πÞ2�s

����
s¼1

ðA29Þ

¼ −
1

4πr
−

ffiffiffiffiffiffi
4π

p 1

4π2L
Z00ð1; q2Þ; ðA30Þ
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where q ¼ kL=2π and the evaluation at s ¼ 1 in Eq. (A5) is
described in Ref. [2]. We must now make a similar
evaluation of the right most term in Eq. (A20).
In analogy with Eq. (A30), we define the regular part of

the e2 correction to the function GQEDL
ðr⃗Þ as

YðqÞ ¼ lim
r→0

X
n⃗

X
m⃗≠0

ein⃗·
2πr⃗
L

ð2πÞ4π
1

ðn⃗Þ2 − q2
1

m⃗2

×
1

ðn⃗ − m⃗Þ2 − q2
−

1

4π
lnð1=krÞ: ðA31Þ

The relatively mild logarithmic singularity allows a direct
numerical evaluation YðqÞ.
Next, following Lüscher we introduce a Coulomb

function ϕCðEÞ, such that the combination,

cos ðϕCðE0ÞÞF 0ðk0rÞ − sin ðϕCðE0ÞÞG0ðk0rÞ; ðA32Þ

contains the same ratio of regular to singular parts as we
have found in GQEDL

ðEÞ. Equating the ratio of regular
divided by singular parts in the limit of small r in
Eqs. (A32) and (A20), we obtain

ð 2πη
e2πη−1Þ

1
2k0r½cosðϕCÞ − e2πη−1

2πη sinðϕCÞ2η0fRe½ψðiη0Þ� þ 2γE − 1g�
− sinðϕCÞ

h�
e2πη−1
2πη

1
2ð1þ 2η0k0r lnðk0rÞÞ

i ;

¼ − 1
4π2L

ffiffiffiffiffiffi
4π

p
Z00ð1; kL2πÞ þ 2μe2

4π YðkL
2πÞ

− 1
4πr þ 2μe2

ð4πÞ2 lnð1=krÞ
ðA33Þ

where to determine the left-hand side we have used
Eqs. (A16) and (A17), while the right-hand side has been
determined from Eqs. (A30) and (A31). In contrast with the
zeroth order in e2 case, the singular solution G0 at order e2

contains a regular term that must be included. To allow a
direct comparison of Eq. (A33) and Eqs. (A16) and (A17),
we have not expanded this equation to first order in e2.
Recognizing that η with μe2=k, we can simplify in

Eq. (A33) by expanding to first order in η to obtain a
final formula for ϕCðEÞ to order e2,

cotðϕCðE0ÞÞ ¼ −ð1þ πηÞ 1
π

3
2

�
2π

k0L

�
Z00

�
1;
kL
2π

�

þ 8πηY

�
kL
2π

�
þ 2ηfRe½ψðiηÞ� þ 2γE − 1g:

ðA34Þ

For simplicity, we have not expanded the relation between
the primed and unprimed variables to first order in e2.
We can summarize the results of this appendix by stating

the relation between the energy eigenvalue of a finite-
volume energy eigenstate and the corresponding infinite-
volume nonrelativisitic s-wave scattering phase shift δ̄0ðE0Þ
given by the quantization condition,

cotðδ̄0ðE0ÞÞ þ cotðϕCðE0ÞÞ ¼ 0; ðA35Þ

where E0 ¼ Eþ ΔE where ΔE is given in Eq. (A15).
Equation (A35) is accurate up to but not including terms of
order ðr0=LÞ3 when the scattering potential VS vanishes
outside the radius r0.

APPENDIX B: NUMERICAL TESTS OF QEDL
FINITE-VOLUME QUANTIZATION

After identifying the Oðr2L3Þ correction to the QEDL
potential, one could become concerned about the size of
such corrections. In order to understand the efficacy of the
QEDL-modified finite-volume quantization condition, it is
prudent to work with a model system where the phase shift
is known exactly. In such a system, one can attempt to
discern the size of the effects of neglected e4 terms and of
the neglected inverse powers of L by comparing with the
precisely known result. This additional step is useful before
embarking on a costly lattice QCD calculation comparing
the truncated Coulomb and QEDL results in order to gauge
expectations for accuracy. In this appendix, we perform a
numerical calculation of the phase shift in a model theory
and determine the residual structure-dependent error intro-
duced by the unphysical Oðe2L−3Þ term.

1. δ shell potential

Quantum mechanics with a δ shell potential,

Vðr⃗Þ ¼ V0δðjr⃗j − r0Þ; ðB1Þ

is a sufficiently simple system to solve both analytically
in infinite volume and numerically in a finite volume.
The δ shell potential has the feature necessary for
application of Lüscher’s quantization condition, as well
as the QEDL-modified finite-volume quantization con-
dition, that there exists an exterior region of jr⃗j > r0,
beyond which the interaction does not exist. In the
numerical finite-volume studies, the interaction range
will be kept such that r0 < L=2.
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In infinite volume, within the regions interior and
exterior to the δ shell, the radial component of wave
function will behave as a free particle and a solution to
the spherical Bessel equation. In the exterior, the wave
function will be a linear combination of the regular and
irregular spherical Bessel functions,

ψðr > r0Þ ¼ kAjlðkrÞ − kBnlðkrÞ; ðB2Þ

where phase shift is found through the ratio B=A ¼ tan δl.
Since the wave function must remain finite, in the interior
region the wave function will contain only the regular
solution,

ψðr < r0Þ ¼ kjlðkrÞ; ðB3Þ

up to an arbitrary normalization.
For a δ shell potential, the wave function must be

continuous at the shell and its derivative must have a
discontinuity proportional to the value of the wave function
on the shell. Applying these conditions, the phase shift is
found to be

tan δl ¼
V0

k j2l ðkr0Þ
ðkr0Þ−2 − V0

k jlðkr0Þnlðkr0Þ
; ðB4Þ

where the first term in the denominator comes from the
Wronskian of these functions n0lðzÞjlðzÞ−nlðzÞjlðzÞ ¼ z−2.
For the s-wave phase shift, this equation reduces to the
textbook result,

tan δ0 ¼
V0

k sin2ðkr0Þ
1þ V0

k sinðkr0Þ cosðkr0Þ
: ðB5Þ

2. Combined δ shell and Coulomb potential

An identical derivation can be performed in the presence
of the Coulomb potential, where the spherical Bessel
functions are replaced by the regular, Flðη; zÞ, and irregu-
lar, Glðη; zÞ, Coulomb wave functions replacing jlðzÞ and
−nlðzÞ, respectively. These wave functions are related to
the confluent hypergeometric function U through their
relation to the Coulomb analogue to the Hankel functions,

H�
l ðη; krÞ ¼ Glðη; krÞ � iFkðη; krÞ

¼ e�iΘðkrÞð∓ 2ikrÞ1þl�iη

×Uð1þ l� iη; 2lþ 2;∓ 2ikrÞ; ðB6Þ

where ΘðzÞ ¼ z − lπ=2þ σlðηÞ − η lnð2zÞ and σlðηÞ ¼
argΓð1þ lþ iηÞ is the Coulomb phase shift..

The exterior and interior wave function are parametrized
in the just as in (B2) and (B3) and are subject to the same
boundary conditions at the radius of the δ shell. Using the
Wronskian of the Coulomb wave functions GlðzÞF0

lðzÞ−
G0

lðzÞFlðzÞ ¼ 1, the phase shift in the presence of the
Coulomb interaction will be given by

tan δl ¼
V0

k F2
l ðη; kr0Þ

1þ V0

k Flðη; kr0ÞGlðη; kr0Þ
: ðB7Þ

By comparing numerical results with this analytical result,
the efficacy of the QEDL-modified finite-volume quantiza-
tion condition can be tested.

3. Computational strategy

In the remainder of this appendix, we will calculate
numerically the finite-volume energies for the combined δ
shell and QEDL potentials, apply the QEDL finite-volume
quantization condition given in Eq. (A35) and then com-
pare the results for the scattering phase shift with the exact
infinite-volume values given by Eq. (B7). Our numerical
approach is to determine the finite-volume energies and
wave functions to order e0 and then to use first-order
perturbation to determine the Oðe2Þ correction.
To solve the Schrödinger equation with δ shell potential

alone in finite volume, again the wave function is para-
metrized in the regions interior and exterior to the δ shell.
The wave function in the interior region is the same as
given in Eq. (B3), but the exterior region must satisfy the
periodic boundary conditions. The exterior wave function
is proportional to the finite-volume Green’s function given
in Eq. (A3). The boundary conditions at the δ shell leads to
the quantization condition,

½1−V0ro − kr0 cotðkr0Þ�G0;0ðr0;kÞ þ r0
∂G0;0

∂r
ðr0;kÞ ¼ 0;

ðB8Þ

where G0;0ðrÞ is the s-wave component of the zeroth-order
Green’s function G0ðr⃗Þ defined in Eq. (A3),

G0;0ðrÞ ¼
1

4π

Z
dΩr̂G0ðrr̂Þ: ðB9Þ

We will impose no conditions on higher partial waves with
l ≥ 4 making the usual assumption that the δ shell phase
shifts for l ≥ 4 can be neglected so that the regular behavior
of G0;lðrÞ needs no modification. Thus, this approximation
is made in both our quantization condition and our
numerical work and hence, is not tested in their compari-
son. The zeros of Eq. (B8) will be determined numerically.
The numerical evaluation of Gðr; kÞ is described in
Appendix B 4 and uses the Ewald summation technique
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to dramatically improve the convergence of the sums in
Eq. (A3). From those energy levels and the corresponding
wave function, the QEDL potential will be included using
first-order perturbation theory by calculating hψ jVQEDL

jψi
numerically, as described in Sec. B 5.

4. Ewald summation

An efficient numerical evaluation of the Helmholtz
Green’s function in three dimensions is a nontrivial task.
In its typical representation, Eq. (A3), as a sum in
momentum space, the series is slowly convergent. If one
truncates the sum to only contain terms with p⃗ < pmax,
then the leading neglected terms will be proportional to
p−2
max, but there will be approximately p2

max of them. The
large number of these terms will create substantial con-
tributions even if their individual summands are small and
will also increase the computational costs as pmax is raised.
A representation as a sum over the periodic images in
position space can be found using Poisson’s summation
formula,

G0ðr⃗; kÞ ¼
1

4π

X
n⃗

eikjr⃗−n⃗Lj

jr⃗ − n⃗Lj ; ðB10Þ

which is even less convergent.
Variants of the Helmholtz Green’s function are necessary

in a wide range of applications in physics and engineering,
such as determining the wave function of electrons within a
quasiperiodic crystal. The evaluation of these functions has
been expedited with a method called “Ewald summation”
[29]. Ewald summation breaks the series into two compo-
nents that represent the “near” contributions, which come
from contributions of periodic images close to r⃗ and are
evaluated in the position space representation and “far”
contributions, which come from the more distant periodic
images and are evaluated with the momentum space
representation [29]. As will be seen, the rate of convergence
will depend on the cutoff between these two regions. If the
cutoff were taken to either extreme that all points were in
one of these regions, the rate of convergence will blow up
as anticipated.
To perform Ewald summation, the summand in Eq. (B10)

is rewritten as an integral,

eikr

4πr
¼ 1

2π3=2

Z
Γ
e−r

2ξ2ek
2=ξ2dξ; ðB11Þ

where Γ is a particular contour from 0 to ∞ with some
constraints on how it approaches those limits [29]. First, Γ
must leave the origin with a negative angle ϕ in the limits
0 > ϕ > − π

4
, second, it returns to the real axis at ξ0, and

then finally, continues on the real axis to∞. This integral is
then broken into two regions, from 0 to ξ0 and from ξ0 to∞.

The first of these regions will be evaluated in momentum
space and the second in position space,

G0ðr⃗;kÞ ¼ G1ðr⃗;kÞ þG2ðr⃗;kÞ ¼
1

L3

X
p

eip⃗·r⃗e
k2−p2
4ξ0

k2 −p2

þ−1
4π

X
n

Re

	
eijr⃗þn⃗Ljkerfc

�
jr⃗þ n⃗Ljξ0 þ

ik
2ξ0

�

:

ðB12Þ

These sums converge significantly faster than the original
sum. The first converges as e−p

2=4ξ2
0 and the second as

e−n
2L2ξ2

0 . The original momentum space sum is the special
case of ξ0 ¼ 0, and the position space sum is reached as
ξ0 → ∞, which both demonstrate the slow convergence.
Using the optimal value of ξ0 ¼ 3

1
4

ffiffiffi
π
L

p
[30], these sums can

converge to sufficient accuracy with just a few terms.
These summation methods will also be necessary for

numerically evaluating the QEDL potential efficiently.
Unlike in a lattice application, with a uv regulator, the
standard summation definition QEDL potential is also
slowly convergent. For the numerical work, the QEDL
potential will be evaluated using Eq. (A2).

5. Numerical analysis of δ shell potential

The numerical analysis of the δ shell potential is
performed for two case. In one case, the constant
V0 ¼ 10, making the effects of the potential large com-
pared to the kinetic energies studied. For the second, we
choose V0 ¼ 1. The radius of the δ shell is held fixed to 1.
The size of the finite volume L is varied from 4 to 8 to
generate many energy levels.
The energy levels are calculated by finding the lowest

zeros of Eq. (B8) over a range of volumes. The phase shift
without Coulomb interactions, determined through Lüscher
quantization, is shown in Fig. 9. In both cases, the finite-
volume quantization condition reproduces the true phase
shift, shown as the curve in that figure, to high accuracy
over the range of k studied. The largest discrepancies are
Oð10−11Þ. For the case of V0 ¼ 10, k cot δ, being linear in
k2 can be well described by the first two terms of the
effective range expansion, but for the weaker potential
more terms would be required.
Perturbation theory is used to find the energy shifts

caused by the inclusion of the QEDL potential. The
unnormalized wavefunction corresponding to a finite-vol-
ume energy eigenstate for the δ shell potential alone is
approximately,

ψðr⃗; kÞ ¼
8<
:

sinðkrÞ
r r < r0
sinðkr0Þ

r0G0;0ðr0;kÞG0ðr⃗; kÞ r ≥ r0
; ðB13Þ
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up to order 1=L2l power-law corrections generated by
ignoring contributions with l ≥ 4 in the interior region.
Adding VQEDL

as a perturbation, the energy shift is

calculated as ΔE ¼ hψ jVQEDL
jψi

hψ jψi by analytically integrating

the component of the wave function for r < r0 and then
performing a Monte Carlo integration for the exterior
region. The value of the coupling is set to e2 ¼ 1

2μ, such

that the effective Bohr radius, 4π=ðe2μÞ is significantly
larger than the size of the box. In the region of small k, the
Sommerfeld parameter η will begin to grow large and the
perturbation theory used in the quantization condition
begins to break down. Figure 10 shows the results of the
phase shifts from Oðe2Þ energy levels using the finite-
volume quantization condition of Eq. (A35). Even though
the phase shift changes quite dramatically from the neutral
case, the vast majority of the phase shifts determined from
the finite-volume quantization condition reproduce the
infinite-volume result with subpercent level accuracy.
The lowest k2 for the weak interaction case of V0 ¼ 1

differ by Oð1%Þ from the true infinite-volume

nonperturbative result due to this breakdown of perturba-
tion theory at large η.
This study of a simple quantum mechanics problem

implies that the structure-dependent effects of the unphys-
ical L−3 introduced by the QEDL potential on the phase
shift are small for this case. Their contribution to the
perturbative energy shift from the region within the radius
of the strong interaction is, at their largest, Oð1.2%Þ for
L ¼ 4 of the contribution from the true Coulomb inter-
action in the same region. Naïvely, one could expect that to
be the size of the error in the phase shift. The relative error
in the resulting phase shift for this case is Oð0.1%Þ. In fact,
it appears the larger deviations from the infinite-volume
nonperturbative result are from the truncation of perturba-
tion theory in the finite-volume quantization condition of
Eq. (A35), which grow largest at small k where η goes
above 1. Of course, there is no guarantee the structure-
dependent effects of the 1=L3 term will be the same in an
actual QCD calculation, but analyzing this would require a
full numerical lattice study comparing this QEDL approach
to a more accurate method such as the truncated Coulomb
potential approach presented in this paper.

FIG. 9. The scattering phase shift δ (left) and k cot δ (right) for the δ shell potential. The strength of the δ shell potential is 1 for the
upper plots and 10 for the lower plots. The black curve represents the exact infinite-volume solution of Eq. (B5).
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